
Maven
INF5750/9750 - Lecture 1 (Part II)

● Large software projects usually contain tens
or even hundreds of projects/modules

● Very different teams may work on different
modules

● Will become messy if the projects don’t
adhere to some common principles

● Will be time-consuming to build all projects
manually

Problem!

● Use a project management tool (like Maven)
● Maven helps you with various aspects:

1. Build process
2. Project structure
3. Dependency management
4. Access to information and documentation

The solution

● The Project Object Model (POM) – an XML file – is the
heart of a Maven 2 project

● Contains project information and configuration details
used to build the project
○ Project dependencies
○ Commands (goals) that can be executed
○ Plugins
○ Metadata

● The POM extends the Super POM
○ Only 4 lines are required
○ Default values for repositories, project structure, plugins

Build process

<project>
 <modelVersion>4.0.0</modelVersion>

 <groupId>no.uio.inf5750</groupId>
 <artifactId>assignment-2</artifactId>
 <version>1.0-SNAPSHOT</version>

 <packaging>jar</packaging>
 <name>Assignment 2</name>

 <dependencies>
 <dependency>
 <groupId>commons-logging</groupId>
 <artifactId>commons-logging</artifactId>
 <version>1.1.1</version>
 <scope>compile</scope>
 </dependency>
 </dependencies>

</project>

Group / organization id

Id of the project itself

Version of the project

Packaging type

Display name of the project

Dependencies

Object model version

POM file - simple example

Project A (Parent)

Project C

<project>
 <modelVersion>4.0.0</modelVersion>
 <groupId>no.uio.inf5750</groupId>
 <artifactId>projectA</artifactId>
 <version>1</version>
 <packaging>war</packaging>
</project>

<project>
 <parent>
 <groupId>no.uio.inf5750</groupId>
 <artifactId>projectA</artifactId>
 <version>1</version>
 </parent>
 <modelVersion>4.0.0</modelVersion>
 <groupId>no.uio.inf5750</groupId>
 <artifactId>projectB</artifactId>
 <version>1</version>
</project>

Project B inherits war packaging

Project B Project D

POM - Project inheritance

<project>
 <modelVersion>4.0.0</modelVersion>
 <groupId>no.uio.inf5750</groupId>
 <artifactId>projectA</artifactId>
 <version>1</version>
 <packaging>pom</packaging>
 <modules>
 <module>projectB</module>
 <module>projectC</module>
 <module>projectD</module>
 </modules>
</project>

<project>
 <modelVersion>4.0.0</modelVersion>
 <groupId>no.uio.inf5750</groupId>
 <artifactId>projectB</artifactId>
 <version>1</version>
</project>

Project A (Parent)

A command against Project A will
be run against Project B as well

Project CProject B Project D

POM - Project aggregation

● The build lifecycle is the process of building and
distributing an artifact

● A phase is a step in the build lifecycle
● Most important default phases:

○ Validate
○ Compile
○ Test
○ Package
○ Install
○ Deploy

● Some common phases not default:
○ Clean
○ Site

● For each step, all previous steps are executed

Build lifecycle and phases

● Advantages:
○ A developer familiar with Maven will

quickly get familiar with a new project
○ No time wasted on re-inventing directory

structures and conventions
src/main/java Java source files goes here
src/main/resources Other resources your application needs
src/main/filters Resource filters (properties files)
src/main/config Configuration files
src/main/webapp Web application directory for a WAR project
src/test/java Test sources like unit tests (not deployed)
src/test/resources Test resources (not deployed)
src/test/filters Test resource filter files (not deployed)
src/site Files used to generate the Maven project website

Standard directory layout

● Dependency: a third-party or project-local
software library (JAR or WAR file)

● Dependency management is a challenge in
multi-module projects

● Keep in mind that this is different from
Spring’s dependency management
(dependency injection), but similar. Maven
handles larger modules. Spring connects
Java objects.

Dependency management

● The poor approach:
Replicate all
dependencies for every
project (put in /lib folder
within the project)
○ Dependencies are replicated

and use more storage
○ Checking out a project will be

slow
○ Difficult to keep track of

versions

Project A

Dep. A

Dep. B Dep. C

Project B

Dep. A

Dep. B Dep. C

Dependency management

● The preferred solution: Use a
repository

● Repository: A shared location for
dependencies which all projects
can access
○ Only one copy exists
○ Stored outside the project

● Dependencies are defined in the
POM

Project BProject A

Dep. A

Dep. B

Dep. C

Repository

<dependencies>
 <dependency>
 <groupId>commons-logging</groupId>
 <artifactId>commons-logging</groupId>
 <version>1.1.1</version>
 </dependency>
</dependencies>

Dependency management

● Remote repository:
○ Provides software artifacts

(dependencies) for download
○ E.g. repo1.maven.org houses

Maven’s central repository

● Local repository:
○ Copy on local computer which is

a cache of the remote downloads
○ May contain project-local build

artifacts as well
○ Located in USER_HOME/.

m2/repository
○ Same structure as remote repos

Remote repo

Local repo

Project A

(Internet)

(Local
computer)

Project B

Repositories

● Downloading from a
remote repository
○ Central repo is default
○ Can be overridden

● Internal repositories
○ Often used in corporate

environments to avoid
connection to the internet

○ Improves security, speed,
and bandwidth usage

○ Suitable for publishing
private artifacts

<repositories>
 <repository>
 <id>my-repo-</id>
 <url>http://my-server/repo</url>
 </repository>
</repositories>

Remote repo
(Internet)

Local repo (Local
computer)

Project A (Local
computer)

Internal repo
(In-house)

Project B

Repositories

● Maven reads the POM files of your dependencies and
automatically includes their required libraries

● No limit on the number of levels
● Dependency mediation – nearest definition

Project A Commons-logging JUnit

Log4J 1.3 Log4J 1.2

Commons-logging, JUnit,
and Log4J 1.3 will be

installed in local
repo automatically

Transitive dependencies

● Affects the classpath used for various build tasks
● Can be defined for all dependencies, compile default
● 5 dependency scopes available:

○ Compile: Available in all classpaths (default)
○ Provided: The JDK or the container provides it
○ Runtime: Only required for execution, not for compilation
○ Test: Only required for testing, not for normal use (not

deployed)
○ System: You provide it locally, not looked up in a repo

<dependency>
 <groupId>commons-logging</groupId>
 <artifactId>commons-logging</artifactId>
 <version>1.4</version>
 <scope>compile</scope>
</dependency>

Dependency scope

● Mechanism for centralizing dependency information
● Favourable for projects that inherits a common parent
● Useful for controlling versions of transitive

dependencies
Parent POM
<dependencyManagement>
 <dependencies>
 <dependency>
 <groupId>junit</groupId>
 <artifactId>junit</groupId>
 <version>4.0</version>
 <scope>test</scope>
 <type>jar</type>
 </dependency>
 </dependencies>
</dependencyManagement>

Child POMs
...
 <dependency>
 <groupId>junit</groupId>
 <artifactId>junit</groupId>
 </dependency>
...

Child POM dependency
inherits information
from parent POM

Transitive occurences
of JUnit guaranteed to

be of version 4.0

Dependency management

● Powerful feature in Maven: Create a project site
automatically

● Info retrieved from the POM, source code
● Provides information regarding

○ Dependencies
○ Issue tracking
○ Licensing
○ Development team

● Provides various reports
○ Test coverage
○ Internationalisation
○ JavaDocs
○ Potential code problems

Project information

$ mvn package Compile and create JARs/WARs
$ mvn install Package + copy to local repo
$ mvn clean Delete target directory

$ mvn test Run unit tests
$ mvn eclipse:eclipse Create Eclipse project files
$ mvn idea:idea Create IDEA project files
$ mvn jetty:run-war Run a WAR file in Jetty
$ mvn site Generates project site

$ mvn install -DskipTests Skip tests (saves time)

Useful commands

● We’ve learned that Maven facilitates:
○ Uniform building of projects through the

POM
○ Consistent project structure
○ Management of dependencies through

repositories to avoid replication and ease
re-use and versioning

○ Standardized project information

Summary

● ”Better builds with Maven”
○ Free PDF book online
○ http://www.maestrodev.com/better-build-

maven

● Maven homepage
○ Documentation and guides
○ http://maven.apache.org

Resources

http://maven.apache.org/
http://maven.apache.org/

