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High Level Synthesis

I Higher abstraction level (behavior).

I Generate hardware from C or another high level language.
I Faster time to market.

I Faster implementation
I Faster verification

I Several hardware implementation alternatives can be
generated from one HL implementation.

I A HL model can be used to generate hardware which meet
different performance requirements and resource constraints.
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High level Synthesis

I Open source tools and commercial tools are available:
RoCCC, Catapult-C, MathWorks HDLCoder
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HLS Process

I Data Flow Graph Analysis

I Resource Allocation

I Scheduling
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Data Flow Graph Analysis

I High level synthesis starts by analyzing data dependencies in
the code.

I This leads to a Data Flow Graph (DFG)

I Parts of code without dependencies can be executed in parallel

1 vo id accumulate ( i n t a , i n t b , i n t c , i n t d , i n t &dout ){
2 i n t t1 , t2 ;
3 t1 = a + b ;
4 t2 = t1 + c ;
5 dout = t2 + d ;
6 }
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Resource Allocation

I Based on the assembled DFG, each operation is mapped onto
a hardware resource.

I This process is called resource allocation.

I The implementation is annotated with both timing and area
information. This is used during scheduling.
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Scheduling

I HLS adds time to the design during the scheduling.

I Scheduling takes the DFG operations and decides when they
are performed.

I Registers are added based on the target clock frequency.
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Scheduling

I A data path state machine (DPFSM) is created to control the
scheduled design.

I In this design, four states are required to execute the schedule.

I These states are referred to as control steps or c-steps.
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Scheduling

I The resulting hardware generated from the schedule will vary
depending on the design constraints.

I Design constraints include resource allocation and
performance.
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Example

1 uns igned i n t coun t one s ( uns igned i n t A)
2 {
3 i n t i ;
4 uns igned count = 0 ;
5 f o r ( i =0; i <32; i++)
6 i f ( (A & (0 x00000001 << i ) ) > 0)
7 count++;
8 r e t u r n count ;
9 }
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Not all code is suited for synthesis

I Need to keep in mind that the code ends up as hardware.

I Not all algorithms are suited for hardware implementations.

I Sequential code, control logic, large loops with function calls
typically will not benefit much.
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System Calls and Packages

I stdio.h functions such as printf or cout.

I math.h sin, cos and most math functions are not
synthesisable.

I Assembly code is not synthesisable.

I System calls are generally not synthesisable.
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Recursive functions

I Recursion are functions which calls itself.

I Used to write compact and efficient C code.

I Recursive functions executed on a CPU makes heavy use of
the return stack, and are often unbounded.

I Typically a complete rewrite is required in order to get a
iterative implementation which can be synthesised.
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Function pointers

I Function pointers are usually not supported.

I Needs to be changed to explicit function calls.

1 i n t main ( ) {
2 vo id (∗ f p ) ( i n t ) ;
3 fp = func ;
4 fp ( 2 ) ; // f u n c t i o n p o i n t e r c a l l
5 func ( 2 ) ; // e x p l i c i t f u n c t i o n c a l l
6 }
7
8 vo id f unc ( i n t arg ) {
9 p r i n t f ( ”%d\n” , a rg ) ;

10 }
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Dynamic Memory Allocation

I Dynamic memory allocation is typically done with malloc

I Dynamic memory allocation is not synthesisable, and we need
to use static memory allocations.

1 i n t s ta t i c mem [ 3 2 ] ;
2 i n t ∗dyn mem = ma l l oc (32 , s i z e o f ( i n t ) ) ;
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Unbounded Loops

I Loops without finite bounds.

I When the start value, stop value and the increment is
constant and defined, the loop is bounded.

I A loop is not bounded when start, stop or increment is passed
as a function parameter!

1 vo id unbounded loop ( i n t l oop ) {
2 i n t i ;
3 f o r ( i = loop ; i>=0; i−−)
4 s ta tement ;
5 }
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Other restrictions

I Global variables for sharing data between functions are not
supported.

I Problematic to pass pointers when using a CPU with MMU.

1 i n t g l o b v a r =5430;
2
3 vo id f un c 0 ( ) {
4 s ta tement g l o b v a r ;
5 }
6
7 vo id f un c 1 ( ) {
8 s ta tement g l o b v a r ;
9 }
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HLS Restrictions

I Restrictions in the HLS flow often requires rewriting C
functions.

I C code targeting HLS is therefore less portable.

I Different HLS tools synthesis C code differently further
decreasing portability.

I Programming code often require HLS tool specific
adaptations.
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Designing hardware with C

I We need to know how the tools transform C code into
hardware in order to get efficient implementations.

I We need to know what type of code to avoid.

I HLS tools perform code transformations on the programming
code when generating hardware implementations.

I Code transformations on different levels:
I Bit-level
I Instruction-level
I Loop-level
I Data-oriented
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Bit-level transformations: bit reversing

I Software (a) implementation of bit reversing compared to a
hardware implementation (b).
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Bit-level transformations: bit-width narrowing

I Variables are often defined with a greater dynamic range than
needed.

Consider the example

1 f o r ( i n t i =0; i <4; i++)
2 s t a t emen t s

I On a CPU we use predetermined register widths.

I When implemented in hardware we allocate physical resources
to the i variable.

I Bit-width narrowing can be determined by static analysis or
profiling.
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Bit-level transformations: bit-width narrowing

Consider the following example where bit-width narrowing is used
to optimize the counter:

1 vo id accumulate4 ( i n t d in [ 4 ] , i n t &dout ){
2 i n t acc=0;
3 f o r ( i n t i =0; i <4; i++)
4 acc += d in [ i ] ;
5 dout = acc ;
6 }

Which results in the following hardware:
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Loop-level trans.: Partial Loop Unrolling

In order to increase throughput consider the example:

1 vo id accumulate ( i n t d in [ 4 ] , i n t &dout ){
2 i n t acc=0;
3 f o r ( i n t i =0; i <4; i +=2){
4 acc += d in [ i ] ;
5 acc += d in [ i +1] ;
6 }
7 dout = acc ;
8 }

Which results in the following hardware implementation:
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Loop-level trans.: Fully Unrolled Loop

Further increasing the throughput, consider the example:

1 vo id accumulate ( i n t d in [ 4 ] , i n t &dout ){
2 i n t acc=0;
3 acc += d in [ 0 ] ;
4 acc += d in [ 1 ] ;
5 acc += d in [ 2 ] ;
6 acc += d in [ 3 ] ;
7 dout = acc ;
8 }

Results in a balanced adder tree:
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Loop-level transformations

I HLS tools generate non-unrolled loops, partial unrolled loops,
or fully unrolled loops out of a single implementation.

1 vo id accumulate4 ( i n t d in [ 4 ] , i n t &dout ){
2 i n t acc=0;
3 f o r ( i n t i =0; i <4; i++) acc += d in [ i ] ;
4 dout = acc ;
5 }
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Instruction-level trans: Tree Height Reduction

I Reduce the height of the a tree of operations by reordering
them without changing the functionality.

I THR is applied to (b) which results in the tree shown in (c).

I (d) and (c) shows the scheduling when the data is stored in
memory

I HLS tools will try to build a balanced tree structure out of
related additions that can be scheduled in parallel.
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Operation Strength Reduction (OSR)

I Replace an operation by a computationally less expensive one

I or a sequence of operations Example:

1 2<<1 == 2∗2

I The multiplication is replaced with a simple shift. The shift
only requires changes to the interconnections.
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Data-Oriented Transformations

I Data-oriented transformations makes changes to the
organization of data structures.

I Common transformations include:
I Data distribution
I Data replication
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Data distribution transformation

I Partitions the data into many distinct internal memory units
or modules.

I Increases throughput.

I Concurrent access.
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Data duplication transformation

I Increases throughput.

I Concurrent access.

I Consistency issues when modifying data.
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Other transformations

I Function inlining

I Dedicated for each function invocation.

1 vo id accumulate ( ) {
2 accumulate4 ( din , dout ) ;
3 accumulate4 ( din2 , dout2 ) ;
4 }
5
6 vo id accumulate4 ( i n t d in [ 4 ] , i n t &dout ){
7 i n t acc=0;
8 f o r ( i n t i =0; i <4; i++) acc += d in [ i ] ;
9 dout = acc ;

10 }
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Other transformations

I Function outlining
I Increases resource sharing.
I Reducing parallelism.
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