
INF5430 V2012INF5430 V2012
Register Transfer Methodology IRegister Transfer Methodology I

P.P.Chu
RTL Hardware Design Using VHDL

Chapter 11Chapter 11

RTL Hardware Design
by P. Chu

Chapter 11 1

OutlineOutline
1 Introduction1. Introduction
2. Overview of FSMD
3. FSMD design of a repetitive-addition

multiplierp
4. Alternative design of a repetitive-

addition multiplieraddition multiplier
5. Timing and performance analysis of

FSMDFSMD
6. Sequential add-and-shift multiplier

RTL Hardware Design
by P. Chu

Chapter 11 2

1 Introduction1. Introduction

• How to realize an algorithm in hardware?
• Two characteristics of an algorithm:Two characteristics of an algorithm:

– Use of variables (symbolic memory location)
e g n = n + 1 in Ce.g., n = n + 1 in C

– Sequential execution
(ti d i i t t)(execution order is important)

RTL Hardware Design
by P. Chu

Chapter 11 3

• E.g., an algorithm:
Summate 4 number– Summate 4 number

– Divide the result by 8
Round the result– Round the result

• Pseudocode

RTL Hardware Design
by P. Chu

Chapter 11 4

• “Dataflow” implementation in VHDLDataflow implementation in VHDL
– Convert the algorithm in to combinational

circuitcircuit
– No memory elements
– The sequence is embedded into the “flow of

data”

RTL Hardware Design
by P. Chu

Chapter 11 5

• VHDL code

RTL Hardware Design
by P. Chu

Chapter 11 6

• Block diagramg

RTL Hardware Design
by P. Chu

Chapter 11 7

• Problems with dataflow implementation:
– Can only be applied to trivial algorithmCan only be applied to trivial algorithm
– Not flexible

Can we just share one adder in a time• Can we just share one adder in a time-
multiplexing fashion to save hardware
resourcesresources

• What happen if input size is not fixed
(i.e., size is determined by an external input)

RTL Hardware Design
by P. Chu

Chapter 11 8

Register Transfer MethodologyRegister Transfer Methodology

• Realized algorithm in hardware• Realized algorithm in hardware
• Use register to store intermediate data and

imitate variable
• Use a datapath to realize all registerUse a datapath to realize all register

operations
U t l th (FSM) t if th• Use a control path (FSM) to specify the
order of register operation

RTL Hardware Design
by P. Chu

Chapter 11 9

• The system is specified as sequence of
data manipulation/transfer among p g
registers

• Realized by FSM with a datapath (FSMD)• Realized by FSM with a datapath (FSMD)

RTL Hardware Design
by P. Chu

Chapter 11 10

2. Overview of FSMD

RTL Hardware Design
by P. Chu

Chapter 11 11

Basic RT operation
• Basic form:

• Interpretation:• Interpretation:
– At the rising edge of the clock, the source of

i t t il blregisters rsrc1 rsrc2 . etc are available
– The source values are passed to a

combinational circuit that performs f()
– At the next rising edge of the clock, the result g g

is stored into rdest

RTL Hardware Design
by P. Chu

Chapter 11 12

• E.g.,

RTL Hardware Design
by P. Chu

Chapter 11 13

• Implementation example

RTL Hardware Design
by P. Chu

Chapter 11 14

• Multiple RT operations

RTL Hardware Design
by P. Chu

Chapter 11 15

FSM as control pathFSM as control path

• FSM is a good to control RT operation
– State transition is on clock-by-clock basisy
– FSM can enforce order of execution

FSM allows branches on execution sequence– FSM allows branches on execution sequence
• Normally represented in an extended ASM

chart known as ASMD (ASM with
datapath) chartp)

RTL Hardware Design
by P. Chu

Chapter 11 16

• E.g.

• Note: new value of r1 is only available when the
FSM exits s1 state

RTL Hardware Design
by P. Chu

Chapter 11 17

Basic Block Diagram of FSMD

RTL Hardware Design
by P. Chu

Chapter 11 18

3. FSMD design example:
Repetitive addition multiplier

B i l ith 7*5 7 7 7 7 7• Basic algorithm: 7*5 = 7+7+7+7+7
• Pseudo code

RTL Hardware Design
by P. Chu

Chapter 11 19

• ASMD-friendly code

RTL Hardware Design
by P. Chu

Chapter 11 20

• Input:
– a_in, b_in: 8-bit

unsigned
– clk, reset

t t d– start: command
• Output:

16 bit i d– r: 16-bit unsigned
– ready: status

• ASMD chart
– Default RT operation:

keep the previous
valuevalue

– Note the parallel
execution in op state

RTL Hardware Design
by P. Chu

Chapter 11 21

• Construction of the data path
– List all RT operationsp
– Group RT operation according to the destination register
– Add combinational circuit/muxAdd combinational circuit/mux
– Add status circuits

• E g• E.g
– RT operations with the r register

• r ← r (in the idle state)
0 (i th l d d t t)• r ← 0 (in the load and op states)

• r ← r + b (in the op state)
– RT operations with the n register

(i th idl t t)• n ← n (in the idle state)
• n ← b_in (in the load and ab0 states)
• n ← n-1 (in the op state)

RT ti ith th i t– RT operations with the a register
• a ← a (in the idle and op states)
• a ← a_in (in the load and ab0 states)

RTL Hardware Design
by P. Chu

Chapter 11 22

• E.g., Circuit associated with r registerg , g

RTL Hardware Design
by P. Chu

Chapter 11 23 RTL Hardware Design
by P. Chu

Chapter 11 24

• VHDL code: follow the block diagram

RTL Hardware Design
by P. Chu

Chapter 11 25 RTL Hardware Design
by P. Chu

Chapter 11 26

RTL Hardware Design
by P. Chu

Chapter 11 27 RTL Hardware Design
by P. Chu

Chapter 11 28

RTL Hardware Design
by P. Chu

Chapter 11 29 RTL Hardware Design
by P. Chu

Chapter 11 30

• Use of register in decision box
– Register is updated when the FSM exits current stateRegister is updated when the FSM exits current state
– How to represent count_0=‘1’ using register?

RTL Hardware Design
by P. Chu

Chapter 11 31

• Other VHDL coding styles:
– Various code segments can be combinedVarious code segments can be combined
– Should always separate registers from

combinational logiccombinational logic
• Avoid segment(process) descripions

– Harder to understand– Harder to understand
– Difficult to debug

– May be a good idea to isolate the mainMay be a good idea to isolate the main
functional units

• Dependant of the complexity of the function f()• Dependant of the complexity of the function f(.)

RTL Hardware Design
by P. Chu

Chapter 11 32

• E.g., 2-segment code

RTL Hardware Design
by P. Chu

Chapter 11 33 RTL Hardware Design
by P. Chu

Chapter 11 34

RTL Hardware Design
by P. Chu

Chapter 11 35

4. Alternative design of a repetitive-
addition multiplier

R h i• Resource sharing
– Hardware can be shared in a time-

multiplexing fashion
– Assign the operation in different states
– Most complex circuits in the FSMD design is

normally the functional units of the datapath
• Sharing in repetitive addition multiplier

– Addition and decrementingAddition and decrementing
– The same adder can be used in 2 states

RTL Hardware Design
by P. Chu

Chapter 11 36

RTL Hardware Design
by P. Chu

Chapter 11 37 RTL Hardware Design
by P. Chu

Chapter 11 38

RTL Hardware Design
by P. Chu

Chapter 11 39 RTL Hardware Design
by P. Chu

Chapter 11 40

• Mealy-controlled operation
– Control signals is edge-sensitive
– Mealy output is faster and requires fewer states
– E.g.,

RTL Hardware Design
by P. Chu

Chapter 11 41

• Mealy control signalMealy control signal
for multiplier

l d d b0 t t– load and ab0 states
perform no

t ticomputation
– Mealy control can

be used to
eliminate ab0 and
load states

RTL Hardware Design
by P. Chu

Chapter 11 42

• r n b registerr, n, b register
loaded using Mealy
signalsignal

RTL Hardware Design
by P. Chu

Chapter 11 43 RTL Hardware Design
by P. Chu

Chapter 11 44

5. Clock rate and Performance
of FSMD

• Maximal clock rate
– More difficult to analyze because of two y

interactive loops
– The boundary of the clock rate can be foundThe boundary of the clock rate can be found
– Ref. slide 18 (textbook figure 11.5)

RTL Hardware Design
by P. Chu

Chapter 11 45

troute1 tfunc troute2 tcq(data)

tsetup(data)

tdp = troute1+ tfunc + troute2

tnext tcq(state) toutputtnext tcq(state) toutput

tsetup(state)

RTL Hardware Design
by P. Chu

Chapter 11 46

• Best-case scenario:
– Control signals needed at late stage
– Status signal available at early stage g y g

RTL Hardware Design
by P. Chu

Chapter 11 47 RTL Hardware Design
by P. Chu

Chapter 11 48

• Worst-case scenario:
– Control signals needed at early stage
– Status signal available at late stage g g

RTL Hardware Design
by P. Chu

Chapter 11 49 RTL Hardware Design
by P. Chu

Chapter 11 50

RTL Hardware Design
by P. Chu

Chapter 11 51

• Performance of FSMD• Performance of FSMD
– Tc: Clock period
– K: # clock cycles to complete the computation
– Total time = K * Tc

• K determined by algorithm, input patterns
etcetc.

RTL Hardware Design
by P. Chu

Chapter 11 52

6. Sequential add-and-shift
multiplier

RTL Hardware Design
by P. Chu

Chapter 11 53 RTL Hardware Design
by P. Chu

Chapter 11 54

RTL Hardware Design
by P. Chu

Chapter 11 55

• Note the use of b_next
and n nextand n_next

• a<<1 and b>>1 require
no logicg

• 8-bit input
– Best: b=0,

K = 8+1
– Worst: b=255,

K = 2*8+1K 2 8 1

• N-bit input:
– Best:

K=n+1
– Worst:

K 2* 1K=2*n+1

RTL Hardware Design
by P. Chu

Chapter 11 56

RTL Hardware Design
by P. Chu

Chapter 11 57 RTL Hardware Design
by P. Chu

Chapter 11 58

RTL Hardware Design
by P. Chu

Chapter 11 59 RTL Hardware Design
by P. Chu

Chapter 11 60

• RefinementRefinement
– No major computation done in the shift state:

the add and shift states can be mergedthe add and shift states can be merged
– Data path can be simplified:

• Replace 2n-bit adder with (n+1)-bit adder
• Reduce the a register from 2n bits to n bits
• Use the lower part of the p register to store and

eliminate the b register

RTL Hardware Design
by P. Chu

Chapter 11 61

p←p+a

RTL Hardware Design
by P. Chu

Chapter 11 62

pu pl

RTL Hardware Design
by P. Chu

Chapter 11 63

pu pl
#: n+1(8+1)

b=pl_reg

RTL Hardware Design
by P. Chu

Chapter 11 64

RTL Hardware Design
by P. Chu

Chapter 11 65 RTL Hardware Design
by P. Chu

Chapter 11 66

