
CHAPTER 3

Numbers and Numeral
Systems

Numbers play an important role in almost all areas of mathematics, not least in
calculus. Virtually all calculus books contain a thorough description of the nat-
ural, rational, real and complex numbers, so we will not repeat this here. An
important concern for us, however, is to understand the basic principles be-
hind how a computer handles numbers and performs arithmetic, and for this
we need to consider some facts about numbers that are usually not found in
traditional calculus texts.

More specifically, we are going to review the basics of the decimal numeral
system, where the base is 10, and see how numbers may be represented equally
well in other numeral systems where the base is not 10. We will study represen-
tation of real numbers as well as arithmetic in different bases. Throughout the
chapter we will pay special attention to the binary numeral system (base 2) as
this is what is used in most computers. This will be studied in more detail in the
next chapter.

3.1 Terminology and Notation

We will usually introduce terminology as it is needed, but certain terms need to
be agreed upon straightaway. In your calculus book you will have learnt about
natural, rational and real numbers. The natural numbers N0 = {0,1,2,3,4, . . . }1

are the most basic numbers in that both rational and real numbers can be con-
structed from them. Any positive natural number n has an opposite number

1In most books the natural numbers start with 1, but for our purposes it is convenient to in-
clude 0 as a natural number as well. To avoid confusion we have therefore added 0 as a subscript.
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−n, and we denote by Z the set of natural numbers augmented with all these
negative numbers,

Z= {. . . ,−3,−2,−1,0,1,2,3, . . .}.

We will refer to Z as the set of integer numbers or just the integers.
Intuitively it is convenient to think of a real number x as a decimal number

with (possibly) infinitely many digits to the right of the decimal point. We then
refer to the number obtained by setting all the digits to the right of the decimal
point to 0 as the integer part of x. If we replace the integer part by 0 we obtain the
fractional part of x. If for example x = 3.14, its integer part is 3 and its fractional
part is 0.14. A number that has no integer part will often be referred to as a
fractional number.

Definition 3.1. Let x = dndn−1 · · ·d2d1d0 .d−1d−2 · · · be a decimal number.
Then the number dndn−1 · · ·d1d0 is called the integer part of x while the num-
ber 0.d−1d−2 · · · is called the fractional part of x.

For rational numbers there are standard operations we can perform to find
the integer and fractional parts. When two positive natural numbers a and b are
divided, the result will usually not be an integer, or equivalently, there will be a
remainder. Let us agree on some notation for these operations.

Notation 3.2 (Integer division and remainder). If a and b are two integers,
the number a //b is the result obtained by dividing a by b and discarding the
remainder. The number a %b is the remainder when a is divided by b.

For example 3//2 = 1, 9//4 = 2 and 24//6 = 4, while 3%2 = 1, 23%5 = 3, and
24%4 = 0.

We will use standard notation for intervals of real numbers. Two real num-
bers a and b with a < b define four intervals that only differ in whether the end
points a and b are included or not. The closed interval [a,b] contains all real
numbers between a and b, including the end points. Formally we can express
this by [a,b] = {x ∈R | a ≤ x ≤ b}. The other intervals can be defined similarly,

Definition 3.3 (Intervals). Two real numbers a and b defined the four inter-
vals

(a,b) = {x ∈R | a < x < b} (open);

[a,b] = {x ∈R | a ≤ x ≤ b} (closed);

(a,b] = {x ∈R | a < x ≤ b} (half open);

[a,b) = {x ∈R | a ≤ x < b} (half open).
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With this notation we can say that a fractional number is a real number in
the interval [0,1).

3.2 Natural Numbers in Different Numeral Systems

We usually represent natural numbers in the decimal numeral system, but in
this section we are going to see that this is just one of infinitely many numeral
systems. We will also give a simple method for converting a number from its
decimal representation to its representation in a different base.

3.2.1 Alternative Numeral Systems

In the decimal system we use a positional convention and express numbers in
terms of the ten digits 0, 1, . . . , 8, 9, and let the position of a digit determine how
much it is worth. For example the string of digits 3761 is interpreted as

3761 = 3×103 +7×102 +6×101 +1×100.

Numbers that have a simple representation in the decimal numeral system are
often thought of as special. For example it is common to celebrate a 50th birth-
day in a special way or mark the centenary anniversary of an important event
like a country’s independence. However, the numbers 50 and 100 are only spe-
cial when they are written in the decimal numeral system.

Any natural number can be used as the base for a numeral system. Consider
for example the septenary numeral system which has 7 as the base and uses the
digits 0-6. In this system the numbers 3761, 50 and 100 become

3761 = 136527 = 1×74 +3×73 +6×72 +5×71 +2×70,

50 = 1017 = 1×72 +0×71 +1×70,

100 = 2027 = 2×72 +0×71 +2×70,

so 50 and 100 are not quite as special as in the decimal system.

These examples make it quite obvious that we can define numeral systems
with almost any natural number as a base. The only restriction is that the base
must be greater than one. To use 0 as base is quite obviously meaningless, and
if we try to use 1 as base we only have the digit 0 at our disposal, which means
that we can only represent the number 0. We record the general construction in
a formal definition.
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Definition 3.4. Let β be a natural number greater than 1 and let n0, n1, . . . ,
nβ−1 be β distinct numerals (also called digits) such that ni denotes the num-
ber ni = i . A natural number representation in base β is an ordered collection
of digits (dk dn−1 . . .d1d0)β which is interpreted as the natural number

dkβ
k +dk−1 β

k−1 +dk−2 β
k−2 +·· ·+d1β

1 +d0β
0

where each digit di is one of the β numerals {ni }β−1
i=0 .

Formal definitions in mathematics often appear complicated until one gets
under the surface, so let us consider the details of the definition. The base β is
not so mysterious. In the decimal system β = 10 while in the septenary system
β = 7. The beginning of the definition simply states that any natural number
greater than 1 can be used as a base.

In the decimal system we use the digits 0–9 to write down numbers, and in
any numeral system we need digits that can play a similar role. If the base is 10
or less it is natural to use the obvious subset of the decimal digits as numerals.
If the base is 2 we use the two digits n0 = 0 and n1 = 1; if the base is 5 we use
the five digits n0 = 0, n1 = 1, n2 = 2, n3 = 3 and n4 = 4. However, if the base is
greater than 10 we have a challenge in how to choose numerals for the numbers
10, 11, . . . , β−1. If the base is less than 40 it is common to use the decimal digits
together with the initial characters of the latin alphabet as numerals. In base
β= 16 for example, it is common to use the digits 0–9 augmented with n10 = a,
n11 = b, n12 = c, n13 = d , n14 = e and n15 = f . This is called the hexadecimal
numeral system and in this system the number 3761 becomes

eb116 = e ×162 +b ×161 +1×161 = 14×256+11×16+1 = 3761.

Definition 3.4 defines how a number can be expressed in the numeral system
with base β. However, it does not say anything about how to find the digits of a
fixed number. And even more importantly, it does not guarantee that a number
can be written in the base-β numeral system in only one way. This is settled in
our first lemma below.

Lemma 3.5. Any natural number can be represented uniquely in the base-β
numeral system.

Proof. To keep the argument as transparent as possible, we give the proof for a
specific example, namely a = 3761 and β = 8 (the octal numeral system). Since
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84 = 4096 > a, we know that the base-8 representation cannot contain more than
4 digits. Suppose that 3761 = (d3d2d1d0)8; our job is to find the value of the
four digits and show that each of them only has one possible value. We start by
determining d0. By definition of base-8 representation of numbers we have the
relation

3761 = (d3d2d1d0)8 = d383 +d282 +d18+d0. (3.1)

We note that only the last term in the sum on the right is not divisible by 8, so
the digit d0 must therefore be the remainder when 3761 is divided by 8. If we
perform the division we find that

d0 = 3761%8 = 1, 3761//8 = 470.

We observe that when the right-hand side of (3.1) is divided by 8 and the remain-
der discarded, the result is d382 +d28+d1. In other words be must have

470 = d382 +d28+d1.

But then we see that d1 must be the remainder when 470 is divided by 8. If we
perform this division we find

d1 = 470%8 = 6, 470//8 = 58.

Using the same argument as before we see that the relation

58 = d38+d2 (3.2)

must hold. In other words d2 is the remainder when 58 is divided by 8,

d2 = 58%8 = 2, 58//8 = 7.

If we divide both sides of (3.2) by 8 and drop the remainder we are left with 7 =
d3. The net result is that 3761 = (d3d2d1d0)8 = 72618.

We note that during the computations we never had any choice in how to de-
termine the four-digits, they were determined uniquely. We therefore conclude
that the only possible way to represent the decimal number 3761 in the base-8
numeral system is as 72618.

The proof is clearly not complete since we have only verified Lemma 3.5 in a
special case. However, the same argument can be used for any a and β and we
leave it to the reader to write down the details in the general case.

Lemma 3.5 says that any natural number can be expressed in a unique way
in any numeral system with base greater than 1. We can therefore use any such
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numeral system to represent numbers. Although we may feel that we always use
the decimal system, we all use a second system every day, the base-60 system.
An hour is split into 60 minutes and a minute into 60 seconds. The great advan-
tage of using 60 as a base is that it is divisible by 2, 3, 4, 5, 6, 10, 12, 15, 20 and 30
which means that an hour can easily be divided into many smaller parts with-
out resorting to fractions of minutes. Most of us also use other numeral systems
without knowing. Virtually all electronic computers use the base-2 (binary) sys-
tem and we will see how this is done in the next chapter.

We are really only considering natural numbers in this section, but let us add
a comment about how to represent negative numbers in the base-β numeral
system. This is not so difficult. There is nothing particularly decimal about the
minus sign, so the number −a may be represented like a, but preceded with −.
Therefore, we represent for example the decimal number −3761 as −72618 in
the octal numeral system.

3.2.2 Conversion to the Base-β Numeral System

The method used in the proof of Lemma 3.5 for converting a number to base β

is important, so we record it as an algorithm.

Algorithm 3.6. Let a be a natural number that in base β has the k +1 digits
(dk dk−1 · · ·d0)β. These digits may be computed by performing the operations:

a0 := a;
for i := 0, 1, . . . , k

di := ai %β;
ai+1 := ai //β;

Let us add a little explanation since this is our first algorithm apart from the
examples in section 1.4. We start by setting the variable a0 equal to a, the num-
ber whose digits we want to determine. We then let i take on the values 0, 1, 2,
. . . , k. For each value of i we perform the operations that are indented, i.e., we
compute the numbers ai %β and ai //β and store the results in the variables di

and ai+1.
Algorithm 3.6 demands that the number of digits in the representation to

be computed is known in advance. If we look back on the proof of Lemma 3.5,
we note that we do not first check how many digits we are going to compute,
since when we are finished the number that we divide (the number ai in Algo-
rithm 3.6) has become 0. We can therefore just repeat the two indented state-
ments in the algorithm until the result of the division becomes 0. The following
version of the algorithm incorporates this. We also note that we do not need to
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keep the results of the divisions; we can omit the subscript and store the result
of the division a //β back in a.

Algorithm 3.7. Let a be a natural number that in base β has the k +1 digits
(dk dk−1 · · ·d0)β. These digits may be computed by performing the operations:

i := 0;
while a > 0

di := a %β;
a := a //β;
i := i +1;

Recall that the statement ’while a > 0’ means that all the indented state-
ments will be repeated until a becomes 0.

It is important to realise that the order of the indented statements is not ar-
bitrary. When we do not keep all the results of the divisions, it is essential that
di (or d) is computed before a is updated with its new value. And when i is ini-
tialised with 0, we must update i at the end, since otherwise the subscript in di

will be wrong.
The variable i is used here so that we can number the digits correctly, starting

with d0, then d1 and so on. If this is not important, we could omit the first and
the last statements, and replace di by d . The algorithm then becomes

while a > 0
d := a %β;
a := a //β;
print d ;

Here we have also added a print-statement so the digits of a will be printed (in
reverse order).

The results produced by Algorithm 3.7 can be conveniently organised in a
table. The example in the proof of Lemma 3.5 can be displayed as

3761 1
470 6

58 2
7 7

The left column shows the successive integral parts resulting from repeated di-
vision by 8, whereas the right column shows the remainder in these divisions.
Let us consider one more example.
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Example 3.8. Instead of converting 3761 to base 8 let us convert it to base 16. We
find that 3761//16 = 235 with remainder 1. In the next step we find 235//16 = 14
with remainder 11. Finally we have 14//16 = 0 with remainder 14. Displayed in
a table this becomes

3761 1
235 11

14 14

Recall that in the hexadecimal system the letters a–f usually denote the values
10–15. We have therefore found that the number 3761 is written eb116 in the
hexadecimal numeral system.

Since we are particularly interested in how computers manipulate numbers,
let us also consider an example of conversion to the binary numeral system, as
this is the numeral system used in most computers. Instead of dividing by 16 we
are now going to repeatedly divide by 2 and record the remainder. A nice thing
about the binary numeral system is that the only possible remainders are 0 and
1: it is 0 if the number we divide is an even integer and 1 if the number is an odd
integer.

Example 3.9. Let us continue to use the decimal number 3761 as an example,
but now we want to convert it to binary form. If we perform the divisions and
record the results as before we find

3761 1
1880 0

940 0
470 0
235 1
117 1

58 0
29 1
14 0

7 1
3 1
1 1

In other words we have 3761 = 1110101100012. This example illustrates an im-
portant property of the binary numeral system: Computations are simple, but
long and tedious. This means that this numeral system is not so good for hu-
mans as we tend to get bored and make sloppy mistakes. For computers, how-
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ever, this is perfect as computers do not make mistakes and work extremely
fast.

3.2.3 Conversion between base-2 and base-16

Computers generally use the binary numeral system internally, and in chapter 4
we are going to study this in some detail. A major disadvantage of the binary
system is that even quite small numbers require considerably more digits than
in the decimal system. There is therefore a need for a more compact represen-
tation of binary numbers. It turns out that the hexadecimal numeral system is
convenient for this purpose.

Suppose we have the one-digit hexadecimal number x = a16. In binary it is
easy to see that this is x = 10102. A general four-digit binary number (d3d2d1d0)2

has the value
d020 +d121 +d222 +d323,

and must be in the range 0–15, which corresponds exactly to a one-digit hex-
adecimal number.

Observation 3.10. A four-digit binary number can always be converted to a
one-digit hexadecimal number, and vice versa.

This simple observation is the basis for converting general numbers between
binary and hexadecimal representation. Suppose for example that we have the
eight digit binary number x = 1100 11012. This corresponds to the number

1×20 +0×21 +1×22 +1×23 +0×24 +0×25 +1×26 +1×27

= (1×20 +0×21 +1×22 +1×23)+ (0×20 +0×21 +1×22 +1×23)24.

The two numbers in brackets are both in the range 0–15 and can therefore be
represented as one-digit hexadecimal numbers. In fact we have

1×20 +0×21 +1×22 +1×23 = 1310 = b16,

0×20 +0×21 +1×22 +1×23 = 1210 = c16.

But then we have

x = (1×20 +0×21 +1×22 +1×23)+ (0×20 +0×21 +1×22 +1×23)24

= d16 ×160 +161 × c16 = cd16.

The short version of this detailed derivation is that the eight digit binary number
x = 1100 11012 can be converted to hexadecimal by converting the two groups of
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Hex Bin Hex Bin Hex Bin Hex Bin

0 1 4 100 8 1000 c 1100
1 1 5 101 9 1001 d 1101
2 10 6 110 a 1010 e 1110
3 11 7 111 b 1011 f 1111

Table 3.1. Conversion between hexadecimal and binary representation.

four binary digits separately. This results in two one-digit hexadecimal numbers,
and these are the hexadecimal digits of x,

11002 = c16, 11012 = d16, 1100 11012 = cd16.

This works in general.

Observation 3.11. A hexadecimal natural number can be converted to binary
by converting each digit separately. Conversely, a binary number can be con-
verted to hexadecimal by converting each group of successive binary digits
into hexadecimal, starting with the least significant digits.

Example 3.12. Let us convert the hexadecimal number 3c516 to binary. We have

516 = 01012,

c16 = 11002,

316 = 00112,

which means that 3c516 = 11 1100 01012 where we have omitted the two leading
zeros.

Observation 3.11 means that to convert between binary and hexadecimal
representation we only need to know how to convert numbers in the range 0–15
(decimal). Most will perhaps do this by going via decimal representation, but all
the conversions can be found in table 3.1.

3.3 Representation of Fractional Numbers

We have seen how integers can be represented in numeral systems other than
decimal, but what about fractions and irrational numbers? In the decimal sys-
tem such numbers are characterised by the fact that they have two parts, one to
the left of the decimal point, and one to the right, like the number 21.828. The

40



part to the left of the decimal point — the integer part — can be represented in
base-β as outlined above. If we can represent the part to the right of the decimal
point — the fractional part — in base-β as well, we can follow the convention
from the decimal system and use a point to separate the two parts. Negative ra-
tional and irrational numbers are as easy to handle as negative integers, so we
focus on how to represent positive numbers without an integer part, in other
words numbers in the open interval (0,1).

3.3.1 Rational and Irrational Numbers in Base-β

Let a be a real number in the interval (0,1). In the decimal system we can write
such a number as 0, followed by a point, followed by a finite or infinite number
of decimal digits, as in

0.45928. . .

This is interpreted as the number

4×10−1 +5×10−2 +9×10−3 +2×10−4 +8×10−5 +·· · .

From this it is not so difficult to see what a base-β representation must look like.

Definition 3.13. Let β be a natural number greater than 1 and let n0, n1, . . . ,
nβ−1 be β distinct numerals (also called digits) such that ni denotes the num-
ber ni = i . A fractional representation in base β is a finite or infinite, ordered
collection of digits (0.d−1d−2d−3 . . . )β which is interpreted as the real number

d−1β
−1 +d−2 β

−2 +d−3 β
−3 +·· · (3.3)

where each digit di is one of the β numerals {ni }β−1
i=0 .

Definition 3.13 is considerably more complicated than definition 3.4 since
we may have an infinite number of digits. This becomes apparent if we try to
check the size of numbers on the form given by (3.3). Since none of the terms in
the sum are negative, the smallest number is the one where all the digits are 0,
i.e., where di = 0 for i =−1, −2, . . . . But this can be nothing but the number 0.

The largest possible number occurs when all the digits are as large as possi-
ble, i.e. when di =β−1 for all i . If we call this number x, we find

x = (β−1)β−1 + (β−1)β−2 + (β−1)β−3 +·· ·
= (β−1)β−1(1+β−1 +β−2 +·· ·

= β−1

β

∞∑
i=0

(β−1)i .
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In other words x is given by a sum of an infinite geometric series with factor
β−1 = 1/β< 1. This series converges to 1/(1−β−1) so x has the value

x = β−1

β

1

1−β−1 = β−1

β

β

β−1
= 1.

Let us record our findings so far.

Lemma 3.14. Any number on the form (3.3) lies in the interval [0,1].

The fact that the base-β fractional number with all digits equal to β−1 is the
number 1 is a bit disturbing since it means that real numbers cannot be repre-
sented uniquely in base β. In the decimal system this corresponds to the fact
that 0.99999999999999. . . (infinitely many 9s) is in fact the number 1. And this is
not the only number that has two representations. Any number that ends with
an infinite number of digits equal toβ−1 has a simpler representation. Consider
for example the decimal number 0.12999999999999. . . . Using the same tech-
nique as above we find that this number is 0.13. However, it turns out that these
are the only numbers that have a double representation, see theorem 3.15 below.

Let us now see how we can determine the digits of a fractional number in a
numeral system other than the decimal one. As for natural numbers, it is easiest
to understand the procedure through an example, so we try to determine the
digits of 1/5 in the octal (base 8) system. According to definition 3.13 we seek
digits d−1d−2d−3 . . . (possibly infinitely many) such that the relation

1

5
= d−18−1 +d−28−2 +d−38−3 +·· · (3.4)

becomes true. If we multiply both sides by 8 we obtain

8

5
= d−1 +d−28−1 +d−38−2 +·· · . (3.5)

The number 8/5 lies between 1 and 2 and we know from Lemma 3.14 that the
sum d−28−1 +d−38−2 + ·· · can be at most 1. Therefore we must have d−1 = 1.
Since d−1 has been determined we can subtract this from both sides of (3.5)

3

5
= d−28−1 +d−38−2 +d−48−3 +·· · . (3.6)

This equation has the same form as (3.4) and can be used to determine d−2. We
multiply both sides of (3.6) by 8,

24

5
= d−2 +d−38−1 +d−48−3 +·· · . (3.7)
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The fraction 24/5 lies in the interval (4,5) and since the terms on the right that
involve negative powers of 8 must be a number in the interval [0,1], we must
have d−2 = 4. We subtract this from both sides of (3.7) and obtain

4

5
= d−38−1 +d−48−2 +d−58−3 +·· · . (3.8)

Multiplication by 8 now gives

32

5
= d−3 +d−48−1 +d−58−2 +·· · .

from which we conclude that d−3 = 6. Subtracting 6 and multiplying by 8 we
obtain

16

5
= d−4 +d−58−1 +d−68−2 +·· · .

from which we conclude that d−4 = 3. If we subtract 3 from both sides we find

1

5
= d−58−1 +d−68−2 +d−78−3 +·· · .

But this relation is essentially the same as (3.4), so if we continue we must gener-
ate the same digits again. In other words, the sequence d−5d−6d−7d−8 must be
the same as d−1d−2d−3d−4 = 1463. But once d−8 has been determined we must
again come back to a relation with 1/5 on the left, so the same digits must also
repeat in d−9d−10d−11d−12 and so on. The result is that

1

5
= 0.1463146314631463 · · ·8 .

Based on this procedure we can prove an important theorem.

Theorem 3.15. Any real number in the interval (0,1) can be represented in
a unique way as a fractional base-β number provided representations with
infinitely many trailing digits equal to β−1 are prohibited.

Proof. We have already seen how the digits of 1/5 in the octal system can be
determined, and it is easy to generalise the procedure. However, there are two
additional questions that must be settled before the claims in the theorem are
completely settled.

We first prove that the representation is unique. If we look back on the con-
version procedure in the example we considered, we had no freedom in the
choice of any of the digits. The digit d−2 was for example determined by equa-
tion 3.7, where the left-hand side is 4.8 in the decimal system. Then our only
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hope of satisfying the equation is to choose d−2 = 4 since the remaining terms
can only sum up to a number in the interval [0,1].

How can the procedure fail to determine the digits uniquely? In our example,
any digit is determined by an equation on the form (3.7), and as long as the left-
hand side is not an integer, the corresponding digit is uniquely determined. If
the left-hand side should happen to be an integer, as in

5 = d−2 +d−38−1 +d−48−3 +·· · ,

the natural solution is to choose d−2 = 5 and choose all the remaining digits as 0.
However, since we know that 1 may be represented as a fractional number with
all digits equal to 7, we could also choose d−2 = 4 and di = 7 for all i < −2. The
natural solution is to choose d−2 = 5 and prohibit the second solution. This is
exactly what we have done in the statement of the theorem, so this secures the
uniqueness of the representation.

The second point that needs to be settled is more subtle; do we really com-
pute the correct digits? It may seem strange to think that we may not compute
the right digits since the digits are forced upon us by the equations. But if we look
carefully, the equations are not quite standard since the sums on the right may
contain infinitely many terms. In general it is therefore impossible to achieve
equality in the equations, all we can hope for is that we can make the sum on
the right in (3.4) come as close to 1/5 as we wish by including sufficiently many
terms.

Set a = 1/5. Then equation (3.6) can be written

8(a −d−18−1) = d−28−1 +d−38−2 +d−48−3 +·· ·

while (3.8) can be written

82(a −d−18−1 −d−28−2) = d−38−1 +d−48−2 +d−58−3 +·· · .

After i steps the equation becomes

8i (a −d−18−1 −d−28−2 −·· ·−d−i 8−i ) =
d−i−18−1 +d−i−28−2 +d−i−38−3 +·· · .

The expression in the bracket on the left we recognise as the error ei in approxi-
mating a by the first i numerals in the octal representation. We can rewrite this
slightly and obtain

ei = 8−i (d−i−18−1 +d−i−28−2 +d−i−38−3 +·· · ).
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From Lemma 3.14 we know that the number in the bracket on the right lies in
the interval [0,1] so we have 0 ≤ ei ≤ 8−i . But this means that by including suffi-
ciently many digits (choosing i sufficiently big), we can get ei to be as small as we
wish. In other words, by including sufficiently many digits, we can get the octal
representation of a = 1/5 to be as close to a as we wish. Therefore our method
for computing numerals does indeed generate the digits of a.

3.3.2 An Algorithm for Converting Fractional Numbers

The basis for the proof of Theorem 3.15 is the procedure for computing the digits
of a fractional number in base-β. We only considered the case β = 8, but it is
simple to generalise the algorithm to arbitrary β.

Algorithm 3.16. Let a be a fractional number whose first k digits in base β

are (0.d−1d−2 · · ·d−k )β. These digits may be computed by performing the op-
erations:

for i :=−1, −2, . . . , −k
di := ba ∗βc;
a := a ∗β−di ;

Compared with the description on pages 42 to 43 there should be nothing
mysterious in this algorithm except for perhaps the notation bxc. This is a fairly
standard way of writing the floor function which is equal to the largest integer
that is less than or equal to x. We have for example b3.4c = 3 and b5c = 5.

When converting natural numbers to base-β representation there is no need
to know or compute the number of digits beforehand, as is evident in algo-
rithm 3.7. For fractional numbers we do need to know how many digits to com-
pute as there may often be infinitely many. A for-loop is therefore a natural con-
struction in algorithm 3.16.

It is convenient to have a standard way of writing down the computations
involved in converting a fractional number to base-β, and it turns out that we
can use the same format as for converting natural numbers. Let us take as an
example the computations in the proof of theorem 3.15 where the fraction 1/5
was converted to base-8. We start by writing the number to be converted to the
left of the vertical line. We then multiply the number byβ (which is 8 in this case)
and write the integer part of the result, which is the first digit, to the right of the
line. The result itself we write in brackets to the right. We then start with the
fractional part of the result one line down and continue until the result becomes
0 or we have all the digits we want,
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1/5 1 (8/5)
3/5 4 (24/5)
4/5 6 (32/5)
2/5 3 (16/5)
1/5 1 (8/5)

Here we are back at the starting point, so the same digits will just repeat again.

3.3.3 Conversion between binary and hexadecimal

It turns out that hexadecimal representation is handy short-hand for the binary
representation of fractional numbers, just like it was for natural numbers. To see
why this is, we consider the number x = 0.110101112. In all detail this is

x = 1×2−1 +1×2−2 +0×2−3 +1×2−4 +0×2−5 +1×2−6 +1×2−7 +1×2−8

= 2−4(1×23 +1×22 +0×21 +1×20)+2−8(0×23 +1×22 +1×21 +1×20)

= 16−1(1×23 +1×22 +0×21 +1×20)+16−2(0×23 +1×22 +1×21 +1×20).

From table 3.1 we see that the two four-digit binary numbers in the brackets cor-
respond to the hexadecimal numbers 11012 = d16 and 1112 = 716. We therefore
have

x = 16−113+16−27 = 0.d716.

As for natural numbers, this works in general.

Observation 3.17. A hexadecimal fractional number can be converted to bi-
nary by converting each digit separately. Conversely, a binary fractional num-
ber can be converted to hexadecimal by converting each group of four suc-
cessive binary digits to hexadecimal, starting with the most significant digits.

A couple of examples will illustrate how this works in general.

Example 3.18. Let us convert the number x = 0.3a816 to binary. From table 3.1
we find

316 = 00112, a16 = 11002, 816 = 10002,

which means that

0.3a816 = 0.0011 1100 10002 = 0.0011 1100 12.

Example 3.19. To convert the binary number 0.1100 1001 0110 12 to hexadeci-
mal form we note from table 3.1 that

11002 = c16, 10012 = 916, 01102 = 616, 10002 = 816.
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Note that the last group of binary digits was not complete so we added three
zeros. From this we conclude that

0.1100 1001 0110 12 = 0.c96816.

3.3.4 Properties of Fractional Numbers in Base-β

Real numbers in the interval (0,1) have some interesting properties related to
their representation. In the decimal numeral system we know that fractions
with a denominator that only contains the factors 2 and 5 can be written as a
decimal number with a finite number of digits. In general, the decimal repre-
sentation of a rational number will contain a finite sequence of digits that are
repeated infinitely many times, while for an irrational number there will be no
such structure. In this section we shall see that similar properties are valid when
fractional numbers are represented in any numeral system.

For rational numbers algorithm 3.16 can be expressed in a different form
which makes it easier to deduce properties of the digits. So let us consider what
happens when a rational number is converted to base-β representation. A ratio-
nal number in the interval (0,1) has the form a = b/c where b and c are nonzero
natural numbers with b < c. If we look at the computations in algorithm 3.16, we
note that di is the integer part of (b ∗β)/c which can be computed as (b ∗β)//c.
The right-hand side of the second statement is a∗β−d1, i.e., the fractional part
of a ∗β. But if a = b/c, the fractional part of a ∗β is given by the remainder in
the division (b ∗β)/c, divided by c, so the new value of a is given by

a = (b ∗β)%c

c
.

This is a new fraction with the same denominator c as before. But since the
denominator does not change, it is sufficient to keep track of the numerator.
This can be done by the statement

b := (b ∗β)%c. (3.9)

The result is a new version of algorithm 3.16 for rational numbers.

Algorithm 3.20. Let a = b/c be a rational number in (0,1) whose first n digits
in base β are (0.d−1d−2 · · ·d−n)β. These digits may be computed by perform-
ing the operations:

for i :=−1, −2, . . . , −n
di := (b ∗β)//c;
b := (b ∗β)%c;
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This version of the conversion algorithm is more convenient for deducing
properties of the numerals of a rational number. The clue is to consider more
carefully the different values of b that are computed by the algorithm. Since b is
the remainder when integers are divided by c, the only possible values of b are
0, 1, 2, . . . , c − 1. Sooner or later, the value of b must therefore become equal
to an earlier value. But once b returns to an earlier value, it must cycle through
exactly the same values again until it returns to the same value a third time. And
then the same values must repeat again, and again, and again, . . . . Since the
numerals di are computed from b, they must repeat with the same frequency.
Note however that may be some initial digits that do not repeat. This proves
part of the following lemma.

Lemma 3.21. Let a be a fractional number. Then the digits of a written in
base β will eventually repeat, i.e.,

a = (0.d−1 · · ·d−i d−(i+1) · · ·d−(i+m)d−(i+1) · · ·d−(i+m) · · · )β
for some integer m ≥ 1 if and only if a is a rational number.

As an example, consider the fraction 1/7 written in different numeral sys-
tems. If we run algorithm 3.20 we find

1/7 = 0.00100100100100100 · · ·2 ,

1/7 = 0.01021201021201021 · · ·3 ,

1/7 = 0.17.

In the binary numeral system, there is no initial sequence of digits; the sequence
001 repeats from the start. In the trinary system, there is no intial sequence
either and the repeating sequence is 010212, whereas in the septenary system
the initial seqeunce is 1 and the repeating sequence 0 (which we do not write
according to the conventions of the decimal system).

An example with an initial sequence is the fraction 87/98 which in base 7 be-
comes 0.6133333 · · ·7. Another example is 503/1100 which is 0.457272727272 · · ·
in the decimal system.

The argument preceding lemma 3.21 proves the fact that if a is a rational
number, then the digits must eventually repeat. But this statement leaves the
possibility open that there may be nonrational (i.e., irrational) numbers that
may also have digits that eventually repeat. However, this is not possible and
this is the reason for the ’only if’-part of the lemma. In less formal language
the complete statement is: The digits of a will eventually repeat if a is a rational
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number, and only if a is a rational number. This means that there are two state-
ments to prove: (i) The digits repeat if a is a rational number and (ii) if the digits
do repeat then a must be a rational number. The proof of this latter statement is
left to excercise 12.

Although all rational numbers have repeating digits, for some numbers the
repeating sequence is ’0’, like 1/7 in base 7, see above. Or equivalently, some
fractional numbers can in some numeral systems be represented exactly by a
finite number of digits. It is possible to characterise exactly which numbers have
this property.

Lemma 3.22. The representation of a fractional number a in base-β consists
of a finite number of digits,

a = (0.d−1d−2 · · ·d−k )β,

if and only if a is a rational number b/c with the property that all the prime
factors of c divide β.

Proof. Since the statement is of the ’if and only if’ type, there are two claims to
be proved. The fact that a fractional number in base-β with a finite number of
digits is a rational number is quite straightforward, see exercise 13.

What remains is to prove that if a = b/c and all the prime factors of c divide
β, then the representation of a in base-β will have a finite number of digits. We
give the proof in a special case and leave it to the reader to write down the proof
in general. Let us consider the representation of the number a = 8/9 in base-
6. The idea of the proof is to rewrite a as a fraction with a power of 6 in the
denominator. The simplest way to do this is to observe that 8/9 = 32/36. We
next express 32 in base 6. For this we can use algorithm 3.7, but in this simple
situation we see directly that

32 = 5×6+2 = 526.

We therefore have

8

9
= 32

36
= 5×6+2

62 = 5×6−1 +2×6−2 = 0.526.

In the decimal system, fractions with a denominator that only has 2 and 5
as prime factors have finitely many digits, for example 3/8 = 0.375, 4/25 = 0.16
and 7/50 = 0.14. These numbers will not have finitely many digits in most other
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numeral systems. In base-3, the only fractions with finitely many digits are the
ones that can be written as fractions with powers of 3 in the denominator,

8

9
= 0.223,

7

27
= 0.0213,

1

2
= 0.111111111111 · · ·3 ,

3

10
= 0.02200220022 · · ·3 .

In base-2, the only fractions that have an exact representation are the ones with
denominators that are powers of 2,

1

2
= 0.5 = 0.12,

3

16
= 0.1875 = 0.00112,

1

10
= 0.1 = 0.00011001100110011 · · ·2 .

These are therefore the only fractional numbers that can be represented exactly
on most computers unless special software is utilised.

3.4 Arithmetic in Base β

The methods we learn in school for performing arithemetic are closely tied to
properties of the decimal numeral system, but the methods can easily be gener-
alised to any numeral system. We are not going to do this in detail, but some ex-
amples will illustrate the general ideas. All the methods should be familiar from
school, but if you never quite understood the arithmetic methods, you may have
to think twice to understand why it all works. Although the methods themselves
are the same across the world, it should be remembered that there are many
variations in how the methods are expressed on paper. You may therefore find
the description given here unfamiliar at first.

3.4.1 Addition

Addition of two one-digit numbers is just like in the decimal system as long as
the result has only one digit. For example, we have 48 + 38 = 4+ 3 = 7 = 78. If
the result requires two digits, we must remember that the carry is β in base-β,
and not 10. So if the result becomes β or greater, the result will have two digits,
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where the left-most digit is 1 and the second has the value of the sum, reduced
by β. This means that

58 +68 = 5+6 = 11 = 8+11−8 = 8+3 = 138.

This can be written exactly the same way as you would write a sum in the deci-
mal numeral system, you must just remember that the value of the carry is β.

Let us now try the larger sum 4578 +3258. This requires successive one-digit
additions, just like in the decimal system. One way to write this is

1 1
4578

+3258

= 10048

This corresponds to the decimal sum 303+213 = 516.

3.4.2 Subtraction

One-digit subtractions are simple, for example 78 − 38 = 48. A subtraction like
148 −78 is a bit more difficult, but we can ’borrow’ from the ’1’ in 14 just like in
the decimal system. The only difference is that in base-8, the ’1’ represents 8 and
not 10, so we borrow 8. We then see that we must perform the subtraction 12−7
so the answer is 5 (both in decimal and base 8). Subtraction of larger numbers
can be done by repeating this. Consider for example 3218 − 1778. This can be
written

8 8
/3/218

−1778

= 1228

By converting everything to decimal, it is easy to see that this is correct.

3.4.3 Multiplication

Let us just consider one example of a multiplication, namely 3124 × 124. As in
the decimal system, the basis for performing multiplication of numbers with
multiple digits is the multiplication table for one-digit numbers. In base 4 the
multiplication table is

1 2 3

1 1 2 3
2 2 10 12
3 3 12 21
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We can then perform the multiplication as we are used to in the decimal system

3124 ×124

12304

3124

110104

The number 12304 in the second line is the result of the multiplication 3124×24,
i.e., the first factor 3124 multiplied by the second digit of the right-most factor
124. The number on the line below, 3124, is the first factor multiplied by the
first digit of the second factor. This second product is shifted one place to the
left since multiplying with the first digit in 124 corresponds multiplication by
1×4. The number on the last line is the sum of the two numbers above, with a
zero added at the right end of 3124, i.e., the sum is 12304 + 31204. This sum is
calculated as indicated in section 3.4.1 above.

Exercises

3.1 Convert the following natural numbers:

a) 40 to base-4

b) 17 to base-5

c) 17 to base-2

d) 123456 to base-7

e) 22875 to base-7

f ) 126 to base 16

3.2 Convert the following rational numbers:

a) 1/4 to base-2

b) 3/7 to base-3

c) 1/9 to base-3

d) 1/18 to base-3

e) 7/8 to base-8

f ) 7/8 to base-7

g) 7/8 to base-16

h) 5/16 to base-8

i) 5/8 to base-6

3.3 Convert π to base-9.

3.4 Convert to base-8:

a) 10110012

b) 1101112
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c) 101010102

3.5 Convert to base-2:

a) 448

b) 1008

c) 3278

3.6 Convert to base-16:

a) 10011012

b) 11002

c) 101001111001002

d) 0.01011001012

e) 0.000001010012

f ) 0.1111111112

3.7 Convert to base-2:

a) 3c16

b) 10016

c) e5116

d) 0.0aa16

e) 0.00116

f ) 0. f 0116

3.8 a) Convert 7 to base-7, 37 to base-37, and 4 to base-4 and formulate a generalisation
of what you observe.

b) Determine β such that 13 = 10β. Also determine β such that 100 = 10β For which
numbers a ∈N is there a β such that a = 10β?

3.9 a) Convert 400 to base-20, 4 to base-2, 64 to base-8, 289 to base-17 and formulate a
generalisation of what you observe.

b) Determineβ such that 25 = 100β. Also determineβ such that 841 = 100β. For which
numbers a ∈N is there a number β such that a = 100β?

c) For which numbers a ∈N is there a number β such that a = 1000β?

3.10 a) For which value of β is a = b/c = 0.bβ? Does such a β exist for all a < 1? And for
a ≥ 1?

b) For which rational number a = b/c does there exist a β such that a = b/c = 0.01β?

c) For which rational number a = b/c is there a β such that a = b/c = 0.0bβ? If β exists,
what will it be?

3.11 If a = b/c, what is the maximum length of the repeating sequence?

3.12 Show that if the digits of the fractional number a eventually repeat, then a must be a ra-
tional number.
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3.13 Show that a fractional numbers in base-β with a finite number of digits is a rational num-
ber.

3.14 Perform the following additions:

a) 37 +17

b) 56 +46

c) 1102 +10112

d) 1223 +2013

e) 435 +105

f ) 35 +17

3.15 Perform the following subtractions:

a) 58 −28

b) 1002 −12

c) 5278 −3338

d) 2103 −213

e) 435 −145

f ) 37 −117

3.16 Perform the following multiplications:

a) 1102 ·102

b) 1102 ·112

c) 1103 ·113

d) 435 ·25

e) 7208 ·158

f ) 2103 ·123

g) 1012 ·112
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