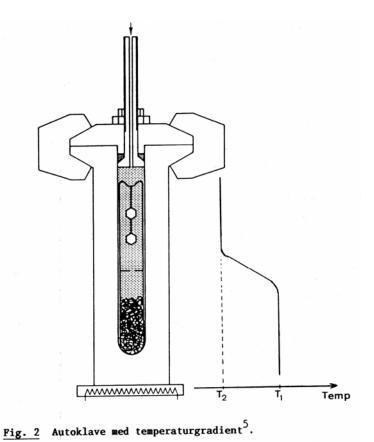



Zeolites

Our hydrothermal synthesis


Hydrothermal:

Synthesis from aqueous solutions above the boiling point

Solvothermal:

Synthesis using other solvents above their boiling point

Preparation of large single crystals and synthesis of new materials

Nederste del af autoklaven har temperaturen T1, og den øverste temperaturen T2. Normalt stiger opløseligheden med temperaturen, og T₁ er større end T₂.

Natural zeolites

<u>Tabel 1</u> Nogle naturligt forekommende zeolitter, med angivelse af opdagelsestidspunkt^{5a}.

Stilbite	1756	Mordenite	1864
Natrolite	1758	Clinoptilolite	1890
Chabazite	1772	Offretite	1890
Harmotome	1775	Erionite	1890
Analcime	1784	Kehoeite	1893
Laumontite	1785	Gonnardite	1896
Thomsonite	1801	Dachiardite	1905
Scolecite	1801	Stellerite	1909
Heulandite	1801	Ferrierite	1918
Gmelinite	1807	Viscite	1942
Mesolite	1813	Yugawaralite	1952
Gismondine	1816	Wairakite	1955
Brewsterite	1822	Bikitaite	1957
Epistilbite	1823	Paulingite	1960
Phillipsite	1824	Garronite	1962
Levynite	1825	Mazzite	1972
Herschelite	1825	Barrerite	1974
Edingtonite	1825	Merlinoite	1976
Faujasite	1842		

KJM3100 V2008

Zeolites

Zeolites are porous, hydrated aluminosilicates. They may be natural minerals or synthetic materials.

The general chemical composition of a zeolite is:

$$M^{n}_{x/n}Si_{1-x}Al_{x}O_{2} \cdot yH_{2}O$$

Where $M = e.g. Na^+, K^+, Li^+, Ag^+, NH_4^+, H^+, Ca^{2+}, Ba^{2+}...$

Characteristics of zeolites:

1) Tectosilicates, i.e. three dimensional structure built from tetrahedra. Some silicon atoms have been replaced by aluminium, i.e. the $(Si+Al)/O = \frac{1}{2}$. (Tetrahedra usually denoted T-atoms.

2) Open framework structure built from TO4-tetrahedra, containing pores and voids. The structure and porosity is periodic (i.e. crystalline materials). The pores have molecular dimensions.

Zeolites

3) Counter ions (cations) are present in order to compensate for the negative framework charge created by aluminium substitution. The counter ions are situated in the pores and voids, and are usually mobile.

4) In the voids and pores are also water molecules (zeolitic water). One measure of the porosity is the amount of adsorbed water. The water molecules are also present in the pores and voids, and may (in many cases) be removed by heating and readsorbed at lower temperatures.

5) Loewensteins rule imposes a limit to the amount of aluminium which may be substituted into the framework: No Al-O-Al may be present in tectosilicates. This means that only half of the silicon atoms may be substituted by aluminium. For the general composition:

$$M^{n}_{x/n}Si_{1-x}Al_{x}O_{2} \cdot yH_{2}O$$

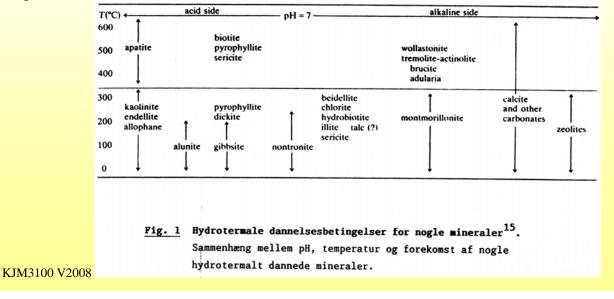
This means that the Si/Al ratio is larger than 1 and that x is smaller than 0.5 This rule is not always obeyed! (High aluminium e.g. Si/Al = 0.5) High silica and pure silica zeolites have been synthesised

KJM3100 V2008

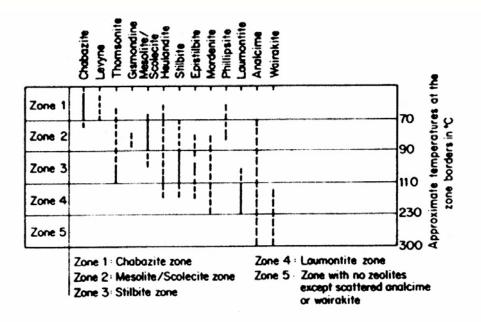
ABW	ACO	AEI	AEL	AEN	<u>AET</u>	AFG	AFI	<u>AFN</u>	<u>AFO</u>	AFR	<u>AFS</u>
<u>AFT</u>	<u>AFX</u>	<u>AFY</u>	<u>AHT</u>	ANA	<u>APC</u>	APD	<u>AST</u>	<u>ASV</u>	ATN	<u>ATO</u>	<u>ATS</u>
<u>ATT</u>	ATV	<u>AWO</u>	AWW	<u>BCT</u>	*BEA	<u>BEC</u>	<u>BIK</u>	BOG	<u>BPH</u>	<u>BRE</u>	<u>CAN</u>
<u>CAS</u>	<u>CDO</u>	<u>CFI</u>	<u>CGF</u>	<u>CGS</u>	<u>CHA</u>	<u>-CHI</u>	<u>-CLO</u>	<u>CON</u>	<u>CZP</u>	<u>DAC</u>	<u>DDR</u>
<u>DFO</u>	<u>DFT</u>	DOH	<u>DON</u>	EAB	<u>EDI</u>	<u>EMT</u>	<u>EON</u>	<u>EPI</u>	<u>ERI</u>	<u>ESV</u>	<u>ETR</u>
<u>EUO</u>	<u>FAU</u>	<u>FER</u>	<u>FRA</u>	<u>GIS</u>	<u>GIU</u>	<u>GME</u>	<u>GON</u>	<u>GOO</u>	<u>HEU</u>	<u>IFR</u>	IHW
ISV	<u>ITE</u>	<u>ITH</u>	ITW	<u>IWR</u>	IWW	JBW	<u>KFI</u>	LAU	LEV	<u>LIO</u>	<u>-LIT</u>
LOS	LOV	<u>LTA</u>	<u>LTL</u>	<u>LTN</u>	MAR	MAZ	<u>MEI</u>	MEL	<u>MEP</u>	<u>MER</u>	<u>MFI</u>
<u>MFS</u>	MON	MOR	MOZ	<u>MSO</u>	<u>MTF</u>	<u>MTN</u>	<u>MTT</u>	<u>MTW</u>	<u>MWW</u>	<u>NAB</u>	<u>NAT</u>
<u>NES</u>	<u>NON</u>	<u>NPO</u>	<u>NSI</u>	<u>OBW</u>	<u>OFF</u>	<u>OSI</u>	<u>OSO</u>	<u>OWE</u>	-PAR	<u>PAU</u>	<u>PHI</u>
<u>PON</u>	<u>RHO</u>	<u>-RON</u>	<u>RRO</u>	<u>RSN</u>	<u>RTE</u>	<u>RTH</u>	<u>RUT</u>	<u>RWR</u>	<u>RWY</u>	<u>SAO</u>	<u>SAS</u>
<u>SAT</u>	<u>SAV</u>	<u>SBE</u>	<u>SBS</u>	<u>SBT</u>	<u>SFE</u>	<u>SFF</u>	<u>SFG</u>	<u>SFH</u>	<u>SFN</u>	<u>SFO</u>	<u>SGT</u>
SOD	<u>SOS</u>	<u>SSY</u>	<u>STF</u>	<u>STI</u>	<u>STT</u>	<u>TER</u>	<u>THO</u>	<u>TON</u>	<u>TSC</u>	<u>UEI</u>	<u>UFI</u>
<u>UOZ</u>	<u>USI</u>	<u>UTL</u>	VET	VFI	<u>VNI</u>	VSV	<u>WEI</u>	-WEN	YUG	ZON	

Atlas of Zeolite Framework Types

http://www.iza-structure.org/


Zeolite atlas link

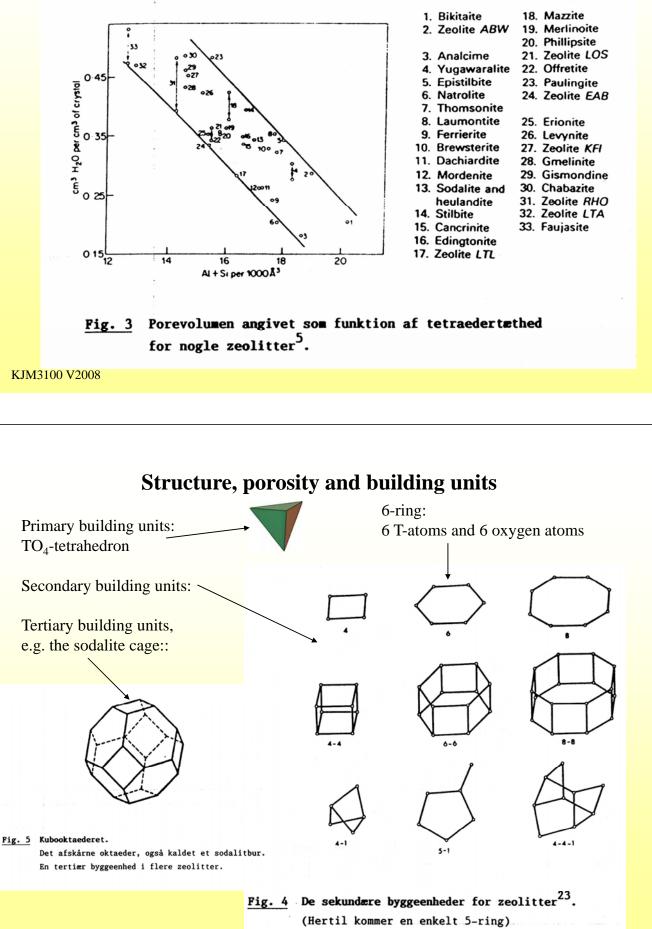
Zeolite stability fields


All zeolites are formed in aqueous solution. The water molecules act as "templates", which are necessary in order to form a porous structure.

Most zeolites are formed from basic solution (exceptions are fluoride syntheses) which favours fourcoordinated aluminium.

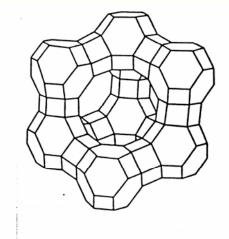
Zeolites are formed in the low temperature end of the hydrothermal synthesis (70-300°C) due to the open structure and high water content. Higher temperatures often gives denser materials.

Zeolite types as a function of temperature



<u>Fig. 2</u> Forekomst af zeolitter i forskellige temperaturzoner i varme kilder på Island⁵.

Structure, porosity and building units


One measure of porosity is the tetrahedra density, i.e. number of T-atoms in 1000Å³. For zeolites: between 12 and 20.

Other tectosilicates: larger than 20 T/1000Å³.

Structure, porosity and building units

Representation of zeolite structures:

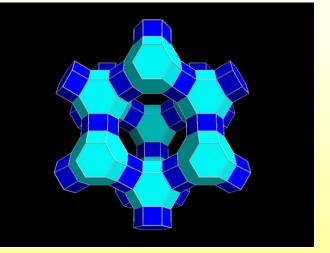
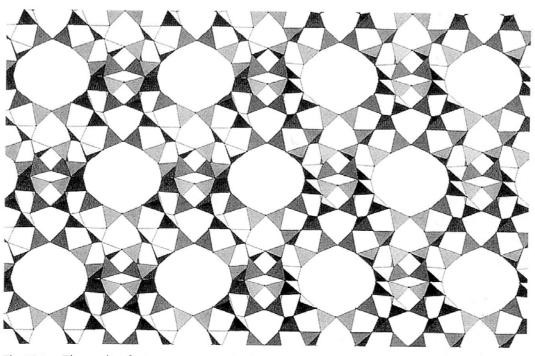



Fig. 6c Faujasitstruktur, Zeolit X og Y (FAU).

KJM3100 V2008

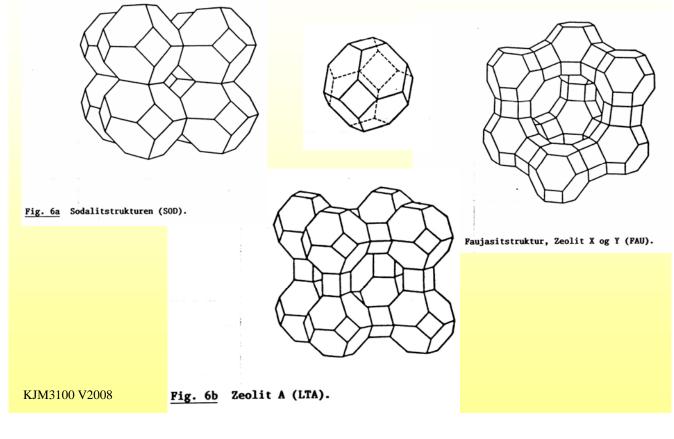


Fig. 18.1. The zeolite faujasite. SiO₄ tetrahedra are represented in gray, and water molecules and extra-framework cations have been omitted for clarity.

Zeolite atlas link

Building zeolites:

Three structures containing sodalite cages:

Tab. 18.1. Examples of nanoporous aluminosilicates, giving the three letter IZA designations and a brief description of the pore systems.

System	Pore System
Sodalite family (SOD) (e.g. mineral and synthetic sodalites)	3-dimensional; 6-ring channels
Zeolite A family (LTA) (e.g. zeolites A, ZK-4; no mineral analogue)	3-dimensional; 8-ring channels
Chabazites (CHA) (e.g. mineral chabasites, SSZ-13)	3-dimensional; 8-ring channels
ZSM-5 (MFI) (e.g. mineral murataite, silicalite)	2-dimensional; 10-ring channels
Ferrierites (FER) (e.g. mineral and synthetic ferrierites)	2-dimensional; 10 & 8-ring channels
Faujasites (FAU) (e.g. mineral faujasite, zeolites LSX, X, Y, US-Y)	3-dimensional; 12-ring channels

Properties of zeolites

The properties of zeolites are closely related to both structure and chemistry

Three main characteristic properties:

Adsorption

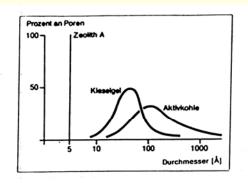
Ion exchange

Catalytic activity

KJM3100 V2008

Adsorption (molecular sieve)

Adsorption in zeolites is significantly different from adsorption in e.g. silica gel or active coal, which have a broad size distribution of pore sizes, and where the size of the pores are in the range of 10 nm.

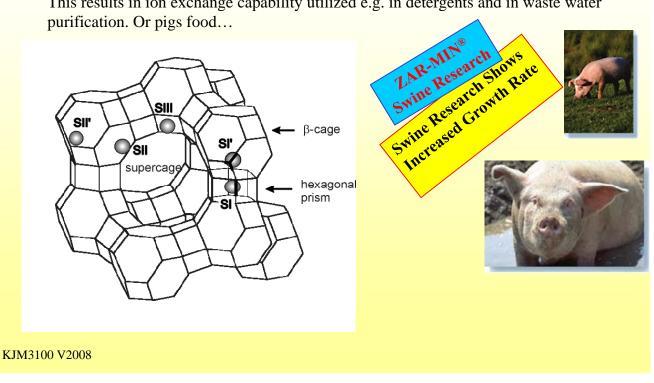

In zeolites the porosity is determined by the crystalline structure, i.e. the pores are arrnged in a regular fashion with only one (or a few) discrete pore sizes. Also the pores have molecular dimensions.

The implication of this is the use of zeolites as adsorbants and molecular sieves.

Mainly used for water adsorption (very low equilibrium water vapour pressure) Gas (hydrogen?) storage materials

Molecular sieving effect due to size limitation imposed by framework structure and cation size and position Fig. 7 Samenligning af fordeling af porestørrelser i silikagel,

Also weaker interactions: N_2 - O_2 separation KJM3100 V2008

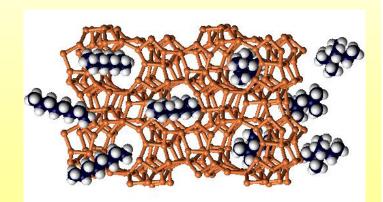


aktivt kul og zeolit A.¹⁹

Ion exchange (ionic conductivity)

The counter-cations in zeolites are mobile, and may easily be exchanged.

This results in ion exchange capability utilized e.g. in detergents and in waste water purification. Or pigs food...



Catalysis

One of the major uses of zeolites is as heterogeneous catalysts in the petrochemical industry. Cracking catalysts (H-form of zeolite Y, faujasite) is the largest use of zeolites.

They are used also e.g. for production of synthetic gasoline (ZSM-5) from methanol, and synthesis of fine chemicals.

Zeolite catalysts give high selectivity (shape selective) and their properties may be tailored by changing the chemistry, e.g. Si/Al ratio, and counter cations.

Tab. 18.2. Some important applications of aluminosilicate zeolites and other nanoporous materials.

Well-established:	
Ion-exchange using hydrated zeolites	
Detergency (e.g. zeolites Na-A and Na-P)	
Water softeners	
Animal feeds	
Radwaste remediation (e.g. Cs, Sr with clinoptilolite)	
Molecular sieving using dehydrated zeolites	
Air separation (N_2 from O_2 with Li-LSX)	
Drying agents (e.g. double glazing, a/c)	
Sulfur removal from natural gas	
Separation of HFCs (CFC substitutes)	
Catalysis with dehydrated zeolites	
Catalytic cracking (gasoline production) – xeolite-Y derivativ	es
Xylene isomerization (for polyesters) – H-ZSM-5	
Butene isomerization – H-FER	ζ
Methanol to gasoline – H-ZSM-5	
Phenol to hydroquinone – Titanosilicates	
Denox reactions - Cu-ZSM-5, Co-FER	
Future possibilities include:	
Hydrogen storage	
Nano-composites for optoelectronics	
Sensors using zeolite thin films	
Stereo-selective polymerization	
Contrast enhancement in MRI (e.g. Gd-Y)	
Ship-in-bottle synthesis	
Zeolite nanocrystals for delivery systems	

KJM3100 V2008

Microporous zeolite-like materials

Aluminophosphates, AlPO's III-V analogues of SiO_2 : AlPO₄ E.g. Berlionite structurally similar to α -quartz

Microporous aluminophosphates (Flannigan, Union Carbide)

AIPO-5

Fig. 18.2. The aluminophosphate AIPO-5. AlO₄ and PO₄ tetrahedra, which are strictly alternating, are represented in gray, and water molecules have been omitted for clarity.

AlPO₄: Neutral framework

Synthesis at acidic conditions

More than 40 aluminophosphate based structures. Mainly alternating Al,P, i.e. no 5-ring structures...

Substitution of atoms with different valence into the framework creates lattice charge, important especially for use as catalysts:

SAPO: silicon substituted ALPO

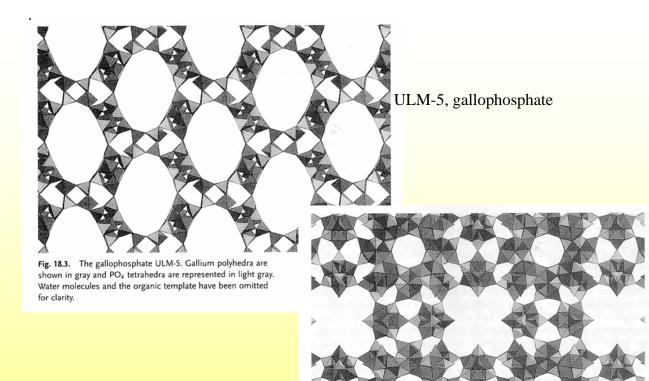
MePO: Metal substituted aluminophosphates MeAPSO: Metal substituted silicoaluminophosphates

Divalent cations which can adopt tetrahedral geometry, e.g. Mg²⁺, Mn²⁺, Fe²⁺, Co⁺², Zn²⁺.

SAPO: Silicon substitutes only for P, e.g. H_xSi_xAlP_{1-x}O₄

MAPO: divalent cations substitutes substitutes only for P, i.e. H_xAl_{1-x}PO₄

MeAPSO: e.g.. $H_{x+y}(Si_xMe_yAl_{1-y}P_{1-z})O_4$


KJM3100 V2008

ALPO's: higher coordination and interrupted frameworks

May form microporous framework structures with Al in higher coordination, V or VI.

Synthesis in non-aqueous solvents may result in low dimensional materials with a P/Al ratio larger than 1.

Anionic species e.g. hydroxyl, contribute to the coordination in non-bridging sites. When using fluoride in the synthesis, fluoride may participate in the framework, creating e.g. Al-F-Al bridges.

Cloverite, 20-ring gallophosphate

KJM3100 V2008

Fig. 18.4. The gallophosphate cloverite. Gallium polyhedra are shown in gray and PO4 tetrahedra are represented in light gray. Water molecules and the organic template have been omitted for clarity.

Mixed coordination materials

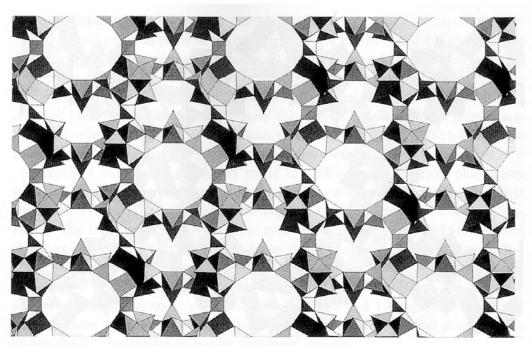
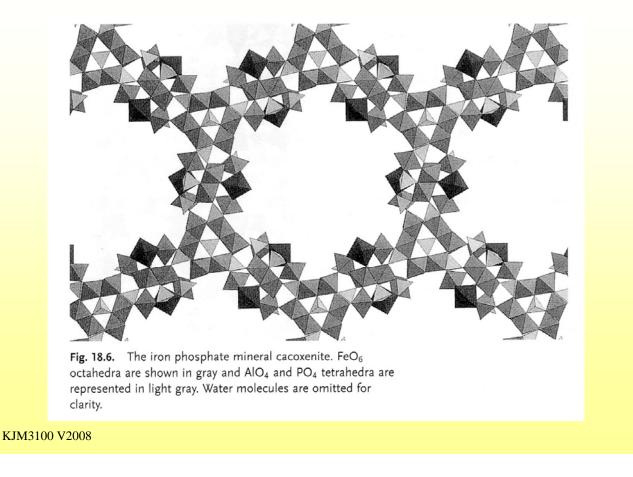
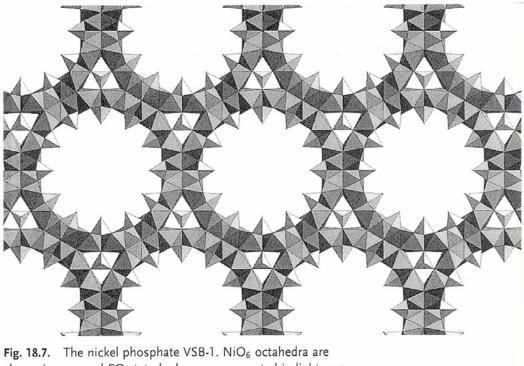




Fig. 18.5. The vanadium phosphate $Cs_3[V_5O_9(PO_4)_2]$. Vanadium polyhedra are shown in gray and PO_4 tetrahedra are represented in light gray. Water molecules have been omitted for clarity.

Open framework iron phosphates

Molten salt flux; salts as templates in open framework materials

shown in gray and PO_4 tetrahedra are represented in light gray. Water molecules, extra-framework cations, and partial occupancy are omitted for clarity.

Microporous and mesoporous materials from soft building blocks

Escape from the zeolite prison

KJM3100 V2008

Pore size

Pore size is important for applications. IUPAC, three pore size regimes, associated with transport mechanisms:

Microporous, smaller than 2 nm *Mesoporous*, between 2 and 50 nm *Macroporous*, larger than 50 nm

Macropores: larger than typical mean free path length of typical fluid. Bulk diffusion and viscous flow.

Mesopores: same order or smaller than the mean free path length. Knudsen diffusion and surface diffusion. Multilayer adsorption and capillary condensation ay contribute.

Micropores: pore size comparable to the molecules. Activated transport Gominates.

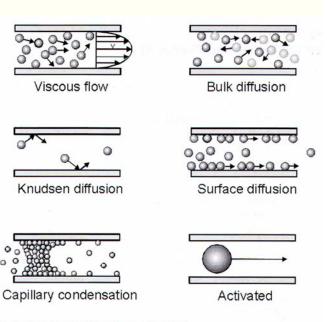
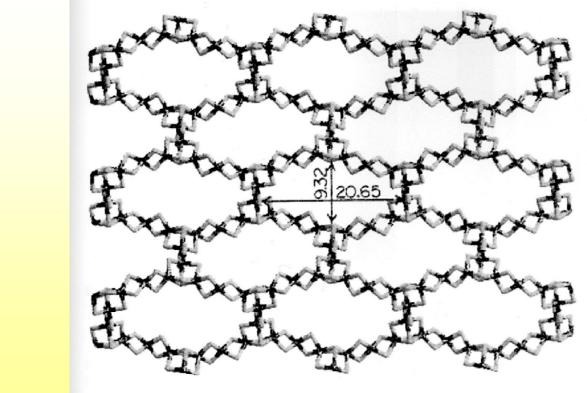



Figure 6-4. Transport mechanisms through pores.

Microporous sulfides; microporous zeolite super building blocks

Figure 8.2 Schematic showing the crystal structure of a microporous tin sulfide material (Reproduced with permission from Ref. 14)

KJM3100 V2008

Synthesis and Structure of $MnGe_4S_{10} \cdot (C_6H_{14}N_2) \cdot 3H_2O$: A Novel Sulfide Framework Analogous to Zeolite Li-A(BW) Christopher L. Cahill and John B. Parise*

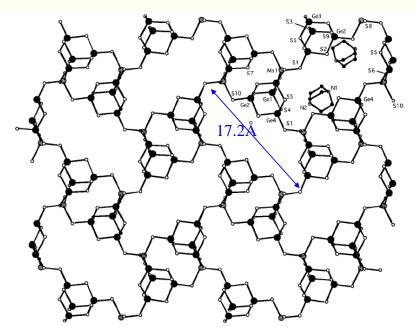
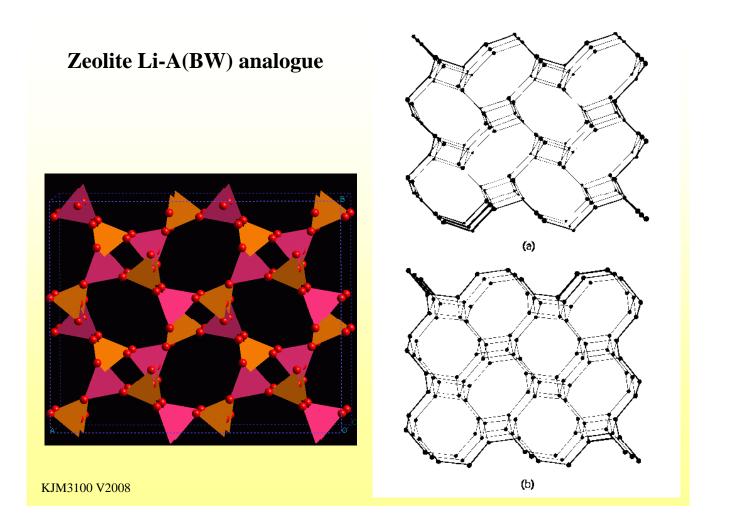
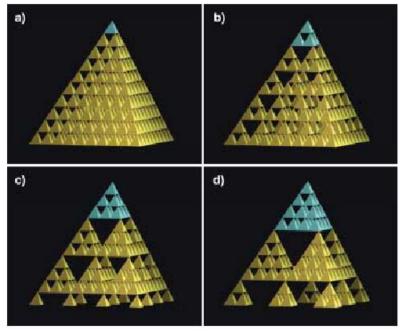
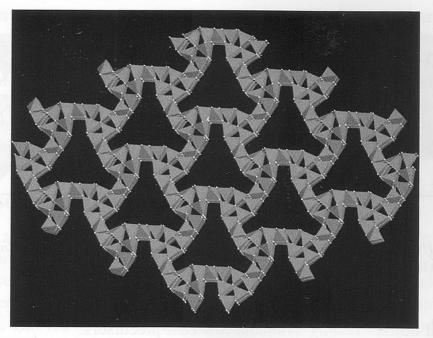




Figure 2. Structure of Dabco–MnGS–SB1 shown along [001]. Unlabeled small black circles are C. The H_2O molecules and hydrogen atoms have been omitted for clarity. Also for clarity, only one channel is shown to contain the Dabco.



Supertetrahedra, Microporous sphalerite, ZnS

Figure 1. The principle of building supertetrahedra from the dense sphalerite structure: a) A part of the sphalerite structure limited to a large tetrahedron corresponding to an edge of ten primitive tetrahedra (in blue); b) assembly of T2 supertetrahedra with the same sphalerite topology (the supertetrahedron, in blue, contains four metal centers); c) assembly of T3 supertetrahedra built on the same principle; d) assembly of T4.

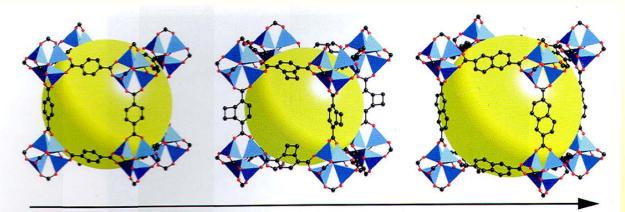

Flexibility in framework chemistry and structure: Cationic, anionic or neutral frameworks

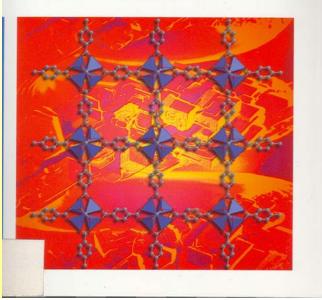
Figure 8.4 3D representation of a self-assembled metal sulfide cluster framework found to display remarkable ion conductivity (Reproduced with permission from Ref. 20)

KJM3100 V2008

Metalorganic framework (MOF) materials Hybrid (organic/inorganic) materials

Increasing Pore Volume

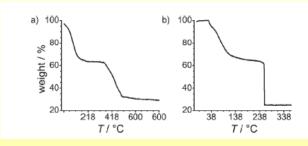
Figure 8.5 Hydrogen storage metal-organic open-framework compound $Zn_4O(RDC)_3$ (Reproduced with permission from Ref. 25)

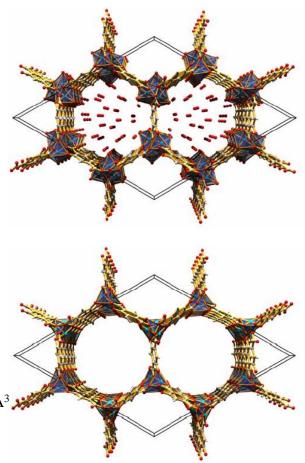

BDC: 1,4-benzene-dicarboxylate $Zn_4O(BDC)_3$ Cubic structure, Surface area 2500-3000m²/g (BET), stable to 3-400°C Hydrogen storage?: 78K: 4.5w% H₂, RT, 20 bar: 1w%

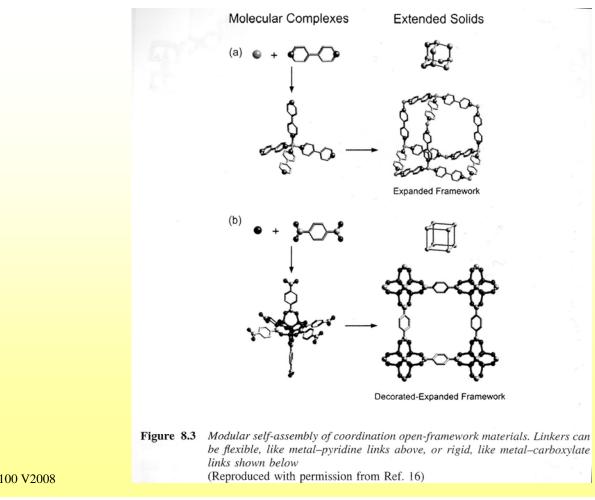
Ulrich Schubert, Nicola Hüsing

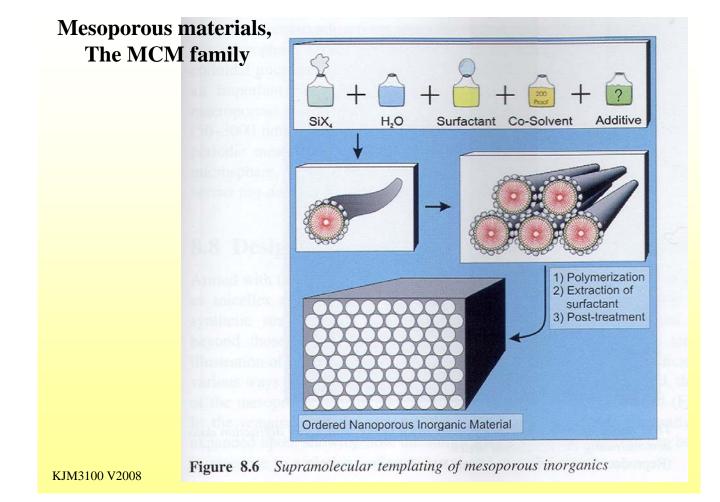
WILEY-VCH

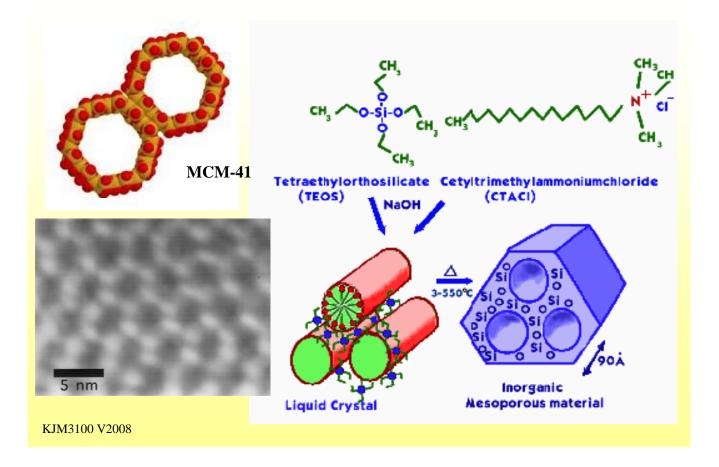
Synthesis of Inorganic Materials

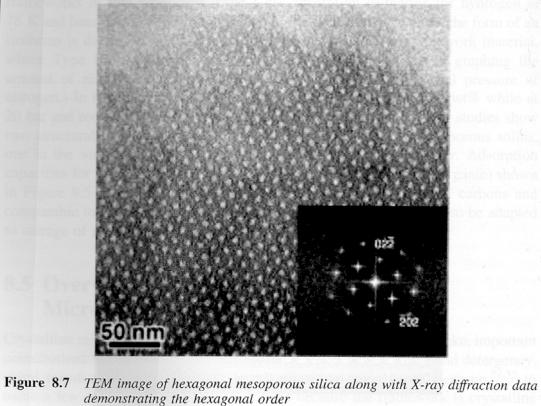

Second, Revised and Updated Edition


KJM3100 V2008

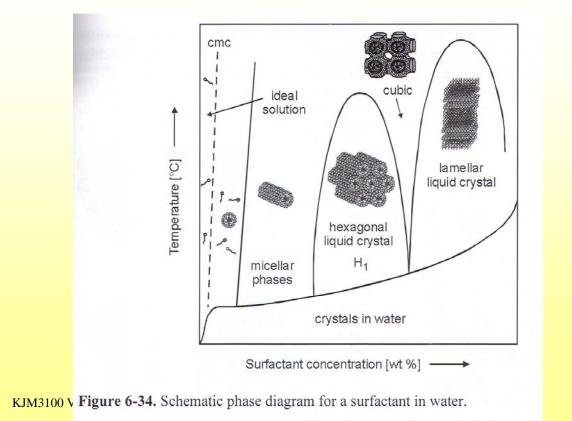

An example from UiO (Pascal Dietzel): Ni₂(dhtp)(H₂O)2•8H₂O dhpt: 2,5-dihydroxyterephthalic acid

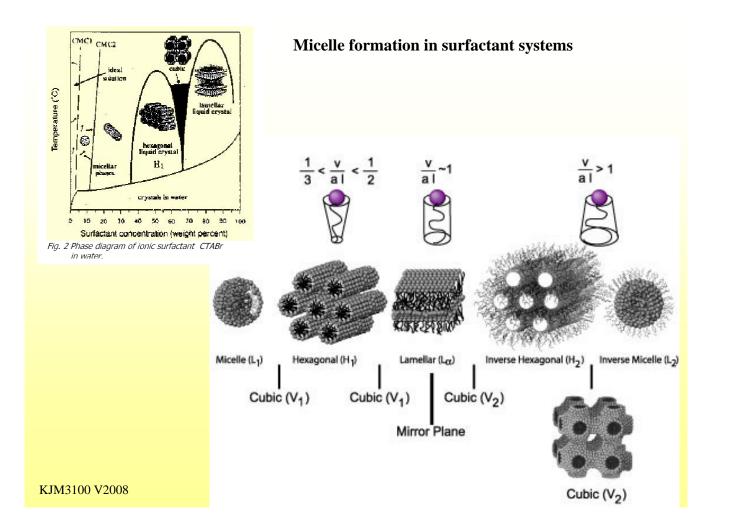

Hydrated and anhydrous structure 1083 m² g⁻¹.

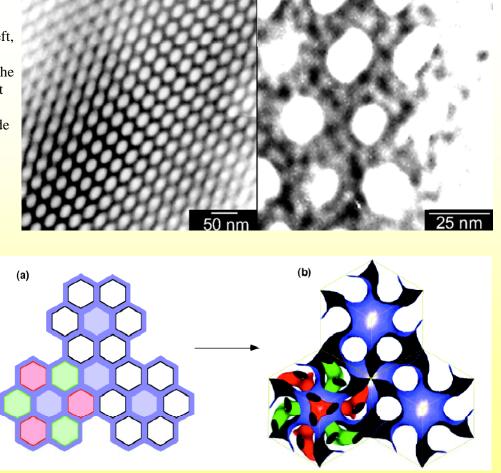

Other materials: surface area of ~1700 m² g⁻¹. Orthorhombic crystal system a = b = 21.9078 Å, c = 37.1540 Å, V = 17832 Å³



Mesoporous materials, The MCM family




MCM-41


(Reproduced with permission from Ref. 36)

Phase diagrams

Transmission electron micrographs show, at left, the regular pattern of hexagonal channels in the ceramic material, and at right, the smooth distribution of iron oxide particles (dark spots) within the ceramic matrix.

KJM3100 V2008

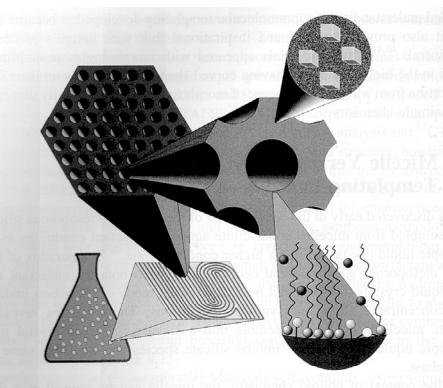
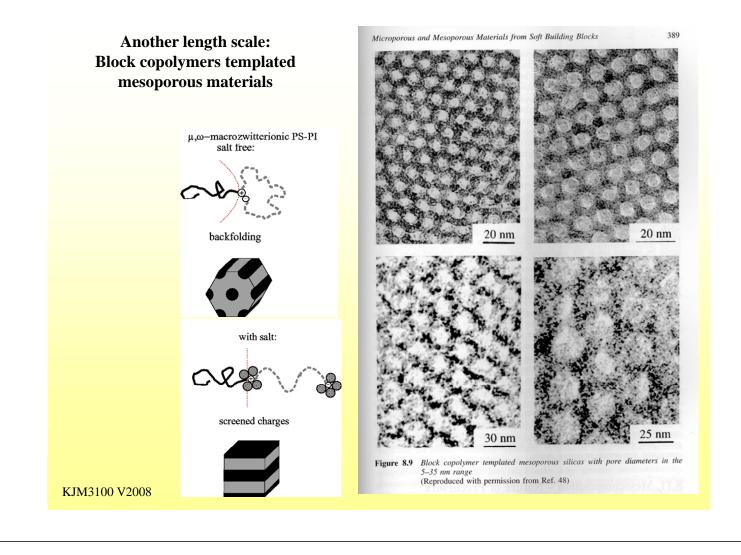
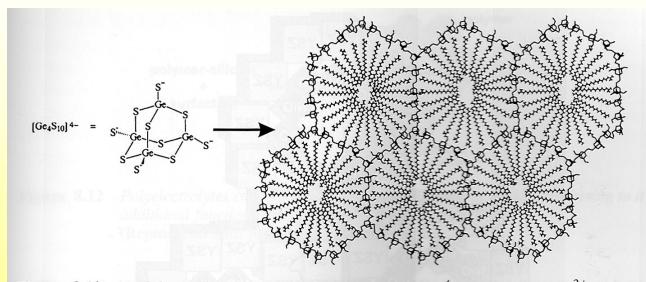
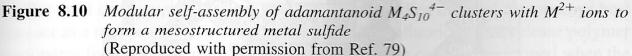
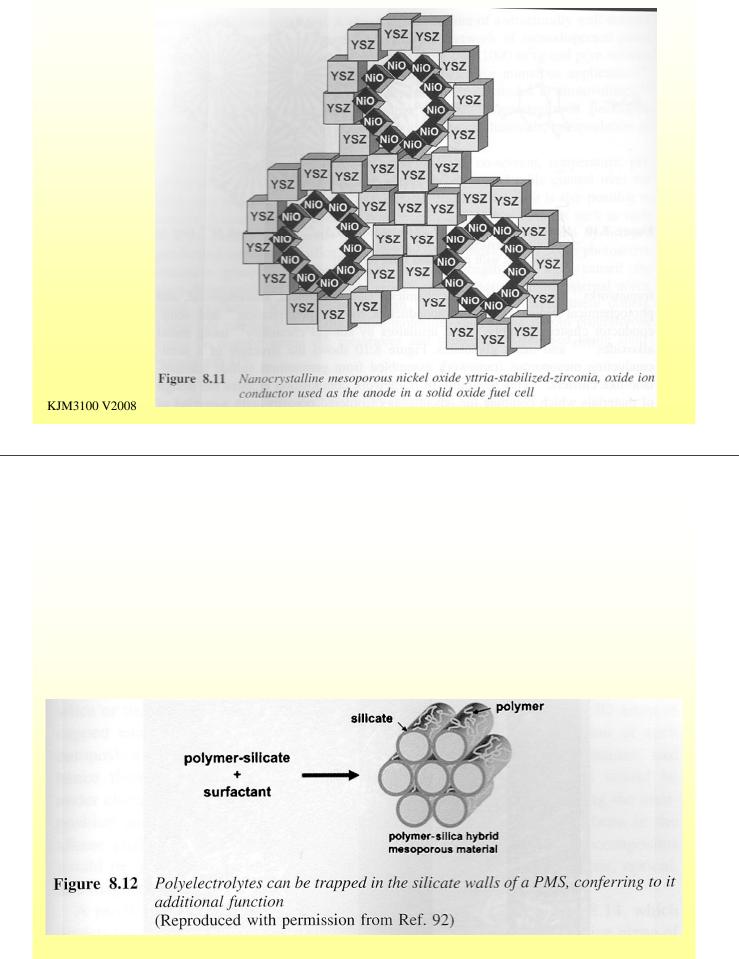
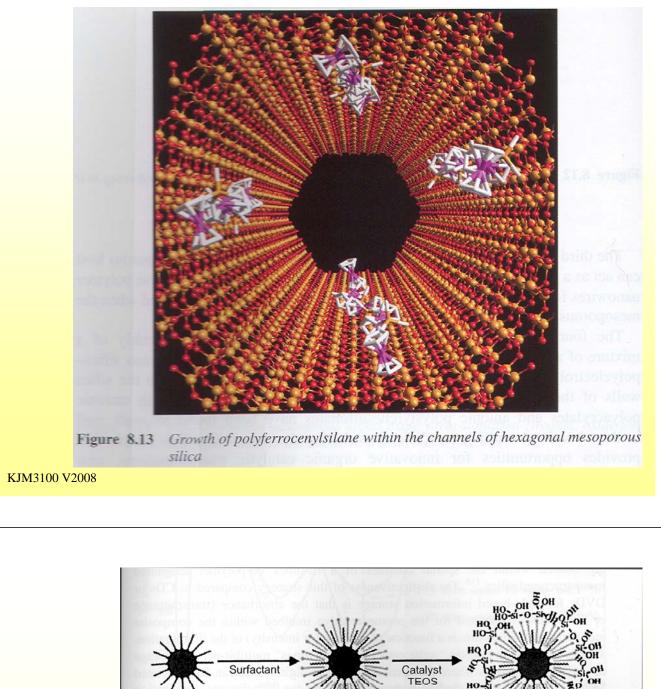
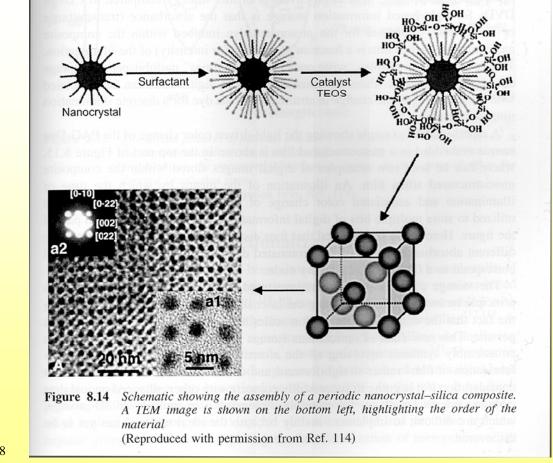
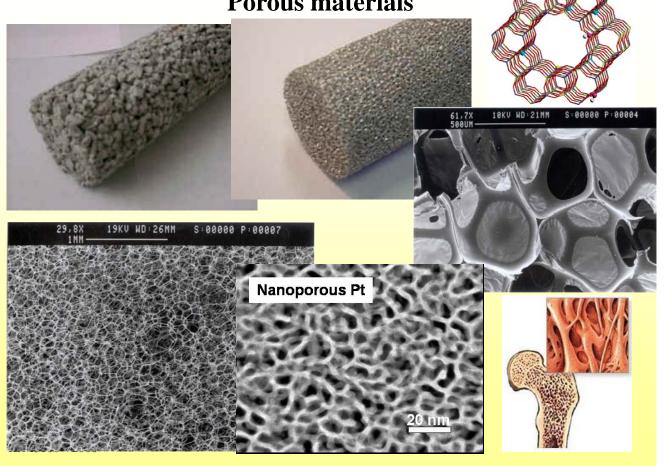





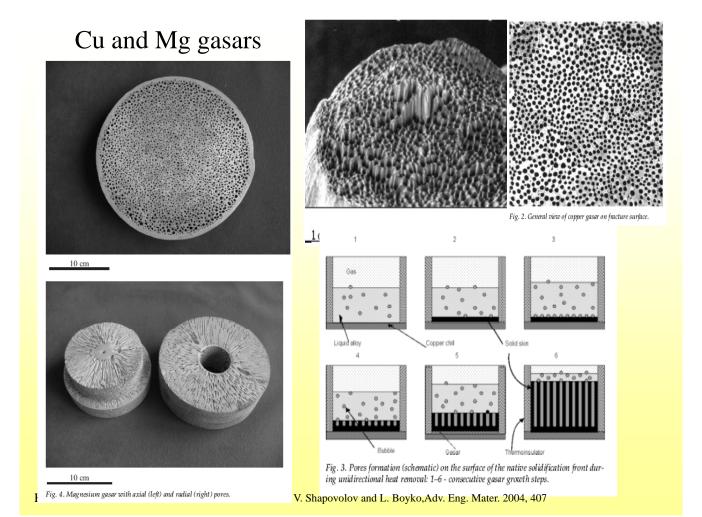
Figure 8.8 Putting function into mesoporous materials at a hierarchy of length scales. Synthesized material displays hexagonal cylindrical order displaying defects like any liquid crystal. The composition and texture of the walls can be tuned, and the interior of the channels can be functionalized by a choice of surfactant, bridging or side-groups, and additives



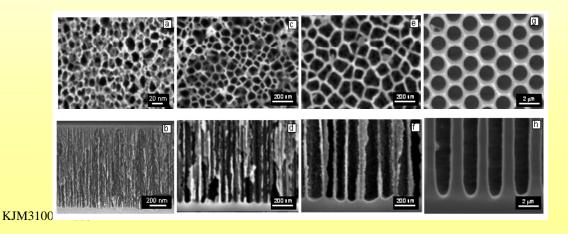

Semiconducting mesoporous materials from germanium sulfide, adamantane-like clusters.




Post treatment: Recrystallization to ordered array of nanocrystals...



Porous materials



Metal deposition

CVD, electrochemical, PVD methods may be used.

Electrochemically deposited on porous organic substrates. (ca. 90% porous) PVD on cold substrate, which is then removed (up to 95% porosity)

Porous silicon by anodization. Si-wafer in a solution of hydrofluoric acid, ethanol and water. Anodized for a short time using an electric current. Interconnected network of pores, ca. 10nm. The density is 1/10 of silicon, but the material is crystalline.

