Recognising entailment using Minimal Recursion Semantics
A case study

Elisabeth Lien

Department of Informatics, UiO

22nd October 2013
PhD project: MRSes in entailment recognition

- Examining advantages/disadvantages of using MRSes in entailment recognition
- Not previously used in entailment recognition (to my knowledge)
- Rich representations - a source of bounty or too complex?
Minimal Recursion Semantics (MRS)

- Computational semantic framework (not theory)
- Semantic representation for computational grammars
- Can be implemented in typed feature structure formalisms
- Integrated with the English Resource Grammar (ERG)
He would wake up.

[LTOP: h1
 INDEX: e3
 RELS: <
 [pron_rel LBL: h4 ARG0: x5]
 [pronoun_q_rel LBL: h6 ARG0: x5 RSTR: h7 BODY: h8]
 [_would_v_modal_rel LBL: h2 ARG0: e3 ARG1: h9]
 [_wake_v_up_rel LBL: h10 ARG0: e11 ARG1: x5] >
 HCONS: < h1 qeq h2 h7 qeq h4 h9 qeq h10 >]
The PETE shared task

- evaluating parsers by using their output to decide entailment
- indirect parser evaluation: entailment system acts as intermediary
- entailment decision is not the goal in itself, it’s just a tool for parser evaluation
- purely syntactic entailments, no need for background knowledge or reasoning ability
The PETE data: text-hypothesis pairs

- Text sentences: Penn & Unbounded Dependency Corpus
- Hypothesis: short sentence built around two syntactically related content words
- He has a point he wants to make, and [...] ⇒ Somebody wants to make a point.
- point and make
On 301 PETE test data pairs

<table>
<thead>
<tr>
<th>gold</th>
<th>YES: 156</th>
<th></th>
<th>NO: 145</th>
<th></th>
<th></th>
<th>tot acc</th>
</tr>
</thead>
<tbody>
<tr>
<td>systems</td>
<td>YES</td>
<td>NO</td>
<td>acc</td>
<td>NO</td>
<td>YES</td>
<td>acc</td>
</tr>
<tr>
<td>Camb</td>
<td>98</td>
<td>58</td>
<td>62.8</td>
<td>120</td>
<td>25</td>
<td>82.8</td>
</tr>
<tr>
<td>My sys</td>
<td>78</td>
<td>78</td>
<td>50.0</td>
<td>135</td>
<td>10</td>
<td>93.1</td>
</tr>
<tr>
<td>SCHWA</td>
<td>125</td>
<td>31</td>
<td>80.1</td>
<td>87</td>
<td>58</td>
<td>60.0</td>
</tr>
</tbody>
</table>
Characteristics of the PETE dev data

- The hypothesis (H) is always shorter than the text (T).
- In some cases, H is completely included in T.
- Mostly, H is a substructure of T with some alterations:
 - active \rightarrow passive
 - verb argument has been replaced by somebody/-one/-thing
 - H corresponds to a complex NP in T.
- Negative pairs: Mostly combination of elements from T that don’t match syntactically.
- Some pairs do require reasoning.
My system

- English Resource Grammar (ERG), version 1212
- PET parser
- Entailment system developed on both treebanked and 1-best MRSes.
My heuristic

- Take all relations in H whose ARG0 is an event variable...
- ...find the same or similar relations in T...
- ...and check whether their arguments can be matched
- Matching arguments:
 - Pronoun in H matches any NP in T.
 - Empty argument position in H matches any NP in T.
 - “handle relations” in H are a subset of “handle relations” in T.
- If matching succeeds for all event relations in H, we have entailment.

If ERG can’t parse → entailment decision is NO.
My heuristic, cont.

...all relations in H whose ARG0 is an event variable...

- Lexical relations: adjectives, adverbs, prepositions, verbs, unknown words.
- Generalised relations: cardinal/ordinal numbers, negation, measure, possessive marker, ...
- Grammatical relations: apposition, compounds, ellipsis, subordination, ...

Maybe checking too much!
Example

- T: *He could also hear the stream which he had seen from his position.*
 H: *Someone had seen the stream.*
- [_see_v_1_rel LBL: h2 ARG0: e3 ARG1: x5 ARG2: x9] in H matches same relation in T.
- Arguments:
 - x5/someone matches *he* in T.
 - x9/the stream matches *the stream* in T.
Cambridge system

- Parser: C&C parser
- Parser outputs *grammatical relations* (GRs) according to the Stanford Dependency scheme: (nsubj tired man)
- Entailment system: checking if GRs(H) are a subset of GRs(T)
- Entailment system seems to have been developed on 1-best output only.
Cambridge heuristic

Checking if GRs(H) are a subset of GRs(T):

- Any GR in H with a token that’s not in T is ignored ⇒ passive auxiliaries, pronouns, determiners, expl. subj. are ignored
- Passive subjects are equated with direct objects ⇒ handles active to passive alterations
- Only subject and object relations (core relations) are considered
- T and H have to have some GRs in common

To sum up: YES if core(H) ⊆ core(T) and grs(H) ∩ grs(T) ≠ ∅
No parse → entailment decision is NO
Let’s look at those results again

On 301 PETE test data pairs

<table>
<thead>
<tr>
<th>gold</th>
<th>YES: 156</th>
<th>NO: 145</th>
</tr>
</thead>
<tbody>
<tr>
<td>systems</td>
<td>YES</td>
<td>NO</td>
</tr>
<tr>
<td>Camb</td>
<td>98</td>
<td>58</td>
</tr>
<tr>
<td>My sys</td>
<td>78</td>
<td>78</td>
</tr>
<tr>
<td>SCHWA</td>
<td>125</td>
<td>31</td>
</tr>
</tbody>
</table>
Compare: GRs vs. MRSes

Grammatical relations in Cambridge:

- Word dependencies typed with grammatical relations. Explicit relations \rightarrow easy to pick out which ones to check.

MRSes:

- MRS EPs: a mixture of lexical predicates and relations, and various syntactic/semantic relations.
- GRs sometimes corresponds to an EP, sometimes to argument-value pairs in an EPs.
- Don’t always know which grammatical relation each argument position of an EP corresponds to \rightarrow we’re not checking gram. rels. as precisely as Cambridge.
Compare: GRs vs. MRSes

Example: the object relation between *have* and *something* in
He would have something to work on.

- GR: (dobj *have something*)
- MRS: [*have_v_1_rel* LBL: h10 ARG0: e11 ARG1: x5 ARG2: x12]
- x12 is *some_q_rel* and *thing_rel*
Compare: Cambridge heuristic vs. my heuristic

Cambridge:

- Checks whether the subject and object relations in H are also in T.
- GRs with tokens that are in H but not in T are ignored → even subject and object relations can be ignored
- The heuristic is maybe a bit “shallow”?

My system:

- Has explicit rules for matching arguments that are different.
- Makes the system more vulnerable to unseen cases.
- But also makes the positive entailment decisions more well founded.
- Heuristic is maybe too detailed. Should maybe have restricted the checking to a “core” set of relations.
Compare: Example

He would wake up in the middle of the night and fret about it. ⇒
He would wake up.

- Cambride: YES decision is based only on the single GR match (nsubj would he). The other GRs are ignored because they are non-core according to the heuristic.
- My system: YES decision is based on matching of both would_v_modal_rel with scopal argument over wake_v_up_rel, and wake_v_up_rel itself with its pronoun argument.
Causes of incorrect decisions in my system

(Apart from errors and missing functionality in the code!)

- Incompatible MRS analyses.
- Error in MRS.
- PETE pair requires reasoning.
- PETE pair requires coreference resolution.
- PETE sentence is structurally ambiguous.

But the complexity of the MRSes was not a direct cause of error.
PETE development set is small: 66 pairs.

- Split the test set (301 pairs) in two, refine heuristic on one half, test on the other half.
- Could correct errors in the code, and include cases not covered by the code.
- Found several PETE pairs that require reasoning.
- Acc. YES: 72.8 %, acc. NO: 95.6 %, tot.acc.: 83.3 %
Final thoughts

- MRSes: Very rich in information, but some constructions are complex to process.
- Same construction can receive very different analyses.
- Lack of documentation \rightarrow hard to predict analyses.
- Hard to predict analyses \rightarrow hard to write code that covers all cases.
Proceedings of the 5th International Workshop on Semantic Evaluation, ACL 2010