
INF5430: High level synthesis

Overview

I High Level Synthesis (HLS)

I Designing hardware with C

I Compiler transformations

I Non-Optimal code for Synthesis

I References

March 23, 2012 2

High Level Synthesis

I Higher abstraction level (behavior).

I Generate hardware from C or another high level language.
I Faster time to market.

I Faster implementation
I Faster verification

I Several hardware implementation alternatives can be
generated from one HL implementation.

I A HL model can be used to generate hardware which meet
different performance requirements and resource constraints.

March 23, 2012 3

High level Synthesis

I Open source tools and commercial tools are available:
RoCCC, Catapult-C, MathWorks HDLCoder

March 23, 2012 4

HLS Process

I Data Flow Graph Analysis

I Resource Allocation

I Scheduling

March 23, 2012 5

Data Flow Graph Analysis

I High level synthesis starts by analyzing data dependencies in
the code.

I This leads to a Data Flow Graph (DFG)

I Parts of code without dependencies can be executed in parallel

1 vo id accumulate (i n t a , i n t b , i n t c , i n t d , i n t &dout){
2 i n t t1 , t2 ;
3 t1 = a + b ;
4 t2 = t1 + c ;
5 dout = t2 + d ;
6 }

March 23, 2012 6

Data Flow Graph Analysis

I High level synthesis starts by analyzing data dependencies in
the code.

I This leads to a Data Flow Graph (DFG)

I Parts of code without dependencies can be executed in parallel

1 vo id accumulate (i n t a , i n t b , i n t c , i n t d , i n t &dout){
2 i n t t1 , t2 ;
3 t1 = a + b ;
4 t2 = t1 + c ;
5 dout = t2 + d ;
6 }

March 23, 2012 7

Resource Allocation

I Based on the assembled DFG, each operation is mapped onto
a hardware resource.

I This process is called resource allocation.

I The implementation is annotated with both timing and area
information. This is used during scheduling.

March 23, 2012 8

Scheduling

I HLS adds time to the design during the scheduling.

I Scheduling takes the DFG operations and decides when they
are performed.

I Registers are added based on the target clock frequency.

March 23, 2012 9

Scheduling

I A data path state machine (DPFSM) is created to control the
scheduled design.

I In this design, four states are required to execute the schedule.

I These states are referred to as control steps or c-steps.

March 23, 2012 10

Scheduling

I The resulting hardware generated from the schedule will vary
depending on the design constraints.

I Design constraints include resource allocation and
performance.

March 23, 2012 11

Example

1 uns igned i n t coun t one s (uns igned i n t A)
2 {
3 i n t i ;
4 uns igned count = 0 ;
5 f o r (i =0; i <32; i++)
6 i f ((A & (0 x00000001 << i)) > 0)
7 count++;
8 r e t u r n count ;
9 }

March 23, 2012 12

Not all code is suited for synthesis

I Need to keep in mind that the code ends up as hardware.

I Not all algorithms are suited for hardware implementations.

I Sequential code, control logic, large loops with function calls
typically will not benefit much.

March 23, 2012 13

System Calls and Packages

I stdio.h functions such as printf or cout.

I math.h sin, cos and most math functions are not
synthesisable.

I Assembly code is not synthesisable.

I System calls are generally not synthesisable.

March 23, 2012 14

Recursive functions

I Recursion are functions which calls itself.

I Used to write compact and efficient C code.

I Recursive functions executed on a CPU makes heavy use of
the return stack, and are often unbounded.

I Typically a complete rewrite is required in order to get a
iterative implementation which can be synthesised.

March 23, 2012 15

Function pointers

I Function pointers are usually not supported.

I Needs to be changed to explicit function calls.

1 i n t main () {
2 vo id (∗ f p) (i n t) ;
3 fp = func ;
4 fp (2) ; // f u n c t i o n p o i n t e r c a l l
5 func (2) ; // e x p l i c i t f u n c t i o n c a l l
6 }
7
8 vo id f unc (i n t arg) {
9 p r i n t f (”%d\n” , a rg) ;

10 }

March 23, 2012 16

Dynamic Memory Allocation

I Dynamic memory allocation is typically done with malloc

I Dynamic memory allocation is not synthesisable, and we need
to use static memory allocations.

1 i n t s ta t i c mem [3 2] ;
2 i n t ∗dyn mem = ma l l oc (32 , s i z e o f (i n t)) ;

March 23, 2012 17

Unbounded Loops

I Loops without finite bounds.

I When the start value, stop value and the increment is
constant and defined, the loop is bounded.

I A loop is not bounded when start, stop or increment is passed
as a function parameter!

1 vo id unbounded loop (i n t l oop) {
2 i n t i ;
3 f o r (i = loop ; i>=0; i−−)
4 s ta tement ;
5 }

March 23, 2012 18

Other restrictions

I Global variables for sharing data between functions are not
supported.

I Problematic to pass pointers when using a CPU with MMU.

1 i n t g l o b v a r =5430;
2
3 vo id f un c 0 () {
4 s ta tement g l o b v a r ;
5 }
6
7 vo id f un c 1 () {
8 s ta tement g l o b v a r ;
9 }

March 23, 2012 19

HLS Restrictions

I Restrictions in the HLS flow often requires rewriting C
functions.

I C code targeting HLS is therefore less portable.

I Different HLS tools synthesis C code differently further
decreasing portability.

I Programming code often require HLS tool specific
adaptations.

March 23, 2012 20

Designing hardware with C

I We need to know how the tools transform C code into
hardware in order to get efficient implementations.

I We need to know what type of code to avoid.

I HLS tools perform code transformations on the programming
code when generating hardware implementations.

I Code transformations on different levels:
I Bit-level
I Instruction-level
I Loop-level
I Data-oriented

March 23, 2012 21

Bit-level transformations: bit reversing

I Software (a) implementation of bit reversing compared to a
hardware implementation (b).

March 23, 2012 22

Bit-level transformations: bit-width narrowing

I Variables are often defined with a greater dynamic range than
needed.

Consider the example

1 f o r (i n t i =0; i <4; i++)
2 s t a t emen t s

I On a CPU we use predetermined register widths.

I When implemented in hardware we allocate physical resources
to the i variable.

I Bit-width narrowing can be determined by static analysis or
profiling.

March 23, 2012 23

Bit-level transformations: bit-width narrowing

Consider the following example where bit-width narrowing is used
to optimize the counter:

1 vo id accumulate4 (i n t d in [4] , i n t &dout){
2 i n t acc=0;
3 f o r (i n t i =0; i <4; i++)
4 acc += d in [i] ;
5 dout = acc ;
6 }

Which results in the following hardware:

March 23, 2012 24

Loop-level trans.: Partial Loop Unrolling

In order to increase throughput consider the example:

1 vo id accumulate (i n t d in [4] , i n t &dout){
2 i n t acc=0;
3 f o r (i n t i =0; i <4; i +=2){
4 acc += d in [i] ;
5 acc += d in [i +1] ;
6 }
7 dout = acc ;
8 }

Which results in the following hardware implementation:

March 23, 2012 25

Loop-level trans.: Fully Unrolled Loop

Further increasing the throughput, consider the example:

1 vo id accumulate (i n t d in [4] , i n t &dout){
2 i n t acc=0;
3 acc += d in [0] ;
4 acc += d in [1] ;
5 acc += d in [2] ;
6 acc += d in [3] ;
7 dout = acc ;
8 }

Results in a balanced adder tree:

March 23, 2012 26

Loop-level transformations

I HLS tools generate non-unrolled loops, partial unrolled loops,
or fully unrolled loops out of a single implementation.

1 vo id accumulate4 (i n t d in [4] , i n t &dout){
2 i n t acc=0;
3 f o r (i n t i =0; i <4; i++) acc += d in [i] ;
4 dout = acc ;
5 }

March 23, 2012 27

Instruction-level trans: Tree Height Reduction

I Reduce the height of the a tree of operations by reordering
them without changing the functionality.

I THR is applied to (b) which results in the tree shown in (c).

I (d) and (c) shows the scheduling when the data is stored in
memory

I HLS tools will try to build a balanced tree structure out of
related additions that can be scheduled in parallel.

March 23, 2012 28

Operation Strength Reduction (OSR)

I Replace an operation by a computationally less expensive one

I or a sequence of operations Example:

1 2<<1 == 2∗2

I The multiplication is replaced with a simple shift. The shift
only requires changes to the interconnections.

March 23, 2012 29

Data-Oriented Transformations

I Data-oriented transformations makes changes to the
organization of data structures.

I Common transformations include:
I Data distribution
I Data replication

March 23, 2012 30

Data distribution transformation

I Partitions the data into many distinct internal memory units
or modules.

I Increases throughput.

I Concurrent access.

March 23, 2012 31

Data duplication transformation

I Increases throughput.

I Concurrent access.

I Consistency issues when modifying data.

March 23, 2012 32

Other transformations

I Function inlining

I Dedicated for each function invocation.

1 vo id accumulate () {
2 accumulate4 (din , dout) ;
3 accumulate4 (din2 , dout2) ;
4 }
5
6 vo id accumulate4 (i n t d in [4] , i n t &dout){
7 i n t acc=0;
8 f o r (i n t i =0; i <4; i++) acc += d in [i] ;
9 dout = acc ;

10 }

March 23, 2012 33

Other transformations

I Function outlining
I Increases resource sharing.
I Reducing parallelism.

March 23, 2012 34

References

I Mentor Graphics The High Level Synthesis Blue Book

I Compiling for Reconfigurable Computing: A survey, Cardoso,
Diniz, Weinhardt. DOI 10.1145/1749603.1749604

March 23, 2012 35

