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1 Introduction1. Introduction

• How to realize an algorithm in hardware?
• Two characteristics of an algorithm:Two characteristics of an algorithm:

– Use of variables (symbolic memory location)
e g n = n + 1 in Ce.g., n = n + 1 in C

– Sequential execution
( ti d i i t t)(execution order is important)
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• E.g., an algorithm: 
Summate 4 number– Summate 4  number

– Divide the result by 8
Round the result– Round the result

• Pseudocode
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• “Dataflow” implementation in VHDLDataflow  implementation in VHDL
– Convert the algorithm in to combinational 

circuitcircuit
– No memory elements 
– The sequence is embedded into the “flow of 

data” 
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• VHDL code
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• Block diagramg
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• Problems with dataflow implementation: 
– Can only be applied to trivial algorithmCan only be applied to trivial algorithm 
– Not flexible

Can we just share one adder in a time• Can we just share one adder in a time-
multiplexing fashion to save hardware 
resourcesresources

• What happen if input size is not fixed
(i.e., size is determined by an external input)
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Register Transfer MethodologyRegister Transfer Methodology

• Realized algorithm in hardware• Realized algorithm in hardware
• Use register to store intermediate data and 

imitate variable
• Use a datapath to realize all registerUse a datapath to realize all register  

operations
U t l th (FSM) t if th• Use a control path (FSM) to specify the 
order of register operation
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• The system is specified as sequence of 
data manipulation/transfer among p g
registers

• Realized by FSM with a datapath (FSMD)• Realized by FSM with a datapath (FSMD)
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2. Overview of FSMD
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Basic RT operation
• Basic form:

• Interpretation:• Interpretation:
– At the rising edge of the clock, the source of 

i t t il blregisters rsrc1  rsrc2 . etc are available
– The source values are passed to a 

combinational circuit that performs f( )
– At the next rising edge of the clock, the result g g

is stored into rdest
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• E.g.,
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• Implementation example
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• Multiple RT operations
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FSM as control pathFSM as control path

• FSM is a good to control RT operation
– State transition is on clock-by-clock basisy
– FSM can enforce order of execution

FSM allows branches on execution sequence– FSM allows branches on execution sequence
• Normally represented in an extended ASM 

chart known as ASMD (ASM with 
datapath) chartp )
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• E.g.

• Note: new value of r1 is only available when the 
FSM exits s1 state
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Basic Block Diagram of FSMD
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3. FSMD design example:
Repetitive addition multiplier

B i l ith 7*5 7 7 7 7 7• Basic algorithm:  7*5 = 7+7+7+7+7
• Pseudo code
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• ASMD-friendly code
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• Input:
– a_in, b_in: 8-bit 

unsigned
– clk, reset 

t t d– start: command
• Output:

16 bit i d– r: 16-bit unsigned
– ready: status 

• ASMD chart
– Default RT operation: 

keep the previous 
valuevalue 

– Note the parallel 
execution in op state
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• Construction of the data path
– List all RT operationsp
– Group RT operation according to the destination register
– Add combinational circuit/muxAdd combinational circuit/mux 
– Add status circuits

• E g• E.g
– RT operations with the r register

• r ← r (in the idle state)
0 (i th l d d t t )• r ← 0 (in the load and op states)

• r ← r + b (in the op state)
– RT operations with the n register

(i th idl t t )• n ← n (in the idle state)
• n ← b_in (in the load and ab0 states)
• n ← n-1 (in the op state)

RT ti ith th i t– RT operations with the a register
• a ← a (in the idle and op states)
• a ← a_in ( in the load and ab0 states)
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• E.g., Circuit associated with r registerg , g
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• VHDL code: follow the block diagram
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• Use of register in decision box
– Register is updated when the FSM exits current stateRegister is updated when the FSM exits current state
– How to represent count_0=‘1’ using register?
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• Other VHDL coding styles: 
– Various code segments can be combinedVarious code segments can be combined 
– Should always separate registers from 

combinational logiccombinational logic
• Avoid segment(process) descripions

– Harder to understand– Harder to understand
– Difficult to debug

– May be a good idea to isolate the mainMay be a good idea to isolate the main 
functional units

• Dependant of the complexity of the function f( )• Dependant of the complexity of the function f(.)
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• E.g., 2-segment code
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4. Alternative design of a repetitive-
addition multiplier

R h i• Resource sharing
– Hardware can be shared in a time-

multiplexing fashion
– Assign the operation in different states
– Most complex circuits in the FSMD design is 

normally the functional units of the datapath
• Sharing in repetitive addition multiplier

– Addition and decrementingAddition and decrementing
– The same adder can be used in 2 states
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• Mealy-controlled operation
– Control signals is edge-sensitive
– Mealy output is faster and requires fewer states
– E.g.,
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• Mealy control signalMealy control signal 
for multiplier

l d d b0 t t– load and ab0 states 
perform no 

t ticomputation 
– Mealy control can 

be used to 
eliminate ab0 and 
load states
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• r n b registerr, n, b register 
loaded using Mealy 
signalsignal
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5. Clock rate and Performance 
of FSMD

• Maximal clock rate
– More difficult to analyze because of two y

interactive loops
– The boundary of the clock rate can be foundThe boundary of the clock rate can be found
– Ref. slide 18 (textbook figure 11.5)
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troute1 tfunc troute2 tcq(data)

tsetup(data)

tdp = troute1+ tfunc + troute2

tnext tcq(state) toutputtnext tcq(state) toutput

tsetup(state)
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• Best-case scenario: 
– Control signals needed at late stage 
– Status signal available at early stage g y g
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• Worst-case scenario: 
– Control signals needed at early stage 
– Status signal available at late stage g g
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• Performance of FSMD• Performance of FSMD
– Tc: Clock period
– K: # clock cycles to complete the computation
– Total time = K * Tc 

• K determined by algorithm, input patterns 
etcetc.
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6. Sequential add-and-shift 
multiplier
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• Note the use of b_next 
and n nextand n_next

• a<<1 and b>>1 require 
no logicg

• 8-bit input
– Best: b=0,

K = 8+1
– Worst: b=255, 

K = 2*8+1K  2 8 1

• N-bit input: 
– Best:

K=n+1
– Worst: 

K 2* 1K=2*n+1
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• RefinementRefinement
– No major computation done in the shift state: 

the add and shift states can be mergedthe add and shift states can be merged
– Data path can be simplified:

• Replace 2n-bit adder with (n+1)-bit adder
• Reduce the a register from 2n bits to n bits
• Use the lower part of the p register to store  and 

eliminate the b register
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p←p+a
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pu pl
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pu pl
#: n+1(8+1)

b=pl_reg
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