FURAN

The least aromatic 5-membered ring

Reaction with electrophiles - Protonation

Major protonated form

Much less basic than ordinary ethers

Conc. H_2SO_4
Lewis acids (i.e. AlCl_3)
Decomp.
Reaction with electrophiles - Nitration

Cannot use conc. HNO₃ / H₂SO₄

Halogenation

See 15.14.1.2
Reaction with electrophiles - Acylation

\[
\text{R} \quad \overset{\text{R'COCl or (R'CO)₂O, } \text{BF₃} \cdot \text{Et₂O}}{\longrightarrow} \quad \overset{\text{DMF, POCl₃, "Vilsmeier"}}{\longrightarrow} \quad \text{Furfural}
\]

Also very readily available by other routes

Alkylation

Generally not practical (polyalkylation, polymerisation)

Condensation with Aldehydes and Ketones

\[
\overset{\text{RCHO, } \text{H}^+}{\longrightarrow} \quad \overset{\text{Further react.}}{\longrightarrow} \quad \overset{\text{stable}}{\text{From chloral}} \quad \text{C.f.}
\]

\[
\overset{\text{H}^+, \text{RCHO, } \text{R=H, alkyl}}{\longrightarrow} \quad \overset{\pm \text{H}^+}{\longrightarrow} \quad \overset{- \text{H₂O}}{\longrightarrow} \quad \overset{\ldots}{\text{Polymer}}
\]
Reaction with electrophiles - Condensation with imines / iminium ions

Unsubst furan: iminium ion must be preformed

Reaction with oxidating agents

Some ex. on furans activated with -NO₂ group
Metallation and further react.
Pd-cat couplings

\[
\begin{align*}
\text{Li} & \quad \rightarrow \quad \text{Met} \quad \text{Ar-X (or related)} \quad \text{cat Pd} \quad \rightarrow \quad \text{Ar} \quad \rightarrow \quad \text{Br} \\
& \text{cat Pd} \\
\text{EWG} & \quad \text{Heck} \quad + \quad \text{Pd(0)} \\
\text{Cu(II)} & \quad \text{+ Pd(0)}
\end{align*}
\]

Heteroaryl-Heck

like an alkene in Heck

\[
\begin{align*}
\text{Ar-X} & \quad \text{cat. Pd} \quad \rightarrow \quad \text{Ar} \\
\text{EWG} & \quad \text{Ar-Pd-X} \quad \text{Heck} \quad \rightarrow \quad \text{Ar} \quad \text{H-Pd-X}
\end{align*}
\]
Cycloadditions

Furanes as diene - one of the first DA examples
Furan reacts with many dienophiles (alkenes, alkynes, allenes)

\[\text{X} + \text{O} \rightarrow \text{exo isolated (termodyn favoured)} \]
\[\text{X=S: 100 oC, 15kbar; 42\%} \]

With \(^1\text{O}_2\)

\[\text{O} \rightarrow \text{O} \rightarrow \text{H} \]

Furan as dienophile (only intramolec. ex)

\[\text{X: EWG} \]

Photochemical cycloaddition

\[\text{R}_1 \text{R} \rightarrow [2+2] \rightarrow \text{acid} \rightarrow \text{acetal} \]
Furyl-CH$_2$-X

Oxyfurans

Butenolides (natural prod.)

- **R=Me: β-angelica lactone**
 - Most stable

- not detectable

Aminofurans

- **Aminoform**
- **Unstable**

Major

tetronic acid

ascorbic acid

Isol. marine sponges cytotoxic

Luffarin W
Luffarin B
Synthesis of Furans

Carbonyl condensations

Strategy a - pyrroles

Paal Knorr

\[\text{Pyroles} \]

\[\begin{align*}
O = \text{R} &\rightarrow \text{R'} \\
: \text{NH}_2 \text{R''} \\
\text{R''} &= \text{H, alkyl, aryl}
\end{align*} \]

Strategy a\(^1\) Paal Knorr (1,4-dikacarbonyl)

\[\begin{align*}
\text{TsOH} &\rightarrow \text{R}_4 \text{R}_3 \\
\text{K}_2 \text{Cr}_2 \text{O}_7, \text{acid} &\rightarrow \text{H}^+ \\
\text{HO} &\rightarrow \text{HO} \text{O} \\
\text{HO} &\rightarrow \text{HO} \text{O} \text{O} \\
\text{HO} &\rightarrow \text{HO} \text{O} \text{OH} \\
\text{Br} &\rightarrow \text{Br} \text{Br} \\
\text{Br} &\rightarrow \text{Br} \text{Br} \text{Br} \\
\text{Br} &\rightarrow \text{Br} \text{Br} \text{Br} \\
\text{Br} &\rightarrow \text{Br} \text{Br} \text{Br}
\end{align*} \]

see 15.14.1.2
Strategy b

Aldehyde

ClO_2R → HO_2R → HO_2R → CO_2R → CO_2R → H_2O → CO_2R

Ketone

ClO_2R → HO_2R → "Paal Knorr" → "Paal Knorr" → CO_2R

Wittig

R_2O → \(\Theta\) Ph_3 → R_2O \(\Theta\) Ph_3 → "Wittig" → R_2O \(\Theta\) Et → - EtOH → R_2O
Pd-cat. Cyclisations etc.

\[\text{Pd(II), H}_2\text{O} \rightarrow \text{Pd(II)} \rightarrow \text{PdX} \rightarrow \text{I} \rightarrow \text{H}_2\text{O} \]

\[\text{heat} \rightarrow \text{Pd(II), \text{H}_2\text{O}} \rightarrow \text{Pd(II)} \rightarrow \text{PdX} \rightarrow \text{I} \rightarrow \text{H}_2\text{O} \]

Also known termal cycl.
Cycloadditions

\[
\begin{align*}
\text{Ph}_3\text{N} \xrightarrow{R \equiv \equiv R'} & \text{O} \xrightarrow{\text{PhCN}} \text{Ph} \xrightarrow{R(R')} \text{O} \xrightarrow{- \text{PhCN}} \text{R} \xrightarrow{R'} R / R' \text{ i.e. } -\text{SnBu}_3, -\text{SiMe}_3, \text{alkyls etc.}
\end{align*}
\]

c.f.

\[
\begin{align*}
\text{Ph}_3\text{S} \xrightarrow{R \equiv \equiv R'} & \text{S} \xrightarrow{- \text{PhCN}} \text{S} \xrightarrow{R(R')} \text{R}
\end{align*}
\]