Color in materials

KJM3100 V2008

Pigments

FIGURE 6-6
Black body raciation from three odjecis of signity imierent tiemperafure demonstrates how a hotter object (top) emits more total energy than a cooler object (bottom). Also, the hoter body emits more shortwavelength radiation and thus looks blue, while the cooler object emits more long-wavelength radiation and thus looks redder. Note that the wavelength of maximum intensity, $\lambda_{\text {mex }}$ shifts to longer wavelengths as temperature lalls.

Black body radiation Incandescence

KJM3100 V2008

Triboluminescence

The colour of silver nanoparticles depends on the shape of the particles.

A collaborative group of DuPont-led scientists have discovered an innovative way to advance electronics applications through the use of DNA that sorts carbon nanotubes. (Pictured) Unsorted nanotubes in solution appear in black (far left). Conducting nanotubes are pinkish in color, semiconducting ones greenish.

Interference colours

Liquid crystals

A photograph of a photonic crystal that is about 2 millimeters across. The blue iridescence is caused by light reflections off the ordered stack of air spheres. (Credit: COPS)

An SEM image of the inverse opal structure. The crystal consists of an ordered array of voids in a solid material. (Credit: COPS)

Butterfly wings

Monarch Butterfly Wing Scale

Image showing the architecture of the tip of a single scale from the wing of a male Monarch butterfly. Taken as an ultra high definition scan using the ESEM in HiVac mode. Original magnification about $30,000 \mathrm{x}$. The vertical ridges are 1 to 2 micrometers apart.

Beetle perfects artificial opal growth

An anterior view of the weevil
Pachyrhynchus argus, a small beetle found in forests in north-eastern Australia. Its body appears a metallic green colour from all angles thanks to a photonic crystal structure that resembles opal. (Credit: Andrew Parker)

The vivid colour comes courtesy of thin, flat scales which occur in patches over the beetle's body. The scales consist of an outer shell and an inner structure that contains layers of 250 nm diameter transparent spheres.

Kurt Nassua, in his book The Physics and Chemistry of Color, identifies 15 different causes of color.

1. Incandescence
2. Gas Excitations
3. Color from Vibrations and Rotations
4. Transition Metals in a Ligand Field
5. Organic Molecules
6. Charge Transfer
7. Metals
8. Semiconductors
9. Doped Semi-conductors
10. Color Centers
11. Dispersive Refraction
12. Polarization
13. Scattering
14. Interference
15. Diffraction

Color Cause	Typical minerals	Formalism
Transition metal compounds	Almandite, malachite, turquoise	Crystal field theory
Transition metal impurities	Citrine, emerald, ruby	Crystal field theory
Color centers	Amethyst, fluorite, smoky quartz	Crystal field theory
Charge transfer	Blue sapphire, crocoite, lazurite	Molecular orbital theory
Organic materials	Amber, coral, graphite	Molecular orbital theory
Conductors	Copper, iron, silver	Band theory
Semiconductors	Galena, proustite, pyrite, sulfur	Band theory
Doped semiconductors	Blue diamond, yellow diamond	Band theory
Dispersion	"Fire" in faceted gems	Physical optics
Scattering	Moonstone, "stars", "eyes"	Physical optics
Interference	Iridescent chalcopyrite	Physical optics
Diffraction	Opal	Physical optics

Energy in electronic energy levels, vibrational and rotational energy levels. $500 \mathrm{~nm}=20000 \mathrm{~cm}^{-1}$
Energy transitions involving valence electrons may be in the visible spectrum Energy transitions involving closed shell electrons are in the UV/X-ray region

Figure 2.2. Schematic representations of the relative spacings of electronic energy levels (marked E_{0} and E_{1}), vibrational energy levels (marked v_{0}, v_{1}, \ldots and $v_{0}^{\prime}, v_{1}^{\prime}, \ldots$) and rotational energy levels (marked rot.). The approximate energies are given in units of cm^{-1}, called wavenumbers, and abbreviated $\bar{\nabla}$, where $\nabla=1 / \lambda .1 \mathrm{~cm}^{-1}=1.97 \times 10^{-5} \mathrm{eV}=3.15$ $\times 10^{-24} \mathrm{~J}$.

Colour wheel

Transmission/reflection

The absorbed and transmitted colours are complementary

Electronic transitions in atoms

Na: $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{1}$

Wavelengths of emitted light: 589.1 and 589.6 nm (yellow)
Neon light, lasers (e.g. Ar-laser)

Nordlys, Aurora borealis

KJM3100 V2008

Emission spectra

In general emission spectra of gases are more narrow than for solids. Due to low density (fewer collisions) in gases.

Figure 2.6. Schematic emissions from (a) a gas and (b) a solid.

Black-body radiation Incandescence

Figure 2.7. Typical ideal black-body radiation spectra at two temperatures. Note the increase in the emitted radiation (curve area) and the shift in the peak to lower wavelength (higher energy) when the temperature is increased.

Ideally does not reflect or transmit light Independent on material.
Frequency (and intensity) increase with increasing temperature

λ / m

Figure 2.8. Black-body radiation as a function of temperature, highlighting how the color changes as the temperature changes. The corresponding temperatures of the black bodies are $\mathrm{a}, T=30,000 \mathrm{~K} ; \mathrm{b}, T=$ $10,000 \mathrm{~K} ; \mathrm{c}, T=3000 \mathrm{~K} ; \mathrm{d}, T=1000 \mathrm{~K} ; \mathrm{e}, T=300 \mathrm{~K}$. To have all the peaks of the same area, they have been scaled as follows: $\mathrm{a}, \times 1 ; \mathrm{b}, \times 270 ; \mathrm{c}, \times 10^{5} ; \mathrm{d}, \times 2.7 \times 10^{7}$; $\mathrm{e}, \times 10^{10}$. Note the shift in the peak to longer wavelength (lower energy) and the smaller peak area with lower temperature.

Black body radiation from three objects of slightly different temperature demonstrates how a hotter object (top) emits more total energy than a cooler object (bottom). Also, the hoter body emits more shortwavelength radiation and thus looks blue, while the cooler object emits more long-wavelength radiation and thus looks redder. Note that the wavelengith of maximum intensity, $\lambda_{\text {mex }}$, shifts to longer wavelengths as temperature falls.

Blackbody Radiation Curves

T, K	oC	Subjective color
750	480	faint red glow
$\mathbf{8 5 0}$	580	dark red
1000	730	bright red, slightly orange
1200	930	bright orange
1400	1100	pale yellowish orange
1600	1300	yellowish white
>1700	>1400	white (yellowish if seen from a distance)
The perceived color of heated solid bodies		

Why does a candle give more light than a hydrogen/oxygen flame?

KJM3100 V2008

Vibrational transitions.

$\mathrm{H}_{2} \mathrm{O}: 56 \%$ red absorbed in 3m

Comparison of absorption of $\mathrm{H}_{2} \mathrm{O}$ and $\mathrm{D}_{2} \mathrm{O}$

Crystal field colours

$\mathrm{Al}_{2} \mathrm{O}_{3}$ (corundum) w. ca. $\mathbf{1 w} \% \mathrm{Cr}^{3+}$
Strong crystal field

$$
\mathrm{Cr}_{2} \mathrm{O}_{3}: \text { Green }
$$

Figure 2.9. The effect of crystal field strength on the splitting of the energy levels of Cr^{3+} ions in a lattice. Styled after K. Nassau (1980), Scientific American, October 1980, 134.

Aquamarin: Fe^{3+} in beryl

Beryl:
$\mathrm{Be}_{3} \mathrm{Al}_{2} \mathrm{Si}_{6} \mathrm{O}_{18}$
Colourless

Citrine: Fe^{3+} in SiO_{2}

Jadeite: Fe^{3+} in $\mathrm{NaAl}\left(\mathrm{SiO}_{3}\right)_{2}$

Crystal field, pure composition

Malachite, $\mathrm{Cu}_{2} \mathrm{CO}_{3}(\mathrm{OH})_{2}$

Rhodochrosite, $\mathrm{Mn}\left(\mathrm{CO}_{3}\right)$

Colour centres (F-centres)

The unpaired electron which produces color by light absorption into excited states does not have to be located on a transition element ion; under certain circumstances it can be located on a nontransition-element impurity ion or on a crystal defect such as a missing ion. Both of these can be the cause of color centers.
-If an electron is present at a vacancy, we have an "electron" color center

- Missing anion
-Hypervalent impurity
-If an electron is missing from a location where there usually is an electron pair, we have a "hole" color center.

Many color centers are known, but the exact color causing mechanism has been established in only a very few instances. One of these is the purple "F center" or Frenkel defect of fluorite, one of many types of color center which can form in fluorite. Figure 3 A is a two-dimensional representation of the CaF_{2} structure. There are several ways by which an F^{-}ion can be missing from its usual position: this can occur during growth or when energetic radiation displaces an F - ion from its usual position to another point in the crystal; we can also create such centers by growing fluorite in the presence of excess Ca, or by removing some F from a crystal by the application of an electric field.

Purple F-centre:
-Excess Ca
-High energy radiation
-Electrical field

A

Amethyst

Hole colour centre (Fe^{3+} in SiO_{2})
Hole colour centres may be removed by heating Amethyst: colour changes from violet to yellow (Yellow citrine quartz)

Charge delocalization and molecular orbitals

Chemical bonds have usually excitations in the UV range
Conjugated systems results in delocalization of electrons, and absorptions in the visible spectrum.
HOMO-LUMO transition
In organic materials: The chromophore (Colour bearing) is the part of the molecule that is responsible for the colour.
Auxochromes (Colour enhancers) may change the colour significantly (Electron donating or withdrawing groups)

Acid/base indicators

Photo induced transformations (retinal, cis/trans)

all-trans-retinal

Charge transfer

Sapphire

Blue sapphire: Fe^{2+} and Ti^{4+} in $\mathrm{Al}_{2} \mathrm{O}_{3}$
Adjacent Fe^{2+} and Ti^{4+} gives the colour by photoinduced oxidation/reduction:

$$
\mathrm{Fe}^{2+}+\mathrm{Ti}^{4+} \rightarrow \mathrm{Fe}^{3+}+\mathrm{Ti}^{3+}
$$

Absorption ca. 2eV, 620nm (yellow)
$\mathrm{Fe}_{3} \mathrm{O}_{4}$: Also charge transfer

Luminescence

(Light emission from a cool body)

Includes: fluorescence, phosphorescence, chemoluminescence

Figure 2.15. Schematic representation of fluorescence.

Lasers (gas and solid state)

Metals and semiconductors

Best described by band theory

In metals there are a more or less continous band of allowed energies
Metals are often described as "free electron gas", but also here band structure must be taken into account

From the isolated atom to band structure.

Large electronic interaction between energy levels: broad bands (e.g. outer electrons of closely spaced large atoms)
Smaller interaction: narrow bands (inner electrons, lager distance between atoms)
 levels. (b) Each energy level in a single atom becomes two energy levels (molecular orbitals) in a diatomic molecule. (c, d) As the number of atoms increases the number of energy levels increases until bands of very closely spaced energy levels form

insulator
iigure 10.2 Schematic illustration of the energy bands in (a) an insulator, (b) an ntrinsic semiconductor and (c) a metal. E_{F} represents the Fermi energy. The bands ure idealised and do not show the three-dimensional band geometry which varies with direction in real crystals

Metals

At 0K all energy levels above the Fermi level are empty.
In metals all energies/wavelengths can be absorbed due to the empty levels above the Fermi level.

Why, then, are metals not black?
Metals are "shiny" due to an absorption/re-emission process

Why is metal powder

 often black??

Figure 1 Reflectance curves for Cu, Ag and Au in the visible region. Photon energy ranges corresponding to various coloured visible electromagnetic radiation are shown for comparison

Figure 4 Experimental (Battye ef al 1977) valence region density of occupied electron states for Ag. Photon energy ranges corresponding to various coloured visible clectromagnetic radiation are shown for comparison

Figure 5 Experimental (Battye et al 1977) density of occupied electron states of valence region of Cu and Au. Photon energy ranges corresponding to various coloured visible electromagnetic radiation are shown for comparison

Plasma displays

Xe or Ne gas
TCO electrodes

F-centres in CaF_{2}

Energy associated with formation and bleaching of F center in a fluorine vacancy of fluorite

E 1 = energy of absorbed light
E 2 = energy needed to excite e- into the conduction band from the fluorine trap
E $3=$ energy needed to excite e-from the
valence band into the conduction band
Figure 3. Schematic energy diagram of the different energy levels involved in creating and destroying an F center, as well as in producing color.

Pure (intrinsic) semiconductors

Figure 3.6. Other ways to view the Fermi-Dirac distribution for electrons in a metal: (a) occupational probability, $P(E)$, for energy levels in a typical metal at two different temperatures; (b) occupational probprobability, $P(E)$, for energy levels in a typical metal att $\mathrm{wo} \mathrm{different} \mathrm{temperatures;} \mathrm{(b)} \mathrm{occupational}$
ability schematically for $T>0 \mathrm{~K}$, with - representing excited electrons and O representing holes.

a.
b.

Figure 3.7. Energy bands in (a) a metal and (b) a semiconductor. E_{g} is the energy gap.

Pure (intrinsic) semiconductors

Shorter, stronger bonds result in larger band gap energies.	Element	Lattice parameter/ $\AA \AA$	Bond dissociation energy/kJ mol ${ }^{-1}$	$\mathrm{E}_{\mathrm{g}} / \mathrm{eV}$
	C (Diamond)	3.57	346	5.4
	Si	5.43	222	1.1
Pressure or low temperature increase the band gap	Ge	5.66	188	0.66
	$\alpha-\mathrm{Sn}$	6.49	146	0.1

The band gap determines the optical properties and colour:
If the band gap is large the material is transparent and colourless (e.g. diamond) $\mathrm{E}_{\mathrm{g}}>3 \mathrm{eV}(\lambda \sim 400 \mathrm{~nm})$

If the band gap is small, the material may appear either metallic (Si) or black (CdSe) depending on reemission properties $\mathrm{E}_{\mathrm{g}}<1.7 \mathrm{eV}(\lambda \sim 700 \mathrm{~nm})$

KJM3100 V2008

When Eg is in the energy range of visible light, the material absorbs photons with an energy which is higher than the band gap.
$1.7<\mathrm{E}_{\mathrm{g}}<3 \mathrm{eV}(\lambda \sim 400-700 \mathrm{~nm})$
TABLE 3.2.
Examples of Colors and Band Gaps in Pure Semiconductors

Material	Color	$E_{\mathrm{g}} / \mathrm{eV}$
C (diamond)	Colorless	5.4
ZnS	Colorless	3.6
ZnO	Colorless	3.2
CdS	Yellow-orange	2.4
HgS	Red	2.1
GaAs	Black	1.43
Si	Metallic grey	1.11

HgS, Cinnabar, Vermilion

Many sulfides are used as pigments

$$
\mathrm{E}_{\mathrm{g}}=2.1 \mathrm{eV}(\lambda=590 \mathrm{~nm})
$$

CdS: Cadmium yellow
$\mathrm{As}_{2} \mathrm{~S}_{3}$: Orpiment

KJM3100 V2008

Solid solution: band-gap tuning

Doped semiconductors

n-type: The impurity donates electrons to the conduction band Donor impurity (negative charge carriers)
p-type: The impurity create electron vacancies (holes)
Acceptor impurity (positive charge carriers)
Impurities may create energy levels between the valence and conduction band. This will affect the color of wide band gap semiconductors.

Fluorescence: allowed transition Phosphorescence: forbidden transition

Figure 3.9. Schematic vizwof phosphorescence due to emission from excited stocs in the blue phosphor ZnS doped with Ag^{+}. Adapted ton Y. Uehara (1975). Journal
 of Chemical Physics, 62,

Glow-in-the-dark contact lenses??

Dirty diamonds, doped semiconductors

KJM3100 V2008

C, diamond, doped semiconductors

Diamond containing boron

Blue heart diamond KJM3100 V2008

Hope diamond

Fluorescent diamonds

p-n junctions; LED's and photovoltaics

Figure 3.10. The electronic band structure of a p,n-type junction forms a light-emitting diode (LED). (a) When a p-semiconductor is placed beside an n-semiconductor, the Fermi levels become equalized. (For simplicity, the donor and acceptor levels are assumed to be negligible here.) (b) When a field is applied to a p,n-junction, as shown, electrons in the n-conduction band migrate to the positive potential on the p-side, and return to the valence band, recombining with the holes in the p-semiconductor. Similarly, the holes in the p-semiconductor migrate toward the negative n-side and recombine with electrons. The electrons dropping from the conduction band to the valence band emit light corresponding to the energy of the band gap. For example, the emission from $\mathrm{GaAs}_{0.6} \mathrm{P}_{0.4}$ is red.

Image of fluorescence in various sized Cadmium Selenide Quantum Dots.

[^0]

[^0]: (Dr. D. Talapin, University of Hamburg, http://www.chemie.unihamburg.de/pc/Weller/). Specific permission to use this image has been granted from Andrey Rogach - Lehrstuhl für Photonik und Optoelektronik Department für Physik und CeNS Ludwig-Maximilians-Universtität München.

