
M A N N I N GM A N N I N G $44.95 US/$62.95 Canada

H
ibernate practically exploded on the Java scene. Why is this open-source
tool so popular? Because it automates a tedious task: persisting your Java
objects to a relational database. The inevitable mismatch between your

object-oriented code and the relational database requires you to write code
that maps one to the other. This code is often complex, tedious and costly to
develop. Hibernate does the mapping for you.

Not only that, Hibernate makes it easy. Positioned as a layer
between your application and your database, Hibernate
takes care of loading and saving of objects. Hibernate appli-
cations are cheaper, more portable, and more resilient to
change. And they perform better than anything you are
likely to develop yourself.

Hibernate in Action carefully explains the concepts you need,
then gets you going. It builds on a single example to show
you how to use Hibernate in practice, how to deal with
concurrency and transactions, how to efficiently retrieve
objects and use caching.

The authors created Hibernate and they field questions from
the Hibernate community every day—they know how to
make Hibernate sing. Knowledge and insight seep out of
every pore of this book.

A member of the core Hibernate developer team, Christian Bauer maintains
the Hibernate documentation and website. He is a senior software engineer
in Frankfurt, Germany. Gavin King is the Hibernate founder and principal
developer. He is a J2EE consultant based in Melbourne, Australia.

JAVA

HIBERNATE IN ACTION
Christian Bauer and Gavin King

“The Bible of Hibernate”
—Ara Abrahamian, XDoclet Lead Developer

,!7IB9D2-djebfd!:p;o;O;t;P
ISBN 1-932394-15-X

Christian Bauer
Gavin King

M A N N I N G

HIBERNATE
IN ACTIO

HIBERNATE
IN ACTION

Bauer
King

What’s Inside

■ ORM concepts

■ Getting started

■ Many real-world tasks

■ The Hibernate application
development process

The ultimate Hibernate reference

Ask the Authors Ebook edition

AUTHOR
✔

ONLINE

✔

www.manning.com/bauer

D. Marsico
 SAMPLE CHAPTER

Hibernate in Action
by Christian Bauer

and
Gavin King
 Chapter 2

Copyright 2004 Manning Publications

contents

Chapter 1 � Understanding object/relational persistence
Chapter 2 � Introducing and integrating Hibernate
Chapter 3 � Mapping persistent classes
Chapter 4 � Working with persistent objects
Chapter 5 � Transactions, concurrency, and caching
Chapter 6 � Advanced mapping concepts
Chapter 7 � Retrieving objects efficiently
Chapter 8 � Writing Hibernate applications
Chapter 9 � Using the toolset

Appendix A � SQL Fundamentals
Appendix B � ORM implementation strategies
Appendix C � Back in the real world

30

Introducing and
integrating Hibernate

This chapter covers

■ Hibernate in action with “Hello World”
■ The Hibernate core programming interfaces
■ Integration with managed

and non-managed environments
■ Advanced configuration options

“Hello World” with Hibernate 31

It’s good to understand the need for object/relational mapping in Java applica-
tions, but you’re probably eager to see Hibernate in action. We’ll start by showing
you a simple example that demonstrates some of its power.

As you’re probably aware, it’s traditional for a programming book to start with
a “Hello World” example. In this chapter, we follow that tradition by introducing
Hibernate with a relatively simple “Hello World” program. However, simply print-
ing a message to a console window won’t be enough to really demonstrate Hiber-
nate. Instead, our program will store newly created objects in the database, update
them, and perform queries to retrieve them from the database.

This chapter will form the basis for the subsequent chapters. In addition to the
canonical “Hello World” example, we introduce the core Hibernate APIs and
explain how to configure Hibernate in various runtime environments, such as J2EE
application servers and stand-alone applications.

2.1 “Hello World” with Hibernate

Hibernate applications define persistent classes that are “mapped” to database tables.
Our “Hello World” example consists of one class and one mapping file. Let’s see
what a simple persistent class looks like, how the mapping is specified, and some of
the things we can do with instances of the persistent class using Hibernate.

The objective of our sample application is to store messages in a database and
to retrieve them for display. The application has a simple persistent class, Message,
which represents these printable messages. Our Message class is shown in listing 2.1.

package hello;
public class Message {
 private Long id;
 private String text;
 private Message nextMessage;
 private Message() {}
 public Message(String text) {
 this.text = text;
 }
 public Long getId() {
 return id;
 }
 private void setId(Long id) {
 this.id = id;
 }
 public String getText() {
 return text;

Listing 2.1 Message.java: A simple persistent class

Identifier
attribute

Message text

Reference to
another
Message

32 CHAPTER 2

Introducing and integrating Hibernate

 }
 public void setText(String text) {
 this.text = text;
 }

 public Message getNextMessage() {
 return nextMessage;
 }
 public void setNextMessage(Message nextMessage) {
 this.nextMessage = nextMessage;
 }
}

Our Message class has three attributes: the identifier attribute, the text of the mes-
sage, and a reference to another Message. The identifier attribute allows the appli-
cation to access the database identity—the primary key value—of a persistent
object. If two instances of Message have the same identifier value, they represent
the same row in the database. We’ve chosen Long for the type of our identifier
attribute, but this isn’t a requirement. Hibernate allows virtually anything for the
identifier type, as you’ll see later.

You may have noticed that all attributes of the Message class have JavaBean-style
property accessor methods. The class also has a constructor with no parameters.
The persistent classes we use in our examples will almost always look something
like this.

Instances of the Message class may be managed (made persistent) by Hibernate,
but they don’t have to be. Since the Message object doesn’t implement any
Hibernate-specific classes or interfaces, we can use it like any other Java class:

Message message = new Message("Hello World");
System.out.println(message.getText());

This code fragment does exactly what we’ve come to expect from “Hello World”
applications: It prints "Hello World" to the console. It might look like we’re trying
to be cute here; in fact, we’re demonstrating an important feature that distin-
guishes Hibernate from some other persistence solutions, such as EJB entity
beans. Our persistent class can be used in any execution context at all—no special
container is needed. Of course, you came here to see Hibernate itself, so let’s save
a new Message to the database:

Session session = getSessionFactory().openSession();
Transaction tx = session.beginTransaction();
Message message = new Message("Hello World");
session.save(message);

“Hello World” with Hibernate 33

tx.commit();
session.close();

This code calls the Hibernate Session and Transaction interfaces. (We’ll get to
that getSessionFactory() call soon.) It results in the execution of something sim-
ilar to the following SQL:

insert into MESSAGES (MESSAGE_ID, MESSAGE_TEXT, NEXT_MESSAGE_ID)
values (1, 'Hello World', null)

Hold on—the MESSAGE_ID column is being initialized to a strange value. We didn’t
set the id property of message anywhere, so we would expect it to be null, right?
Actually, the id property is special: It’s an identifier property—it holds a generated
unique value. (We’ll discuss how the value is generated later.) The value is
assigned to the Message instance by Hibernate when save() is called.

For this example, we assume that the MESSAGES table already exists. In chapter 9,
we’ll show you how to use Hibernate to automatically create the tables your appli-
cation needs, using just the information in the mapping files. (There’s some more
SQL you won’t need to write by hand!) Of course, we want our “Hello World” pro-
gram to print the message to the console. Now that we have a message in the data-
base, we’re ready to demonstrate this. The next example retrieves all messages
from the database, in alphabetical order, and prints them:

Session newSession = getSessionFactory().openSession();
Transaction newTransaction = newSession.beginTransaction();
List messages =
 newSession.find("from Message as m order by m.text asc");
System.out.println(messages.size() + " message(s) found:");
for (Iterator iter = messages.iterator(); iter.hasNext();) {
 Message message = (Message) iter.next();
 System.out.println(message.getText());
}
newTransaction.commit();
newSession.close();

The literal string "from Message as m order by m.text asc" is a Hibernate query,
expressed in Hibernate’s own object-oriented Hibernate Query Language (HQL).
This query is internally translated into the following SQL when find() is called:

select m.MESSAGE_ID, m.MESSAGE_TEXT, m.NEXT_MESSAGE_ID
from MESSAGES m
order by m.MESSAGE_TEXT asc

The code fragment prints

1 message(s) found:
Hello World

34 CHAPTER 2

Introducing and integrating Hibernate

If you’ve never used an ORM tool like Hibernate before, you were probably
expecting to see the SQL statements somewhere in the code or metadata. They
aren’t there. All SQL is generated at runtime (actually at startup, for all reusable
SQL statements).

To allow this magic to occur, Hibernate needs more information about how the
Message class should be made persistent. This information is usually provided in an
XML mapping document. The mapping document defines, among other things, how
properties of the Message class map to columns of the MESSAGES table. Let’s look at
the mapping document in listing 2.2.

<?xml version="1.0"?>
<!DOCTYPE hibernate-mapping PUBLIC
 "-//Hibernate/Hibernate Mapping DTD//EN"
 "http://hibernate.sourceforge.net/hibernate-mapping-2.0.dtd">
<hibernate-mapping>
 <class
 name="hello.Message"
 table="MESSAGES">
 <id
 name="id"
 column="MESSAGE_ID">
 <generator class="increment"/>
 </id>
 <property
 name="text"
 column="MESSAGE_TEXT"/>
 <many-to-one
 name="nextMessage"
 cascade="all"
 column="NEXT_MESSAGE_ID"/>
 </class>
</hibernate-mapping>

The mapping document tells Hibernate that the Message class is to be persisted to
the MESSAGES table, that the identifier property maps to a column named
MESSAGE_ID, that the text property maps to a column named MESSAGE_TEXT, and
that the property named nextMessage is an association with many-to-one multiplicity
that maps to a column named NEXT_MESSAGE_ID. (Don’t worry about the other
details for now.)

As you can see, the XML document isn’t difficult to understand. You can easily
write and maintain it by hand. In chapter 3, we discuss a way of generating the

Listing 2.2 A simple Hibernate XML mapping

Note that Hibernate 2.0
and Hibernate 2.1

have the same DTD!

“Hello World” with Hibernate 35

XML file from comments embedded in the source code. Whichever method you
choose, Hibernate has enough information to completely generate all the SQL
statements that would be needed to insert, update, delete, and retrieve instances
of the Message class. You no longer need to write these SQL statements by hand.

NOTE Many Java developers have complained of the “metadata hell” that
accompanies J2EE development. Some have suggested a movement away
from XML metadata, back to plain Java code. Although we applaud this
suggestion for some problems, ORM represents a case where text-based
metadata really is necessary. Hibernate has sensible defaults that mini-
mize typing and a mature document type definition that can be used for
auto-completion or validation in editors. You can even automatically gen-
erate metadata with various tools.

Now, let’s change our first message and, while we’re at it, create a new message
associated with the first, as shown in listing 2.3.

Session session = getSessionFactory().openSession();
Transaction tx = session.beginTransaction();

// 1 is the generated id of the first message
Message message =
 (Message) session.load(Message.class, new Long(1));
message.setText("Greetings Earthling");
Message nextMessage = new Message("Take me to your leader (please)");
message.setNextMessage(nextMessage);
tx.commit();
session.close();

This code calls three SQL statements inside the same transaction:

select m.MESSAGE_ID, m.MESSAGE_TEXT, m.NEXT_MESSAGE_ID
from MESSAGES m
where m.MESSAGE_ID = 1

insert into MESSAGES (MESSAGE_ID, MESSAGE_TEXT, NEXT_MESSAGE_ID)
values (2, 'Take me to your leader (please)', null)

update MESSAGES
set MESSAGE_TEXT = 'Greetings Earthling', NEXT_MESSAGE_ID = 2
where MESSAGE_ID = 1

Notice how Hibernate detected the modification to the text and nextMessage
properties of the first message and automatically updated the database. We’ve
taken advantage of a Hibernate feature called automatic dirty checking: This feature

Listing 2.3 Updating a message

36 CHAPTER 2

Introducing and integrating Hibernate

saves us the effort of explicitly asking Hibernate to update the database when we
modify the state of an object inside a transaction. Similarly, you can see that the
new message was made persistent when a reference was created from the first mes-
sage. This feature is called cascading save: It saves us the effort of explicitly making
the new object persistent by calling save(), as long as it’s reachable by an already-
persistent instance. Also notice that the ordering of the SQL statements isn’t the
same as the order in which we set property values. Hibernate uses a sophisticated
algorithm to determine an efficient ordering that avoids database foreign key con-
straint violations but is still sufficiently predictable to the user. This feature is
called transactional write-behind.

If we run “Hello World” again, it prints

 2 message(s) found:
 Greetings Earthling
 Take me to your leader (please)

This is as far as we’ll take the “Hello World” application. Now that we finally have
some code under our belt, we’ll take a step back and present an overview of
Hibernate’s main APIs.

2.2 Understanding the architecture

The programming interfaces are the first thing you have to learn about Hiber-
nate in order to use it in the persistence layer of your application. A major objec-
tive of API design is to keep the interfaces between software components as
narrow as possible. In practice, however, ORM APIs aren’t especially small. Don’t
worry, though; you don’t have to understand all the Hibernate interfaces at once.
Figure 2.1 illustrates the roles of the most important Hibernate interfaces in the
business and persistence layers. We show the business layer above the persistence
layer, since the business layer acts as a client of the persistence layer in a tradi-
tionally layered application. Note that some simple applications might not
cleanly separate business logic from persistence logic; that’s okay—it merely sim-
plifies the diagram.

The Hibernate interfaces shown in figure 2.1 may be approximately classified as
follows:

■ Interfaces called by applications to perform basic CRUD and querying oper-
ations. These interfaces are the main point of dependency of application
business/control logic on Hibernate. They include Session, Transaction,
and Query.

Understanding the architecture 37

■ Interfaces called by application infrastructure code to configure Hibernate,
most importantly the Configuration class.

■ Callback interfaces that allow the application to react to events occurring
inside Hibernate, such as Interceptor, Lifecycle, and Validatable.

■ Interfaces that allow extension of Hibernate’s powerful mapping function-
ality, such as UserType, CompositeUserType, and IdentifierGenerator.
These interfaces are implemented by application infrastructure code (if
necessary).

Hibernate makes use of existing Java APIs, including JDBC), Java Transaction API
(JTA, and Java Naming and Directory Interface (JNDI). JDBC provides a rudimen-
tary level of abstraction of functionality common to relational databases, allowing
almost any database with a JDBC driver to be supported by Hibernate. JNDI and
JTA allow Hibernate to be integrated with J2EE application servers.

In this section, we don’t cover the detailed semantics of Hibernate API methods,
just the role of each of the primary interfaces. You can find most of these interfaces
in the package net.sf.hibernate. Let’s take a brief look at each interface in turn.

Figure 2.1 High-level overview of the HIbernate API in a layered architecture

38 CHAPTER 2

Introducing and integrating Hibernate

2.2.1 The core interfaces

The five core interfaces are used in just about every Hibernate application.
Using these interfaces, you can store and retrieve persistent objects and control
transactions.

Session interface
The Session interface is the primary interface used by Hibernate applications. An
instance of Session is lightweight and is inexpensive to create and destroy. This is
important because your application will need to create and destroy sessions all the
time, perhaps on every request. Hibernate sessions are not threadsafe and should
by design be used by only one thread at a time.

The Hibernate notion of a session is something between connection and transac-
tion. It may be easier to think of a session as a cache or collection of loaded objects
relating to a single unit of work. Hibernate can detect changes to the objects in this
unit of work. We sometimes call the Session a persistence manager because it’s also
the interface for persistence-related operations such as storing and retrieving
objects. Note that a Hibernate session has nothing to do with the web-tier HttpSes-
sion. When we use the word session in this book, we mean the Hibernate session.
We sometimes use user session to refer to the HttpSession object.

We describe the Session interface in detail in chapter 4, section 4.2, “The per-
sistence manager.”

SessionFactory interface
The application obtains Session instances from a SessionFactory. Compared to
the Session interface, this object is much less exciting.

The SessionFactory is certainly not lightweight! It’s intended to be shared
among many application threads. There is typically a single SessionFactory for the
whole application—created during application initialization, for example. How-
ever, if your application accesses multiple databases using Hibernate, you’ll need
a SessionFactory for each database.

The SessionFactory caches generated SQL statements and other mapping
metadata that Hibernate uses at runtime. It also holds cached data that has been
read in one unit of work and may be reused in a future unit of work (only if class
and collection mappings specify that this second-level cache is desirable).

Understanding the architecture 39

Configuration interface
The Configuration object is used to configure and bootstrap Hibernate. The
application uses a Configuration instance to specify the location of mapping doc-
uments and Hibernate-specific properties and then create the SessionFactory.

Even though the Configuration interface plays a relatively small part in the
total scope of a Hibernate application, it’s the first object you’ll meet when you
begin using Hibernate. Section 2.3 covers the problem of configuring Hibernate
in some detail.

Transaction interface
The Transaction interface is an optional API. Hibernate applications may choose
not to use this interface, instead managing transactions in their own infrastruc-
ture code. A Transaction abstracts application code from the underlying transac-
tion implementation—which might be a JDBC transaction, a JTA UserTransaction,
or even a Common Object Request Broker Architecture (CORBA) transaction—
allowing the application to control transaction boundaries via a consistent API.
This helps to keep Hibernate applications portable between different kinds of
execution environments and containers.

We use the Hibernate Transaction API throughout this book. Transactions and
the Transaction interface are explained in chapter 5.

Query and Criteria interfaces
The Query interface allows you to perform queries against the database and con-
trol how the query is executed. Queries are written in HQL or in the native SQL
dialect of your database. A Query instance is used to bind query parameters, limit
the number of results returned by the query, and finally to execute the query.

The Criteria interface is very similar; it allows you to create and execute object-
oriented criteria queries.

To help make application code less verbose, Hibernate provides some short-
cut methods on the Session interface that let you invoke a query in one line of
code. We won’t use these shortcuts in the book; instead, we’ll always use the
Query interface.

A Query instance is lightweight and can’t be used outside the Session that cre-
ated it. We describe the features of the Query interface in chapter 7.

40 CHAPTER 2

Introducing and integrating Hibernate

2.2.2 Callback interfaces

Callback interfaces allow the application to receive a notification when something
interesting happens to an object—for example, when an object is loaded, saved,
or deleted. Hibernate applications don’t need to implement these callbacks, but
they’re useful for implementing certain kinds of generic functionality, such as cre-
ating audit records.

The Lifecycle and Validatable interfaces allow a persistent object to react to
events relating to its own persistence lifecycle. The persistence lifecycle is encom-
passed by an object’s CRUD operations. The Hibernate team was heavily influ-
enced by other ORM solutions that have similar callback interfaces. Later, they
realized that having the persistent classes implement Hibernate-specific interfaces
probably isn’t a good idea, because doing so pollutes our persistent classes with
nonportable code. Since these approaches are no longer favored, we don’t discuss
them in this book.

The Interceptor interface was introduced to allow the application to process
callbacks without forcing the persistent classes to implement Hibernate-specific
APIs. Implementations of the Interceptor interface are passed to the persistent
instances as parameters. We’ll discuss an example in chapter 8.

2.2.3 Types

A fundamental and very powerful element of the architecture is Hibernate’s
notion of a Type. A Hibernate Type object maps a Java type to a database column
type (actually, the type may span multiple columns). All persistent properties of
persistent classes, including associations, have a corresponding Hibernate type.
This design makes Hibernate extremely flexible and extensible.

There is a rich range of built-in types, covering all Java primitives and many JDK
classes, including types for java.util.Currency, java.util.Calendar, byte[], and
java.io.Serializable.

Even better, Hibernate supports user-defined custom types. The interfaces
UserType and CompositeUserType are provided to allow you to add your own types.
You can use this feature to allow commonly used application classes such as
Address, Name, or MonetaryAmount to be handled conveniently and elegantly. Cus-
tom types are considered a central feature of Hibernate, and you’re encouraged to
put them to new and creative uses!

We explain Hibernate types and user-defined types in chapter 6, section 6.1,
“Understanding the Hibernate type system.”

Basic configuration 41

2.2.4 Extension interfaces

Much of the functionality that Hibernate provides is configurable, allowing you to
choose between certain built-in strategies. When the built-in strategies are insuffi-
cient, Hibernate will usually let you plug in your own custom implementation by
implementing an interface. Extension points include:

■ Primary key generation (IdentifierGenerator interface)

■ SQL dialect support (Dialect abstract class)

■ Caching strategies (Cache and CacheProvider interfaces)

■ JDBC connection management (ConnectionProvider interface)

■ Transaction management (TransactionFactory, Transaction, and Transac-
tionManagerLookup interfaces)

■ ORM strategies (ClassPersister interface hierarchy)

■ Property access strategies (PropertyAccessor interface)

■ Proxy creation (ProxyFactory interface)

Hibernate ships with at least one implementation of each of the listed interfaces,
so you don’t usually need to start from scratch if you wish to extend the built-in
functionality. The source code is available for you to use as an example for your
own implementation.

By now you can see that before we can start writing any code that uses Hibernate,
we must answer this question: How do we get a Session to work with?

2.3 Basic configuration

We’ve looked at an example application and examined Hibernate’s core inter-
faces. To use Hibernate in an application, you need to know how to configure it.
Hibernate can be configured to run in almost any Java application and develop-
ment environment. Generally, Hibernate is used in two- and three-tiered client/
server applications, with Hibernate deployed only on the server. The client appli-
cation is usually a web browser, but Swing and SWT client applications aren’t
uncommon. Although we concentrate on multitiered web applications in this
book, our explanations apply equally to other architectures, such as command-
line applications. It’s important to understand the difference in configuring
Hibernate for managed and non-managed environments:

■ Managed environment—Pools resources such as database connections and
allows transaction boundaries and security to be specified declaratively (that

42 CHAPTER 2

Introducing and integrating Hibernate

is, in metadata). A J2EE application server such as JBoss, BEA WebLogic, or
IBM WebSphere implements the standard (J2EE-specific) managed environ-
ment for Java.

■ Non-managed environment—Provides basic concurrency management via
thread pooling. A servlet container like Jetty or Tomcat provides a non-
managed server environment for Java web applications. A stand-alone desk-
top or command-line application is also considered non-managed. Non-
managed environments don’t provide automatic transaction or resource
management or security infrastructure. The application itself manages data-
base connections and demarcates transaction boundaries.

Hibernate attempts to abstract the environment in which it’s deployed. In the case
of a non-managed environment, Hibernate handles transactions and JDBC connec-
tions (or delegates to application code that handles these concerns). In managed
environments, Hibernate integrates with container-managed transactions and
datasources. Hibernate can be configured for deployment in both environments.

In both managed and non-managed environments, the first thing you must do
is start Hibernate. In practice, doing so is very easy: You have to create a Session-
Factory from a Configuration.

2.3.1 Creating a SessionFactory

In order to create a SessionFactory, you first create a single instance of Configu-
ration during application initialization and use it to set the location of the map-
ping files. Once configured, the Configuration instance is used to create the
SessionFactory. After the SessionFactory is created, you can discard the Config-
uration class.

The following code starts Hibernate:

Configuration cfg = new Configuration();
cfg.addResource("hello/Message.hbm.xml");
cfg.setProperties(System.getProperties());
SessionFactory sessions = cfg.buildSessionFactory();

The location of the mapping file, Message.hbm.xml, is relative to the root of the
application classpath. For example, if the classpath is the current directory, the
Message.hbm.xml file must be in the hello directory. XML mapping files must be
placed in the classpath. In this example, we also use the system properties of the
virtual machine to set all other configuration options (which might have been set
before by application code or as startup options).

Basic configuration 43

Method chaining is a programming style supported by many Hibernate
interfaces. This style is more popular in Smalltalk than in Java and is
considered by some people to be less readable and more difficult to
debug than the more accepted Java style. However, it’s very convenient
in most cases.

Most Java developers declare setter or adder methods to be of type
void, meaning they return no value. In Smalltalk, which has no void
type, setter or adder methods usually return the receiving object. This
would allow us to rewrite the previous code example as follows:

 SessionFactory sessions = new Configuration()
 .addResource("hello/Message.hbm.xml")
 .setProperties(System.getProperties())
 .buildSessionFactory();

Notice that we didn’t need to declare a local variable for the Configura-
tion. We use this style in some code examples; but if you don’t like it, you
don’t need to use it yourself. If you do use this coding style, it’s better to
write each method invocation on a different line. Otherwise, it might be
difficult to step through the code in your debugger.

By convention, Hibernate XML mapping files are named with the .hbm.xml exten-
sion. Another convention is to have one mapping file per class, rather than have
all your mappings listed in one file (which is possible but considered bad style).
Our “Hello World” example had only one persistent class, but let’s assume we
have multiple persistent classes, with an XML mapping file for each. Where should
we put these mapping files?

The Hibernate documentation recommends that the mapping file for each per-
sistent class be placed in the same directory as that class. For instance, the mapping
file for the Message class would be placed in the hello directory in a file named
Message.hbm.xml. If we had another persistent class, it would be defined in its own
mapping file. We suggest that you follow this practice. The monolithic metadata
files encouraged by some frameworks, such as the struts-config.xml found in
Struts, are a major contributor to “metadata hell.” You load multiple mapping files
by calling addResource() as often as you have to. Alternatively, if you follow the con-
vention just described, you can use the method addClass(), passing a persistent
class as the parameter:

SessionFactory sessions = new Configuration()
 .addClass(org.hibernate.auction.model.Item.class)
 .addClass(org.hibernate.auction.model.Category.class)
 .addClass(org.hibernate.auction.model.Bid.class)
 .setProperties(System.getProperties())
 .buildSessionFactory();

METHOD
CHAINING

44 CHAPTER 2

Introducing and integrating Hibernate

The addClass() method assumes that the name of the mapping file ends with the
.hbm.xml extension and is deployed along with the mapped class file.

We’ve demonstrated the creation of a single SessionFactory, which is all that
most applications need. If another SessionFactory is needed—if there are multi-
ple databases, for example—you repeat the process. Each SessionFactory is then
available for one database and ready to produce Sessions to work with that partic-
ular database and a set of class mappings.

Of course, there is more to configuring Hibernate than just pointing to map-
ping documents. You also need to specify how database connections are to be
obtained, along with various other settings that affect the behavior of Hibernate at
runtime. The multitude of configuration properties may appear overwhelming (a
complete list appears in the Hibernate documentation), but don’t worry; most
define reasonable default values, and only a handful are commonly required.

To specify configuration options, you may use any of the following techniques:

■ Pass an instance of java.util.Properties to Configuration.setProper-
ties().

■ Set system properties using java -Dproperty=value.

■ Place a file called hibernate.properties in the classpath.

■ Include <property> elements in hibernate.cfg.xml in the classpath.

The first and second options are rarely used except for quick testing and proto-
types, but most applications need a fixed configuration file. Both the hibernate.
properties and the hibernate.cfg.xml files provide the same function: to config-
ure Hibernate. Which file you choose to use depends on your syntax preference.
It’s even possible to mix both options and have different settings for development
and deployment, as you’ll see later in this chapter.

A rarely used alternative option is to allow the application to provide a JDBC Con-
nection when it opens a Hibernate Session from the SessionFactory (for exam-
ple, by calling sessions.openSession(myConnection)). Using this option means
that you don’t have to specify any database connection properties. We don’t rec-
ommend this approach for new applications that can be configured to use the envi-
ronment’s database connection infrastructure (for example, a JDBC connection
pool or an application server datasource).

Of all the configuration options, database connection settings are the most
important. They differ in managed and non-managed environments, so we deal
with the two cases separately. Let’s start with non-managed.

Basic configuration 45

2.3.2 Configuration in non-managed environments

In a non-managed environment, such as a servlet container, the application is
responsible for obtaining JDBC connections. Hibernate is part of the application,
so it’s responsible for getting these connections. You tell Hibernate how to get (or
create new) JDBC connections. Generally, it isn’t advisable to create a connection
each time you want to interact with the database. Instead, Java applications should
use a pool of JDBC connections. There are three reasons for using a pool:

■ Acquiring a new connection is expensive.

■ Maintaining many idle connections is expensive.

■ Creating prepared statements is also expensive for some drivers.

Figure 2.2 shows the role of a JDBC connection pool in a web application runtime
environment. Since this non-managed environment doesn’t implement connec-
tion pooling, the application must implement its own pooling algorithm or rely
upon a third-party library such as the open source C3P0 connection pool. Without
Hibernate, the application code usually calls the connection pool to obtain JDBC
connections and execute SQL statements.

With Hibernate, the picture changes: It acts as a client of the JDBC connection
pool, as shown in figure 2.3. The application code uses the Hibernate Session and
Query APIs for persistence operations and only has to manage database transac-
tions, ideally using the Hibernate Transaction API.

Using a connection pool
Hibernate defines a plugin architecture that allows integration with any connec-
tion pool. However, support for C3P0 is built in, so we’ll use that. Hibernate will
set up the configuration pool for you with the given properties. An example of a
hibernate.properties file using C3P0 is shown in listing 2.4.

Non-Managed Environment

Database

Connection
Pool

User-managed
JDBC connections

JSP

main()
Servlet

Application

Figure 2.2 JDBC connection pooling in a non-managed environment

46 CHAPTER 2

Introducing and integrating Hibernate

hibernate.connection.driver_class = org.postgresql.Driver
hibernate.connection.url = jdbc:postgresql://localhost/auctiondb
hibernate.connection.username = auctionuser
hibernate.connection.password = secret
hibernate.dialect = net.sf.hibernate.dialect.PostgreSQLDialect
hibernate.c3p0.min_size=5
hibernate.c3p0.max_size=20
hibernate.c3p0.timeout=300
hibernate.c3p0.max_statements=50
hibernate.c3p0.idle_test_period=3000

This code’s lines specify the following information, beginning with the first line:

■ The name of the Java class implementing the JDBC Driver (the driver JAR
file must be placed in the application’s classpath).

■ A JDBC URL that specifies the host and database name for JDBC connec-
tions.

■ The database user name.

■ The database password for the specified user.

■ A Dialect for the database. Despite the ANSI standardization effort, SQL is
implemented differently by various databases vendors. So, you must specify
a Dialect. Hibernate includes built-in support for all popular SQL data-
bases, and new dialects may be defined easily.

■ The minimum number of JDBC connections that C3P0 will keep ready.

Listing 2.4 Using hibernate.properties for C3P0 connection pool settings

JSP

main()
Servlet

Application

Hibernate

Database

Connection
Pool

Session

Transaction

Query

Non-Managed Environment

Figure 2.3 Hibernate with a connection pool in a non-managed environment

Basic configuration 47

■ The maximum number of connections in the pool. An exception will be
thrown at runtime if this number is exhausted.

■ The timeout period (in this case, 5 minutes or 300 seconds) after which an
idle connection will be removed from the pool.

■ The maximum number of prepared statements that will be cached. Caching
of prepared statements is essential for best performance with Hibernate.

■ The idle time in seconds before a connection is automatically validated.

Specifying properties of the form hibernate.c3p0.* selects C3P0 as Hibernate’s
connection pool (you don’t need any other switch to enable C3P0 support). C3P0
has even more features than we’ve shown in the previous example, so we refer you
to the Hibernate API documentation. The Javadoc for the class net.sf.hiber-
nate.cfg.Environment documents every Hibernate configuration property,
including all C3P0-related settings and settings for other third-party connection
pools directly supported by Hibernate.

The other supported connection pools are Apache DBCP and Proxool. You
should try each pool in your own environment before deciding between them. The
Hibernate community tends to prefer C3P0 and Proxool.

Hibernate also ships with a default connection pooling mechanism. This con-
nection pool is only suitable for testing and experimenting with Hibernate: You
should not use this built-in pool in production systems. It isn’t designed to scale to
an environment with many concurrent requests, and it lacks the fault tolerance fea-
tures found in specialized connection pools.

Starting Hibernate
How do you start Hibernate with these properties? You declared the properties in
a file named hibernate.properties, so you need only place this file in the applica-
tion classpath. It will be automatically detected and read when Hibernate is first
initialized when you create a Configuration object.

Let’s summarize the configuration steps you’ve learned so far (this is a good
time to download and install Hibernate, if you’d like to continue in a non-
managed environment):

1 Download and unpack the JDBC driver for your database, which is usually
available from the database vendor web site. Place the JAR files in the appli-
cation classpath; do the same with hibernate2.jar.

2 Add Hibernate’s dependencies to the classpath; they’re distributed along
with Hibernate in the lib/ directory. See also the text file lib/README.txt
for a list of required and optional libraries.

48 CHAPTER 2

Introducing and integrating Hibernate

3 Choose a JDBC connection pool supported by Hibernate and configure it
with a properties file. Don’t forget to specify the SQL dialect.

4 Let the Configuration know about these properties by placing them in a
hibernate.properties file in the classpath.

5 Create an instance of Configuration in your application and load the XML
mapping files using either addResource() or addClass(). Build a Session-
Factory from the Configuration by calling buildSessionFactory().

Unfortunately, you don’t have any mapping files yet. If you like, you can run the
“Hello World” example or skip the rest of this chapter and start learning about
persistent classes and mappings in chapter 3. Or, if you want to know more about
using Hibernate in a managed environment, read on.

2.3.3 Configuration in managed environments

A managed environment handles certain cross-cutting concerns, such as applica-
tion security (authorization and authentication), connection pooling, and trans-
action management. J2EE application servers are typical managed environments.
Although application servers are generally designed to support EJBs, you can still
take advantage of the other managed services provided, even if you don’t use EJB
entity beans.

Hibernate is often used with session or message-driven EJBs, as shown in
figure 2.4. EJBs call the same Hibernate APIs as servlets, JSPs, or stand-alone appli-
cations: Session, Transaction, and Query. The Hibernate-related code is fully por-
table between non-managed and managed environments. Hibernate handles the
different connection and transaction strategies transparently.

EJB

EJB
EJB

Application

Hibernate

Session

Transaction

Query

Transaction
Manager

Database

Resource
Manager

Application Server

Figure 2.4 Hibernate in a managed environment with an application server

Basic configuration 49

An application server exposes a connection pool as a JNDI-bound datasource, an
instance of javax.jdbc.Datasource. You need to tell Hibernate where to find the
datasource in JNDI, by supplying a fully qualified JNDI name. An example Hiber-
nate configuration file for this scenario is shown in listing 2.5.

hibernate.connection.datasource = java:/comp/env/jdbc/AuctionDB
hibernate.transaction.factory_class = \
 net.sf.hibernate.transaction.JTATransactionFactory
hibernate.transaction.manager_lookup_class = \
 net.sf.hibernate.transaction.JBossTransactionManagerLookup
hibernate.dialect = net.sf.hibernate.dialect.PostgreSQLDialect

This file first gives the JNDI name of the datasource. The datasource must be
configured in the J2EE enterprise application deployment descriptor; this is a
vendor-specific setting. Next, you enable Hibernate integration with JTA. Now
Hibernate needs to locate the application server’s TransactionManager in order to
integrate fully with the container transactions. No standard approach is defined
by the J2EE specification, but Hibernate includes support for all popular applica-
tion servers. Finally, of course, the Hibernate SQL dialect is required.

Now that you’ve configured everything correctly, using Hibernate in a managed
environment isn’t much different than using it in a non-managed environment: Just
create a Configuration with mappings and build a SessionFactory. However, some
of the transaction environment–related settings deserve some extra consideration.

Java already has a standard transaction API, JTA, which is used to control trans-
actions in a managed environment with J2EE. This is called container-managed trans-
actions (CMT). If a JTA transaction manager is present, JDBC connections are
enlisted with this manager and under its full control. This isn’t the case in a non-
managed environment, where an application (or the pool) manages the JDBC con-
nections and JDBC transactions directly.

Therefore, managed and non-managed environments can use different transac-
tion methods. Since Hibernate needs to be portable across these environments, it
defines an API for controlling transactions. The Hibernate Transaction interface
abstracts the underlying JTA or JDBC transaction (or, potentially, even a CORBA
transaction). This underlying transaction strategy is set with the property hiber-
nate.connection.factory_class, and it can take one of the following two values:

Listing 2.5 Sample hibernate.properties for a container-provided datasource

50 CHAPTER 2

Introducing and integrating Hibernate

■ net.sf.hibernate.transaction.JDBCTransactionFactory delegates to direct
JDBC transactions. This strategy should be used with a connection pool in a
non-managed environment and is the default if no strategy is specified.

■ net.sf.hibernate.transaction.JTATransactionFactory delegates to JTA.
This is the correct strategy for CMT, where connections are enlisted with JTA.
Note that if a JTA transaction is already in progress when beginTransac-
tion() is called, subsequent work takes place in the context of that transac-
tion (otherwise a new JTA transaction is started).

For a more detailed introduction to Hibernate’s Transaction API and the effects
on your specific application scenario, see chapter 5, section 5.1, “Transactions.”
Just remember the two steps that are necessary if you work with a J2EE application
server: Set the factory class for the Hibernate Transaction API to JTA as described
earlier, and declare the transaction manager lookup specific to your application
server. The lookup strategy is required only if you use the second-level caching sys-
tem in Hibernate, but it doesn’t hurt to set it even without using the cache.

Tomcat isn’t a full application server; it’s just a servlet container, albeit a
servlet container with some features usually found only in application
servers. One of these features may be used with Hibernate: the Tomcat
connection pool. Tomcat uses the DBCP connection pool internally but
exposes it as a JNDI datasource, just like a real application server. To con-
figure the Tomcat datasource, you’ll need to edit server.xml according
to instructions in the Tomcat JNDI/JDBC documentation. You can config-
ure Hibernate to use this datasource by setting hibernate.connec-
tion.datasource. Keep in mind that Tomcat doesn’t ship with a
transaction manager, so this situation is still more like a non-managed
environment as described earlier.

You should now have a running Hibernate system, whether you use a simple serv-
let container or an application server. Create and compile a persistent class (the
initial Message, for example), copy Hibernate and its required libraries to the
classpath together with a hibernate.properties file, and build a SessionFactory.

The next section covers advanced Hibernate configuration options. Some of
them are recommended, such as logging executed SQL statements for debugging
or using the convenient XML configuration file instead of plain properties. How-
ever, you may safely skip this section and come back later once you have read more
about persistent classes in chapter 3.

HIBERNATE
WITH

TOMCAT

Advanced configuration settings 51

2.4 Advanced configuration settings

When you finally have a Hibernate application running, it’s well worth getting to
know all the Hibernate configuration parameters. These parameters let you opti-
mize the runtime behavior of Hibernate, especially by tuning the JDBC interaction
(for example, using JDBC batch updates).

We won’t bore you with these details now; the best source of information about
configuration options is the Hibernate reference documentation. In the previous
section, we showed you the options you’ll need to get started.

However, there is one parameter that we must emphasize at this point. You’ll
need it continually whenever you develop software with Hibernate. Setting the
property hibernate.show_sql to the value true enables logging of all generated
SQL to the console. You’ll use it for troubleshooting, performance tuning, and just
to see what’s going on. It pays to be aware of what your ORM layer is doing—that’s
why ORM doesn’t hide SQL from developers.

So far, we’ve assumed that you specify configuration parameters using a hiber-
nate.properties file or an instance of java.util.Properties programmatically.
There is a third option you’ll probably like: using an XML configuration file.

2.4.1 Using XML-based configuration

You can use an XML configuration file (as demonstrated in listing 2.6) to fully
configure a SessionFactory. Unlike hibernate.properties, which contains only
configuration parameters, the hibernate.cfg.xml file may also specify the loca-
tion of mapping documents. Many users prefer to centralize the configuration of
Hibernate in this way instead of adding parameters to the Configuration in appli-
cation code.

?xml version='1.0'encoding='utf-8'?>
<!DOCTYPE hibernate-configuration
 PUBLIC "-//Hibernate/Hibernate Configuration DTD//EN"
 "http://hibernate.sourceforge.net/hibernate-configuration-2.0.dtd">
<hibernate-configuration>
 <session-factory name="java:/hibernate/HibernateFactory">
 <property name="show_sql">true</property>
 <property name="connection.datasource">
 java:/comp/env/jdbc/AuctionDB
 </property>
 <property name="dialect">
 net.sf.hibernate.dialect.PostgreSQLDialect
 </property>

Listing 2.6 Sample hibernate.cfg.xml configuration file

B
Document type

declaration

Name
attributeC

D Property
specifications

52 CHAPTER 2

Introducing and integrating Hibernate

 <property name="transaction.manager_lookup_class">
 net.sf.hibernate.transaction.JBossTransactionManagerLookup
 </property>
 <mapping resource="auction/Item.hbm.xml"/>
 <mapping resource="auction/Category.hbm.xml"/>
 <mapping resource="auction/Bid.hbm.xml"/>
 </session-factory>
</hibernate-configuration>

The document type declaration is used by the XML parser to validate this document
against the Hibernate configuration DTD.

The optional name attribute is equivalent to the property hibernate.session_
factory_name and used for JNDI binding of the SessionFactory, discussed in the
next section.

Hibernate properties may be specified without the hibernate prefix. Property
names and values are otherwise identical to programmatic configuration
properties.

Mapping documents may be specified as application resources or even as hard-
coded filenames. The files used here are from our online auction application,
which we’ll introduce in chapter 3.

Now you can initialize Hibernate using

SessionFactory sessions = new Configuration()
 .configure().buildSessionFactory();

Wait—how did Hibernate know where the configuration file was located?
When configure() was called, Hibernate searched for a file named hiber-

nate.cfg.xml in the classpath. If you wish to use a different filename or have Hiber-
nate look in a subdirectory, you must pass a path to the configure() method:

SessionFactory sessions = new Configuration()
 .configure("/hibernate-config/auction.cfg.xml")
 .buildSessionFactory();

Using an XML configuration file is certainly more comfortable than a properties
file or even programmatic property configuration. The fact that you can have the
class mapping files externalized from the application’s source (even if it would be
only in a startup helper class) is a major benefit of this approach. You can, for
example, use different sets of mapping files (and different configuration
options), depending on your database and environment (development or pro-
duction), and switch them programatically.

d
E Mapping

document
specifications

B

C

D

E

Advanced configuration settings 53

If you have both hibernate.properties and hibernate.cfg.xml in the classpath,
the settings of the XML configuration file will override the settings used in the
properties. This is useful if you keep some base settings in properties and override
them for each deployment with an XML configuration file.

You may have noticed that the SessionFactory was also given a name in the XML
configuration file. Hibernate uses this name to automatically bind the SessionFac-
tory to JNDI after creation.

2.4.2 JNDI-bound SessionFactory

In most Hibernate applications, the SessionFactory should be instantiated once
during application initialization. The single instance should then be used by all
code in a particular process, and any Sessions should be created using this single
SessionFactory. A frequently asked question is where this factory must be placed
and how it can be accessed without much hassle.

In a J2EE environment, a SessionFactory bound to JNDI is easily shared between
different threads and between various Hibernate-aware components. Or course,
JNDI isn’t the only way that application components might obtain a SessionFac-
tory. There are many possible implementations of this Registry pattern, including
use of the ServletContext or a static final variable in a singleton. A particularly
elegant approach is to use an application scope IoC (Inversion of Control) frame-
work component. However, JNDI is a popular approach (and is exposed as a JMX
service, as you'll see later). We discuss some of the alternatives in chapter 8,
section 8.1, “Designing layered applications.”

NOTE The Java Naming and Directory Interface (JNDI) API allows objects to be
stored to and retrieved from a hierarchical structure (directory tree).
JNDI implements the Registry pattern. Infrastructural objects (transac-
tion contexts, datasources), configuration settings (environment settings,
user registries), and even application objects (EJB references, object fac-
tories) may all be bound to JNDI.

The SessionFactory will automatically bind itself to JNDI if the property hiber-
nate.session_factory_name is set to the name of the directory node. If your run-
time environment doesn’t provide a default JNDI context (or if the default JNDI
implementation doesn’t support instances of Referenceable), you need to specify
a JNDI initial context using the properties hibernate.jndi.url and hiber-
nate.jndi.class.

54 CHAPTER 2

Introducing and integrating Hibernate

Here is an example Hibernate configuration that binds the SessionFactory to
the name hibernate/HibernateFactory using Sun’s (free) file system–based JNDI
implementation, fscontext.jar:

hibernate.connection.datasource = java:/comp/env/jdbc/AuctionDB
hibernate.transaction.factory_class = \
 net.sf.hibernate.transaction.JTATransactionFactory
hibernate.transaction.manager_lookup_class = \
 net.sf.hibernate.transaction.JBossTransactionManagerLookup
hibernate.dialect = net.sf.hibernate.dialect.PostgreSQLDialect
hibernate.session_factory_name = hibernate/HibernateFactory
hibernate.jndi.class = com.sun.jndi.fscontext.RefFSContextFactory
hibernate.jndi.url = file:/auction/jndi

Of course, you can also use the XML-based configuration for this task. This exam-
ple also isn’t realistic, since most application servers that provide a connection
pool through JNDI also have a JNDI implementation with a writable default con-
text. JBoss certainly has, so you can skip the last two properties and just specify a
name for the SessionFactory. All you have to do now is call Configuration.con-
figure().buildSessionFactory() once to initialize the binding.

NOTE Tomcat comes bundled with a read-only JNDI context, which isn’t writ-
able from application-level code after the startup of the servlet con-
tainer. Hibernate can’t bind to this context; you have to either use a full
context implementation (like the Sun FS context) or disable JNDI bind-
ing of the SessionFactory by omitting the session_factory_name prop-
erty in the configuration.

Let’s look at some other very important configuration settings that log Hibernate
operations.

2.4.3 Logging

Hibernate (and many other ORM implementations) executes SQL statements
asynchronously. An INSERT statement isn’t usually executed when the application
calls Session.save(); an UPDATE isn’t immediately issued when the application
calls Item.addBid(). Instead, the SQL statements are usually issued at the end of a
transaction. This behavior is called write-behind, as we mentioned earlier.

This fact is evidence that tracing and debugging ORM code is sometimes non-
trivial. In theory, it’s possible for the application to treat Hibernate as a black box
and ignore this behavior. Certainly the Hibernate application can’t detect this
asynchronicity (at least, not without resorting to direct JDBC calls). However, when
you find yourself troubleshooting a difficult problem, you need to be able to see
exactly what’s going on inside Hibernate. Since Hibernate is open source, you can

Advanced configuration settings 55

easily step into the Hibernate code. Occasionally, doing so helps a great deal! But,
especially in the face of asynchronous behavior, debugging Hibernate can quickly
get you lost. You can use logging to get a view of Hibernate’s internals.

We’ve already mentioned the hibernate.show_sql configuration parameter,
which is usually the first port of call when troubleshooting. Sometimes the SQL
alone is insufficient; in that case, you must dig a little deeper.

Hibernate logs all interesting events using Apache commons-logging, a thin
abstraction layer that directs output to either Apache log4j (if you put log4j.jar
in your classpath) or JDK1.4 logging (if you’re running under JDK1.4 or above and
log4j isn’t present). We recommend log4j, since it’s more mature, more popular,
and under more active development.

To see any output from log4j, you’ll need a file named log4j.properties in your
classpath (right next to hibernate.properties or hibernate.cfg.xml). This exam-
ple directs all log messages to the console:

direct log messages to stdout
log4j.appender.stdout=org.apache.log4j.ConsoleAppender
log4j.appender.stdout.Target=System.out
log4j.appender.stdout.layout=org.apache.log4j.PatternLayout
log4j.appender.stdout.layout.ConversionPattern=%d{ABSOLUTE}
➾ %5p %c{1}:%L - %m%n
root logger option ###
log4j.rootLogger=warn, stdout
Hibernate logging options ###
log4j.logger.net.sf.hibernate=info
log JDBC bind parameters ###
log4j.logger.net.sf.hibernate.type=info
log PreparedStatement cache activity
log4j.logger.net.sf.hibernate.ps.PreparedStatementCache=info

With this configuration, you won’t see many log messages at runtime. Replacing
info with debug for the log4j.logger.net.sf.hibernate category will reveal the
inner workings of Hibernate. Make sure you don’t do this in a production envi-
ronment—writing the log will be much slower than the actual database access.

Finally, you have the hibernate.properties, hibernate.cfg.xml, and
log4j.properties configuration files.

There is another way to configure Hibernate, if your application server supports
the Java Management Extensions.

2.4.4 Java Management Extensions (JMX)

The Java world is full of specifications, standards, and, of course, implementations
of these. A relatively new but important standard is in its first version: the Java

56 CHAPTER 2

Introducing and integrating Hibernate

Management Extensions (JMX). JMX is about the management of systems compo-
nents or, better, of system services.

Where does Hibernate fit into this new picture? Hibernate, when deployed in
an application server, makes use of other services like managed transactions and
pooled database transactions. But why not make Hibernate a managed service
itself, which others can depend on and use? This is possible with the Hibernate JMX
integration, making Hibernate a managed JMX component.

The JMX specification defines the following components:

■ The JMX MBean—A reusable component (usually infrastructural) that
exposes an interface for management (administration)

■ The JMX container—Mediates generic access (local or remote) to the MBean

■ The (usually generic) JMX client—May be used to administer any MBean via
the JMX container

An application server with support for JMX (such as JBoss) acts as a JMX container
and allows an MBean to be configured and initialized as part of the application
server startup process. It’s possible to monitor and administer the MBean using
the application server’s administration console (which acts as the JMX client).

An MBean may be packaged as a JMX service, which is not only portable
between application servers with JMX support but also deployable to a running sys-
tem (a hot deploy).

Hibernate may be packaged and administered as a JMX MBean. The Hibernate
JMX service allows Hibernate to be initialized at application server startup and con-
trolled (configured) via a JMX client. However, JMX components aren’t automati-
cally integrated with container-managed transactions. So, the configuration
options in listing 2.7 (a JBoss service deployment descriptor) look similar to the
usual Hibernate settings in a managed environment.

<server>
<mbean
 code="net.sf.hibernate.jmx.HibernateService"
 name="jboss.jca:service=HibernateFactory, name=HibernateFactory">
 <depends>jboss.jca:service=RARDeployer</depends>
 <depends>jboss.jca:service=LocalTxCM,name=DataSource</depends>
 <attribute name="MapResources">
 auction/Item.hbm.xml, auction/Bid.hbm.xml
 </attribute>

Listing 2.7 Hibernate jboss-service.xml JMX deployment descriptor

Advanced configuration settings 57

 <attribute name="JndiName">
 java:/hibernate/HibernateFactory
 </attribute>
 <attribute name="Datasource">
 java:/comp/env/jdbc/AuctionDB
 </attribute>
 <attribute name="Dialect">
 net.sf.hibernate.dialect.PostgreSQLDialect
 </attribute>
 <attribute name="TransactionStrategy">
 net.sf.hibernate.transaction.JTATransactionFactory
 </attribute>
 <attribute name="TransactionManagerLookupStrategy">
 net.sf.hibernate.transaction.JBossTransactionManagerLookup
 </attribute>
 <attribute name="UserTransactionName">
 java:/UserTransaction
 </attribute>
</mbean>
</server>

The HibernateService depends on two other JMX services: service=RARDeployer
and service=LocalTxCM,name=DataSource, both in the jboss.jca service domain
name.

The Hibernate MBean may be found in the package net.sf.hibernate.jmx.
Unfortunately, lifecycle management methods like starting and stopping the JMX
service aren’t part of the JMX 1.0 specification. The methods start() and stop()
of the HibernateService are therefore specific to the JBoss application server.

NOTE If you’re interested in the advanced usage of JMX, JBoss is a good
open source starting point: All services (even the EJB container) in
JBoss are implemented as MBeans and can be managed via a supplied
console interface.

We recommend that you try to configure Hibernate programmatically (using the
Configuration object) before you try to run Hibernate as a JMX service. However,
some features (like hot-redeployment of Hibernate applications) may be possible
only with JMX, once they become available in Hibernate. Right now, the biggest
advantage of Hibernate with JMX is the automatic startup; it means you no longer
have to create a Configuration and build a SessionFactory in your application
code, but can simply access the SessionFactory through JNDI once the
HibernateService has been deployed and started.

58 CHAPTER 2

Introducing and integrating Hibernate

2.5 Summary

In this chapter, we took a high-level look at Hibernate and its architecture after
running a simple “Hello World” example. You also saw how to configure Hiber-
nate in various environments and with various techniques, even including JMX.

The Configuration and SessionFactory interfaces are the entry points to
Hibernate for applications running in both managed and non-managed environ-
ments. Hibernate provides additional APIs, such as the Transaction interface, to
bridge the differences between environments and allow you to keep your persis-
tence code portable.

Hibernate can be integrated into almost every Java environment, be it a servlet,
an applet, or a fully managed three-tiered client/server application. The most
important elements of a Hibernate configuration are the database resources (con-
nection configuration), the transaction strategies, and, of course, the XML-based
mapping metadata.

Hibernate’s configuration interfaces have been designed to cover as many
usage scenarios as possible while still being easy to understand. Usually, a single
file named hibernate.cfg.xml and one line of code are enough to get Hibernate
up and running.

None of this is much use without some persistent classes and their XML mapping
documents. The next chapter is dedicated to writing and mapping persistent
classes. You’ll soon be able to store and retrieve persistent objects in a real applica-
tion with a nontrivial object/relational mapping.

M A N N I N GM A N N I N G $44.95 US/$62.95 Canada

H
ibernate practically exploded on the Java scene. Why is this open-source
tool so popular? Because it automates a tedious task: persisting your Java
objects to a relational database. The inevitable mismatch between your

object-oriented code and the relational database requires you to write code
that maps one to the other. This code is often complex, tedious and costly to
develop. Hibernate does the mapping for you.

Not only that, Hibernate makes it easy. Positioned as a layer
between your application and your database, Hibernate
takes care of loading and saving of objects. Hibernate appli-
cations are cheaper, more portable, and more resilient to
change. And they perform better than anything you are
likely to develop yourself.

Hibernate in Action carefully explains the concepts you need,
then gets you going. It builds on a single example to show
you how to use Hibernate in practice, how to deal with
concurrency and transactions, how to efficiently retrieve
objects and use caching.

The authors created Hibernate and they field questions from
the Hibernate community every day—they know how to
make Hibernate sing. Knowledge and insight seep out of
every pore of this book.

A member of the core Hibernate developer team, Christian Bauer maintains
the Hibernate documentation and website. He is a senior software engineer
in Frankfurt, Germany. Gavin King is the Hibernate founder and principal
developer. He is a J2EE consultant based in Melbourne, Australia.

JAVA

HIBERNATE IN ACTION
Christian Bauer and Gavin King

“The Bible of Hibernate”
—Ara Abrahamian, XDoclet Lead Developer

,!7IB9D2-djebfd!:p;o;O;t;P
ISBN 1-932394-15-X

Christian Bauer
Gavin King

M A N N I N G

HIBERNATE
IN ACTIO

HIBERNATE
IN ACTION

Bauer
King

What’s Inside

■ ORM concepts

■ Getting started

■ Many real-world tasks

■ The Hibernate application
development process

The ultimate Hibernate reference

Ask the Authors Ebook edition

AUTHOR
✔

ONLINE

✔

www.manning.com/bauer

