
5 8 I E E E  S O F T W A R E P u b l i s h e d  b y  t h e  I E E E  C o m p u t e r  S o c i e t y 0 7 4 0 - 7 4 5 9 / 0 5 / $ 2 0 . 0 0  ©  2 0 0 5  I E E E

whether to adopt a new technology because
there’s little objective evidence to confirm its
suitability, limits, qualities, costs, and inherent
risks. This can lead to poor decisions about
technology adoption, as Marvin Zelkowitz,
Dolores Wallace, and David Binkley describe:

Software practitioners and managers seeking
to improve the quality of their software devel-
opment processes often adopt new technolo-
gies without sufficient evidence that they will

be effective, while other technologies are ig-
nored despite the evidence that they most
probably will be useful.1

For instance, enthusiasts of object-oriented
programming were initially keen to promote
the value of hierarchical models. Only later did
experimental evidence reveal that deep hierar-
chies are more error prone than shallow ones.

In contrast, medical practice has changed
dramatically during the last decade as a result
of adopting an evidence-based paradigm. In
the late ’80s and early ’90s, studies showed
that failure to undertake systematic reviews of
medical research could cost lives and that ex-
perts’ clinical judgment compared unfavor-
ably with the results of systematic reviews.
Since then, many medical researchers have

focus 2
Evidence-Based 
Software Engineering 
for Practitioners

S
oftware managers and practitioners often must make decisions
about what technologies to employ on their projects. They might
be aware of problems with their current development practices
(for example, production bottlenecks or numerous defect reports

from customers) and want to resolve them. Or, they might have read about
a new technology and want to take advantage of its promised benefits.
However, practitioners can have difficulty making informed decisions about 

evidence-based software engineering

Software engineers might make incorrect decisions about
adopting new techniques if they don’t consider scientific
evidence about the techniques’ efficacy. They should consider
using procedures similar to ones developed for evidence-
based medicine.

Tore Dybå, Simula Research Laboratory and SINTEF Information and Communication Technology

Barbara A. Kitchenham, National Information and Communications Technology Australia
and Keele University

Magne Jørgensen, Simula Research Laboratory



adopted the evidence-based paradigm, and
medical practitioners are now trained in this
approach.2 Although evidence-based medicine
(EBM) has its critics,3 it is generally regarded
as successful and has prompted many other
disciplines (for example, psychiatry, nursing,
social policy, and education) to adopt a simi-
lar approach.

Software companies are often under pressure
to adopt immature technologies because of mar-
ket and management pressures. We suggest that
practitioners consider evidence-based software
engineering as a mechanism to support and im-
prove their technology adoption decisions.

The aim and methodology of EBSE
EBSE aims to improve decision making re-

lated to software development and mainte-
nance by integrating current best evidence from
research with practical experience and human
values.4 This means we don’t expect a technol-
ogy to be universally good or universally bad,
only more appropriate in some circumstances
and for some organizations. Furthermore, prac-
titioners will need to accumulate empirical re-
search about a technology of interest and eval-
uate the research from the viewpoint of their
specific circumstances.

This aim is decidedly ambitious, particu-
larly because the gap between research and
practice can be wide. EBSE seeks to close this
gap by encouraging a stronger emphasis on
methodological rigor while focusing on rele-
vance for practice. This is important because
rigor is necessary in any research that purports
to be relevant. Moreover, because most SE re-
search hasn’t influenced industrial practice,5

there’s also a pressing need to prevent SE re-
search from remaining an ivory tower activity
that emphasizes academic rigor over relevance
to practice.

So, although rigor is a necessary condition
for relevant SE research, it isn’t sufficient.
Medical evidence is based on rigorous studies
of therapies given to real patients requiring
medical treatment; laboratory experiments
aren’t considered to provide compelling evi-
dence. This implies that SE shouldn’t rely
solely on laboratory experiments and should
attempt to gather evidence from industrial
projects, using observation studies, case stud-
ies, surveys, and field experiments. These em-
pirical techniques don’t have the scientific
rigor of formal randomized experiments, but

they do avoid the limited relevance of small-
scale, artificial SE experiments.

Furthermore, there are substantial prob-
lems with accumulating evidence systemati-
cally, and not only because accumulating 
evidence from different types of studies is dif-
ficult. A specific challenge in practicing EBSE
is that different empirical studies of the same
phenomenon often report different and some-
times contradictory results.6 Unless we can un-
derstand these differences, integrating individ-
ual pieces of evidence is difficult. This points
to the importance of reporting contextual in-
formation in empirical studies to help explain
conflicting research results.7

EBSE involves five steps:

1. Convert a relevant problem or information
need into an answerable question.

2. Search the literature for the best available
evidence to answer the question.

3. Critically appraise the evidence for its va-
lidity, impact, and applicability.

4. Integrate the appraised evidence with prac-
tical experience and the customer’s values
and circumstances to make decisions about
practice.

5. Evaluate performance and seek ways to im-
prove it.

However, EBSE isn’t a standalone activity.
Much of what’s needed to practice EBSE al-
ready exists in the concept of technology
transfer8 and software process improvement.9

SPI involves several steps (each researcher and
consultant has his or her own view of how
many)—for example,

1. Identify a problem.
2. Propose a technology or procedure to ad-

dress that problem.
3. Evaluate the proposed technology in a pilot

project.
4. If the technology is appropriate, adopt and

implement it.
5. Monitor the organization after implement-

ing the new technology.
6. Return to step 1.

Thus, EBSE provides mechanisms to sup-
port various parts of SPI. In particular, EBSE
focuses on finding and appraising an appropri-
ate technology for its suitability in a particular
situation. This is an area where SPI is usually

J a n u a r y / F e b r u a r y  2 0 0 5 I E E E  S O F T W A R E 5 9

EBSE aims to
improve

decision making
related to
software

development
and

maintenance by
integrating

current best
evidence from
research with

practical
experience and
human values.



rather weak. People often assume that finding
a candidate technology is relatively easy and
evaluating the technology is the hard part.
However, we believe that selecting an appro-
priate technology is much more difficult than
was previously assumed and is a critical ele-
ment of good process improvement. The only
step in SPI that EBSE doesn’t support is tech-
nology infusion, which is supported by change
management procedures and diffusion models.

Step 1: Ask an answerable question
EBSE doesn’t propose a specific method to

identify and prioritize problems. If you’re us-
ing SPI, you should be monitoring your proj-
ects and so be in a position to identify process
and product problems. Otherwise, problem
identification relies on the expertise of indi-
vidual staff members. Another form of help is
the Goal-Question-Metric method,9 in which
you derive questions from specific goals.

Once you’ve identified the problem, you
need to specify an answerable question. Typi-
cal questions ask for specific knowledge about
how to appraise and apply methods, tools,
and techniques in practice. David Sackett and
his colleagues suggest that well-formulated
questions usually have three components:2

■ The main intervention or action you’re in-
terested in

■ The context or specific situations of interest
■ The main outcomes or effects of interest

For medical problems, partitioning the ques-
tion into intervention, context, and effect
makes it easier not only to go from general
problem descriptions to specific questions but
also to think about what kind of information
you need to answer the question.

In the SE context, factors to consider when
deciding which question to answer first in-
clude these:

■ Which question is most important to your
customers?

■ Which question is most relevant to your
situation?

■ Which question is the most interesting in
the context of your business strategy?

■ Which question is most likely to recur in
your practice?

■ Is the question possible to answer in the
available time?

The main challenge in this step is, in other
words, to convert a practical problem into a
question that’s specific enough to be answered
but not so specific that you don’t get any an-
swers (see the “Asking the Right Question”
sidebar).

Step 2: Find the best evidence
Finding an answer to your question in-

cludes selecting an appropriate information
resource and executing a search strategy.
However, you need to separate the question

6 0 I E E E  S O F T W A R E w w w. c o m p u t e r. o r g / s o f t w a r e

Assume we want to ask, “Is pair programming useful?” According to
what evidence-based medicine suggests, we should specify this question in
more detail—for example, “Does pair programming lead to improved code
quality when practiced by professional software developers?” Here, we’ve
specified what intervention we’re interested in (pair programming), what
population we’re interested in (professional software developers), and what
effect we’re looking for (code quality).

Ideally, we should be even more specific regarding the intervention. In
this example we presume a comparison with something, without specifying
it. Any estimation of an effect size involves either a comparison or an asso-
ciation. We could have clearly stated that we wanted to compare pair pro-
gramming with “individual programming.” Alternatively, we could compare
it with “partner programming” (that is, the programmers work on different
tasks on different computers but share the same physical office or work-
space so that they can share ideas, thoughts, problems, and so forth). Re-
garding context, we could also have been more specific. We have, for ex-
ample, not specified the software development organization’s nature, the
developers’ skills and experience, or the software engineering environment
being used.

However, searching for the keywords “pair,” “programming,” and “pro-
fessional” in the abstracts of the nearly two million articles indexed in IEEE
Xplore and the ACM Digital Library (see the “Useful Information Sources”
sidebar) resulted in only four articles retrieved (search performed 22 Nov.
2004). Neither article examined pair programming using professionals as
subjects. So, for software engineering problems, we might need to be less
stringent in question formation, for these reasons:

■ We have a much smaller body of empirical research than medicine
has. We can’t afford to restrict our searches too much, or we won’t find
any relevant studies.

■ To support rational decision making, we’re usually interested in all pos-
sible outcomes. For example, we might not want to adopt a technique
that results in very fast time to market if a side effect is poor opera-
tional reliability. This implies that, in particular, we shouldn’t restrict our
questions too severely with respect to outcomes.

Asking the Right Question



you want to answer, the question implemented
in the search keywords, and the questions an-
swered in the studies found.

There are several information sources you
can use. You can, for example, get viewpoints
from your customers or the software’s users,
ask a colleague or an expert, use what you’ve
learned as a student or in professional courses,
use your own experience, or search for re-
search-based evidence, which is our main focus.

By research-based evidence, we mean re-
ports, articles, and other documents that de-
scribe a study conducted and reported accord-
ing to certain guidelines.7 The main source of
such evidence is scientific journals. Additional
sources include books, bibliographical data-
bases, and the Internet. However, when you
start searching for evidence, relevant evidence
often isn’t as easy to find as you might wish.
Several thousand software-related publica-
tions are published each year; even if you
work in a rather specialized area, keeping up-
to-date by reading all the journals is almost
impossible. For most practitioners, reading
important magazines such as the Communica-
tions of the ACM, Computer, IEEE Software,
and IT Professional would probably be
enough to get a general overview of the latest
SE developments.

Keeping up to date is much easier when
you can use sources that combine results from
independent empirical studies of a particular
phenomenon.6 Systematic reviews have clearly
defined inclusion criteria and standardized in-
dicators of individual and combined effect
sizes. Such reviews summarize the available
evidence regarding specific phenomena, show-
ing where the studies correspond or contradict
and uncovering gaps in your knowledge.
However, ACM Computing Surveys is the
only SE journal dedicated to systematic re-
views. So, you need to search for such reviews
in other journals as well. The situation is quite
different in medicine, where the Cochrane
Collaboration (www.cochrane.org) publishes
and updates systematic reviews of all impor-
tant areas of healthcare online.

In addition, you’ll have to search for evi-
dence in electronic databases on the Internet.
By doing a literature search here, you get a
more specific overview of the published re-
search in your area of interest than is generally
the case for magazines and systematic reviews
(at least for the time being).

Many organizations index published arti-
cles in several databases; that is, they include
bibliographic information such as author, title,
and keywords. Such indexing simplifies search-
ing for information regarding a problem area
or finding an answer to a specific question. The
“Useful Information Sources” sidebar gives ex-
amples of such databases.

Step 3: Critically appraise the
evidence

Unfortunately, published research isn’t al-
ways of good quality; the problem under study
might be unrelated to practice, or the research
method might have weaknesses such that you
can’t trust the results. To assess whether re-
search is of good quality and is applicable to

J a n u a r y / F e b r u a r y  2 0 0 5 I E E E  S O F T W A R E 6 1

■ IEEE Xplore (http://ieeexplore.ieee.org) provides access to IEEE publi-
cations published since 1988 (and selected articles back to 1950) and
to current IEEE standards. Access to abstracts and tables of contents is
free. Access to full text requires IEEE membership, a subscription, or
payment for individual articles.

■ The IEEE Computer Society Digital Library (www.computer.org/publications/
dlib) provides access to 22 IEEE Computer Society magazines and jour-
nals and more than 1,200 conference proceedings. Access to full text
requires Computer Society membership, a subscription, or payment for
individual articles.

■ The ACM Digital Library (www.acm.org/dl) provides access to ACM
publications and related citations. Full access requires ACM membership
and possibly a subscription; nonmembers can browse the DL and per-
form basic searches.

■ The ISI Web of Science (www.isinet.com/products/citation/wos) consists
of databases containing information from approximately 8,700 journals
in different research areas—for example, the Science Citation Index Ex-
panded, Social Sciences Citation Index, and Arts & Humanities Citation
Index. Users can perform searches, mark records, and link to full text.

■ EBSCOhost Electronic Journals Service (http://ejournals.ebsco.com) pro-
vides access to over 8,000 e-journals. Users can view tables of contents
and abstracts and can access the full text of the e-journals to which they
subscribe.

■ CiteSeer (http://citeseer.nj.nec.com), sponsored by the US National Sci-
ence Foundation and Microsoft Research, indexes PostScript and PDF
files of scientific research articles on the Web. Access is free.

■ Google Scholar (http://scholar.google.com) indexes scholarly literature
from all research areas, including abstracts, books, peer-reviewed pa-
pers, preprints, technical reports, and theses. Users can find scholarly lit-
erature from different publishers, professional societies, preprint reposi-
tories, and universities, as well as articles posted on the Web.

Useful Information Sources



6 2 I E E E  S O F T W A R E w w w. c o m p u t e r. o r g / s o f t w a r e

practice, you must be able to critically ap-
praise the evidence.

For a nonscientist, evaluating an article’s
scientific quality can often be difficult (al-
though for practitioners, evaluating the arti-
cle’s relevance to practice is often more impor-
tant). Most journals use external referees to
evaluate manuscripts before publication,
which makes such manuscripts more trust-
worthy. This means that for research in non-
refereed journals and conferences or on the In-
ternet, the reader will need additional insight
to evaluate the results and their relevance to
practice. However, even in a reputable scien-
tific journal, researchers might have difficulty
agreeing about an experiment’s rigor (see, for
example, the discussion arising from a recent
study of formal methods10,11).

In EBM, the most convincing form of evi-
dence is a systematic review of a series of dou-
ble-blind randomized field trials. SE doesn’t
yet have many well-conducted replications of

rigorous experiments, so our empirical studies
are much less reliable scientifically. SE re-
searchers could provide more help to practi-
tioners if they undertook and published more
systematic reviews of important SE topics.
However, until this happens, practitioners
must be prepared to summarize evidence
themselves. When you have evidence from dif-
ferent types of studies, you need some way to
assess each study’s quality. Figure 1 presents a
checklist of factors to consider when evaluat-
ing an empirical study. In addition, Australian
National Health and Medical Research Coun-
cil guidelines discuss the relative trustworthi-
ness of different types of empirical studies.12

Step 4: Apply the evidence
To employ the evidence in your decision

making, you integrate it with your practical
experience, your customers’ requirements, and
your knowledge of the concrete situation’s
specific circumstances, and then you apply it
in practice. However, this procedure isn’t
straightforward.

Active use of new knowledge consists of
applying or adapting specific evidence to a
specific situation in practice. This contrasts
with traditional, passive modes of transmit-
ting information through teachers, books,
manuals, colleagues, or business partners. Al-
though such transmission can help in arrang-
ing the conditions required for learning to oc-
cur, it can’t substitute for learning through
direct experience. So, to practice EBSE, a soft-
ware developer must commit to actively en-
gaging in a learning process, combining the
externally transmitted evidence with prior
knowledge and experience. What character-
izes a software developer using EBSE is that he
or she makes individual judgments in a given
situation rather than simply conforming to ap-
proved standards and procedures.

In practice, the ease of applying evidence
depends on the type of technology (method,
tool, technique, or practice) you’re evaluating.
Some technologies apply at the level of the in-
dividual developer—for example, a developer
can adopt evidence related to how best to
comment programs. However, evidence re-
lated to the adoption of a computer-aided
software engineering tool or a specific mathe-
matically based formal method requires sup-
port from project and senior managers. Fur-
thermore, even techniques that the individual

Figure 1. A checklist for appraising published studies.

1. Is there any vested interest?
■ Who sponsored the study?
■ Do the researchers have any vested interest in the results?

2. Is the evidence valid?
■ Was the study’s design appropriate to answer the question?
■ How were the tasks, subjects, and setting selected?
■ What data was collected, and what were the methods for 

collecting the data?
■ Which methods of data analysis were used, and were they 

appropriate?
3. Is the evidence important?

■ What were the study’s results?
■ Are the results credible, and, if so, how accurate are they?
■ What conclusions were drawn, and are they justified by the results?
■ Are the results of practical and statistical significance?

4. Can the evidence be used in practice?
■ Are the study’s findings transferable to other industrial settings?
■ Did the study evaluate all the important outcome measures?
■ Does the study provide guidelines for practice based on the results?
■ Are the guidelines well described and easy to use?
■ Will the benefits of using the guidelines outweigh the costs?

5. Is the evidence in this study consistent with the evidence in other
available studies?
■ Are there good reasons for any apparent inconsistencies?
■ Have the reasons for any disagreements been investigated?



developer can adopt and evaluate have little
impact unless they lead to a project-wide or
organizational-wide process change.

So, it’s at this point that you need to inte-
grate EBSE with SPI. SPI relies on a systematic
introduction and evaluation of proposed
process change and, as we mentioned before,
is often supported by change management
processes. EBSE should provide the scientific
basis for undertaking specific process changes,
while SPI should manage the new technology’s
introduction.

Step 5: Evaluate performance
In EBM, the final step is for individual

medical practitioners to reflect on their use of
the EBM paradigm.2 In SPI, the final step is
usually to confirm that the process change has
worked as expected. We believe both concerns
are relevant for EBSE.

You need to consider how well you per-
form each step of EBSE and how you might
improve your use of it. In particular, you
should ask yourself how well you’re integrat-
ing evidence with practical experience, cus-
tomer requirements, and your knowledge of
the specific circumstances.

Following SPI practice, you also must as-
sess whether process change has been effec-
tive. However, environmental turbulence and
rapid changes in technology often lead to the
need to adapt and learn during projects. This
involves a high degree of creativity and im-
provisation, which suggests that you can’t
wait until a project’s end to draw out the les-
sons learned.13

After-action reviews,14 short meetings aimed
at evaluating performance in the midst of ac-
tion, are a simple way for individuals and teams
to learn immediately from both successes and
failures. All that’s needed is a suitable task with
an identifiable purpose and some metrics with
which to measure performance. A typical AAR
lasts for 10 to 20 minutes and answers four
simple questions:

■ What was supposed to happen?
■ What actually happened?
■ Why were there differences?
■ What did we learn?

However, it’s important not to overreact.
One isolated bad result shouldn’t cause aban-
donment of a new method, unless strong

grounds exist to believe that the bad result is
intrinsic to the method itself rather than a
chance effect resulting from the particular task
and the particular engineering staff. Equally, a
single good result shouldn’t mean that further
monitoring is unnecessary. Barbara Kitchen-
ham undertook a study of COCOMO in the
early ’80s. The first two projects on which she
collected data were an almost perfect fit to the
intermediate COCOMO model. Thereafter, how-
ever, no other project exhibited effort values
anywhere near the COCOMO predictions.

When the project, or a major part of it, is
completed, SPI principles suggest you must
confirm that the expected improvement has
taken place. A simple way to do this is to
arrange a postmortem analysis.15 A PMA is
similar to an AAR but is conducted in more
depth. Instead of 10 to 20 minutes, a PMA
typically lasts from a couple of hours to a full
day. It aims to capture lessons and insights
(both good and bad) for future projects by
evaluating these questions:

■ What went so well that we want to repeat it?
■ What was useful but could have gone better?
■ What were the mistakes that we want to

avoid for the future?
■ What were the reasons for the successes or

mistakes, and what can we do about them?

A PMA results mainly in better evidence re-
garding the specific process or technology—
evidence that you might reuse as guidelines for
the future, in the form of experience notes,
new or improved checklists, improved devel-
opment models, and a general understanding
of what works and what doesn’t in projects in
your organization. PMAs and, when available,
organization-wide measurement programs
provide the information needed to restart the
EBSE cycle, letting you identify and prioritize
product and process problems by collating ex-
periences from different projects.

Discussion
Although it’s important for software practi-

tioners to base their choice of development
methods on available scientific evidence, this
isn’t necessarily easy. EBM arose because med-
ical practitioners were overwhelmed by the
large number of scientific studies; in SE our
problems are rather different. There are rela-
tively few studies, as our pair-programming

J a n u a r y / F e b r u a r y  2 0 0 5 I E E E  S O F T W A R E 6 3

A postmortem
analysis results

mainly in 
better evidence

regarding 
the specific
process or

technology—
evidence that

you might reuse
as guidelines
for the future.



example (see the “Asking the Right Question”
sidebar) showed. Furthermore, when evidence
is available, software practitioners still have
difficulty judging the evidence’s quality and
assessing what the evidence means in terms of
their specific circumstances. This implies that
given the current state of empirical SE, practi-
tioners will need to adopt more proactive
search strategies such as approaching experts,
other experienced practitioners, and re-
searchers directly.

Because a basic idea behind EBSE is to es-
tablish a fruitful cooperation between research
and practice, a closer link should exist be-
tween research and practice so that research is

relevant to practitioners’ needs and practition-
ers are willing to participate in research.

You might have noticed that we’ve offered
no evidence of EBSE’s benefits. Although we
have no examples of other practitioners using
EBSE, the sidebar “Evidenced-Based Software
Engineering Q&A” presents examples of our
own use of EBSE. On the basis of this experi-
ence, and other ongoing industrial and educa-
tional initiatives in which we’re engaged, we be-
lieve that evidence-based practice is possible and
potentially useful for software practitioners.

However, evidence-based practice also
places requirements on researchers. We rec-
ommend that researchers adopt as much of the

6 4 I E E E  S O F T W A R E w w w. c o m p u t e r. o r g / s o f t w a r e

Is EBSE possible for ordinary practitioners?
Magne Jørgensen has obtained encouraging results from

teaching EBSE principles to final-year university students. The
results show that with relatively little effort, people can become
better skilled at asking an answerable question, finding the best
evidence by searching the literature and by asking experts (that
is, practitioners and researchers), and critically appraising the
available evidence.

Tore Dybå was external examiner of the reports that these
students produced using EBSE principles to investigate a soft-
ware engineering technology. In his opinion, the quality of
these reports was at least as good as more conventional re-
ports on software engineering topics.

Can we develop appropriate infrastructure?
Barbara Kitchenham has constructed guidelines for system-

atic reviews,1 which several research groups are evaluating.

Does accumulation of evidence offer new insights?
Magne Jørgensen and Kjetil Moløkken performed a system-

atic review of the size of software cost overruns.2 Their review
showed that the results reported by the Standish Group’s 1994
CHAOS report, the most influential study of the early ’90s, were
out of step with the results of three other contemporary studies.
(The CHAOS report showed cost overruns of 189 percent; the
other studies showed cost overruns of approximately 33 percent.)
Differences in cost overrun measurements between the CHAOS

study and the other studies were unable to explain this differ-
ence. A critical examination of the report revealed several prob-
lems, including these:

■ The Standish Group reported in their 1998 CHAOS report
an average cost overrun of 69 percent; that is, an improve-

ment from 189 percent to 69 percent overrun in about four
years. This is hardly likely to have happened.

■ The CHAOS report didn’t define how cost overrun was
measured and described it inconsistently.

■ The CHAOS report didn’t report how the included projects
were selected. Formulations in the CHAOS report suggest
that the Standish Group collected mainly failure stores in
1994. This explains the high cost overrun number but also
means that the study results can’t be used as indicators of
the software industry in general.

So, evidence exists that project performance was never as bad
as many people imagined and that subsequent “improvements”
might be much smaller than many people have hoped.

In addition, Jørgensen performed a systematic review of
studies of expert effort estimation.3 Although effort spent on de-
veloping cost estimation models is usually justified by the argu-
ment that human-based estimates are poor, Jørgensen found no
evidence that models were superior to expert estimates. He
identified a variety of conditions where expert estimates were
likely to be superior and other conditions where models were
likely to reduce situational or human bias.

References
1. B.A. Kitchenham, Procedures for Performing Systematic Reviews, tech. re-

port SE0401, Dept. of Computer Science, Univ. of Keele, and tech. report
0400011T.1, Empirical Software Eng., National Information and Communi-
cations Technology Australia, 30 Aug. 2004.

2. M. Jørgensen and K. Moløkken, “How Large Are Software Cost Overruns?
Critical Comments on the Standish Group’s CHAOS Reports,” Simula Research
Laboratories, 2004; www.simula.no/publication_one.php?publication_id=711.

3. M. Jørgensen, “A Review of Studies on Expert Estimation of Software De-
velopment Effort,” J. Systems and Software, vol. 70, nos. 1–2, 2004, pp.
37–60.

Evidenced-Based Software Engineering Q&A



J a n u a r y / F e b r u a r y  2 0 0 5 I E E E  S O F T W A R E 6 5

evidence-based approach as is possible. Specif-
ically, this includes being more responsive to
practitioners’ needs when identifying topics
for empirical research. Also, it means improv-
ing the standard both of individual empirical
studies and of systematic reviews of such stud-
ies. Researchers need to perform and report
replication studies in order to accumulate reli-
able evidence about SE topics. Researchers
also need to report their results in a manner
that’s accessible to practitioners.

E vidence-based practice works in med-
icine.2 Furthermore, our experience
from undertaking empirical studies,

systematic reviews, and teaching students in
EBSE gives us some confidence that it will also
work in software engineering. So, to develop a
more integrated approach to adopting re-
search findings, we encourage both practition-
ers and researchers to develop coordinated
mechanisms to support the continuing evolu-
tion of SE knowledge. This way, software or-
ganizations will be able to adopt good practice
more quickly and with fewer risks, improve
the quality of products, and reduce the risk of
project failures.

References
1. M.V. Zelkowitz, D.R. Wallace, and D.W. Binkley, “Ex-

perimental Validation of New Software Technology,”
Lecture Notes on Empirical Software Engineering,
World Scientific, 2003, pp. 229–263.

2. D.L. Sackett et al., Evidence-Based Medicine: How to
Practice and Teach EBM, 2nd ed., Churchill Living-
stone, 2000.

3. A.R. Feinstein and R.I. Horowitz, “Problems with the
‘Evidence’ of ‘Evidence-Based Medicine,’” Am. J. Medi-
cine, vol. 103, no. 6, 1997, pp. 529–535.

4. B.A. Kitchenham, T. Dybå, and M. Jørgensen, “Evi-
dence-Based Software Engineering,” Proc. 26th Int’l
Conf. Software Eng. (ICSE 2004), IEEE CS Press, 2004,
pp. 273–281.

5. C. Potts, “Software-Engineering Research Revisited,”
IEEE Software, vol. 10, no. 5, 1993, pp. 19–28.

6. L.M. Pickard, B.A. Kitchenham, and P.W. Jones, “Com-
bining Empirical Results in Software Engineering,” In-
formation and Software Technology, vol. 40, no. 14,
1998, pp. 811–821.

7. B.A. Kitchenham et al., “Preliminary Guidelines for
Empirical Research in Software Engineering,” IEEE
Trans. Software Eng., vol. 28, no. 8, 2002, pp. 721–
734.

8. S.L. Pfleeger and W. Menezes, “Marketing Technology
to Software Practitioners,” IEEE Software, vol. 17, no.
1, 2000, pp. 27–33.

9. V.R. Basili and G. Caldiera, “Improve Software Quality
by Reusing Knowledge and Experience,” Sloan Man-
agement Rev., vol. 37, no. 1, 1995, pp. 55–64.

10. D.M. Berry and W.F. Tichy, “Comments on ‘Formal
Methods Application: An Empirical Tale of Software
Development,’” IEEE Trans. Software Eng., vol. 29,
no. 6, 2003, pp. 567–571.

11. A.E.K. Sobel and M.R. Clarkson, “Response to ‘Com-
ments on “Formal Methods Application: An Empirical
Tale of Software Development,”’” IEEE Trans. Soft-
ware Eng., vol. 29, no. 6, 2003, pp. 572–575.

12. How to Use the Evidence: Assessment and Application
of Scientific Evidence, Australian Nat’l Health and
Medical Research Council, Feb. 2000.

13. T. Dybå, T. Dingsøyr, and N.B. Moe, Process Improve-
ment in Practice: A Handbook for IT Companies, Klu-
wer Academic, 2004.

14. C. Collison and G. Parcell, Learning to Fly: Practical
Lessons from One of the World’s Leading Knowledge
Companies, Capstone, 2001.

15. B. Collier, T. DeMarco, and P. Fearey, “A Defined
Process for Project Postmortem Review,” IEEE Soft-
ware, vol. 13, no. 4, 1996, pp. 65–72.

For more information on this or any other computing topic, please visit our
Digital Library at www.computer.org/publications/dlib.

About the Authors

Tore Dybå is the chief scientist at SINTEF Information and Communication Technology and
a visiting scientist at the Simula Research Laboratory. His research interests include empirical
software engineering, software process improvement, and organizational learning. He received
his Dr. Ing. in computer and information science from the Norwegian University of Science and
Technology. He’s a member of the International Software Engineering Research Network and
the IEEE Computer Society. Contact him at SINTEF ICT, NO-7465 Trondheim, Norway; tore.dyba@
sintef.no.

Barbara A. Kitchenham is a professor of quantitative software engineering at Keele
University and a senior principal researcher at National Information and Communications Tech-
nology Australia. Her main research interest is software metrics and its application to project
management, quality control, risk management, and evaluation of software technologies. She’s
particularly interested in the limitations of technology and the practical problems associated
with applying measurement technologies and experimental methods to software engineering.
She’s a Chartered Mathematician and a fellow of the Institute of Mathematics and Its Applica-
tions and of the Royal Statistical Society. Contact her at National ICT Australia, Locked Bag
9013, Alexandria, NSW 1435, Australia; barbara.kitchenham@nicta.com.au.

Magne Jørgensen is a professor in software engineering at the University of Oslo and
a member of the Simula Research Laboratory’s software engineering research group. He has
about 10 years’ industry experience as a software developer, project leader, and manager. He
received his Dr. Scient. in informatics from the University of Oslo. Contact him at the Simula Re-
search Laboratory, PO Box 134, NO-1325 Lysaker, Norway; magne.jorgensen@simula.no.


