Assignment 2

= Summary of the course so far ©

Recap of what we’ve learned

Version control (svn)

Project setup (maven)

Testing (junit, spring-test)
Persistence (hibernate)

Wiring application together (spring)
(Web layer — Struts?2)

...And what we haven’t really covered

* |IDE environment (eclipse)

= problems in assignment2

Assignment?2

Still trouble commiting only the right things
Maven setup not correct

Formatting, unnecessary code and comments,
duplicate declarations

Transactions

Understanding how to deal with many-to-
many

Not all of this is your fault ©

Commiting only the right things

e Typically target folder and IDE files
e Solution

— Look at what you commit!
— All version control systems have mechanisms to ignore
files
— svn:ignore property =
.project
.classpath
.settings
target
— svn propedit svn:ignore <folder>

Maven setup not correct

* Important to realize I only care about your
maven setup, | wont even see your IDE setup!

* mvn in parent project must work and run all
modules. That’s sort of the point..

* | don’t care if you do whatever to get it
working in your IDE of choice

— It doesn’t even have to run there

* |, as in everyone else looking at your code.

Code mess

* A lot about experience

— Assignment to unused variables
— Using iterator instead of foreach
— Etc...

e But... your IDE will help you
— At least format using Ctl-Shift-F...
* If your IDE is too helpful..

— Comment templates..
— Configure it, don’t leave me to deal with your spam.

Transactions

* Really important to understand what
transactions are!
* |t might seem natural to put transactions on

the DAO:s...
— But what about logic involving several DAQOs?

— Or even several transactional systems
* a database + a message system sending notifications to
a remote system?

Transactions in assignment

e Use @Transactional
e @Transactional belongs on the service layer

* A transaction is a logical unit of work

— “Whatever is done within this method, either
everything should succeed or nothing”

@Transactional and DAOs

* You need to explicitly use the DAO when
— You want to persist a newly created object (save)

— You want to remove an object from your persisted
model (delete)

— Ask for objects

 Demarcating your transaction (@Transactional)

— within this context, all entity modifications should
either be persisted or rollbacked.

— Persisting handled by framework, explicit updates are
meaningless within transcational boundary

many-to-many entity relationships

* Can seem difficult - especially delete

e “Safe” version
— Before deleting a course, delete all associations to
it
* Better

— The association will be deleted by hibernate on
the side where inverse=true is not set
(“mappedBy” in JPA)

— But hear reports of 2. level cache bug...

Limitations in assignment

Generic DAOs

— Standard dao functionality should be reused

— Subclass and implement extra behaviour only for
specific functionality

— http://community.jboss.org/wiki/
GenericDataAccessObjects

Testing

Relevant for this layer...
— Test data (DBUnit)
— Mocking (and stubbing)

* Mockito, easymock...

But also all kinds of other testing..

— load, stress, acceptance, web..

Spring-test — False positives

* Really good with rollback and autowiring, but...

e spring-tests don’t flush session for individual
operations
— Transactinoal is around the whole test
— Don’t actually test sqgl towards db

— Outdated entities aren’t necessarily evicted from
session cache

— Need to flush (and evict) explicitly in tests

Realistic spring-test testing

One of these tests will fail if Course <-> Student association
is not handled correctly in assignment, but only if flush() is used

@Autowired
private SessionFactory sessionFactory;

private void flush() {
sessionFactory.getCurrentSession().flush();

}

private void evict(Object o) {
sessionFactory.getCurrentSession().evict(o);

}

@Test
public void testDelCourseWithStudent()

{

int courseld = studentSystem.addCourse("INF5750", "Open Source..");
int studentld = studentSystem.addStudent("John");

studentSystem.addAttendantToCourse(courseld, studentlid);

studentSystem.delCourse(courseld);
flush();

Course course = studentSystem.getCourse(courseld);
Student student = studentSystem.getStudent(studentlid);

evict(student);
student = studentSystem.getStudent(studentid);

assertNull(course);
assertTrue(student.getCourses().isEmpty());

@Test
public void testDelStudentWithCourse()
{
int courseld = studentSystem.addCourse("INF5750", "Open Source..");
int studentld = studentSystem.addStudent("John");
studentSystem.addAttendantToCourse(courseld, studentld);

studentSystem.delStudent(studentid);
flush();

Course course = studentSystem.getCourse(courseld);
evict(course);

course = studentSystem.getCourse(courseld);

Student student = studentSystem.getStudent(studentid);

assertNull(student);
assertTrue(course.getAttendants().isEmpty());

