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Diffusion

The conservation law for a compound with concentration c:
rate change of c = local production + accumulation due to
transport.
Model:

d

dt

∫
Ω

c dV =

∫
Ω

p dV −

∫
∂Ω

J · n dA

Here p represents the production and J is the flux of c.
The divergence theorem:

∫
∂Ω

J · n dA =

∫
Ω
∇ · J dV

The law is valid for every volume, thus:

∂c

∂t
= p−∇ · J

Models for p and J are needed to compute c. – p. 2



Fick’s Law

J = −D∇c

The diffusion coefficient D depends upon the solute and the
temperature of the embedding fluid:

D =
kT

f

T is the temperature measured on Kelvin, f is a frictional
constant and k is the Boltzmann’s constant.
The conservation law with this assumption is a reaction-diffusion
equation:

∂c

∂t
= ∇ · (D∇c) + p
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1D Diffusion through a pore in the membrane

∂c

∂t
= D

∂2c

∂2x

Fixed intra and extra cellular concentration:

c(0, t) = [C]i c(L, t) = [C]e

At steady state:

∂c

∂t
= 0 =⇒ D

∂2c

∂2x
= 0 =⇒

∂c

∂x
= a =⇒ c(x) = ax + b

Taking the boundary condition into consideration yields:

c(x) = [C]i + ([C]e − [C]i)
x

L

and a constant flux: J = −D ∂c
∂x

= D
L

([C]i − [C]e)
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Flow through a semi-preamble membrane

Consider two solutions:

A: Contains 100mM Cl− ions and 100mM Na+ ions

B: Contains 10mM Cl− ions and 10mM Na+ ions

Both are neutral. If they are only separated by a membrane
permeable to Cl− but not Na+, this will happen:

Cl− will diffuse from A to B due the concentration gradient

[Cl−]A will drop and [Cl−]B will increase

[Na+]A and [Na+]B will remain fixed (no flow)

A and B will no longer be neutral

[Na+]A > [Cl−]A ⇒ A > 0, [Cl−]B > [Na+]B ⇒ B < 0.

Cl− will be attracted to A and repelled from B
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The Nernst Equilibrium Potential

We now have two forces driving Cl− across the membrane:

Flow from A to B due to the concentration gradient

Flow from B to A due to the charge gradient

At some point an equilibrium is reached were the net flow is zero.
The transmembrane potential at that point is called the Nernst
Equilibrium Potential.

An expression for this potential will now be derived
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Plank’s equation

Models the ion-flux caused by an electrical field:

J = −m
z

|z|
c∇φ

with
m - mobility of the ions in the liquid
z/|z| - sign of the charge of the ion
c - the concentration of the ion
∇φ - the electrical field

– p. 7



Fick’s law:
J = −D∇c

Relationship between m and D:

m = D
|z|F

RT

here R is the gas constant and F is Faraday’s constant.
Combined effect of concentration gradient and an electric field:

J = −D(∇c +
zF

RT
c∇φ)
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Nernst Equilibrium Potential

Consider equilibrium in 1D flow:

dc

dx
+

zF

RT
c
dφ

dx
= 0

1

c

dc

dx
+

zF

RT

dφ

dx
= 0

Integrating from inside (x=0) to outside (x=L) yields:

ln(c)|
c(L)
c(0)

= −
zF

RT
(φ(L)− φ(0))

We define the transmembrane potential to be v = φi − φe The
value of the transmembrane potential at zero flux is then

veq =
RT

zF
ln(

ce

ci
) (1)

Equation (1) is referred to as the Nernst Equilibrium Potential.
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Membrane currents
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Accumulation around the membrane

The membrane has properties similar to a capacitor

Consists of two conducting medias (intra- and extra cellular
space)

These are separated by an insulating material (the
membrane)

The potential over a capacitor is proportional to the separated
charge (q):

v = q/c

The factor c is called the capacitance of the capacitor.

– p. 11



The cell membrane modeled as a leaky capacitor

As any real capacitor the membrane conducts some current. The
flux of ions (Iion) will cause a change in q and thus v.

Consider the change over a time interval ∆t. It follows that
∆v
∆t

= 1
c

∆q
∆t

and in the limit we get:

dv

dt
=

1

c

dq

dt

The term dq
dt

is called the capacitive current and is denoted Ic.
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Electrical circuit model of the cell membrane

Intracellular space

Extracellular space

I
ion

I
c

The membrane behaves like resistor and capacitor in parallel:

It = Iion + Ic

If the loop is closed then It = 0. In that case all the ions passing
the membrane accumulate and change the membrane potential
accordingly.
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Ionic currents

For passive ionic channels the flow through it must obey the
equilibrium potential, i.e. be zero when v = veq.
An number of models exists, two common are:
Linear:

I(v) = g(v − veq)

Here g is the conductance of the channel.

Goldman-Hodgkin-Katz:

I(v) = gv
ci − cee

−zvF

RT

1− e
−zvF

RT

Derived from Nernst-Planck equation with assuming a constant
(non-zero) field strength.
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Nernst-Plack equation:

J = −D(∇c +
zF

RT
c∇φ)

Consider 1D flow through a channel and assume ∇φ is constant
in space and that c and φ are in steady-state.

dφ

dx
=

∆φ

∆x
=

φ(L)− φ(0)

L− 0
=

φe − φi

L
= −v/L

The equation is reduced to an ODE:

J/D = −
dc

dx
−

zF

RT
c(−v/L) = −

dc

dx
+ kc

where k = zFv
RTL

– p. 15



The equation

J/D = −
dc

dx
+ kc

is solved by

e−kxc = ci +
J

D

1

k
(e−kx − 1)

We determine J by using c(L) = ce:

J = Dk
ci − c(L)e−kL

1− e−kL
= D

zFv

RTL

ci − cee
−zvF

RT

1− e
−zvF

RT

J has dimension moles per area per time, an expression for
current is given by

I = zFJ =
D

L

z2F 2

RT
v
ci − cee

−zvF

RT

1− e
−zvF

RT

This is the Goldman-Hodgkin-Katz current equation.
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Channel gating
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Channel gating

The conductance of a channel varies with time and with
transmembrane potential. Model for current per membrane area:

I(V, t) = g(V, t)φ(V ) (2)

Current through a single open channel is φ(V ) and the amount of
open channels per membrane area is g(V, t).
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Two State K
+-channel

Assumes that the channel can exist in two states, closed(C) and
open(O):

C

α(v)

−→
←−

β(v)

O

Applying law of mass action:

d[0]

dt
= α(v)[C]− β(v)[O]

Dividing by the total amount of channels ([C]+[O]) yields

dg

dt
= α(v)(1− g)− β(v)g

where g is the portion of open channel ( [O]/([C]+[O])).
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Multiple sub-units

For some channels it is more appropriate to model the gate as
series of several sub-gates. Example with two gates:

S00

α
→
←
β

S10

α ↓↑ β α ↓↑ β

S01

α
→
←
β

S11

Using law of mass action we get a system of four equation. Will
try to reduce this number to one!
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Combine the states S01 and S10 into S1 = S01 + S10 :

S01

dt
= αS00 + βS11 − (α + β)S01

+ S10

dt
= αS00 + βS11 − (α + β)S10

= S1

dt
= 2αS00 + 2βS11 − (α + β)S1

Define S0 = S00 and S2 = S11, we can then write:

S0

2α
→
←
β

S1

α
→
←
2β

S2

– p. 21



Only two independent variables since S0 + S1 + S2 = ST ,
constant. Define xi = Si/ST . Claim:

x2 = n2, with
dn

dt
= α(1− n)− βn

– p. 22



Sodium

Behavior of the Sodium conductance can not be described by a
chain of identical gates.

Two subunits of type m and one of type h.

S00

2α
→
←
β

S10

α
→
←
2β

S20

γ ↓↑ δ γ ↓↑ δ γ ↓↑ δ

S01

2α
→
←
β

S11

α
→
←
2β

S21

Here Sij denotes i open m gates and j open h gates. Arguments
similar to the one used above leads to these equations for m and
h:

dm

dt
= α(1−m)− βm,

dh

dt
= γ(1− h)− δh

– p. 23
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