

Overview
High Level Synthesis (HLS)

Designing hardware with C

>

>

» Compiler transformations

» Non-Optimal code for Synthesis
>

References

March 23, 2012 2

UNIVERSITY
OF OSLO

«4O0>» «F>» «E» «

High Level Synthesis

» Higher abstraction level (behavior).

» Generate hardware from C or another high level language.
» Faster time to market.

» Faster implementation
» Faster verification

» Several hardware implementation alternatives can be
generated from one HL implementation.

» A HL model can be used to generate hardware which meet
different performance requirements and resource constraints.

March 23, 2012 3

UNIVERSITY

OF OSLO

High level Synthesis

» Open source tools and commercial tools are available:
RoCCC, Catapult-C, MathWorks HDLCoder

S

& | 0| soltion/cop. v =] Hausovions | @ PO HE @

e e S =

(S e NANNG s 1 i s | @bt | ¢ Comtrin. |

B = =
=
it
Vg b R R y

March 23, 2012 4

UNIVERSITY

OF OSLO

HLS Process

» Data Flow Graph Analysis
» Resource Allocation

» Scheduling

March 23, 2012 5

UNIVERSITY
OF OSLO

«4O0>» «F>» «E» «

Data Flow Graph Analysis

» High level synthesis starts by analyzing data dependencies in
the code.

» This leads to a Data Flow Graph (DFG)

» Parts of code without dependencies can be executed in parallel

void accumulate(int a, int b, int c, int d, int &dout){

dout = t2 + d;

}

1

2 int tl,t2;
3 tl = a + b;
4 t2 = tl + c;
5

6

March 23, 2012

UNIVERSITY

OF OSLO

Data Flow Graph Analysis

» High level synthesis starts by analyzing data dependencies in
the code.

» This leads to a Data Flow Graph (DFG)
» Parts of code without dependencies can be executed in parallel

1 void accumulate(int a, int b, int ¢, int d, int &dout){
2 int tl,t2;
3 tl = a + b;
4 t2 = tl + c;
5 dout = t2 + d;
6 }

8 t

b

2
c
" 13 dout
March 23, 2012 7

UNIVERSITY

OF OSLO

Resource Allocation

» Based on the assembled DFG, each operation is mapped onto
a hardware resource.
» This process is called resource allocation.

» The implementation is annotated with both timing and area
information. This is used during scheduling.

Operations

: :I j ,. / -
N R Characterized
- esource Library of

. % Allocation Components
ca B3

Hardware Resource
+ - Delay =3ns
Area =320 um2

March 23, 2012

UNIVERSITY

OF OSLO

Scheduling

» HLS adds time to the design during the scheduling.

» Scheduling takes the DFG operations and decides when they
are performed.

» Registers are added based on the target clock frequency.

Clock cycle 1

March 23, 2012

UNIVERSITY

OF OSLO

Scheduling

» A data path state machine (DPFSM) is created to control the
scheduled design.

» In this design, four states are required to execute the schedule.

> These states are referred to as control steps or c-steps.

tl:a+b:

Mtﬁilii; E§i>EIHHﬂ
c3

March 23, 2012 ”

UNIVERSITY

OF OSLO

Scheduling

» The resulting hardware generated from the schedule will vary

depending on the design constraints.

» Design constraints include resource allocation and

performance.

a[31:0]

b[31:0] |

c[31:0] __|

di31o) | 4x1 Reg

FSM

March 23, 2012

32 .
2 dout[31:0]

11

UNIVERSITY

OF OSLO

Example

1 unsigned int count_ones(unsigned int A)
2 {
3 int i;
4 unsigned count = 0;
5 for(i=0; i<32; i++)
6 if ((A& (0x00000001 << i)) > 0)
7 count++;
8 return count;
o}
March 23, 2012 12

UNIVERSITY

OF OSLO

Not all code is suited for synthesis

» Need to keep in mind that the code ends up as hardware.
» Not all algorithms are suited for hardware implementations.

» Sequential code, control logic, large loops with function calls
typically will not benefit much.

March 23, 2012 13

UNIVERSITY

OF OSLO

«4O0>» «F>» «E» «

System Calls and Packages

» stdio.h functions such as printf or cout.

» math.h sin, cos and most math functions are not
synthesisable.

» Assembly code is not synthesisable.

» System calls are generally not synthesisable.

March 23, 2012 14

UNIVERSITY

OF OSLO

Recursive functions

» Recursion are functions which calls itself.
» Used to write compact and efficient C code.

» Recursive functions executed on a CPU makes heavy use of
the return stack, and are often unbounded.

» Typically a complete rewrite is required in order to get a
iterative implementation which can be synthesised.

int Fmy_fund)(int *a) {
*af = 20;
if (*a < 1003
1'etu1*r)<fv1’y7func tal
elae —
return a;
}

Recursion is when a function calls itself.

March 23, 2012 15

UNIVERSITY

OF OSLO

Function pointers

» Function pointers are usually not supported.

» Needs to be changed to explicit function calls.

1 int main() {
2 void (xfp)(int);
3 fp = func;
4 fp(2); // function pointer call
5 func(2); // explicit function call
6 }
7
8 wvoid func(int arg) {
9 printf("%d\n", arg);
10
March 23, 2012 16

UNIVERSITY

OF OSLO

Dynamic Memory Allocation

» Dynamic memory allocation is typically done with malloc

» Dynamic memory allocation is not synthesisable, and we need
to use static memory allocations.

1 int static.mem [32];
2 int xdyn.mem = malloc (32, sizeof(int));
March 23, 2012 17

UNIVERSITY

7 OF OSLO

Unbounded Loops

» Loops without finite bounds.

» When the start value, stop value and the increment is
constant and defined, the loop is bounded.

» A loop is not bounded when start, stop or increment is passed
as a function parameter!

1 void unbounded_loop(int loop) {
2 int i;
3 for (i = loop; i>=0; i—)
4 statement;
5 }
March 23, 2012 18

UNIVERSITY

7 OF OSLO

Other restrictions

» Global variables for sharing data between functions are not
supported.

» Problematic to pass pointers when using a CPU with MMU.

1 int glob_var=5430;
2
3 void func_0() {
4 statement glob_var;
5}
6
7 void func_1() {
8 statement glob_var;
9
March 23, 2012 19

UNIVERSITY

OF OSLO

HLS Restrictions

» Restrictions in the HLS flow often requires rewriting C
functions.

» C code targeting HLS is therefore less portable.

» Different HLS tools synthesis C code differently further
decreasing portability.

» Programming code often require HLS tool specific
adaptations.

March 23, 2012 20

UNIVERSITY

OF OSLO

Designing hardware with C

» We need to know how the tools transform C code into
hardware in order to get efficient implementations.
» We need to know what type of code to avoid.
» HLS tools perform code transformations on the programming
code when generating hardware implementations.
» Code transformations on different levels:
> Bit-level
Instruction-level

>
> Loop-level
» Data-oriented

March 23, 2012 21

UNIVERSITY

OF OSLO

Bit-level transformations: bit reversing

» Software (a) implementation of bit reversing compared to a
hardware implementation (b).

int Reverse(int Word) {
int WordRev = 0;
for(int i=0; i<32; i++) {
WordRev |= (Word & 1);
WordRev << 1;

}
return WordReyv;
}
(a) (b)
March 23, 2012 2

UNIVERSITY
OF OSLO

«4O0>» «F>» «E» «

Bit-level transformations: bit-width narrowing

» Variables are often defined with a greater dynamic range than
needed.

Consider the example
1 for (int i=0;i<4;i++)
2 statements
» On a CPU we use predetermined register widths.

» When implemented in hardware we allocate physical resources
to the /i variable.

» Bit-width narrowing can be determined by static analysis or
profiling.

March 23, 2012 23

UNIVERSITY

OF OSLO

Bit-level transformations: bit-width narrowing

Consider the following example where bit-width narrowing is used
to optimize the counter:

void accumulate4 (int din[4], int &dout){
int acc=0;
for(int i=0;i<4;i++)
acc += din[i];
dout = acc;

DO E WN =

Which results in the following hardware:

din[31:0] S
din[63:31] 32
din[95:64] 4"1}7 / N dout[31:0]
din[127:96] H o l * J Reg ’»
3-bit W

2k, N
3-bit control logic

March 23, 2012 24

UNIVERSITY

OF OSLO

Loop-level trans.: Partial Loop Unrolling

In order to increase throughput consider the example:

void accumulate(int din[4], int &dout){
int acc=0;
for(int i=0;i<4;i+=2){
acc += din[i];
acc 4= din[i+1];
s
dout = acc;

}

0O ~NOOHEWN

Which results in the following hardware implementation:

din[31:0]
din[95:64] J —

1 T +\‘;% dout[31:0]
din[63:31] . S or -

= Reg
din[127:96] w J b

0
1-bit ‘;
Counter
March 23, 2012 25

UNIVERSITY

OF OSLO

Loop-level trans.: Fully Unrolled Loop

Further increasing the throughput, consider the example:

1 void accumulate(int din[4], int &dout){

2 int acc=0;

3 acc += din [0];

4 acc += din[1];

5 acc += din[2];

6 acc += din [3];

7 dout = acc;

8 }

Results in a balanced adder tree:
din[31:0] 4/_'_\
din[63:31 \ T —
ni63:31] - (\\’ dout[31:0]
dinos64] — N\
dinf127:06] | ¥/
March 23, 2012 26

UNIVERSITY

OF OSLO

Loop-level transformations

» HLS tools generate non-unrolled loops, partial unrolled loops,
or fully unrolled loops out of a single implementation.

void accumulate4 (int din[4], int &dout){
int acc=0;

for(int i=0;i<4;i++) acc += din[i];
dout = acc;

}

G WN

March 23, 2012

UNIVERSITY

OF OSLO

Instruction-level trans: Tree Height Reduction

» Reduce the height of the a tree of operations by reordering
them without changing the functionality.

» THR is applied to (b) which results in the tree shown in (c).

» (d) and (c) shows the scheduling when the data is stored in
memory

» HLS tools will try to build a balanced tree structure out of
related additions that can be scheduled in parallel.

s=a0] + 1] +a[2] + a[3]

@

a[0] a[o]

) !
aol | [afi] + | @ + | [

PR E—
+ a2 a[0] alfl | [a2 || a@ + ap] a3

March 23, 2012 : : = 28

UNIVERSITY

OF OSLO

Operation Strength Reduction (OSR)

» Replace an operation by a computationally less expensive one

> or a sequence of operations Example:

1 2<<1 = 2%2

» The multiplication is replaced with a simple shift. The shift
only requires changes to the interconnections.

March 23, 2012 29

UNIVERSITY

OF OSLO

Data-Oriented Transformations

» Data-oriented transformations makes changes to the
organization of data structures.

» Common transformations include:

» Data distribution
» Data replication

March 23, 2012 30

UNIVERSITY

OF OSLO

Data distribution transformation

» Partitions the data into many distinct internal memory units

or modules.
» Increases throughput.
» Concurrent access.

s=a0] + a1] + a[2] + a[3]

@
a0 | [al]

+
+ a) al0]

(b) (c)

March 23, 2012

EUIECRIEE]

[J

alo]

a1

v
+ a2

(d)

(e)

31

UNIVERSITY

OF OSLO

Data duplication transformation

» Increases throughput.

» Concurrent access.

» Consistency issues when modifying data.

s=a[0] + a[1] + af2] + a[3] a0 al0]
@
a[] a]
v vy
aloy || am + Eel] + a2
PR E—
+ al2] al0] | [& | [a2][a3 + ap] a3
v C v ¥ T
+ |[am + + +
v v v
P v v s +
+ +
; v
v) s
s s
(b) ©) (d) (e)

32

UNIVERSITY
OF OSLO

March 23, 2012

Other transformations

» Function inlining

» Dedicated for each function invocation.

void accumulate() {
accumulate4 (din, dout);
accumulate4 (din2,dout2);

void accumulate4 (int din[4], int &dout){
int acc=0;

for(int i=0;i<4;i++) acc += din[i];
dout = acc;

}

CWOO~NOU A WNH

-

March 23, 2012 33

UNIVERSITY

OF OSLO

Other transformations

» Function outlining

> Increases resource sharing.
» Reducing parallelism.

March 23, 2012 34

UNIVERSITY
OF OSLO

«4O0>» «F>» «=>»

References

» Mentor Graphics The High Level Synthesis Blue Book

» Compiling for Reconfigurable Computing: A survey, Cardoso,
Diniz, Weinhardt. DOI 10.1145/1749603.1749604

March 23, 2012 35

UNIVERSITY
OF OSLO

«4O0>» «F>» «E» «

