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CHAPTER 6

Difference Equations
and Round-off Errors

An important ingredient in school mathematics is solution of algebraic equa-
tions like x +3 = 4. The challenge is to determine a numerical value for x such
that the equation holds. In this chapter we are going to give a brief review of
difference equations or recurrence relations. In contrast to traditional equations,
the unknown in a difference equation is not a single number, but a sequence of
numbers.

For some simple difference equations, an explicit formula for the solution
can be found with pencil-and-paper methods, and we will review some of these
methods in section 6.4. For most difference equations, there are no explicit so-
lutions. However, a large group of equations can be solved numerically on a
computer, and in section 6.3 we will see how this can be done.

In chapter 5 we saw real numbers are approximated by floating-point num-
bers, and how the limitations inherent in floatng-point numbers sometimes may
cause dramatic errors. In section 6.5 we will see how round-off errors affect the
numerical solutions of difference equations.

6.1 Why equations?

The reason equations are so useful is that they allow us to characterise unknown
quantites in terms of natural principles that may be formulated as equations.
Once an equation has been written down, we can apply standard techniques for
solving the equation and determining the unknown. To illustrate, let us consider
a simple example.

A common type of puzzle goes like this: Suppose a man has a son that is half
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his age, and the son will be 16 years younger than his father in 5 years time. How
old are they?

With equations we do not worry about the ages, but rather write down what
we know. If the age of the father is x and the age of the son is y , the first piece of
information can be expressed as y = x/2, and the second as y = x −16. This has
given us two equations in the two unknowns x and y ,

y = x/2,

y = x −16.

Once we have the equations we use standard techniques to solve them. If this
case, we find that x = 32 and y = 16. This means that the father is 32 years old,
and the son 16.

Difference equations work in the same way, except that they allow us to
model phenomena where the unknown is a sequence of values, like the annual
growth of money in a bank account, or the size of a population of animals over a
period of time. The difference equation is obtained from known principles, and
then the equation is solved by a mathematical or numerical method.

6.2 Difference equations defined

A simple difference equation arises if we try to model the growth of money in a
bank account. Suppose that the amount of money in the account after n years
is xn , and the interest rate is 5 % per year. If interest is added once a year, the
amount of money after n +1 years is given by the difference equation

xn+1 = xn +0.05xn = 1.05xn . (6.1)

This equation characterises the growth of all bank accounts with a 5 % interest
rate — in order to characterise a specific account we need to know how much
money there was in the account to start with. If the initial deposit was 100000 (in
your favourite currency) at time n = 0, we have an initial condition x0 = 100000.
This gives the complete model

xn+1 = 1.05xn , x0 = 100000. (6.2)

This is an example of a first-order difference equation with an initial condition.
Suppose that we withdraw 1000 from the account every year. If we include this
in our model we obtain the equation

xn+1 = 1.05xn −1000. (6.3)
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Figure 6.1. The growth of capital according to the models (6.1) (largest growth), (6.3) (middle growth), and
(6.4) (smallest growth).

As the capital accumulates, it is reasonable that the owner increases the
withdrawals. If for example the amount withdrawn increases by 300 each year,
we get the model

xn+1 = 1.05xn − (1000+300n). (6.4)

A plot of the development of the capital in the three different cases is shown in
figure 6.1. Note that in the case of (6.4) it appears that the growth of the capital
levels out. In fact, it can be shown that after about 45 years, all the capital will be
lost.

After these simple examples, let us define difference equations in general.

Definition 6.1 (Difference equation). A difference equation or recurrence re-
lation is an equation that involves the terms of an unknown sequence (xn).
The equation is said to be of order k if a term in the sequence depends on k
previous terms, as in

xn+k = f (n, xn , xn+1, . . . , xn+k−1), (6.5)

where f is a function of k + 1 variables. The actual values of n for which
(6.5) should hold may vary, but would typically be all nonzero integers.

It is instructive to see how the three examples above fit into the general set-
ting of definition 6.1. In all three cases we have k = 1; in the case (6.1) we
have f (t , x) = 0.5x, in (6.3) we see that f (t , x) = 0.5x −1000, and in (6.4) we have
f (t , x) = 1.05x − (1000+300t ).
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The examples above all led to a simple first-order difference equation. Here
is an example where we end up with an equation of higher order.

Example 6.2. Suppose we have a population of pairs of animals where all pairs
have one pair of babies, and the gestation period is three months. After hav-
ing given birth, an animal can become pregnant again straightaway. This means
that in month n, the population consists of all the pairs from the previous month.
In addition, we have the babies born this month; these are the babies that were
conceived three months ago, when the population was xn−3. This gives the total
model

xn = xn−1 +xn−3, n = 3, 4, . . . ,

or
xn+3 = xn+2 +xn , n = 0, 1, . . .

We obtain a difference equation of order k if we assume that the animals
have a gestation period of k months. By reasoning in the same way we then find

xn+k = xn+k−1 +xn , n = 0, 1, . . . (6.6)

In the case k = 2 we get the famous Fibonacci model.

Difference equations are particularly nice from a computational point of
view since we have an explicit formula for a term in the sequence in terms of
previous terms. In the bank example above, next year’s balance is given explic-
itly in terms of this year’s balance in formulas (6.1), (6.3), and (6.4). For general
equations, we can compute xn+k from the k previous terms in the sequence, as
in (6.5). In order for this to work, we must be able to start somewhere, i.e., we
need to know k consecutive terms in the sequence. It is common to assume that
these terms are x0, . . . , xk−1, but they could really be any k consecutive terms.

Observation 6.3 (Initial conditions). For a difference equation of order k, the
solution is uniquely determined if k consecutive values of the solution is spec-
ified. These initial conditions are usually given as

x0 = a0, x1 = a1, . . . xk = ak ,

where a0, . . . , ak are given numbers.

Note that the number of initial conditions required equals the order of the
equation. The model for population growth (6.6) therefore requires k initial con-
ditions. A natural way to choose the initial conditions in this model is to set

x0 = ·· · = xk = 1. (6.7)

108



æ æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

à à à

à

à

à

à

à

à

à

à

à

à

à

à

à

à

à

à

à

à

ì ì ì ì

ì

ì

ì
ì

ì

ì

ì

ì

ì

ì

ì

ì

ì

ì

ì

ì

ì

5 10 15 20

2

4

6

8

Figure 6.2. Plots of the natural logarithm of the solution of the difference equation (6.6) for k = 2 (fastest
growth), 3 (medium growth), and 4 (slowest growth).

This corresponds to starting with a population of one new-born pair which re-
mains the only one until this pair gives birth to another pair after k months.
Plots of the logarithm of the solutions for k = 2, 3 and 4 are shown in figure 6.2.
Since the logarithm is a straight line,

ln xn = a +bn,

where a and b are constants that can be found from the graphs, we have

xn = ea+bn =Cebn ,

with C = ea . In other words, the solutions of (6.6), with initial values given by
(6.7), grow exponentially.

We end this section by introducing some more terminology.

Definition 6.4. A kth-order difference equation is said to be linear and inho-
mogenous if it has the form

xn+k = g (n)+ f0(n)xn + f1(n)xn+1 +·· ·+ fk−1(n)xn+k−1,

where g and f0, . . . , fk−1 are functions of n. It is said to have constant coeffi-
cients if the functions f0 . . . , fk−1 do not depend on n. It is said to be homoge-
nous if g (n) = 0 for all n.

From this definition we see that the all the difference equations we have en-
countered so far have been linear, with constant coefficients. The equations
(6.3) and (6.4) are inhomogenous, the others are homogenous.
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6.3 Simulating difference equations

We mentioned above that difference equations are well suited for computations.
More specifically, it is easy to calculate the solution numerically since we have
an explicit formula for the next term in the sequence. Let us start by doing this
for second-order linear equations. This is an equation in the form

xn+2 = g (n)+ f0(n)xn + f1(n)xn+1, x0 = a0, x1 = a1 (6.8)

where g , f0 and f1 are given functions of n, and a0 and a1 are given real numbers.
The following is an algorithm for computing the first terms of the solution {xn}.

Algorithm 6.5. Suppose the second-order equation (6.8) is given, i.e., the
functions g , f0, and f1 are given together with the initial values a0 and a1.
The following algorithm will compute the first N + 1 terms x0, x1, . . . , xN of
the solution:

x0 := a0;
x1 := a1;
for i := 2, 3, . . . , N

xi := g (i )+ f0(i )xi−2 + f1(i )xi−1;

This algorithm computes all the N + 1 terms and saves them in the array
x = [x0, . . . , xN ]. Sometimes we are only interested in the last term xN , or we just
want to print out the terms as they are computed — then there is no need to
store all the terms.

Algorithm 6.6. The following algorithm computes the solution of (6.8), just
like algorithm 6.5, but prints each term instead of storing them:

xpp := a0;
xp := a1;
for i := 2, 3, . . . , N

x := g (i −2)+ f0(i −2)xpp + f1(i −2)xp ;
print x;
xpp := xp ;
xp := x;

The algorithm is based on the simple fact that in order to compute the next
term, we only need to know the two previous terms, since the equation is of
second order. At time i , the previous term xi−1 is stored in xp and the term xi−2
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is stored in xpp . Once xi has been computed, we must prepare for the next step
and make sure that xp is shifted down to xpp , which is not needed anymore, and
x is stored in xp . Note that it is important that these assignments are performed
in the right order. At the beginning, the values of xp and xpp are given by the
initial values.

In both of these algorithms it is assumed that the coefficients given by the
functions g , f0 and f1, as well as the initial values a0 and a1, are known. In prac-
tice, the coefficient functions would usually be entered as functions (or meth-
ods) in the programming language you are using, while the initial values could
be read from the terminal or via a graphical user interface.

Algorithms (6.5) and (6.6) can easily be generalised to 3rd or 4th order, or
equations of any fixed order. The most convenient is to have an algorithm which
takes the order of the equation as input.

Algorithm 6.7. The following algorithm computes and prints the first N + 1
terms of the solution of the kth-order difference equation

xn+k = f (n, xn , xn+1, . . . , xn+k−1), n = 0, 1, . . . , N −k (6.9)

with initial values x0 = a0, x1 = a1, . . . , xk−1 = ak−1. Here f is a given function
of k +1 variables, and a0, . . . , ak−1 are given real numbers:

for i := 0, 1, . . . , k −1
zi := ai ;
print zi ;

for i := k, k +1, . . . , N
x := f (i −k, z0, . . . , zk−1);
print x;
for j := 0, . . . , k −2

zi := zi+1;
zk−1 := x;

Algorithm 6.7 is similar to algorithm 6.6 in that it does not store all the terms
of the solution sequence. To compensate it keeps track of the k previous terms
in the array z = [z0, . . . , zk−1]. The values xk , xk+1, . . . , xN are computed in the
second for-loop. By comparison with (6.9) we observe that i = n + k; this ex-
plains i −k = n as the first argument to f . The initial values are clearly correct
the first time through the loop, and at the end of the loop they are shifted along
so that the value in z0 is lost and the new value x is stored in zk−1.

Difference equations have the nice feature that a term in the unknown se-
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quence is defined explicitly as a function of previous values. This is what makes
it simple to generate the values by algorithms like the ones sketched here. Pro-
vided the algorithms are correct and all operations are performed without er-
rors, the exact solution will be computed. When the algorithms are implemented
on a computer, this is the case if all the initial values are integers and all compu-
tations can be performed without introducing fractional numbers. One example
is the Fibonacci equation

xn+2 = xn +xn+1, x0 = 1, x1 = 1.

However, if floating-point numbers are needed for the computations, round-off
errors are bound to occur and it is important to understand how this affects the
computed solution. This is quite difficult to analyse in general, so we will restrict
our attention to linear equations with constant coefficients. First we need to
review the basic theory of linear difference equations.

6.4 Review of the theory for linear equations

Linear difference equations with constant coefficients have the form

xn+k +bk−1xn+k−1 +·· ·+b1xn+1 +b0xn = g (n)

where b0, . . . , bk−1 are real numbers and g (n) is a function of one variable. Ini-
tially we will focus on first-order (k = 1) and second-order (k = 2) equations for
which g (n) = 0 for all n (homogenous equations).

One may wonder why we need to analyse these equations in detail when we
can simulate theme so easily numerically. One reason is that for degree 1 and
2, the analytic solutions are so simple that they have practical importance. For
our purposes however, it is equally important that the theory to be presented
below will help us to understand how round-off errors influence the results of
numerical simulations — this is the main topic in section 6.5.

6.4.1 First-order homogenous equations

The general first-order linear equation with constant coefficients has the form

xn+1 = bxn , (6.10)

where b is some real number. Often we are interested in xn for all n ≥ 0, but any
value of n ∈Zmakes sense in the following. From (6.10) we find

xn+1 = bxn = b2xn−1 = b3xn−2 = ·· · = bn+1x0. (6.11)

This is the content of the first lemma.
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Lemma 6.8. The first-order homogenous difference equation

xn+1 = bxn , n ∈Z,

where b is an arbitrary real number, has the general solution

xn = bn x0, n ∈Z.

If x0 is specified, the solution is uniquely determined.

The fact that the solution also works for negative values of n follows just like
in (6.11) if we rewrite the equation as xn = b−1xn+1 (assuming b 6= 0).

We are primarily interested in the case where n ≥ 0, and then we have the
following simple corollary.

Corollary 6.9. For n ≥ 0, the solution of the difference equation xn+1 = bxn

will behave according to one of the following four cases:

lim
n→∞xn =


0, if |b| < 1;

∞, if |b| > 1;

x0, if b = 1;

(−1)n x0, if b =−1.

Phrased differently, the solution of the difference equation will either tend
to 0 or ∞, except in the case where |b| = 1.

6.4.2 Second-order homogenous equations

The general second-order homogenous equation is

xn+2 +b1xn+1 +b0xn = 0. (6.12)

The basic idea behind solving this equation is to try with a solution xn = r n in
the same form as the solution of first-order equations, and see if there are any
values of r for which this works. If we insert xn = r n in (6.12) we obtain

0 = xn+2 +b1xn+1 +b0xn = r n+2 +b1r n+1 +b0r n = r n(r 2 +b1r +b0).

In other words, we must either have r = 0, which is uninteresting, or r must be a
solution of the quadratic equation

r 2 +b1r +b0 = 0
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which is called the characteristic equation of the difference equation. If the char-
acteristic equation has the two solutions r1 and r2, we know that both yn = r n

1
and zn = r n

2 will be solutions of (6.12). And since the equation is linear, it can be
shown that any combination

xn =Cr n
1 +Dr n

2

is also a solution of (6.12) for any choice of the numbers C and D . However,
in the case that r1 = r2 this does not give the complete solution, and if the two
solutions are complex conjugates of each other, the solution may be expressed
in a more adequate form that does not involve complex numbers. In either case,
the two free coefficients can be adapted to two initial conditions like x0 = a0 and
x1 = a1.

Theorem 6.10. The solution of the homogenous, second-order difference
equation

xn+2 +b1xn+1 +b0xn = 0 (6.13)

is governed by the solutions r1 and r2 of the characteristic equation

r 2 +b1r +b0 = 0

as follows:

1. If the two roots r1 and r2 are real and distinct, the general solution of
(6.13) is given by

xn =Cr n
1 +Dr n

2 .

2. If the two roots are equal, r1 = r2, the general solution of (6.13) is given
by

xn = (C +Dn)r n
1 .

3. If the two roots are complex conjugates of each other so that r1 = r and
r2 = r̄ , and r can be written in polar form as r = ρe iθ, then the general
solution of (6.13) is given by

xn = ρn(C cosnθ+D sinnθ).

In all three cases the solution can be determined uniquely by two initial con-
ditions x0 = a0 and x1 = a1, where a0 and a1 are given real numbers, since this
determines the two free coefficients C and D uniquely.
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The proof of this theorem is not so complicated and can be found in a text
on difference equations. The following is a consequence of the theorem which
is analogous to corollary 6.9.

Corollary 6.11. Suppose that one root, say r1, of the characteristic equation
satisfies |r1| > 1, that C 6= 0, and that |r2| < |r1|. Then

lim
n→∞ |xn | =∞.

On the other hand, if both |r1| < 1 and |r2| < 1, then

lim
n→∞xn = 0.

Note that in cases 2 and 3 in theorem 6.10, the two roots have the same ab-
solute value (in case 2 the roots are equal and in case 3 they both have absolute
value ρ). In those cases both roots will therefore either be larger than 1 in abso-
lute value or smaller than 1 in absolute value. This means that it is only in the
first case that we need to distinguish between the two roots in the conditions in
corollary 6.11.

Proof of corollary 6.11. In cases 2 and 3 in theorem 6.10 |r1| = |r1|, so if |r1| > 1
and |r2| < |r1| we must have two real roots. Then we can write the solution as

xn = r n
1

(
C +D

(r2

r1

)n
)

and therefore

lim
n→∞ |xn | = lim

n→∞ |r1|n
∣∣∣∣C +D

(r2

r1

)n
∣∣∣∣= |C | lim

n→∞ |r1| =∞.

If both |r1| < 1 and |r2| < 1 and both roots are real, the triangle inequality
leads to

lim
n→∞ |xn | ≤ lim

n→∞

(
|C ||r1|n +|D||r2|n

)
= 0.

If r1 = r2, and |r1| < 1 (case 2 in theorem 6.10), we have the same conclusion
since n|r1|n tends to 0 when n tends to ∞. Finally, in the case of complex conju-
gate roots of absolute value less than 1 we have ρ < 1, so the term ρn will ensure
that |xn | tends to 0.
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A situation that is not covered by corollary 6.11 is the case where both roots
are real, but of opposite sign, and larger than 1 in absolute value. In this case
the solution will also tend to infinity in most cases, but not always. Consider
for example the case where xn = 2n + (−2)n . Then x2n+1 = 0 for all n while
limn→∞ x2n =∞.

6.4.3 Linear homogenous equations of general order

Consider now a kth-order, homogenous, and linear difference equation with
constant coefficients,

xn+k +bk−1xn+k−1 +·· ·+b1xn+1 +b0xn = 0,

where all the coefficients {bi } are real numbers. It is quite easy to show that if we
have k solutions {xi

n}k
i=1, then the combination

xn =C1x1
n +C2x2

n +·· ·+Ck xk
n (6.14)

will also be a solution for any choice of the coefficients {Ci }. As we have already
seen, an equation of order k can be adapted to k initial values.

To determine k solutions, we follow the same procedure as for second-order
equations and try the solution xn = r n . We then find that r must solve the char-
acteristic equation

r k +bk−1r k−1 +·· ·+b1r +b0 = 0.

From the fundamental theorem of algebra we know that this equation has k dis-
tinct roots, and complex roots occur in conjugate pairs since the coefficients are
real. A theorem similar to theorem 6.10 can therefore be proved.

Observation 6.12. The general solution of the difference equation

xn+k +bk−1xn+k−1 +·· ·+b1xn+1 +b0xn = 0

is a combination of k terms

xn =C1x1
n +C2x2

n +·· ·+Ck xk
n

where each term {xi
k } is a solution of the difference equation. The solution

{xi
n}n is essentially on the form xi

n = r n
i where ri is the i th root of the charac-

teristic equation
r k +bk−1r k−1 +·· ·+b1r +b0 = 0.
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Note the word ’essentially’ in the last sentence: just like for quadratic equa-
tions we have to take special care when there are double roots (or roots of even
higher multiplicity) or complex roots.

Closed formulas for the roots can be found when for quadratic, cubic and
quartic equations, but the expressions even for cubic equations, can be rather
complicated. For higher degree than two one therefore has to resort to numeri-
cal techniques, like the ones in chapter 10, for finding the roots.

There is also a close of analog of corollary 6.11 which shows that a solution
will tend to zero if all roots have absolute value less than 1. And if there is a root
with absolute value greater than 1, whose corresponding coefficient in (6.14) is
nonzero, then the solution will grow beyond all bounds when n becomes large.

6.4.4 Inhomogenous equations

So far we have only discussed homogenous difference equations. For inhomoge-
nous equations there is an important, but simple lemma, which can be found in
the standard text books on difference equations.

Lemma 6.13. Suppose that {xp
n } is a particular solution of the inhomogenous

difference equation

xn+k +bk−1xn+k−1 +·· ·+b1xn+1 +b0xn = g (n). (6.15)

Then all other solutions of the inhomogenous equation will have the form

xn = xp
n +xh

n

where {xh
n } is some solution of the homogenous equation

xn+k +bk−1xn+k−1 +·· ·+b1xn+1 +b0xn = 0.

More informally, lemma 6.13 means that we can find the general solution of
(6.15) by just finding one solution, and then adding the general solution of the
homogenous equation. The question is how to find one solution. The following
observation is useful.

Observation 6.14. One of the solutions of the inhomogenous equation

xn+k +bk−1xn+k−1 +·· ·+b1xn+1 +b0xn = g (n)

has the same form as g (n).
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Some examples will illustrate how this works.

Example 6.15. Consider the equation

xn+1 −2xn = 3. (6.16)

Here the right-hand side is constant, so we try with the a particular solution
xh

n = A, where A is an unknown constant to be determined. If we insert this in
the equation we find

A−2A = 3,

so A = −3. This means that xp
n = −3 is a solution of (6.16). Since the general

solution of the homogenous equation xn+1 − 2xn = 0 is xh
n = C 2n , the general

solution of (6.16) is
xn = xh

n +xp
n =C 2n −3.

In general, when g (n) is a polynomial in n of degree d , we try with a partic-
ular solution which is a general polynomial of degree d . When this is inserted
in the equation, we obtain a relation between two polynomials that should hold
for all values of n, and this requires corresponding coefficients to be equal. In
this way we obtain a set of equations for the coefficients.

Example 6.16. In the third-order equation

xn+3 −2xn+2 +4xn+1 +xn = n (6.17)

the right-hand side is a polynomial of degree 1. We therefore try with a solution
xp

n = A+Bn and insert this in the difference equation,

n = A+B(n +3)−2(A+B(n +2))+4(A+B(n +1))+ A+Bn = (4A+3B)+4Bn.

The only way for the two sides to be equal for all values of n is if the constant
terms and first degree terms on the two sides are equal,

4A+3B = 0,

4B = 1.

From these equations we find B = 1/4 and A =−3/16, so one solution of (6.17) is

xp
n = n

4
− 3

16
.

There are situations where the technique above does not work because the
trial polynomial solution is also a homogenous solution. In this case the degree
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of the polynomial must be increased. For more details we refer to a text book on
difference equations.

Other types of right-hand sides can be treated similarly. One other type is
given by functions like

g (n) = p(n)an ,

where p(n) is a polynomial in n and a is a real number. In this case, one tries
with a solution xp

n = q(n)an where q(n) is a general polynomial in n of the same
degree as p(n).

Example 6.17. Suppose we have the equation

xn+1 +4xn = n3n . (6.18)

The right hand side is a first-degree polynomial in n multiplied by 3n , so we try
with a particular solution in the form

xp
n = (A+Bn)3n .

When this is inserted in the difference equation we obtain

n3n = (
A+B(n +1)

)
3n+1 +4(A+Bn)3n

= 3n
(
3
(

A+B(n +1)
)+4A+4Bn

)
= 3n(7A+B +5Bn).

Here we can cancel 3n , which reduces the equation to an equality between two
polynomials. If these are to agree for all values of n, the constant terms and the
linear terms must agree,

7A+B = 0,

5B = 1.

This system has the solution B = 1/5 and A = −1/35, so a particular solution of
(6.18) is

xp
n =

(1

5
n − 1

35

)
3n .

The homogenous equation xn+1 −4xn = 0 has the general solution xh
n = C 4n so

according to lemma 6.13 the general solution of (6.18) is

xn = xh
n +xp

n =C 4n +
(
− 1

35
+ 1

5
n

)
3n .
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6.5 Round-off errors and stability for linear equations

In chapter 5, we saw that computations on a computer often lead to errors, at
least when we use floating-point numbers. Therefore, when the solution of a dif-
ference equation is computed via one of the algorithms in section 6.3, we must
be prepared for errors. In this section we are going to study this in some de-
tail. We will restrict our attention to linear difference equations with constant
coefficients.

We first recall that integer arithmetic is always correct, except for the possi-
bility of overflow, which is so dramatic that it is usually quite easy to detect. We
therefore focus on the case where floating-point numbers must be used. Note
that we use 64-bit floating-point numbers in all the examples in this chapter.

The effect of round-off errors become quite visible from a couple of exam-
ples.

Example 6.18. Consider the equation

xn+2 − 2

3
xn+1 − 1

3
xn = 0, x0 = 1, x1 = 0. (6.19)

Since the two roots of the characteristic equation r 2 −2r /3−1/3 = 0 are r1 = 1
and r2 =−1/3, the general solution of the difference equation is

xn =C +D
(
−1

3

)n
.

The initial conditions yield the equations

C +D = 1,

C −D/3 = 0,

which has the solution C = 1/4 and D = 3/4. The solution of (6.19) is therefore

xn = 1

4

(
1+ (−1)n31−n)

.

We observe that xn tends to 1/4 as n tends to infinity.
Note that if we simulate the equation (6.19) on a computer, the next term is

computed by the formula xn+2 = (2xn+1 + xn)/3. The division by 3 means that
floating-point numbers are required to calculate this expression. If we simulate
the difference equation, we obtain the four approximate values

x̃10 = 0.250012701316,

x̃15 = 0.249999947731,

x̃20 = 0.250000000215,

x̃30 = 0.250000000000,
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which agree with the exact solution to 12 digits. In other words, numerical sim-
ulation in this case works very well, even if floating-point numbers are used in
the calculations.

Example 6.19. We consider the difference equation

xn+2 − 19

3
xn+1 +2xn =−10, x0 = 2, x1 = 8/3. (6.20)

The two roots of the characteristic equation are r1 = 1/3 and r2 = 6, so the gen-
eral solution of the homogenous equation is

xh
n =C 3−n +D6n .

To find a particular solution we try a solution xp
n = A which has the same form

as the right-hand side. We insert this in the difference equation and find A = 3,
so the general solution is

xn = xh
n +xp

n = 3+C 3−n +D6n . (6.21)

If we enforce the initial conditions, we end up with the system of equations

2 = x0 = 3+C +D,

8/3 = x1 = 3+C /3+6D.
(6.22)

This may be rewritten as

C +D =−1,

C +18D =−1.
(6.23)

which has the solution C =−1 and D = 0. The final solution is therefore

xn = 3−3−n , (6.24)

which tends to 3 when n tends to infinity.
Let us simulate the equation on the computer. As in the previous example

we have to divide by 3 so we have to use floating-point numbers. Some early
terms in the computed sequence are

x̃5 = 2.99588477366,

x̃10 = 2.99998306646,

x̃15 = 3.00001192858,
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(throughout this section we will use x̃n to denote a computed version of xn).
These values appear to approach 3 as they should. However, some later values
are

x̃20 = 3.09329859009,

x̃30 = 5641411.98633,

x̃40 = 3.41114428655×1014,

(6.25)

and at least the last two of these are obviously completely wrong.

6.5.1 Explanation of example 6.19

Let us see what went wrong in example 6.19. First of all we note that the initial
values are x0 = 2 and x1 = 8/3. The first of these will be represented exactly
in a computer whether we use integers or floating-point numbers. The second
definitely requires floating-point numbers. Note though that the fraction 8/3
cannot be represented exactly with a finite number of digits, and therefore there
will inevitably be round-off error.

Observation 6.20. The initial value x0 = 2 is represented exactly by floating-
point numbers, but the initial value 8/3 at x1 becomes x̃1 = a1, where a1 is the
floating-point number closest to 8/3.

The fact that the initial value at x1 is not quite correct means that when the
coefficients C and D in (6.21) are determined, the solutions are not exactly C = 1
and D = 0. If the initial values used in computations are x̃0 = 2 and x̃1 = 8/3+δ

where δ is a small number (in the range 10−18 to 10−15 for 64-bit floating-point
numbers), we can determine the new values of C and D from equations like
(6.22). If we solve these equations we find

C =−1− 3

17
δ, D = 3

17
δ. (6.26)

This is summarised in the next observation.

Observation 6.21. Because of round-off errors in the second initial value, the
exact values of the coefficients C and D in (6.21) used in calculations are

C =−1+ε1, D = ε2 (6.27)

where ε1 and ε2 are small numbers. The solution used in the simulations is
therefore

x̃n = 3− (1−ε1)3−n +ε26n .
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The actual computations are based on the formula

xn+2 = 19

3
xn+1 −2xn −10

for computing the next term in the solution. Here as well there is division by 3,
which inevitably brings with it further round-off errors each time a new term is
computed. It turns out that these errors may also be roughly accounted for by
assuming that the initial values are changed.

Observation 6.22. The computed solution of the difference equation (6.20),
including all round-off errors, is essentially the solution of a problem where
the initial values have been changed, i.e., the computed values are the solu-
tion of the problem

xn+2 − 19

3
xn+1 +2xn =−10, x0 = 2+δ1, x1 = 8/3+δ2, (6.28)

where the actual values of δ1 and δ2 depend on the details of the computa-
tions.

Observation 6.22 means that we should be able to predict the effect of round-
off errors by solving a problem with slightly different initial values. When we
change the initial values, the coefficients C and D also change. When we only
perturbed x1 we obtained the solutions given by (6.26). With the initial values in
(6.28) we find

C =−1+ 18δ1 −3δ2

17
, D = 3δ2 −δ1

17
.

These solutions may be written as in (6.27) if we set

ε1 = (18δ1 −3δ2)/17,

ε2 = (3δ2 −δ1)/17.
(6.29)

The conclusion is therefore as in observation 6.21.

Observation 6.23. When the difference equation (6.20) is simulated numeri-
cally, the computed numbers are essentially given by the formula

x̃n = 3− (1−ε1)3−n +ε26n , (6.30)

where ε1 and ε2 are small numbers.
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From observation 6.23 it is easy to explain where the values in (6.25) came
from. Because of round-off errors, the computed solution is given by (6.30),
where ε2 is a small nonzero number. Even if ε2 is small, the product ε26n will
eventually become large, since 6n grows beyond all bounds when n becomes
large. In fact we can use the values in (6.25) to estimate ε2. For n = 40 we have
3−n ≈ 8.2×10−20 and 6n ≈ 1.3×1031. Since we have used 64-bit floating-point
numbers, this means that only the last term in (6.30) is relevant (the other two
terms affect the result in about the 30th digit and beyond. This means that we
can find ε2 from the relation

3.4×1014 ≈ x̃40 ≈ ε2640 ≈ ε21.3×1031.

From this we see that ε2 ≈ 2.6×10−17. This is a reasonable value since we know
from (6.29) that ε2 is roughly as large as the round-off error in the initial values.
With 64-bit floating-point numbers we have about 15–18 decimal digits, so a
round-off error of about 10−17 is to be expected when the numbers are close to
1 as in this example.

Observation 6.24. When ε2 is nonzero in (6.30), the last term ε26n will even-
tually dominate the computed solution of the difference equation completely,
and the computations will eventually end in overflow.

6.5.2 Round-off errors for linear equations of general order

It is important to realise that the problem with the computed solution in (6.25)
becoming large is not really because of unfortunately large round-off errors; any
round-off error at all would give the same kind of behaviour. The general prob-
lem is that we have a family of solutions given by

xn = 3+C 3−n +D6n , (6.31)

and different initial conditions pick out different solutions (different values of C
and D) within this family. With floating-point numbers it is basically impossible
to get D to be exactly 0, so the last term in (13.4) will always dominate the com-
puted solution for large values of n and completely overwhelm the other two
parts of the solution.

The difference equation in example 6.19 is not particularly demanding — we
will get the same effect whenever we have a difference equation where at least
one of the roots of the characteristic equation is larger than 1 in absolute value,
but the exact solution remains bounded, or at least significantly smaller than the
part of solutions corresponding to the largest root.
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Observation 6.25. Suppose the difference equation

xn+k +bn−k xn−k +·· ·+b1xn+1 +b0xn = g (n)

is solved (simulated) numerically with floating-point numbers, and let r be
the root of the characteristic equation,

r k +bk−1r k−1 +·· ·+b1r +b0 = 0,

with largest absolute value. If the particular solution of the inhomogenous
equation does not grow as fast as |r |n (in case |r | > 1), or decays faster than
|r |n (in the case |r | < 1), then the computed solution will eventually be domi-
nated by the solution corresponding to the root r , regardless of what the initial
values are.

In example 6.19, the solution family has three components: the two solu-
tions 6n and 3−n from the homogenous equation, and the constant solution 3
from the inhomogenous equation. When the solution we are after just involves
3−n and 3 we get into trouble because we invariably also bring along 6n because
of round-off errors. On the other hand, if the exact initial values lead to a solu-
tion that includes 6n , then we will not get problems with round-off: The coeffi-
cient multiplying 6n will be accurate enough, and the other terms are too small
to pollute the 6n solution.

Example 6.26. We consider the third-order difference equation

xn+3 − 16

3
xn+2 + 17

3
xn+1 − 4

3
xn = 10×2n , x0 =−2, x1 =−17

3
, x2 =−107

9
.

The coefficients have been chosen so that the roots of the characteristic equa-
tion are r1 = 1/3, r2 = 1 and r3 = 4. To find a particular solution we try with
xp

n = A2n . If this is inserted in the equation we find A =−3, so the general solu-
tion is

xn =−3×2n +B3−n +C +D4n . (6.32)

The initial conditions force B = 0, C = 1 and D = 0, so the exact solution is

xn = 1−3×2n . (6.33)

The discussion above shows that this is bound to lead to problems. Because of
round-off errors, the coefficients B and D will not be exactly 0 when the equation
is simulated. Instead we will have

x̃n =−3×2n +ε13−n + (1+ε2)+ε34n
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Even if ε3 is small, the term ε34n will dominate when n becomes large. This is
confirmed if we do the simulations. The computed value x̃100 is approximately
4.5×1043, while the exact value is −3.8×1030.

6.6 Summary

In this chapter we met the effect of round-off errors on realistic computations
for the first time. We saw that innocent-looking computations like the simu-
lation of the difference equation in example 6.19 led to serious problems with
round-off errors. By making use of the theory behind difference equations we
were able to understand why the simulations behave they way they do. From
this insight we also realise that for this particular equation and initial values, the
blow-up is unavailable, just like cancellation is unavoidable when we subtract
two almost equal numbers. Such problems are usually referred to as being badly
conditioned. On the other hand, a different choice of initial conditions may lead
to calculations with no round-off problems; then the problem is said to be well
conditioned.

Exercises

6.1 Which equations are linear?

a) xn+2 +3xn+1 − sin(n)xn = n!.

b) xn+3 −xn+1 +x2
n = 0.

c) xn+2 +xn+1xn = 0.

d) nxn+2 −xn+1en +xn = n2.

6.2 Program algorithm 6.6 and test it on the Fibonacci equation

xn+2 = xn+1 +xn , x0 = 0, x1 = 1.

6.3 Generalise algorithm 6.6 to third order equations and test it on the Fibonacci like equation

xn+3 = xn+2 +xn+1 +xn , x0 = 0, x1 = 1, x2 = 1.

6.4 In this exercise we are going to study the difference equation

xn+1 −3xn = 5−n , x0 =−5/14. (6.34)

a) Show that the general solution of (6.34) is

xn =C 3n − 5

14
5−n

and that the initial condition leads to the solution

xn =− 5

14
5−n .
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b) Explain what will happen if you simulate equation 6.34 numerically.

c) Do the simulation and check that your prediction in (b) is correct.

6.5 We consider the Fibonacci equation with nonstandard initial values

xn+2 −xn+1 −xn = 0, x0 = 0, x1 = (1−p
5)/2. (6.35)

a) Show that the general solution of the equation is

xn =C
1+p

5

2
+D

1−p
5

2
,

and that the initial values picks out the solution

xn = 1−p
5

2
.

b) What will happen if you simulate (6.35) on a computer?

c) Do the simulation and check that your predictions are correct.

6.6 We have the difference equation

xn+2 −
2

5
xn+1 +

1

45
= 0, x0 = 1, x1 = 1/15. (6.36)

a) Determine the general solution of (6.36) as well as the solution selected by the initial
condition.

b) Why must you expect problems when you do a numerical simulation of the equa-
tion?

c) Determine approximately the value of n when the numerical solution has lost all
significant digits.

d) Perform the numerical simulation and check that your predictions are correct.

6.7 In this exercise we consider the difference equation

xn+2 −
5

2
xn+1 +xn = 0, x0 = 1, x1 = 1/2.

a) Determine the general solution, and the solution corresponding to the initial con-
ditions.

b) What kind of behaviour do you expect if you simulate the equation numerically?

c) Do the simulation and explain your results.
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