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CHAPTER 9

Polynomial Interpolation

A fundamental mathematical technique is to approximate something compli-
cated by something simple, or at least less complicated, in the hope that the
simple can capture some of the essential information in the complicated. This
is the core idea of approximation with Taylor polynomials, a tool that has been
central to mathematics since the calculus was first discovered.

The wide-spread use of computers has made the idea of approximation even
more important. Computers are basically good at doing very simple operations
many times over. Effective use of computers therefore means that a problem
must be broken up into (possibly very many) simple sub-problems. The result
may provide only an approximation to the original problem, but this does not
matter as long as the approximation is sufficiently good.

The idea of approximation is often useful when it comes to studying func-
tions. Most mathematical functions only exist in quite abstract mathematical
terms and cannot be expressed as combinations of the elementary functions we
know from school. In spite of this, virtually all functions of practical interest can
be approximated arbitrarily well by simple functions like polynomials, trigono-
metric or exponential functions. Polynomials in particular are very appealing for
use on a computer since the value of a polynomial at a point can be computed
by utilising simple operations like addition and multiplication that computers
can perform extremely quickly.

A classical example is Taylor polynomials which is a central tool in calculus.
A Taylor polynomial is a simple approximation to a function that is based on in-
formation about the function at a single point only. In practice, the degree of a
Taylor polynomial is often low, perhaps only degree one (linear), but by increas-
ing the degree the approximation can in many cases become arbitrarily good
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over large intervals.
In this chapter we first give a review of Taylor polynomials. We assume that

you are familiar with Taylor polynomials already or that you are learning about
them in a parallel calculus course, so the presentation is brief, with few exam-
ples. We do however take the time to derive the Taylor polynomial as this illus-
trates the importance of writing polynomials in an appropriate form. We also
include a description of Taylor polynomials for functions of two variables as this
is needed for the analysis of numerical methods for solving differential equa-
tions in chapter 12.

The second topic in this chapter is a related procedure for approximating
general functions by polynomials. The polynomial approximation will be con-
structed by forcing the polynomial to take the same values as the function at a
few distinct points; this is usually referred to as interpolation. Although polyno-
mial interpolation can be used for practical approximation of functions, we are
mainly going to use it in later chapters for constructing various numerical algo-
rithms for approximate differentiation and integration of functions, and numer-
ical methods for solving differential equations.

An important additional insight that should be gained from this chapter is
that the form in which we write a polynomial is important. We can simplify al-
gebraic manipulations greatly by expressing polynomials in the right form, and
the accuracy of numerical computations with a polynomial is also influenced by
how the polynomial is represented.

9.1 Taylor polynomials

Taylor polynomials are discussed extensively in all calculus books, so the de-
scription here is brief. The essential feature of a Taylor polynomial is that it ap-
proximates a given function well at a single point.

Definition 9.1 (Taylor polynomial). Suppose that the first n derivatives of the
function f exist at x = a. The Taylor polynomial of f of degree n at a is written
Tn( f ; a) and satisfies the conditions

Tn( f ; a)(i )(a) = f (i )(a), for i = 0, 1, . . . , n. (9.1)

The conditions in (9.1) mean that Tn( f ; a) and f have the same value and
first n derivatives at a. This makes it quite easy to derive an explicit formula for
the Taylor polynomial.
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Figure 9.1. The Taylor polynomials of sin x (around a = 0) for degrees 1 to 17.

Theorem 9.2. The Taylor polynomial of f of degree n at a is unique and can
be written as

Tn( f ; a)(x) = f (a)+ (x −a) f ′(a)+ (x −a)2

2
f ′′(a)+·· ·+ (x −a)n

n!
f (n)(a). (9.2)

Figure 9.1 shows the Taylor polynomials of sin x, generated about a = 0, for
degrees up to 17. Note that the even degree terms for these Taylor polynomials
are 0, so there are only 9 such Taylor polynomials. We observe that as the degree
increases, the approximation improves on a larger interval.

Formula (9.2) is a classical result of calculus which is proved in most calculus
books. We will include a proof here just to illustrate the usefulness of writing
polynomials on nonstandard form.

9.1.1 Derivation of the Taylor formula

Suppose we are to prove (9.2) in the quadratic case. We are looking for a general
quadratic polynomial

p2(x) = c0 + c1x + c2x2 (9.3)

that satisfies the conditions

p2(a) = f (a), p ′
2(a) = f ′(a), p ′′

2 (a) = f ′′(a). (9.4)
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The derivatives of p2 are given by p ′
2(x) = c1 +2c2x and p ′′

2 (x) = 2c2. If we insert
these formulas and p2 itself in the interpolation conditions (9.1), we obtain

p2(a) = c0 + c1a + c2a2 = f (a),

p ′
2(a) = c1 +2c2a = f ′(a),

p ′′
2 (a) = 2c2 = f ′′(a).

(9.5)

This system is easy to solve if we start with the last equation. The result is

c2 = f ′′(a)/2,

c1 = f ′(a)−2c2a = f ′(a)− f ′′(a)a,

c0 = f (a)− c1a − c2a2 = f (a)− (
f ′(a)− f ′′(a)a

)
a − f ′′(a)a2/2.

If we insert these expression in (9.3) and collect the terms that multiply f (a),
f ′(a) and f ′′(a), we obtain

p2(x) = f (a)− (
f ′(a)− f ′′(a)a

)
a − f ′′(a)a2/2+ (

f ′(a)− f ′′(a)a
)
x + f ′′(a)x2/2

= f (a)+ (x −a) f ′(a)+ (x2 −2ax +a2) f ′′(a)/2

= f (a)+ (x −a) f ′(a)+ (x −a)2 f ′′(a)/2,

which agrees with (9.2).
The work involved in this derivation is not so much, but if we try the same

strategy for general degree n, the algebra becomes quite involved. An alternative
is to write the quadratic polynomial in the form

p2(x) = b0 +b1(x −a)+b2(x −a)2 (9.6)

straightaway. The derivatives can then be written as p ′
2(x) = b1 +2b2(x −a) and

p ′′
2 (x) = 2b2. If we insert the conditions (9.4) we now obtain

p2(a) = b0 = f (a),

p ′
2(a) = b1 = f ′(a),

p ′′
2 (a) = 2b2 = f ′′(a).

(9.7)

From this it is easy to find the coefficients, and if we insert this in (9.6) we imme-
diately obtain

p2(x) = f (a)+ (x −a) f ′(a)+ f ′′(a)

2
(x −a)2.

The main difference is that by writing the polynomial in the form (9.6), the sys-
tem of equations (9.7) becomes extremely simple, and we can just read off the
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coefficients. When we used the traditional form of the polynomial (9.3), we ob-
tained a more complicated system that required some algebraic manipulations
when the solution was inserted in (9.3).

For general degree we write the polynomial as

pn(x) = b0 +b1(x −a)+·· ·bi (x −a)i +·· ·+bn(x −a)n . (9.8)

The conditions to be satisfied by pn are

pn(a) = f (a), p ′
n(a) = f ′(a), , . . . , p(i )

n (a) = f (i )(a), . . . , p(n)
n (a) = f (n)(a).

The derivatives of pn are

p ′(x) = b1 +2b2(x −a)+·· ·+ i bi (x −a)i−1 +·· ·+nbn(x −a)n−1,

...

p(i )(x) = i !bi +·· ·+n(n −1) · · · (n − i +1)(x −a)n−i ,

p(n)(x) = n!bn .

If we insert this in the conditions to be satisfied by pn we obtain

b0 = f (a), b1 = f ′(a), . . . , bi = f (i )(a)/i !, . . . , bn = f (n)(a)/n!,

with hardly any work, which confirms formula (9.2).
The polynomial form (9.8) simplifies the computations because of the factor

(x − a) which cancels almost all of pn(x) and its derivatives when x = a. This
illustrates that there is much to be gained by choosing carefully how the polyno-
mial is written.

Observation 9.3. In the derivation of the Taylor polynomial, the manipula-
tions simplify if polynomials of degree n are written as

pn(x) = c0 + c1(x −a)+ c2(x −a)2 +·· ·+cn(x −a)n .

9.1.2 The remainder

The Taylor polynomial T f ( f ) is an approximation to f , and in many situations
it will be important to control the error in the approximation. The error can be
expressed in a number of ways, and the following two are the most common.
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Theorem 9.4. Suppose that f is a function whose derivatives up to order
n +1 exist and are continuous. Then the remainder in the Taylor expansion
Rn( f ; a)(x) = f (x)−Tn( f ; a)(x) is given by

Rn( f ; a)(x) = 1

n!

∫ x

a
f (n+1)(t )(x − t )n d t . (9.9)

The remainder may also be written as

Rn( f ; a)(x) = (x −a)n+1

(n +1)!
f (n+1)(ξ), (9.10)

where ξ is a number in the interval (a, x) (the interval (x, a) if x < a).

The proof of this theorem is based on the fundamental theorem of calculus
and integration by parts, and can be found in any standard calculus text.

We are going to make use of Taylor polynomials with remainder in future
chapters to analyse the error in a number of numerical methods. Here we just
consider one example of how we can use the remainder to control how well a
function is approximated by a polynomial.

Example 9.5. We want to determine a polynomial approximation of the func-
tion sin x on the interval [−1,1] with error smaller than 10−5. We want to use
Taylor polynomials about the point a = 0; the question is how high the degree
needs to be in order to get the error to be small.

If we look at the error term (9.10), there is one factor that looks rather difficult
to control, namely f (n+1)(ξ): Since we do not know the degree, we do not really
know what this derivative is, and on top of this we do not know at which point
it should be evaluated either. The solution is not so difficult if we realise that we
do not need to control the error exactly, it is sufficient to make sure that the error
is smaller than 10−5.

The easiest error term to work with is (9.10), and what we want is to find the
smallest n such that ∣∣∣∣ xn+1

(n +1)!
f (n+1)(ξ)

∣∣∣≤ 10−5, (9.11)

where the function f (x) = sin x in our case and ξ is a number in the interval
(0, x). Here we demand that the absolute value of the error should be smaller
than 10−5. This is important since otherwise we could make the error small by
making it negative, with large absolute value. The main ingredient in achieving
what we want is the observation that since f (x) = sin x, any derivative of f is
either cos x or sin x (possibly with a minus sign which disappears when we take
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absolute values). But then we certainly know that∣∣∣ f (n+1)(ξ)
∣∣∣≤ 1. (9.12)

This may seem like a rather crude estimate, which may be the case, but it was
certainly very easy to derive; to estimate the correct value of ξ would certainly
be much more difficult. If we insert the estimate (9.12) on the left in (9.11), we
can also change our required inequality,∣∣∣∣ xn+1

(n +1)!
f (n+1)(ξ)

∣∣∣≤ |x|n+1

(n +1)!
≤ 10−5.

If we manage to find an n such that this last inequality is satisfied, then (9.11)
will also be satisfied. Since x ∈ [−1,1] we know that |x| ≤ 1 so this last inequality
will be satisfied if

1

(n +1)!
≤ 10−5. (9.13)

The left-hand side of this inequality decreases with increasing n, so we can just
determine n by computing 1/(n + 1)! for the first few values of n, and use the
first value of n for which the inequality holds. If we do this, we find that 1/8! ≈
2.5×10−5 and 1/9! ≈ 2.8×10−6. This means that the smallest value of n for which
(9.13) will be satisfied is n = 8. The Taylor polynomial we are looking for is there-
fore

p8(x) = T8(sin;0)(x) = x − x3

6
+ x5

120
− x7

5040
,

since the term of degree 8 is zero. If we evaluate this we find p8(1) ≈ 0.841468
with error roughly 2.73×10−6 which is close to the estimate 1/9! which we com-
puted above.

Figure 9.1 shows the Taylor polynomials of sin x about a = 0 of degree up to
17. In particular we see that for degree 7, the approximation is indistinguishable
from the original in the plot, at least up to x = 2.

The error formula (9.10) will be the most useful one for us, and for easy ref-
erence we record the complete Taylor expansion in a corollary.

Corollary 9.6. Any function f whose first n +1 derivatives are continuous at
x = a can be expanded in a Taylor polynomial of degree n at x = a with a
corresponding error term,

f (x) = f (a)+(x−a) f ′(a)+·· ·+ (x −a)n

n!
f (n)(a)+ (x −a)n+1

(n +1)!
f (n+1)(ξx ), (9.14)

where ξx is a number in the interval (a, x) (the interval (x, a) if x < a) that
depends on x. This is called a Taylor expansion of f .
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The remainder term in (9.14) lets us control the error in the Taylor approx-
imation. It turns out that the error behaves quite differently for different func-
tions.

Example 9.7 (Taylor polynomials for f (x) = sin x). If we go back to figure 9.1, it
seems like the Taylor polynomials approximate sin x well on larger intervals as
we increase the degree. Let us see if this observation can be derived from the
error term

e(x) = (x −a)n+1

(n +1)!
f (n+1)(ξ). (9.15)

When f (x) = sin x we know that | f (n+1)(ξ)| ≤ 1, so the error is bounded by

|e(x)| ≤ |x|n+1

(n +1)!

where we have also inserted a = 0 which was used in figure 9.1. Suppose we
want the error to be small on the interval [−b,b]. Then |x| ≤ b, so on this interval
the error is bounded by

|e(x)| ≤ bn+1

(n +1)!
.

The question is what happens to the expression on the right when n becomes
large; does it tend to 0 or does it not? It is not difficult to show that regardless of
what the value of b is, the factorial (n +1)! will tend to infinity more quickly, so

lim
n→∞

bn+1

(n +1)!
= 0

In other words, if we just choose the degree n to be high enough, we can get the
Taylor polynomial to be an arbitrarily good approximation to sin x on an interval
[−b,b], regardless of the value of b.

Example 9.8 (Taylor polynomials for f (x) = ex ). Figure 9.2 (a) shows a plot of
the Taylor polynomial of degree 4 for the exponential function f (x) = ex , ex-
panded about the point a = 1. For this function it is easy to see that the Taylor
polynomials will converge to ex on any interval as the degree tends to infinity,
just like we saw for f (x) = sin x in example 9.7.

Example 9.9 (Taylor polynomials for f (x) = ln x). The plot in figure 9.2 shows
the function f (x) = ln x and its Taylor polynomial of degree 20 expanded at a = 1.
The Taylor polynomial seems to be very close to ln x as long as x is a bit smaller
than 2, but for x > 2 it seems to diverge quickly. Let us see if this can be deduced
from the error term.
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Figure 9.2. In (a) the Taylor polynomial of degree 4 about the point a = 1 for the function f (x) = ex is shown.
Figure (b) shows the Taylor polynomial of degree 20 for the function f (x) = log x, also about the point a = 1.

The error term involves the derivative f (n+1)(ξ) of f (x) = ln x, so we need a
formula for this. Since f (x) = ln x, we have

f ′(x) = 1

x
= x−1, f ′′(x) =−x−2, f ′′′(x) = 2x−3

and from this we find that the general formula is

f (k)(x) = (−1)k+1(k −1)! x−k . (9.16)

From this we find that the general term in the Taylor polynomial is

(x −1)k

k !
f (k)(1) = (−1)k+1 (x −1)k

k

so the Taylor expansion (9.14) becomes

ln x =
n∑

k=1
(−1)k+1 (x −1)k

k
+ (x −1)n+1

n +1
ξ−n−1,

where ξ is some number in the interval (1, x) (in (x,1) if 0 < x < 1). The problem-
atic area seems to be to the right of x = 1, so let us assume that x > 1. In this case
ξ> 1 so ξ−n−1 < 1 so the error is bounded by∣∣∣ (x −1)n+1

n +1
ξ−n−1

∣∣∣≤ (x −1)n+1

n +1
.

When x−1 < 1, i.e., when x < 2, we know that (x−1)n+1 will tend to zero when n
tends to infinity, and the denominator n+1 will just contribute to this happening
even more quickly.
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For x > 2, one can try and analyse the error term, and if one uses the integral
form of the remainder (9.9) it is in fact possible to find an exact formula for the
error. However, it is much simpler to consider the Taylor polynomial directly,

pn(x) = T (ln;1)(x) =
n∑

k=1
(−1)k+1 (x −1)k

k
.

Note that for x > 2, the absolute value of the terms in the sum will become arbi-
trarily large since

lim
k→∞

ck

k
=∞

when c > 0. This means that the sum will jump around more and more, so there
is no way it can converge for x > 2, and it is this effect we see in figure 9.2 (b).

9.2 Interpolation

A Taylor polynomial based at a point x = a usually provides a very good approx-
imation near a, but as we move away from this point, the error will increase. If
we want a good approximation to a function f across a whole interval, it seems
natural that we ought to utilise information about f from different parts of the
interval. Polynomial interpolation lets us do just that.

9.2.1 Polynomial interpolation is possible

The idea behind polynomial interpolation is simple: We approximate a function
f by a polynomial p by forcing p to have the same function values as f at a
number of points. Suppose for instance that we have n+1 distinct points (xi )n

i=0
scattered throughout the interval [a,b] where f is defined. Since a polynomial
of degree n has n+1 free coefficients it is natural to try and find a polynomial of
degree n with the same values as f at these points.

Problem 9.10 (Polynomial interpolation). Let f be a given function defined
on an interval [a,b], and let (xi )n

i=0 be n +1 distinct points in [a,b]. The poly-
nomial interpolation problem is to find a polynomial pn = P ( f ; x0, . . . , xn) of
degree n that matches f at the given points,

pn(xi ) = f (xi ), for i = 0, 1, . . . , n. (9.17)

The points (xi )n
i=0 are called interpolation points, the conditions (9.17) are

called the interpolation conditions, and the polynomial pn = P ( f ; x0, . . . , xn)
is called a polynomial interpolant.
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The notation P ( f ; x0, . . . , xn) for the polynomial interpolant is similar to the
notation Tn( f ; a) for the Taylor polynomial. However, it is a bit cumbersome, so
we will often use pn when no confusion is possible.

There are at least three questions raised by problem 9.10: Is there a polyno-
mial of degree n that satisfies the interpolation conditions (9.17)? How many
such polynomials are there? How can we find one such polynomial? As always it
is instructive to consider the simplest cases to gain some insight into the prob-
lem.

Example 9.11 (n = 0). The case n = 0 corresponds to the situation where we
only have one interpolation point x0. Then we are looking for a polynomial p0

of degree 0, i.e. a constant, such that p0(xi ) = f (xi ). This is easy to solve; we see
that we must have p0(x) = f (x0).

Example 9.12 (n = 1). The next case is n = 1, i.e., we have two interpolation
points x0 and x1. Now we are looking for a straight line p1(x) = c0+c1x such that
p1(x0) = f (x0) and p1(x1) = f (x1). From school we know that this is possible,
and one formula for the solution is

p1(x) = x1 −x

x1 −x0
f (x0)+ x −x0

x1 −x0
f (x1). (9.18)

Example 9.13 (n = 2). In this case we are given 3 points x0, x1 and x2 and we
are looking for a quadratic polynomial p2 that may take the same values as f at
these points. The representation in (9.18) is appealing since the dependence on
the two function values is so explicit, so let us try and generalise this. In other
words, we want to write p2 in the form

p2(x) = `0(x) f (x0)+`1(x) f (x1)+`2(x) f (x2) (9.19)

where {`i }2
i=0 are quadratic polynomials. If we insert the two interpolation con-

ditions at x = x1 and x = x2 we obtain the equations

f (x1) = p2(x1) = `0(x1) f (x0)+`1(x1) f (x1)+`2(x1) f (x2),

f (x2) = p2(x2) = `0(x2) f (x0)+`1(x2) f (x1)+`2(x2) f (x2).

From this we see that `0 should satisfy the equations `0(x1) = `0(x2) = 0 to make
sure that f (x0) is cancelled out at x1 and x2. For this to happen, the quadratic
polynomial p2 should have two roots at x1 and x2, i.e., it should be on the form
`0(x) = d0(x − x1)(x − x2). The value of d0 we can find from the interpolation
condition at x0,

f (x0) = p2(x0) = d0`0(x0) f (x0) = d0(x0 −x1)(x0 −x2) f (x0), (9.20)
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Figure 9.3. Interpolation of sin x with a line (a), a parabola (b), a cubic (c), and a quartic polynomial (d).

where we have used the fact that we must also have `1(x0) = `2(x0) = 0. From
(9.20) we see that d0 = 1/

(
(x0 −x1)(x0 −x2)

)
and therefore

`0(x) = (x −x1)(x −x2)

(x0 −x1)(x0 −x2)
.

We can construct `1 and `2 in the same way and find

`1(x) = (x −x0)(x −x2)

(x1 −x0)(x1 −x2)
, `2(x) = (x −x0)(x −x1)

(x2 −x0)(x2 −x1)
.

If we insert these polynomials in (9.19) it is easy to verify that the resulting poly-
nomial p2 indeed satisfies the 3 interpolation conditions.

Some examples of interpolation are shown in figure 9.3. Note how the qual-
ity of the approximation improves with increasing degree.

The crucial property possessed by the quadratic polynomials {`i (x)}2
i=0 at

the end of example 9.13 is that they satisfy the relations

`i (x j ) =
{

1, if i = j ;

0, otherwise.
(9.21)
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for any pair of integers in the range 0 ≤ i , j ≤ 2. The two polynomials in the linear
case (9.18) satisfy the same kind of relation. This kind of relation is so common
that the right-hand side of (9.21) has been given a special name.

Definition 9.14 (Kronecker delta). The Kronecker delta δi , j is defined as

δi , j =
{

1, if i = j ;

0, otherwise.

for any pair of integers (i , j ).

The general idea for showing that the interpolation problem is solvable fol-
lows exactly as in the quadratic case. For degree n we have to construct n + 1
polynomials {`i ,n}n

i=0 of degree n such that the interpolant pn can be written

pn(x) = `0,n(x) f (x0)+`1,n(x) f (x1)+·· ·+`n,n(x) f (xn)

where we have added a second subscript to the `i -polynomials to indicate the
degree. This will work if the polynomial `i ,n(x) is one at xi and zero at all the
other xi s, i.e., if `i ,n(x j ) = δi , j . This is accomplished if

`i ,n(x) = (x −x0) · · · (x −xi−1)(x −xi+1) · · · (x −xn)

(xi −x0) · · · (xi −xi−1)(xi −xi+1) · · · (xi −xn)
=

n∏
j=0
j 6=i

x −x j

xi −x j
.

(9.22)

We have therefore proved most of the following basic theorem on interpolation.

Theorem 9.15. Let f be a given function defined on an interval [a,b], and let
(xi )n

i=0 be n +1 distinct points in [a,b]. Then the polynomial defined by

pn(x) = `0,n(x) f (x0)+`1,n(x) f (x1)+·· ·+`n,n(x) f (xn)

is the unique polynomial of degree n that satisfies the interpolation condi-
tions

pn(xi ) = f (xi ), for i = 0, 1, . . . , n.

Here {`i ,n}n
i=0 are the polynomials of degree n defined by (9.22) which are usu-

ally referred to as the Lagrange polynomials of degree n.

Proof. The fact that pn satisfies the interpolation conditions follows from the
argument preceding the theorem, just like in the quadratic case. What remains
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Figure 9.4. The Lagrange polynomials of degree 1 (in (a)), 2 (in (b)), 3 (in (c)), and 4 (in (d)). For degree n the
interpolation points are xi = i , for i = 0, . . . , n.

is to prove is that this is the only polynomial that satisfies the interpolation con-
ditions. For this, suppose that p̂n is another polynomial that satisfies the inter-
polation conditions. Then the difference e = pn − p̂n is a polynomial of degree n
that satisfies the conditions

e(xi ) = pn(xi )− p̂n(xi ) = f (xi )− f (xi ) = 0, for i = 0, 1, . . . , n.

In other words, the polynomial e is of degree n and has n + 1 roots. The only
polynomial of degree n that can have this many zeros is the polynomial which
is identically zero. But if e = pn − p̂n is identically zero, then p̂n must be iden-
tically equal to pn , so there is only one polynomial of degree n that solves the
interpolation problem.

Some examples of Lagrange polynomials of different degrees are shown in
figure 9.4.

Theorem 9.15 answers two of the questions raised above: Problem 9.10 has a
solution and it is unique. The theorem itself does not tell us directly how to find
the solution, but in the text preceding the theorem we showed how it could be
constructed. One concrete example will illustrate the procedure.
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Figure 9.5. The function f (x) =p
x (solid) and its cubic interpolant at the four points 0, 1, 2, and 3 (dashed).

Example 9.16. Suppose we have the four points xi = i , for i = 0, . . . , 3, and we
want to interpolate the function

p
x at these points. We first construct the cubic

Lagrange polynomials for the points (xi )3
i=0. For the first one, `0, we find (we

drop the second subscript),

`0(x) = (x −x1)(x −x2)(x −x3)

(x0 −x1)(x0 −x2)(x0 −x3)
=− (x −1)(x −2)(x −3)

6
.

The other three Lagrange polynomials can be constructed in the same way,

`1(x) = x(x −2)(x −3)

2
, `2(x) =−x(x −1)(x −3)

2
, `3(x) = x(x −1)(x −2)

6
.

When the Lagrange polynomials are known the interpolant is simply

p3(x) = `1(x)+`2(x)
p

2+`3(x)
p

3

(the first term disappears since
p

0 = 0). Figure 9.5 shows a plot of this inter-
polant.

9.2.2 The Newton form

Representation of polynomial interpolants provides another example of the fact
that it may be worthwhile to write polynomials in alternative forms. The repre-
sentation in terms of Lagrange polynomials makes it simple to write down the
interpolant since no equations need to be solved.

Sometimes, it is desirable to improve the interpolating polynomial by adding
one more interpolation point. If the Lagrange form is used, it is far form obvious
how the earlier constructed interpolant can be exploited when computing the
new one which uses one extra point. For this, the Newton form of the interpo-
lating polynomial is more convenient.
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Definition 9.17. Let (xi )n
i=0 be n distinct real numbers. The Newton form of

the interpolating polynomial of degree n is written on the form

pn(x) = c0 + c1(x −x0)+ c2(x −x0)(x −x1)+·· ·
+ cn(x −x0)(x −x1) · · · (x −xn−1). (9.23)

Note that there is no mention of the function f to be interpolated in defi-
nition 9.17. This information is contained in the coefficients (ci )n

i=0 which are
not specified in the definition, but which must be computed. As usual, some
examples are instructive.

Example 9.18 (Newton form for n = 0). Suppose we have only one interpolation
point x0. Then the Newton form is just p0(x) = c0. To interpolate f at x0 we just
have to choose c0 = f (x0),

p0(x) = f (x0).

Example 9.19 (Newton form for n = 1). With two points x0 and x1 the Newton
form is p1(x) = c0 +c1(x −x0). Interpolation at x0 means that f (x0) = p1(x0) = c0

and interpolation at x1,

f (x1) = p1(x1) = f (x0)+ c1(x1 −x0),

which means that

c0 = f (x0), c1 = f (x1)− f (x0)

x1 −x0
. (9.24)

Therefore c0 remains the same as in the case n = 0.

Example 9.20 (Newton form for n = 2). We add another point and consider in-
terpolation with a quadratic polynomial

p2(x) = c0 + c1(x −x0)+ c2(x −x0)(x −x1).

at the three points x0, x1, x2. Interpolation at x0 and x1 gives the equations

f (x0) = p2(x0) = c0,

f (x1) = p2(x1) = c0 + c1(x1 −x0),

which we note are the same equations as we solved in the case n = 1. From the
third condition

f (x2) = p(x2) = c0 + c1(x2 −x0)+ c2(x2 −x0)(x2 −x1),
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we obtain

c2 =
f (x2)− f (x0)− f (x1)− f (x0)

x1−x0
(x2 −x0)

(x2 −x0)(x2 −x1)
.

Playing around a bit with this expression one finds that it can also be written as

c2 =
f (x2)− f (x1)

x2−x1
− f (x1)− f (x0)

x1−x0

x2 −x0
. (9.25)

It is easy to see that what happened in the quadratic case, happens in the
general case: The equation that results from the interpolation condition at xk

involves only the points
(
x0, f (x0)

)
,
(
x1, f (x1)

)
, . . . ,

(
xk , f (xk )

)
. If we write down

all the equations we find

f (x0) = c0,

f (x1) = c0 + c1(x1 −x0),

f (x2) = c0 + c1(x2 −x0)+ c2(x2 −x0)(x2 −x1),

...

f (xk ) = c0 + c1(xk −x0)+ c2(xk −x0)(xk −x1)+·· ·
+ ck−1(xk −x0) · · · (xk −xk−2)+ ck (xk −x0) · · · (xk −xk−1).

(9.26)

This is an example of a triangular system where each new equation introduces
one new variable and one new point. This means that each coefficient ck only
depends on the data

(
x0, f (x0)

)
,
(
x1, f (x1)

)
, . . . ,

(
xk , f (xk )

)
, and the following

lemma is immediate.

Lemma 9.21. Let f be a given function and x0, . . . , xn given interpolation
points. If the interpolating polynomial of degree n is written in Newton form,

pn(x) = c0 + c1(x −x0)+·· ·+cn(x −x0)(x −x1) · · · (x −xn−1), (9.27)

then ck is only dependent on
(
x0, f (x0)

)
,
(
x1, f (x1)

)
, . . . ,

(
xk , f (xk )

)
and is writ-

ten
ck = f [x0, . . . , xk ] (9.28)

for k = 0, 1, . . . , n. The interpolating polynomials pn and pn−1 are related by

pn(x) = pn−1(x)+ f [x0, . . . , xn](x −x0) · · · (x −xn−1).
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Note that with the notation (9.28) for the coefficients, the interpolation for-
mula (9.27) becomes

pn(x) = f [x0]+ f [x0, x1](x −x0)+·· ·+ f [x0, . . . , xn](x −x0) · · · (x −xn−1). (9.29)

The coefficients (ck ) can be computed from the system (9.26). The big ad-
vantage compared with the Lagrange form is the simplicity of adding an extra
point: An extra point adds an extra equation to (9.26) from which the additional
coefficient can be computed, while the remaining coefficients are the same as
in the case with one point less.

9.2.3 Divided differences

The coefficients ck = f [x0, . . . , xk ] have certain properties that are useful both for
computation and understanding. When doing interpolation at the points x0, . . . ,
xk we can consider two smaller problems, namely interpolation at the points x0,
. . . , xk−1 as well as interpolation at the points x1, . . . , xk .

Suppose that the polynomial q0 interpolates f at the points x0, . . . , xk−1 and
that q1 interpolates f at the points x1, . . . , xk , and consider the polynomial de-
fined by the formula

p(x) = xk −x

xk −x0
q0(x)+ x −x0

xk −x0
q1(x). (9.30)

Our claim is that p(x) interpolates f at the points x0, . . . , xk , which means that
p = pk since a polynomial interpolant of degree k − 1 which interpolates k + 1
points is unique.

We fist check that p interpolates f at an interior point xi with 0 < i < k. In
this case q0(xi ) = q1(xi ) = f (xi ) so

p(xi ) = xk −x

xk −x0
f (xi )+ x −x0

xk −x0
f (xi ) = f (xi ).

At x = x0 we have

p(x0) = xk −x0

xk −x0
q0(x0)+ x0 −x0

xk −x0
q1(x0) = q0(x0) = f (x0),

as required, and in a similar way we also find that p(xk ) = f (xk ).
Let us rewrite (9.30) in a more explicit way.

Lemma 9.22. Let P ( f ; x0, . . . , xk ) denote the polynomial of degree k − 1 that
interpolates the function f at the points x0, . . . , xk . Then

P ( f ; x0, . . . , xk )(x) = xk −x

xk −x0
P ( f ; x0, . . . , xk−1)(x)+ x −x0

xk −x0
P ( f ; x1, . . . , xk )(x).
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From this lemma we can deduce a useful formula for the coefficients of the
interpolating polynomial. (Recall that the leading coefficient of a polynomial is
the coefficient of the highest degree term.)

Theorem 9.23. Let ck = f [x0, . . . , xk ] denote the leading coefficient of the in-
terpolating polynomial P ( f ; x0, . . . , xk ). This is called a kth order divided dif-
ference of f and satisfies the relations f [x0] = f (x0), and

f [x0, . . . , xk ] = f [x1, . . . , xk ]− f [x0, . . . , xk−1]

xk −x0
(9.31)

for k > 0.

Proof. The relation (9.31) follows from the relation in lemma 9.22 if we con-
sider the leading coefficients on both sides. On the left the leading coefficient is
f [x0, . . . , xk ]. The right-hand side has the form

xk −x

xk −x0

(
f [x0, . . . , xk−1]xk−1 + lower degree terms

)+
x −x0

xk −x0

(
f [x1, . . . , xk ]xk−1 + lower degree terms

)
= f [x1, . . . , xk ]− f [x0, . . . , xk ]

xk −x0
xk + lower degree terms

and from this (9.31) follows.

The significance of theorem 9.23 is that it provides a simple formula for
computing the coefficients of the interpolating polynomial in Newton form. The
relation (9.31) also explains the name ’divided difference’, and it should not come
as a surprise that f [x0, . . . , xk ] is related to the kth derivative of f , as we will see
below.

It is helpful to organise the computations of divided differences in a table,

x0 f [x0]
x1 f [x1] f [x0, x1]
x2 f [x2] f [x1, x2] f [x0, x1, x2]
x3 f [x3] f [x2, x3] f [x1, x2, x3] f [x0, x1, x2, x3]
...

(9.32)

Here an entry in the table (except for the first two columns) is computed by sub-
tracting the entry to the left and above from the entry to the left, and dividing by
the last minus the first xi involved. Then all the coefficients of the Newton form
can be read off from the diagonal. An example will illustrate how this is used.
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Figure 9.6. The data points and the interpolant in example 9.24.

Example 9.24. Suppose we have the data

x 0 1 2 3
f (x) 0 1 1 2

We want to compute the divided differences using (9.31) and organise the com-
putations as in (9.32),

x f (x)
0 0
1 1 1
2 1 0 −1/2
3 2 1 1/2 1/3

This means that the interpolating polynomial is

p3(x) = 0+1(x −0)− 1

2
(x −0)(x −1)+ 1

3
(x −0)(x −1)(x −2)

= x − 1

2
x(x −1)+ 1

3
x(x −1)(x −2).

A plot of this polynomial with the interpolation points is shown in figure 9.6.

There is one more important property of divided differences that we need to
discuss. If we look back on equation (9.24), we see that

c1 = f [x0, x1] = f (x1)− f (x0)

x1 −x0
.

From the mean value theorem for derivatives we can conclude from this that
f [x0, x1] = f ′(ξ) for some number ξ in the interval (x0, x1), provided f ′ is contin-
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uous in this interval. The relation (9.31) shows that higher order divided differ-
ences are built form lower order ones in a similar way, so it should come as no
surprise that divided differences can be related to derivatives in general.

Theorem 9.25. Let f be a function whose first k derivatives are continuous in
the smallest interval [a,b] that contains all the numbers x0, . . . , xk . Then

f [x0, . . . , xk ] = f (k)(ξ)

k !
(9.33)

where ξ is some number in the interval (a,b).

We skip the proof of this theorem, but return to the Newton form of the in-
terpolating polynomial,

pn = f [x0]+ f [x0, x1](x −x0)+·· ·+ · · · f [x0, . . . , xn](x −x0) · · · (x −xn−1).

Theorem 9.25 shows that divided differences can be associated with derivatives,
so this formula is very similar to the formula for a Taylor polynomial. In fact, if
we let all the interpolation points xi approach a common number z, it is quite
easy to show that the interpolating polynomial pn approaches the Taylor poly-
nomial

Tn( f ; z)(x) = f (z)+ f ′(z)(x − z)+·· ·+ f (n)(z)
(x − z)n

n!
.

9.2.4 Computing with the Newton form

Our use of polynomial interpolation will primarily be as a tool for developing
numerical methods for differentiation, integration, and solution of differential
equations. For such purposes the interpolating polynomial is just a step on the
way to a final computational formula, and is not computed explicitly. There are
situations though where one may need to determine the interpolating polyno-
mial explicitly, and then the Newton form is usually preferred.

To use the Newton form in practice, we need two algorithms: One for de-
termining the divided differences involved in the formula (9.29), and one for
computing the value pn(x) of the interpolating polynomial for a given number
x. We consider each of these in turn.

The Newton form of the polynomial that interpolates a given function f at
the n +1 points x0, . . . , xn is given by

pn(x) = f [x0]+ f [x0, x1](x −x0)+·· ·+ f [x0, . . . , xn](x −x0) · · · (x −xn−1),
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and to represent this polynomial we need to compute the divided differences
f [x0], f [x0, x1], . . . , f [x0, . . . , xn]. The obvious way to do this is as indicated in
the table (9.32) which we repeat here for convenience,

x0 f [x0]
x1 f [x1] f [x0, x1]
x2 f [x2] f [x1, x2] f [x0, x1, x2]
x3 f [x3] f [x2, x3] f [x1, x2, x3] f [x0, x1, x2, x3]
...

The natural way to do this is to start with the interpolation points x0, . . . , xn and
the function f , and then compute the values in the table column by column.
Let us denote the entries in the table by (di ,k )n

i=0,k=0, where i runs down the
columns and k indicates the column number, starting with 0 for the column
with the function values. The first column of function values is special and must
be computed separately. Otherwise we note that a value di ,k in column k is given
by the two neighbouring values in column k −1,

di ,k = di ,k−1 −di−1,k−1

xi −xi−k
, (9.34)

for i ≥ k, while the other entries in column k are not defined. We start by com-
puting the first column of function values. Then we can use the formula (9.34)
to compute the next column. It would be natural to start by computing the diag-
onal entry and then proceed down the column. However, it is better to start with
the last entry in the column, and proceed up, to the diagonal entry. The reason
is that once an entry di ,k has been computed, the entry di ,k−1 immediately to
the left is not needed any more. Therefore, there is no need to use a two dimen-
sional array; we can just start with the one dimensional array of function values
and let every new column overwrite the one to the left. Since no column con-
tains values above the diagonal, we end up with the correct divided differences
in the one dimensional array at the end, see exercise 3.

Algorithm 9.26 (Computing divided differences). Let f be a given function,
and x0, . . . , xn given interpolation points for some nonnegative integer n. Af-
ter the code

for i := 0, 1, . . . , n
fi := f (xi );

for k := 1, 2, . . . n
for i := n, n −1, . . . , k

fi := ( fi − fi−1)
/

(xi −xi−k );
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has been performed, the array f contains the divided differences needed for
the Newton form of the interpolating polynomial, so

pn = f0 + f1(x −x0)+ f2(x −x0)(x −x1)+·· ·+ fn(x −x0) · · · (x −xn−1). (9.35)

Note that this algorithm has two nested for-loops, so the number of subtrac-
tions is

n∑
k=1

n∑
i=k

2 =
n∑

k=1
2(n −k +1) = 2

n∑
k=1

k = n(n +1) = n2 +n

which follows from the formula for the sum on the first n integers. We note that
this grows with the square of the degree n, which is a consequence of the double
for-loop. This is much faster than linear growth, which is what we would have
if there was only the outer for-loop. However, for this problem the quadratic
growth is not usually a problem since the degree tends to be low — rarely more
than 10. If one has more points than this the general advice is to use some other
approximation method which avoids high degree polynomials since these are
also likely to lead to large rounding-errors.

The second algorithm that is needed is evaluation of the interpolation poly-
nomial (9.35). Let us consider a specific example,

p3(x) = f0 + f1(x −x0)+ f2(x −x0)(x −x1)+ f3(x −x0)(x −x1)(x −x2). (9.36)

Given a number x, there is an elegant algorithm for computing the value of the
polynomial which is based on rewriting (9.36) slightly as

p3(x) = f0 + (x −x0)
(

f1 + (x −x1)
(

f2 + (x −x2) f3
))

. (9.37)

To compute p3(x) we start from the inner-most parenthesis and then repeatedly
multiply and add,

s3 = f3,

s2 = (x −x2)s3 + f2,

s1 = (x −x1)s2 + f1,

s0 = (x −x0)s1 + f0.

After this we see that s0 = p3(x). This can easily be generalised to a more formal
algorithm. Note that there is no need to keep the different (si )-values; we can
just use one variable s and accumulate the calculations in this.
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Algorithm 9.27 (Horner’s rule). Let x0, . . . , xn be given numbers, and let
( fk )n

k=0 be the coefficients of the polynomial

pn(x) = f0 + f1(x −x0)+·· ·+ fn(x −x0) · · · (x −xn−1). (9.38)

After the code

s := fn ;
for k := n −1, n −2, . . . 0

s := (x −xk )∗ s + fk ;

the variable s will contain the value of pn(x).

The total number of arithmetic operations in this algorithm is n additions,
subtractions and multiplications. On the other hand, the last term in (9.38) on
its own requires n multiplications. The simple reformulation (9.37) is therefore
almost like magic.

9.2.5 Interpolation error

The interpolating polynomial pn is an approximation to f , but unless f itself is
a polynomial of degree n, there will be a nonzero error e(x) = f (x)−pn(x), see
exercise 4. At times it is useful to have an explicit expression for the error.

Theorem 9.28. Suppose f is interpolated by a polynomial of degree n at n+1
distinct points x0, . . . , xn . Let [a,b] be the smallest interval that contains all
the interpolation points as well as the number x, and suppose that the func-
tion f has continuous derivatives up to order n + 1 in [a,b]. Then the error
e(x) = f (x)−pn(x) is given by

e(x) = f [x0, . . . , xn , x](x −x0) · · · (x −xn) = f (n+1)(ξx )

(n +1)!
(x −x0) . . . (x −xn), (9.39)

where ξx is a number in the interval (a,b) that depends on x.

Proof. The second equality in (9.39) follows from (9.33), so we need to prove the
first equality. For this we add the (arbitrary) number x as an interpolation point
and consider interpolation with a polynomial of degree n + 1 at the points x0,
. . . , xn , x. We use t as the free variable to avoid confusion with x. Then we know
that

pn+1(t ) = pn(t )+ f [x0, . . . , xn , x](t −x0) · · · (t −xn).
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Figure 9.7. The solid, nonnegative graph is the polynomial factor (x −3/2)4 in the error term for Taylor ex-
pansion of degree 3 about the a = 3/2, while the other solid graph is the polynomial part x(x −1)(x −2)(x −3)
of the error term for interpolation at 0, 1, 2, 3. The dashed graph is the smallest possible polynomial part of
an error terms for interpolation at 4 points in [0,3].

Since pn+1 interpolates f at t = x we have pn+1(x) = f (x) so

f (x) = pn(x)+ f [x0, . . . , xn , x](x −x0) · · · (x −xn)

which proves the first relation in (9.39).

Theorem 9.28 has obvious uses for assessing the error in polynomial inter-
polation and will prove very handy in later chapters.

The error term in (9.39) is very similar to the error term in the Taylor expan-
sion (9.14). A natural question to ask is therefore: Which approximation method
will give the smallest error, Taylor expansion or interpolation? Since the only
essential difference between the two error terms is the factor (x − a)n+1 in the
Taylor case and the factor (x − x0) · · · (x − xn) in the interpolation case, a reason-
able way to compare the methods is to compare the two polynomials (x −a)n+1

and (x −x0) · · · (x −xn).
In reality, we do not just have two approximation methods but infinitely

many, since there are infinitely many ways to choose the interpolation points.
In figure 9.7 we compare the two most obvious choices in the case n = 3 for the
interval [0,3]: Taylor expansion about the midpoint a = 3/2 and interpolation at
the integers 0, 1, 2, and 3. In the Taylor case, the polynomial (x−3/2)4 is nonneg-
ative and small in the interval [1,2], but outside this interval it grows quickly and
soon becomes larger than the polynomial x(x − 1)(x − 2)(x − 3) corresponding
to interpolation at the integers. We have also included a plot of a third polyno-
mial which corresponds to the best possible interpolation points in the sense
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Figure 9.8. Interpolation of the function f (x) = 1/(1+ x2) on the interval [−5,5] with polynomials of degree
10 in (a), and degree 20 in (b). The points are uniformly distributed in the interval in each case.

that the maximum value of this polynomial is as small as possible in the interval
[0,3], given that its leading coefficient should be 1.

If used sensibly, polynomial interpolation will usually provide a good ap-
proximation to the underlying data. As the distance between the data points
decreases, either by increasing the number of points or by moving the points
closer together, the approximation can be expected to become better. However,
we saw that there are functions for which Taylor approximation does not work
well, and the same may happen with interpolation. As for Taylor approximation,
the problem arises when the derivatives of the function to be approximated be-
come large. A famous example is the so-called Runge function 1/(1+ x2) on the
interval [−5,5]. Figure 9.8 shows the interpolants for degree 10 and degree 20.
In the middle of the interval, the error becomes smaller when the degree is in-
creased, but towards the ends of the interval the error becomes larger when the
degree increases.

9.3 Summary

In this chapter we have considered two different ways of constructing polyno-
mial interpolants. We first reviewed Taylor polynomials briefly, and then studied
polynomial interpolation in some detail. Taylor polynomials are for the main
part a tool that is used for various pencil and paper investigations, while inter-
polation is often used as a tool for constructing numerical methods, as we will
see in later chapters. Both Taylor polynomials and polynomial interpolation are
methods of approximation and so it is important to keep track of the error, which
is why the error formulas are important.

In this chapter we have used polynomials all the time, but have written them
in different forms. This illustrates the important principle that there are many
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different ways to write polynomials, and a problem may simplify considerably
by adapting the form of the polynomial to the problem at hand.

Exercises

9.1 The Taylor polynomials of ex , cos x and sin x expanded around zero are

ex = 1+x + x2

2
+ x3

6
+ x4

24
+ x5

120
+ x6

720
+ x7

5040
+·· ·

cos x = 1− x2

2
+ x4

24
− x6

720
+·· ·

sin x = x − x3

6
+ x5

120
− x7

5040
+·· ·

Calculate the Taylor polynomial of the complex exponential ei x , compare with the Taylor
polynomials above, and explain why Euler’s formula ei x = cos x + i sin x is reasonable.

9.2 The data

x 0 1 3 4
f (x) 1 0 2 1

are given.

a) Determine the Lagrange form of the cubic polynomial that interpolates the data.

b) Determine the Newton form of the interpolating polynomial.

c) Verify that the solutions in (a) and (b) are the same.

9.3 Use algorithm 9.26 to compute the divided differences needed to determine the Newton
form of the interpolating poynomial in exercise 2. Verify that no data are lost when vari-
ables are overwritten.

9.4 a) We have the data

x 0 1 2
f (x) 2 1 0

which have been sampled from the straight line y = 2− x. Determine the Newton
form of the quadratic, interpolating polynomial, and compare it to the straight line.
What is the difference?

b) Suppose we are doing interpolation at x0, . . . , xn with polynomials of degree n.
Show that if the function f to be interpolated is a polynomial p of degree n, then
the interpolant pn will be identically equal to p. How does this explain the result in
(a)?

9.5 Suppose we have the data

(0, y0), (1, y1), (2, y2), (3, y3) (9.40)

where we think of yi = f (i ) as values being sampled from an unknown function f . In this
problem we are going to find formulas that approximate f at various points using cubic
interpolation.

199



a) Determine the straight line p1 that interpolates the two middle points in (9.40), and
use p1(3/2) as an approximation to f (3/2). Show that

f (3/2) ≈ p1(3/2) = 1

2

(
f (1)+ f (2)

)
.

Find an expression for the error.

b) Determine the cubic polynomial p3 that interpolates the data (9.40) and use p3(3/2)
as an approximation to f (3/2). Show that then

f (3/2) ≈ p3(3/2) = −y0 +9y1 −9y2 + y3

16
.

What is the error?

c) Sometimes we need to estimate f outside the interval that contains the interpola-
tion points; this is called extrapolation. Use the same approach as in (a), but find an
approximation to f (4). What is the error?

9.6 a) The data

x 0 1 2 3
f (x) 0 1 4 9

is sampled from the function f (x) = x2. Determine the third order divided differ-
ence f [0,1,2,3].

b) Explain why we always have f [x0, . . . , xn ] = 0 if f is a polynomial of degree at most
n −1.
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