
CHAPTER 8

Audio compression in
practice

In earlier chapters we have seen that digital sound is simply an array of numbers,
where each number is a measure of the air pressure at a particular time. This
representation makes it simple to manipulate sound on a computer by doing
calculations with these numbers. We have seen examples of simple filters which
change the sound in some preferred way like removing high or low frequencies
or adding echo. We have also seen how an audio signal can be rewritten in terms
of a multiresolution analysis which may be advantageous if we want to compress
the data that represent the sound.

In this chapter we will very briefly review some practical aspects of sound
processing. In particular we will briefly discuss how a sound may be represented
in terms of trigonometric functions and review the most important digital audio
formats.

8.1 Wavelet based compression

In chapter 10 in the Norwegian lecture notes, we described a way to decom-
pose a set of data points by comparing representations at different resolutions
with the help of piecewise linear functions, a so-called multiresolution analysis.
This illustrated the idea behind a family of functions called wavelets (although
wavelets should have some additional properties that we have ignored to keep
the presentation simple). In this section we will try to compress sound with the
multiresolution analysis.

Example 8.1. Figure 8.1 shows an example with real audio data. The data in (a)
were decomposed once which resulted in the coarser signal in (b) and the error
signal in (c). Then all error values smaller than 0.02 set to zero which leads to
the signal in (d). The reconstruction algorithm was then run with the data in (b)
and (d); the result is shown in (e). Figure (f) shows the difference between the
two signals.

The same computations were performed with a larger data set consisting of
300 001 points from the same song. Out of 150 000 error values 141 844 were
smaller than 0.02 in absolute value. When these were set to 0 and the sound
reconstructed with the perturbed data, the music still sounded quite good. The

157

100 200 300 400

!0.10
!0.05

0.05
0.10
0.15

(a)

50 100 150 200

!0.10
!0.05

0.05
0.10
0.15

(b)

50 100 150 200

!0.04

!0.02

0.02

0.04

(c)

50 100 150 200

!0.04

!0.02

0.02

0.04

(d)

100 200 300 400

!0.10
!0.05

0.05
0.10
0.15

(e)

100 200 300 400

!0.02

!0.01

0.01

0.02

(f)

Figure 8.1. An example of data decomposition with the multiresolution analysis from chapter 10 of the Nor-
wegian lecture notes. Figure (a) shows the piecewise linear interpolant to data taken from the song ’Here
Comes the Sun’ by the Beatles. Figure (b) shows the piecewise linear interpolant to every other data point,
and figure (c) shows the error function. In (d) we have set all error values smaller than 0.02 to zero, altogether
148 out of 200 values. In (e) the data have been reconstructed from the functions in (c) and (d). Figure (f)
shows the difference between the original data and the reconstructed data.

maximum difference between this perturbed signal and the original was just un-
der 0.02.

To check the possibility of compression, the data were written to a file as
32-bit floating-point numbers and then compressed with gzip. This resulted in
a file with 389 829 bytes. When the original data were written to file and com-

158

1 2 3 4 5 6

!1.5

!1.0

!0.5

0.5

1.0

(a)

!10 !5 5 10

!2.0

!1.5

!1.0

!0.5

0.5

1.0

(b)

Figure 8.2. Trigonometric approximation of a cubic polynomial on the interval [0,2π]. In (a) both functions
are shown while in (b) the approximation is plotted on the interval [−10,10].

pressed with gzip, the file size was 705 475 bytes. In other words, the sound has
been compressed down to 55 % with a very simple algorithm, without too much
deterioration in the sound quality.

8.2 Fourier analysis and the DCT

As we have seen, multiresolution analysis and wavelets provide a convenient
framework for compression of audio files. The theory behind wavelets was de-
veloped in the late 1980s and was not introduced into much commercial soft-
ware until the late 1990s. Common audio formats like MP3, AAC and Ogg Vor-
bis were developed before this time and use a mathematical operation called
the Discrete Cosine Transform (DCT) to transform the audio data to a form that
lends itself well to compression. Before we consider the basics of the DCT, we
need some background information.

A very common technique in mathematics is to approximate a general func-
tion by a function from some appropriate family. We have seen several examples
of this, for example approximation by Taylor polynomials and approximation
by piecewise linear functions. Another possibility is to approximate functions
by combinations of trigonometric functions. This is a technique that is used in
many different areas of mathematics and is usually referred to as Fourier analy-
sis.

In Fourier analysis, general functions are approximated by combinations of
the functions

1,sin x,cos x, sin2x,cos2x, sin3x,cos3x, sin4x,cos4x, . . . (8.1)

A simple example is shown in figure 8.2. There a cubic polynomial has been

159

approximated by a trigonometric function on the form

a0 +b1 sin x +a1 cos x +b2 sin2x +a2 cos2x. (8.2)

The coefficients have been determined in such a way that the error should be
small on the interval [0,1]. This has been quite successful in that we can hardly
differentiate between the two functions in figure 8.2a. In figure 8.2b the approx-
imation has been plotted on the interval [−10,10]. From this plot we see that
the approximation is periodic, as is the case for all trigonometric functions, and
therefore very different from the polynomial as we come outside the interval
[0,1]. The fact that the error was small in figure 8.2a was no accident; it can
be proved that quite general functions can be approximated arbitrarily well by
trigonometric functions.

Recall that sinkt corresponds to a pure tone of frequency k/(2π). If we think
of a certain sound as a function, the fact that any function can be expressed as
a combination of the trigonometric functions in (8.1) means that any sound can
be generated by combining a set of pure tones with different weights, just as in
(8.2). So given a sound, it can always de decomposed into different amounts of
pure tones be represented by suitable trigonometric functions.

Fact 8.2 (Fourier analysis). Any reasonable function f can be approximated
arbitrarily well on the interval [0,2π] by a combination

a0 +
N∑

k=1
(ak coskt +bk sinkt), (8.3)

where N is a suitable integer. This means that any sound can be decomposed
into different amounts (the coefficients {ak } and {bk }) of pure tones (the func-
tions {coskt } and {sinkt }). This is referred to by saying that f has been con-
verted to the frequency domain and the coefficients {ak } and {bk } are referred
to as the spectrum of f .

When a given sound has been decomposed as in (8.3), we can adjust the
sound by adjusting the coefficients. The trigonometric functions with large val-
ues of k correspond to high frequencies and the ones with small values of k cor-
respond to low frequencies. We can therefore adjust the treble and bass by ma-
nipulating the appropriate coefficients.

There is an extensive theory for audio processing based on Fourier analysis
that is studied in the field of signal processing.

160

8.2.1 The Discrete Cosine Transform

We are particularly interested in digital audio, i.e., sound given by values sam-
pled from an audio signal at regular intervals. We have seen how digital sound
can be compressed by using a multiresolution analysis, but this can also be done
with ideas from Fourier analysis.

For the purpose of compressing sound it is not so common to use Fourier
analysis as indicated above. Instead only cosine functions are used for decom-
position.

Definition 8.3 (Discrete Cosine Transform (DCT)). Suppose the sequence of
numbers u = {us}n−1

s=0 are given. The DCT of u is given by the sequence

vs =
1
"

n

n−1∑

r=0
ur cos

((2r +1)sπ
2n

)
, for s = 0, . . . , n −1. (8.4)

The new sequence v generated by the DCT tells us how much the sequence
u contains of the different frequencies. For each s = 0, 1, . . . , n −1, the function
cos sπt is sampled at the points tr = (2r + 1)/(2n) for r = 0, 1, . . . , n − 1 which
results in the values

cos
(sπ

2n

)
, cos

(3sπ
2n

)
, cos

(5sπ
2n

)
, . . . , cos

((2n −1)sπ
2n

)
.

These are then multiplied by the ur and everything is added together.
Plots of these values for n = 6 are shown in figure 8.3. We note that as s in-

creases, the functions oscillate more and more. This means that v0 gives a mea-
sure of how much constant content there is in the data, while v5 gives a measure
of how much content there is with maximum oscillation. In other words, the
DCT of an audio signal shows the proportion of the different frequencies in the
signal.

Once the DCT of u has been computed, we can analyse the frequency con-
tent of the signal. If we want to reduce the bass we can decrease the vs-values
with small indices and if we want to increase the treble we can increase the vs-
values with large indices. In a typical audio signal there will be most information
in the lower frequencies, and some frequencies will be almost completely ab-
sent, i.e., some of the vs-values will be almost zero. This can exploited for com-
pression: We change the small vs-values a little bit and set them to 0, and then
store the signal by storing the DCT-values. This leaves us with one challenge:
How to convert the perturbed DCT-values back to a normal signal. It turns out
that this can be accomplished with formulas very similar to the DCT itself.

161

1 2 3 4 5

!1.0

!0.5

0.5

1.0

(a)

1 2 3 4 5

!1.0

!0.5

0.5

1.0

(b)

1 2 3 4 5

!1.0

!0.5

0.5

1.0

(c)

1 2 3 4 5

!1.0

!0.5

0.5

1.0

(d)

1 2 3 4 5

!1.0

!0.5

0.5

1.0

(e)

1 2 3 4 5

!1.0

!0.5

0.5

1.0

(f)

Figure 8.3. The 6 different versions of the cos function used in DCT for n = 6. The plots show piecewise linear
functions, but this is just to make the plots more readable: Only the values at the integers 0, . . . , 5 are used.

Theorem 8.4 (Inverse Discrete Cosine Transform). Suppose that the se-
quence v = {vs}n−1

s=0 is the DCT of the sequence u = {ur }n−1
r=0 as in (8.4). Then u

can be recovered from v via the formulas

ur =
1
"

n

(
v0 +2

n−1∑

s=1
vs cos

((2r +1)sπ
2n

))
, for r = 0, . . . , n −1. (8.5)

162

100 200 300 400

!0.10
!0.05

0.05
0.10
0.15

(a)

100 200 300 400
!0.2

0.2

0.4

(b)

100 200 300 400

!0.10

!0.05

0.05

0.10

0.15

(c)

100 200 300 400
!0.2

0.2

0.4

(d)

Figure 8.4. The signal in (a) is a small part of a song (the same as in figure 8.1b). The plot in (b) shows the DCT
of the signal. In (c), all values of the DCT that are smaller than 0.02 in absolute value have been set to 0, a total
of 309 values. In (c) the signal has been reconstructed from these perturbed values of the DCT. Note that all
signals are discrete; the values have been connected by straight lines to make it easier to interpret the plots.

We now see the resemblance with multiresolution analysis. The DCT pro-
vides another way to rewrite a signal in an alternative form where many values
become small or even 0, and this can then be exploited for compression.

Example 8.5. Let us test a naive compression strategy similar to the one in ex-
ample 8.1 where we just replace the multiresolution decomposition and recon-
struction formulas with the DCT and its inverse. The plots in figure 8.4 illustrate
the principle. A signal is shown in (a) and its DCT in (b). In (d) all values of the
DCT with absolute value smaller than 0.02 have been set to zero. The signal can
then be reconstructed with the inverse DCT of theorem 8.4; the result of this is
shown in (c). The two signals in (a) and (b) visually look almost the same even
though the signal in (c) can be represented with less than 25 % of the informa-
tion present in (a).

The larger data set from example 8.1 consists of 300 001 points. We compute
the DCT and set all values smaller than a suitable tolerance to 0. It turns out that
we need to use a tolerance as small as 0.004 to get an error in the signal itself
that is comparable to the corresponding error in example 8.1. With a tolerance

163

of 0.04, a total of 142 541 values are set to zero. When we then reconstruct the
sound with the inverse DCT, we obtain a signal that differs at most 0.019 from
the original signal which is about the same as in example 8.1. We can store the
signal by storing a gzip’ed version of the DCT-values (as 32-bit floating-point
numbers) of the perturbed signal. This gives a file with 622 551 bytes, which is
88 % of the gzip’ed version of the original data.

Recall that when we used the wavelet transform in example 8.1, we ended
up with a file size of 389 829, which is considerably less than what we obtained
here, without the error being much bigger. From this simple example, wavelets
therefore seem promising for compression of audio.

The approach to compression that we have outlined in the above examples
is essentially what is used in practice. The difference is that commercial software
does everything in a more sophisticated way and thereby get better compression
rates.

Fact 8.6 (Basic idea behind audio compression). Suppose a digital audio sig-
nal u is given. To compress u, perform the following steps:

1. Rewrite the signal u in a new format where frequency information be-
comes accessible.

2. Remove those frequencies that only contribute marginally to human
perception of the sound.

3. Store the resulting sound by coding the remaining frequency informa-
tion with some lossless coding method.

All the compression strategies used in the commercial formats that we re-
view below, use the strategy in fact 8.6. In fact they all use a modified version of
the DCT in step 1 and a variant of Huffman coding in step 3. Where they vary the
most is probably in deciding what information to remove from the signal. To do
this well requires some knowledge of human perception of sound.

8.3 Psycho-acoustic models

In the previous sections, we have outlined a simple strategy for compressing
sound. The idea is to rewrite the audio signal in an alternative mathematical
representation where many of the values are small, set the smallest values to 0,
store this perturbed signal and compress it with a lossless compression method.

164

This kind of compression strategy works quite well, and is based on keep-
ing the difference between the original signal and the compressed signal small.
However, in certain situations a listener will not be able to perceive the sound as
being different even if this difference is quite large. This is due to how our audi-
tory system interprets audio signals and is referred to as psycho-acoustic effects.

When we hear a sound, there is a mechanical stimulation of the ear drum,
and the amount of stimulus is directly related to the size of the sample values of
the digital sound. The movement of the ear drum is then converted to electric
impulses that travel to the brain where they are perceived as sound. The per-
ception process uses a Fourier-like transformation of the sound so that a steady
oscillation in air pressure is perceived as a sound with a fixed frequency. In this
process certain kinds of perturbations of the sound are hardly noticed by the
brain, and this is exploited in lossy audio compression.

The most obvious psycho-acoustic effect is that the human auditory system
can only perceive frequencies in the range 20 Hz – 20 000 Hz. An obvious way to
do compression is therefore to remove frequencies outside this range, although
there are indications that these frequencies may influence the listening experi-
ence inaudibly.

Another phenomenon is masking effects. A simple example of this is that a
loud sound will make a simultaneous quiet sound inaudible. For compression
this means that if certain frequencies of a signal are very prominent, most of the
other frequencies can be removed, even when they are quite large.

These kinds of effects are integrated into what is referred to as a psycho-
acoustic model. This model is then used as the basis for simplifying the spec-
trum of the sound in way that is hardly noticeable to a listener, but which allows
the sound to be stored with must less information than the original.

8.4 Digital audio formats

Digital audio first became commonly available when the CD was introduced in
the early 1980s. As the storage capacity and processing speeds of computers
increased, it became possible to transfer audio files to computers and both play
and manipulate the data. However, audio was represented by a large amount
of data and an obvious challenge was how to reduce the storage requirements.
Lossless coding techniques like Huffman and Lempel-Ziv coding were known
and with these kinds of techniques the file size could be reduced to about half
of that required by the CD format. However, by allowing the data to be altered
a little bit it turned out that it was possible to reduce the file size down to about
ten percent of the CD format, without much loss in quality.

In this section we will give a brief description of some of the most common

165

digital audio formats, both lossy and lossless ones.

8.4.1 Audio sampling — PCM

The basis for all digital sound is sampling of an analog (continuous) audio sig-
nal. This is usually done with a technique called Pulse Code Modulation (PCM).
The audio signal is sampled at regular intervals and the sampled values stored
in a suitable number format. Both the sampling rate and the number format
varies for different kinds of audio. For telephony it is common to sample the
sound 8000 times per second and represent each sample value as a 13-bit inte-
ger. These integers are then converted to a kind of 8-bit floating-point format
with a 4-bit mantissa. Telephony therefore generates 64 000 bits per second.

The classical CD-format samples the audio signal 44 100 times per second
and stores the samples as 16-bit integers. This works well for music with a rea-
sonably uniform dynamic range, but is problematic when the range varies. Sup-
pose for example that a piece of music has a very loud passage. In this passage
the samples will typically make use of almost the full range of integer values,
from −215 − 1 to 215. When the music enters a more quiet passage the sample
values will necessarily become much smaller and perhaps only vary in the range
−1000 to 1000, say. Since 210 = 1024 this means that in the quiet passage the mu-
sic would only be represented with 10-bit samples. This problem can be avoided
by using a floating-point format instead, but very few audio formats appear to
do this.

Newer formats with higher quality are available. Music is distributed in var-
ious formats on DVDs (DVD-video, DVD-audio, Super Audio CD) with sampling
rates up to 192 000 and up to 24 bits per pixel. These formats also support sur-
round sound (up to seven channels as opposed to the two stereo channels on
CDs).

Both the number of samples per second and the number of bits per sample
influence the quality of the resulting sound. For simplicity the quality is often
measured by the number of bits per second, i.e., the product of the sampling
rate and the number of bits per sample. For standard telephony we saw that the
bit rate is 64000 bits per second or 64 kb/s. The bit rate for CD-quality stereo
sound is 44100×2×16 bits/s = 1411.2 kb/s. This quality measure is particularly
popular for lossy audio formats where the uncompressed audio usually is the
same (CD-quality). However, it should be remembered that even two audio files
in the same file format and with the same bit rate may be of very different quality
because the encoding programs me be of different quality.

All the audio formats mentioned so far can be considered raw formats; it is
a description of how the sound is digitised. When the information is stored on a
computer, the details of how the data is organised must be specified, and there

166

are several popular formats for this.

8.4.2 Lossless formats

The two most common file formats for CD-quality audio are AIFF and WAV,
which are both supported by most commercial audio programs. These formats
specify in detail how the audio data should be stored in a file. In addition, there
is support for including the title of the audio piece, album and artist name and
other relevant data. All the other audio formats below (including the lossy ones)
also have support for this kind of additional information.

AIFF. Audio Interchange File Format was developed by Apple and published in
1988. AIFF supports different sample rates and bit lengths, but is most com-
monly used for storing CD-quality audio at 44 100 samples per second and 16
bits per sample. No compression is applied to the data, but there is also a vari-
ant that supports lossless compression, namely AIFF-C.

WAV. Waveform audio data is a file format developed by Microsoft and IBM.
As AIFF, it supports different data formats, but by far the most common is stan-
dard CD-quality sound. WAV uses a 32-bit integer to specify the file size at the
beginning of the file which means that a WAV-file cannot be larger than 4 GB.
Microsoft therefore developed the W64 format to remedy this.

Apple Lossless. After Apple’s iPods became popular, the company in 2004 in-
troduced a lossless compressed file format called Apple Lossless. This format is
used for reducing the size of CD-quality audio files. Apple has not published the
algorithm behind the Apple Lossless format, but most of the details have been
worked out by programmers working on a public decoder. The compression
phase uses a two step algorithm:

1. When the nth sample value xn is reached, an approximation yn to xn is
computed, and the error en = xn − yn is stored instead of xn . In the sim-
plest case, the approximation yn would be the previous sample value xn−1;
better approximations are obtained by computing yn as a combination of
several of the previous sample values.

2. The error en is coded by a variant of the Rice algorithm. This is an algo-
rithm which was developed to code integer numbers efficiently. It works
particularly well when small numbers are much more likely than larger
numbers and in this situation it achieves compression rates close to the

167

entropy limit. Since the sample values are integers, the step above pro-
duces exactly the kind of data that the Rice algorithm handles well.

FLAC. Free Lossless Audio Code is another compressed lossless audio format.
FLAC is free and open source (meaning that you can obtain the program code).
The encoder uses an algorithm similar to the one used for Apple Lossless, with
prediction based on previous samples and encoding of the error with a variant
of the Rice algorithm.

8.4.3 Lossy formats

All the lossy audio formats described below apply a modified version of the DCT
to successive groups (frames) of sample values, analyse the resulting values, and
perturb them according to a psycho-acoustic model. These perturbed values
are then converted to a suitable number format and coded with some lossless
coding method like Huffman coding. When the audio is to be played back, this
process has to be reversed and the data translated back to perturbed sample
values at the appropriate sample rate.

MP3. Perhaps the best known audio format is MP3 or more precisely MPEG-1
Audio Layer 3. This format was developed by Philips, CCETT (Centre commun
d’études de télévision et télécommunications), IRT (Institut für Rundfunktech-
nik) and Fraunhofer Society, and became an international standard in 1991. Vir-
tually all audio software and music players support this format. MP3 is just a
sound format and does not specify the details of how the encoding should be
done. As a consequence there are many different MP3 encoders available, of
varying quality. In particular, an encoder which works well for higher bit rates
(high quality sound) may not work so well for lower bit rates.

MP3 is based on applying a variant of the DCT (called the Modified Discrete
Cosine Transform, MDCT) to groups of 576 (in special circumstances 192) sam-
ples. These MDCT values are then processed according to a psycho-acoustic
model and coded efficiently with Huffman coding.

MP3 supports bit rates from 32 to 320 kbit/s and the sampling rates 32, 44.1,
and 48 kHz. The format also supports variable bit rates (the bit rate varies in
different parts of the file).

AAC. Advanced Audio Coding has been presented as the successor to the MP3
format by the principal MP3 developer, Fraunhofer Society. AAC can achieve
better quality than MP3 at the same bit rate, particularly for bit rates below 192
kb/s. AAC became well known in April 2003 when Apple introduced this format

168

(at 128 kb/s) as the standard format for their iTunes Music Store and iPod music
players. AAC is also supported by many other music players, including the most
popular mobile phones.

The technologies behind AAC and MP3 are very similar. AAC supports more
sample rates (from 8 kHz to 96 kHz) and up to 48 channels. AAC uses the MDCT,
just like MP3, but AAC processes 1 024 samples at time. AAC also uses much
more sophisticated processing of frequencies above 16 kHz and has a number of
other enhancements over MP3. AAC, as MP3, uses Huffman coding for efficient
coding of the MDCT values. Tests seem quite conclusive that AAC is better than
MP3 for low bit rates (typically below 192 kb/s), but for higher rates it is not so
easy to differentiate between the two formats. As for MP3 (and the other formats
mentioned here), the quality of an AAC file depends crucially on the quality of
the encoding program.

There are a number of variants of AAC, in particular AAC Low Delay (AAC-
LD). This format was designed for use in two-way communication over a net-
work, for example the Internet. For this kind of application, the encoding (and
decoding) must be fast to avoid delays (a delay of at most 20 ms can be toler-
ated).

Ogg Vorbis. Vorbis is an open-source, lossy audio format that was designed to
be free of any patent issues and free to use, and to be an improvement on MP3.
At our level of detail Vorbis is very similar MP3 and AAC: It uses the MDCT to
transform groups of samples to the frequency domain, it then applies a psycho-
acoustic model, and codes the final data with a variant of Huffman coding. In
contrast to MP3 and AAC, Vorbis always uses variable length bit rates. The de-
sired quality is indicated with an integer in the range −1 (worst) to 10 (best).
Vorbis supports a wide range of sample rates from 8 kHz to 192 kHz and up to
255 channels. In comparison tests with the other formats, Vorbis appear to per-
form well, particularly at medium quality bit rates.

WMA. Windows Media Audio is a lossy audio format developed by Microsoft.
WMA is also based on the MDCT and Huffman coding, and like AAC and Vorbis,
it was explicitly designed to improve the deficiencies in MP3. WMA supports
sample rates up to 48 kHz and two channels. There is a more advanced version,
WMA Professional, which supports sample rates up to 96 kHz and 24 bit sam-
ples, but this has limited support in popular software and music players. There
is also a lossless variant, WMA Lossless. At low bit rates, WMA generally appears
to give better quality than MP3. At higher bit rates, the quality of WMA Pro seems
to be comparable to that of AAC and Vorbis.

169

170

Part III

Functions

171

Part IV

Functions of two variables

325

