
CHAPTER 10

Zeros of Functions

An important part of the maths syllabus in secondary school is equation solving.
This is important for the simple reason that equations are important — a wide
range of problems can be translated into an equation, and by solving the equa-
tion we solve the problem. We will discuss a couple of examples in section 10.1.

In school you should have learnt to solve linear and quadratic equations,
some trigonometric equations, some equations involving logarithms and expo-
nential functions, as well as systems of two or three equations. Solving these
equations usually follow a fixed recipe, and it may well be that you managed to
solve all the equations that you encountered in school. For this reason you may
believe that the problem of solving equations is — a solved problem.

The truth is that most equations cannot be solved by traditional pencil-and-
paper methods. And even for equations that can be solved in this way, the ex-
pressions may become so complicated that they are almost useless for many
purposes. Consider for example the equation

x3 −3x +1 = 0. (10.1)

The Norwegian mathematician Niels Henrik Abel proved that all polynomial
equations of degree less than five can be solved by extracting roots, so we know
there is a formula for the solutions. The program Mathematica will tell us that
there are three solutions, one real and two complex. The real solution is given
by

−20 3

�
3

−9+
�

12081
+ 3

�
2
�
−9+

�
12081

�

62/3
.

Although more complicated than the solution of a quadratic equation, this is not

197

so bad. However, the solution becomes much more complicated for equations
of degree 4. For example, the equation

x4 −3x +1 = 0

has two complex and two real solutions, and one of the real solutions is given by

�
3
�

81−
�

5793+ 3
�

81+
�

5793

2 6
�

2 3
�

3

+ 1
2

����1
3

�

− 3

�
3
2

�
81−

�
5793

�
− 3

�
3
2

�
81+

�
5793

�

+ 18 6
�

2 3
�

3
�

3
�

81−
�

5793+ 3
�

81+
�

5793

(the square root in the second line extends to end of the third line).
In this chapter we are going to approach the problem of solving equations in

a completely different way. Instead of looking for exact solutions, we are going to
derive numerical methods that can compute approximations to the roots, with
whatever accuracy is desired (or possible with the computer resources you have
available). In most situations numerical approximations are also preferable for
equations where the exact solutions can be found. For example the given root of
the cubic equation above with 20 correct digits is −0.099900298805472842029,
while the given solution of the quartic equation is 1.3074861009619814743 with
the same accuracy. For most purposes this is much more informative than the
large expressions above.

10.1 The need for numerical root finding

In this chapter we are going to derive three numerical methods for solving equa-
tions: the Bisection method, the Secant method and Newton’s method. Before
deriving these methods, we consider two practical examples where there is a
need to solve equations.

10.1.1 Analysing difference equations

In chapter 6 we studied difference equations and saw that they can easily be
simulated on a computer. However, we also saw that the computed solution
may be completely overwhelmed by round-off errors so that the true solution
is completely lost. Whether or not this will happen depends on the size of the

198

roots of the characteristic equation of the difference equation. As an example,
consider the difference equation

16xn+5 +5xn+4 −70xn+3 −24xn+2 +56xn+1 −16xn = 0

whose characteristic equation is

16r 5 +5r 4 −70r 3 −24r 2 +56r +16 = 0.

It is impossible to find exact formulas for the roots of this equation. However,
by using numerical methods like the ones we are going to derive in this chapter,
one quite easily finds that the five roots are (with five-digit accuracy)

r1 =−1.7761, r2 =−1.0985, r3 =−0.27959, r4 = 0.99015, r5 = 1.8515.

From this we see that the largest root is r5 ≈ 1.85. This means that regardless
of the initial values, the computed (simulated) solution will eventually be dom-
inated by the term r n

5 .

10.1.2 Labelling plots

A completely different example where there is a need for finding zeros of func-
tions is illustrated in figure 10.1 which is taken from chapter 9. This figure has
nine labels of the form n = 2k −1 for k = 1, . . . , 9, that are placed either directly
above the point where the corresponding graph intersects the horizontal line
y = 2 or below the point where the graph intersects the line y =−2. It would be
possible to use an interactive drawing program and place the labels manually,
but this is both tedious and time consuming, and it would be difficult to place
all the labels consistently. With access to an environment for producing plots
that is also programmable, it is possible to compute the exact position of the
label.

Consider for example the label n = 9 which is to be placed above the point
where the Taylor polynomial of sin x, expanded about a = 0, intersects the line
y = 2. The Taylor polynomial is given by

p(x) = x − x3

6
+ x5

720
− x7

5040
+ x9

362880

so the x-value at the intersection point is given by the equation p(x) = 2, i.e., we
have to solve the equation

x − x3

6
+ x5

720
− x7

5040
+ x9

362880
−2 = 0.

199

n�1

n�3

n�5

n�7

n�9

n�11

n�13

n�15

n�17

�5 5

�2

�1

1

2

Figure 10.1. Plot with automatically placed labels.

This equation may have as many as nine real solutions, but from the plot we
see that the one we are interested in is close to x = 5. Numerical methods for
finding roots usually require a starting value near the root, and in our case it is
reasonable to use 5 as starting value. If we do this and use a method like one
of those derived later in this chapter, we find that the intersection between p(x)
and the horizontal line y = 2 is at x = 5.4683. This means that the label n = 9
should be drawn at the point with position (5.4683,2).

The position of the other labels may be determined similarly. In fact, this
procedure may be incorporated in a program with a loop where k runs from 1
to 9. For each k, we determine the Taylor polynomial p2k−1 and plot it, com-
pute the intersection xk with y = (−1)k+12, and draw the label n = 2k − 1 at�
xk , (−1)k+12

�
. This is exactly how figure 10.1 was produced, using Mathematica.

10.2 The Bisection method

There are a large number of numerical methods for computing roots of equa-
tions, but the simplest of all is the Bisection method. Before we describe the
method, let us review a basic mathematical result which forms the basis for the
method.

10.2.1 The intermediate value theorem

The mean value theorem is illustrated in figure 10.2a. It basically says that if a
function is positive at one point and negative at another, it must be zero some-
where in between.

200

ca
b

(a)

cm0
a1

b1

a
b

(b)

Figure 10.2. Illustration of the mean value theorem (a), and the first step of the Bisection method (b).

Theorem 10.1 (Intermediate value theorem). Suppose f is a function that is
continuous on the interval [a,b] and has opposite signs at a and b. Then there
is a real number c ∈ (a,b) such that f (c) = 0.

This result seems obvious since f is assumed to be continuous, but the proof,
which can be found in a standard calculus book, is not so simple. It may be eas-
ier to appreciate if we try to work with rational numbers only. Consider for exam-
ple the function f (x) = x2−2 on the interval [a,b] = [0,2]. This function satisfies
f (0) < 0 and f (2) > 0, but there is no rational number c such that f (c) = 0. The
zero in this case is of course c =

�
2, which is irrational, so the main content of

theorem is basically that there are no gaps in the real numbers.

10.2.2 Derivation of the Bisection method

The intermediate value theorem only tells that f must have a zero, but it says
nothing about how to find this zero. However, based on the theorem it is easy to
devise a method for finding good approximations to the zero.

To start with, we know that f has opposite signs at the two ends of the inter-
val [a,b]. Our aim is to find a new interval [a1,b1], which is smaller than [a,b],
such that f also has opposite signs at the two ends of [a1,b1]. But this is not
difficult: We use the midpoint m0 = (a +b)/2 of the interval [a,b] and compute
f (m0). If f (m0) = 0, we are very happy because we have found the zero. If this
is not the case, the sign of f (m0) must either be equal to the sign of f (a) or the
sign of f (b). If f (m0) and f (a) have the same sign, we set [a1,b1] = [m0,b]; if
f (m0) and f (b) have the same sign, we set [a1,b1] = [a,m0]. The construction is
illustrated in figure 10.2b.

The discussion in the previous paragraph shows how we may construct a
new interval [a1,b1], with a width that is half that of [a,b], with the property that

201

a0
b0

(a)

a1
b1

(b)

a2
b2

(c)

a3
b3

(d)

Figure 10.3. The first four steps of the bisection algorithm.

f is also guaranteed to have a zero in [a1,b1]. But then we may of course con-
tinue the process in the same way and determine another interval [a2,b2] that is
half the width of [a1,b1], and such that f is guaranteed to have a zero in [a2,b2].
This process can obviously be continued until we hit a zero or the interval has
become so small that the zero is determined with sufficient accuracy.

Algorithm 10.2 (Bisection method). Let f be a continuous function that has
opposite signs at the two ends of the interval [a,b]. The following algorithm
computes an approximation mN to a zero c ∈ (a,b) after N bisections:

a0 := a;
b0 := b;
for i := 1, 2, . . . , N

mi−1 := (ai−1 +bi−1)/2;
if f (mi−1) = 0

ai := bi := mi−1;
if f (ai−1) f (mi−1) < 0

ai := ai−1;

202

a0
b0

(a)

a1
b1

(b)

a2
b2

(c)

a3
b3

(d)

Figure 10.4. The first four steps of the bisection algorithm for a function with five zeros in the initial interval.

bi := mi−1;
else

ai := mi−1;
bi := bi−1;

mN := (aN +bN)/2;

This algorithm is just a formalisation of the discussion above. The for loop
starts with an interval [ai−1,bi−1] with the property that f (ai−1) f (bi−1) < 0. It
usually produces a new interval [ai ,bi] of half the width of [ai−1,bi−1], such that
f (ai) f (bi) < 0. The exception is if we hit a zero c, then the width of the interval
becomes 0. Initially, we start with [a0,b0] = [a,b].

The first four steps of the Bisection method for the example in figure 10.2 are
shown in figure 10.3. An example where there are several zeros in the original
interval is shown in figure 10.4. In general, it is difficult to predict which zero the
algorithm zooms in on, so it is best to choose the initial interval such that it only
contains one zero.

203

10.2.3 Error analysis

Algorithm 10.18 does N subdivisions and then stops, but it would be more de-
sirable if the loop runs until the error is sufficiently small. In order to do this, we
need to know how large the error is.

If we know that a function f has a zero c in the interval [a,b], and we use
the midpoint m = (a +b)/2 as an approximation to the zero, what can we say
about the error? The worst situation is if the zero is far from the midpoint, and
the furthest from the midpoint we can get, is a or b in which case the error is
(b −a)/2. This gives the following lemma.

Lemma 10.3. Suppose f is a function with a zero c in the interval [a,b]. If the
midpoint m = (a +b)/2 of [a,b] is used as an approximation to c, the error is
at most

|c −m|≤ b −a
2

.

This simple tool is what we need to estimate the error in the Bisection method.
Each bisection obviously halves the width of the interval, so the error is also
halved each time.

Theorem 10.4. Suppose f is a function with only one zero c in the interval
[a,b] and let {mi } denote the successive midpoints computed by the Bisection
method. After N iterations, the error is bounded by

|c −mN |≤ b −a
2N+1 . (10.2)

As N tends to infinity, the midpoints mN will converge to the zero c.

Here we have emphasised that f should have only one zero in [a,b]. If there
are several zeros, an estimate like (10.2) still holds for one of the zeros, but it is
difficult to say in advance which one.

This simple result allows us to control the number of steps necessary to
achieve a certain error �. For in order to ensure that the error is smaller than
� it is clearly sufficient to demand that the upper bound in the inequality (10.2)
is smaller than �,

|c −mN |≤ b −a
2N+1 ≤ �.

The second inequality can be solved for N by taking logarithms. This yields

ln(b −a)− (N +1)ln2 ≤ ln�

204

which leads to the following observation.

Observation 10.5. Suppose that f has only one zero in [a,b]. If the number
of bisections in the Bisection method is at least

N ≥ ln(b −a)− ln�
ln2

−1 (10.3)

the error will be at most �.

A simple word of advice: Do not try and remember the formula (10.3). It is
much better to understand (and thereby remember) how it was derived.

Example 10.6. Suppose we want to find the zero
�

2 with error smaller than
10−10 by solving the equation f (x) = x2 − 2. We have f (1) = −1 and f (2) = 2,
so we can use the Bisection method, starting with the interval [1,2]. To get the
error to be smaller than 10−10, we know that N should be larger than

ln(b −a)− ln�
ln2

−1 = 10ln10
ln2

−1 ≈ 32.2.

Since N needs to be an integer this shows that N = 33 is guaranteed to make the
error smaller than 10−10. If we run algorithm 10.18 we find

m0 = 1.50000000000,

m1 = 1.25000000000,

m2 = 1.37500000000,

...

m33 = 1.41421356233.

We have
�

2 ≈ 1.41421356237 with eleven correct digits, and the actual error in
m33 is approximately 4.7×10−11.

Recall that when we are working with floating-point numbers, the relative
error is a better error measure than the absolute error. The relative error after i
iterations is given by

|c −mi |
|c| .

From the inequality (10.2) we have an upper bound on the numerator. Recall
also that generally one is only interested in a rough estimate of the relative error.
It is therefore reasonable to approximate c by mi .

205

Observation 10.7. After i iterations with the Bisection method, the relative
error is approximately bounded by

b −a

|mi |2i+1
. (10.4)

One may wonder if it is possible to estimate beforehand how many iterations
are needed to make the relative error smaller than some given tolerance, like we
did in observation 10.5 for the absolute error. This would require some a priori
estimate of the zero c or the approximation mi , which is hardly possible.

Recall from observation 5.3 that if the relative error in an approximation c̃ to
c is of magnitude 10−m , then c and c̃ have roughly m decimal digits in common.
This is easily generalised to the fact that if the relative error is roughly 2−m , then c
and c̃ have roughly m binary digits in common. Observation 10.7 shows that the
relative error in the Bisection method is roughly halved during each iteration
(the variation in mi will not vary much in magnitude with i). But this means
that the number of correct bits increases by one in each iteration. Since 32-bit
floating-point numbers use 24 bits for the significand and 64-bit floating-point
numbers 54 bits, we can make the following observation.

Observation 10.8. The number of correct bits in the approximations to a zero
generated by the Bisection method increases by 1 per iteration. With 32-bit
floating-point numbers, full accuracy is obtained after 24 iterations, while full
accuracy is obtained after 54 iterations with 64-bit floating-point numbers.

10.2.4 Revised algorithm

If we look back on algorithm 10.18, there are several improvements we can make.
We certainly do not need to keep track of all the subintervals and midpoints, we
only need the last one. It is therefore sufficient to have the variables a, b and
m for this purpose. More importantly, we should use the idea from the previ-
ous section and let the number of iterations be determined by the requested
accuracy. Given some tolerance � > 0, we could then estimate N as in observa-
tion 10.5. This is certainly possible, but remember that the absolute error may be
an inadequate measure of the error if the numbers are far from 1 in size. Instead
we should use the relative error. We use an integer counter i and the expres-
sion in (10.4) (with N replaced by i) to estimate the relative error. We stop the
computations when i becomes so large that

b −a

|mi |2i+1
≤ �.

206

This condition becomes problematic if mi should become 0. We therefore use
the equivalent test

b −a

2i+1
≤ �|mi |

instead. If mi should become 0 for an i , this inequality will be virtually impossi-
ble to satisfy, so the computations will just continue.

Algorithm 10.9 (Revised Bisection method). Let f be a continuous function
that has opposite signs at the two ends of the interval [a,b]. The following
algorithm attempts to compute an approximation m to a zero c ∈ (a,b) with
relative error at most �, using at most N bisections:

i = 0;
m := (a +b)/2;
abserr := (b −a)/2;
while i ≤ N and abserr > �|m|

if f (m) = 0
a := b := m;

if f (a) f (m) < 0
b := m;

else

a := m;
i := i +1;
m := (a +b)/2;
abserr := (b −a)

�
2;

In the while loop we have also added a test which ensures that the while loop
does not run forever. This is good practice to ensure that your program does not
enter an infinite loop because some unforeseen situation occurs that prevents
the error from becoming smaller than �.

It must be emphasised that algorithm 10.9 lacks many details. For instance,
the algorithm should probably terminate if | f (m)| becomes small in some sense,
not just when it becomes zero. And there is no need to perform more iterations
than roughly the number of bits in the significand of the type of floating-point
numbers used. However, the basic principle of the Bisection method is illus-
trated by the algorithm, and the extra details belong to the area of professional
software development.

207

a

bc

m

(a)

a

bc

m x�

(b)

Figure 10.5. An example of the first step with the Bisection method (a), and the alternative approximation to
the zero provided by the secant (b).

10.3 The Secant method

The Bisection method is robust and uses only the sign of f (x) at the end points
and the successive midpoints to compute an approximation to a zero. In many
cases though, the method appears rather unintelligent. An example is shown in
figure 10.5a. The values of f at a and b indicate that the zero should be close to
b, but still the Bisection method uses the midpoint as the guess for the zero.

10.3.1 Basic idea

The idea behind the Secant method is to use the zero of the secant between�
a, f (a)

�
and

�
b, f (b)

�
as an approximation to the zero instead of the midpoint,

as shown in figure 10.5b.

Idea 10.10 (Secant idea). Let f be a continuous function, let a and b be two
points in its domain, and let

s(x) = f (a)+ f (b)− f (a)
b −a

(x −a)

be the secant between the two points
�
a, f (a)

�
and

�
b, f (b)

�
. The Secant

method uses the zero

x∗ = b − b −a
f (b)− f (a)

f (b) (10.5)

of the secant as an approximation to a zero of f .

We observe that the secant is symmetric in the two numbers a and b, so the

208

x0x1

x2

(a)

x1

x2 x3

(b)

x2 x3

x4

(c)

x3

x4

x5

(d)

Figure 10.6. An example of the first four steps of the Secant method.

formula (10.8) may also be written

x∗ = a − b −a
f (b)− f (a)

f (a).

In the Secant method it is convenient to label a and b as x0 = a and x1 = b
and denote the zero x∗ by x2. We are then in a position where we may repeat the
formula: From the two numbers x0 and x1, we compute the approximate zero
x2, then from the two numbers x1 and x2 we compute the approximate zero x3,
from x2 and x3 we compute the approximate zero x4, and so on. This is the basic
Secant method, and an example of the first few iterations of the method is shows
in figure 10.6. Note how the method quite quickly zooms in on the zero.

Algorithm 10.11 (Basic Secant method). Let f be a continuous function and
let x0 and x1 be two given numbers in its domain. The sequence {xi }N

i=0 given
by

xi = xi−1 −
xi−1 −xi−2

f (xi−1)− f (xi−2)
f (xi−1), i = 2, 3, . . . , N , (10.6)

209

x0 x1 x2

(a)

x1 x2 x3

(b)

x2 x3 x4

(c)

x3 x4 x5

(d)

Figure 10.7. An example where the Secant method fails.

will in certain situations converge to a zero of f .

It is important to realise that unlike the Bisection method, the Secant method
may fail. One such example is shown in figure 10.7. The problem here is that the
two starting values are too far away from the zero to the left in the plot, and the
algorithm gets stuck in the area to the right where the function is small, without
ever becoming 0. This explains the expression “will in certain situations con-
verge” in algorithm 10.11.

10.3.2 Testing for convergence

Algorithm 10.11 provides the basis for the secant algorithm. However, rather
than just do N iterations, it would be more useful to stop the iterations when a
certain accuracy has been attained. This turns out to be more difficult for the
Secant method than for the Bisection method since there is not such an explicit
error estimate available for the Secant method.

The Secant method produces a sequence of approximations x0, x1, . . . to a
zero, and we want to decide when we are within a tolerance � of the zero. We

210

will often find ourselves in this kind of situation: Some algorithm produces a se-
quence of approximations, and we want to check whether we have convergence.

When we come close to the zero, the difference between successive approxi-
mations will necessarily become small. If we are working with the absolute error,
it is therefore common to use the number |xn − xn−1| as a measure of the abso-
lute error at iteration no. n. If we want to stop when the absolute error is smaller
than �, the condition then becomes |xn −xn−1|≤ �.

Usually, it is preferable to work with the relative error, and then we need an
estimate for the zero as well. At step n of the algorithm, the best approximation
we have for the zero is the latest approximation, xn . The estimate for the relative
error at step n is therefore

|xn −xn−1|
|xn |

.

To test whether the relative error is less than or equal to �, we would then use
the condition |xn − xn−1| ≤ �|xn |. We emphasise that this is certainly not exact,
and this kind of test cannot guarantee that the error is smaller than �. But in the
absence of anything better, this kind of strategy is often used.

Observation 10.12. Suppose that an algorithm generates a sequence {xn}.
The absolute error in the terms xn is then often estimated by |xn − xn−1|,
and the relative error by |xn − xn−1|/|xn |. To test whether the relative error
is smaller than �, the condition

|xn −xn−1|≤ �|xn |

is often used.

When computing zeros of functions, there is one more ingredient that is
often used. At the zero c we obviously have f (c) = 0. It is therefore reason-
able to think that if f (xn) is small, then xn is close to a zero. It is easy to con-
struct functions where this is not the case. Consider for example the function
f (x) = x2 +10−30. This function is positive everywhere, but becomes as small as
10−30 at x = 0. Without going into further detail, we therefore omit this kind of
convergence testing, although it may work well in certain situations.

10.3.3 Revised algorithm

The following is a more detailed algorithm for the Secant method, where the test
for convergence is based on the discussion above.

211

Algorithm 10.13 (Revised Secant method). Let f be a continuous function,
and let x0 and x1 be two distinct initial approximations to a zero of f . The
following algorithm attempts to compute an approximation z to a zero with
relative error less than �< 1, using at most N iterations:

i = 0;
xpp := x0;
xp := z := x1;
abserr := |z|;
while i ≤ N and abserr ≥ �|z|

z := xp − f (xp)(xp −xpp)
��

f (xp)− f (xpp)
�
;

abserr := |z −xp|;
xpp := xp;
xp := z;
i := i +1;

Since we are only interested in the final approximation of the root, there is
no point in keeping track of all the approximations. All we need to compute the
next approximation z, is the two previous approximations which we call xp and
xpp, just like in simulation of second order difference equations (in fact, the
iteration (10.6) in the Secant method can be viewed as the simulation of a non-
linear, second-order, difference equation). Before we enter the while loop, we
have to make sure that the test of convergence does not become true straight-
away. The first time through the loop, the test for convergence is |z|≥ �|z| which
will always be true (even if z = 0), since � is assumed to be smaller than 1.

10.3.4 Convergence and convergence order of the Secant method

So far we have focused on the algorithmic aspect of the Secant method, but an
important question is obviously whether or not the sequence generated by the
algorithm converges to a zero. As we have seen, this is certainly not always the
case, but if f satisfies some reasonable conditions and we choose the starting
values near a zero, the sequence generated by the algorithm will converge to the
zero.

Theorem 10.14 (Convergence of the Secant method). Suppose that f and its
first two derivatives are continuous in an interval I that contains a zero c of
f , and suppose that there exists a positive constant γ such that | f �(x)| > γ> 0
for all x in I . Then there exists a constant K such that for all starting values x0

212

and x1 sufficiently close to c, the sequence produced by the Secant method
will converge to c and the error en = c −xn will satisfy

|en |≤ K |en−1|r , n = 2, 3, . . . , (10.7)

where

r = 1
2

(1+
�

5) ≈ 1.618.

We are not going to prove this theorem which may appear rather overwhelm-
ing, but let us comment on some of the details.

First of all we note the assumptions: The function f and its first two deriva-
tives must be continuous in an interval I that contains the zero c. In addi-
tion | f �(x)| must be positive in this interval. This is always the case as long as
f �(c) �= 0, because then f �(x) must also be nonzero near c. However, the Secant
method works even if f �(c) = 0, it will just require more iterations than in the
case when f �(c) is nonzero.

The other assumption is that the starting values x0 and x1 are “sufficiently
close to c”. This is imprecise, but means that it is in fact possible to write down
precisely how close x0 and x1 must be to c.

Provided the assumptions are satisfied, theorem 10.14 guarantees that the
Secant method will converge to the zero. However, the inequality (10.7) also
says something about how quickly the error goes to zero. Suppose that at some
stage we have ek = 10−1 and that K is some number near 1. Then we find that

ek+1 � er
k = 10−r ≈ 10−1.618 ≈ 2.41×10−2,

ek+2 � er
k+1 � er 2

k = 10−r 2 ≈ 2.41×10−3,

ek+3 � 5.81×10−5,

ek+4 � 1.40×10−7,

ek+5 � 8.15×10−12,

ek+6 � 1.43×10−18.

This means that if the size of the root is approximately 1, and we manage to get
the error to become 0.1, it will be as small as 10−18 (machine precision with 64-
bit floating-point numbers) only six iterations later.

213

Observation 10.15. When the Secant method converges to a zero c with
f �(c) �= 0, the number of correct digits increases by about 62 % per iteration.

Example 10.16. Let us see if the predictions above happen in practice. We test
the Secant method on the function f (x) = x2 − 2 and attempt to compute the
zero c =

�
2 ≈ 1.41421356237309505. We start with x0 = 2 and x1 = 1.5 and obtain

x2 ≈ 1.42857142857142857, e2 ≈ 1.4×10−2,

x3 ≈ 1.41463414634146341, e3 ≈ 4.2×10−4,

x4 ≈ 1.41421568627450980, e4 ≈ 2.1×10−6,

x5 ≈ 1.41421356268886964, e5 ≈ 3.2×10−10,

x6 ≈ 1.41421356237309529, e6 ≈ 2.4×10−16.

This confirms the claim in observation 10.15.

10.4 Newton’s method

We are going to study a third method for finding roots of equations, namely
Newton’s method. This method is quite similar to the Secant method, and the
description is quite similar, so we will be brief.

10.4.1 Basic idea

In the Secant method we used the secant as an approximation to f and the zero
of the secant as an approximation to the zero of f . In Newton’s method we use
the tangent of f instead.

Idea 10.17 (Newton’s method). Let f be a continuous, differentiable function,
let a be a point in its domain, and let

T (x) = f (a)+ f �(a)(x −a)

be the tangent of f at a. Newton’s method uses the zero

x∗ = a − f (a)
f �(a)

(10.8)

of the tangent as an approximation to a zero of f .

214

x0

x1

(a)

x1
x2

(b)

x2x3

(c)

x0

x1
x2x3

(d)

Figure 10.8. An example of the first three steps of Newton’s method (a)–(c). The plot in shows a standard way
of illustrating all three steps in one figure.

Newton’s method is usually iterated, just like the Secant method. So if we
start with x0 = a, we compute the zero x1 of the tangent at x0. Then we repeat
and compute the zero x2 of the tangent at x1, and so on,

xn = xn−1 −
f (xn−1

f �(xn−1)
, n = 1, 2, . . . (10.9)

The hope is that the resulting sequence {xn} will converge to a zero of f . Fig-
ure 10.8 illustrates the first three iterations with Newton’s method for the exam-
ple in figure 10.6.

An advantage of Newton’s method compared to the Secant method is that
only one starting value is needed since the iteration (10.9) is a first-order (non-
linear) difference equation. On the other hand, it is sometimes a disadvantage
that an explicit expression for the derivative is required.

10.4.2 Algorithm

Newton’s method is very similar to the Secant method, and so is the algorithm.
We measure the relative error in the same way, and therefore the stopping crite-

215

x0 x1 x2 x3 x4

Figure 10.9. An example where Newton’s method fails to converge because of a bad starting value.

rion is also exactly the same.

Algorithm 10.18 (Newton’s method). Let f be a continuous, differentiable
function, and let x0 be an initial approximation to a zero of f . The follow-
ing algorithm attempts to compute an approximation z to a zero with relative
error less than �< 1, using at most N iterations:

i = 0;
xp := z := x0;
abserr := |z|;
while i ≤ N and abserr ≥ �|z|

z := xp − f (xp)
�

f �(xp);
abserr := |z −xp|;
xp := z;
i := i +1;

What may go wrong with this algorithm is that, like the Secant method, it
may not converge, see the example in figure 10.9. Another possible problem is
that we may in rare cases get division by zero in the first statement in the while
loop.

10.4.3 Convergence and convergence order

The behaviour of Newton’s method is very similar to that of the Secant method.
One difference is that Newton’s method is in fact easier to analyse since it is a

216

first-order difference equation. The equivalent of theorem 10.14 is therefore
easier to prove in this case. The following lemma is a consequence of Taylor’s
formula.

Lemma 10.19. Let c be a zero of f which is assumed to have continuous
derivatives up to order 2, and let en = xn − c denote the error at iteration n
in Newton’s method. Then

en+1 = e2
n

f ��(ξn)
2 f �(xn)

, (10.10)

where ξn is a number in the interval (c, xn) (the interval (xn ,c) if xn < c).

Proof. The basic relation in Newton’s method is

xn+1 = xn − f (xn)
f �(xn)

.

If we subtract the zero c on both sides we obtain

en+1 = en − f (xn)
f �(xn)

= en f �(xn)− f (xn)
f �(xn)

. (10.11)

Consider now the Taylor exansion

f (c) = f (xn)+ (c −xn) f �(xn)+ (c −xn)2

2
f ��(ξn),

where ξn is a number in the interval (xn ,c). Since f (c) = 0, this may be rewritten
as

− f (xn)+ (xn − c) f �(xn) = (c −xn)2

2
f ��(ξn).

If we insert this in (10.11) we obtain the relation

en+1 = e2
n

f ��(ξn)
2 f �(xn)

,

as required.

Lemma 10.19 is the basis for proving that Newton’s method converges. The
result is the following theorem.

217

Theorem 10.20. Suppose that f and its first two derivatives are continuous in
an interval I that contains a zero c of f , and suppose that there exists a posi-
tive constant γ such that | f �(x)| > γ> 0 for all x in I . Then there exists a con-
stant K such that for all initial values x0 sufficiently close to c, the sequence
produced by Newton’s method will converge to c and the error en = xn −c will
satisfy

|en+1|≤ K |en |2, n = 1, 2, . . . (10.12)

where K is some nonzero constant.

We will not prove this theorem, just comment on a few details. First of all
we note that the assumptions are basically the same as the assumptions in the
similar theorem 10.14 for the Secant method. The essential condition is that
f �(c) �= 0. Without this, the method still works, but the convergence is very slow.

The inequality (10.12) is obtained from (10.10) by taking the maximum of
the expression f ��(x)/ f �(y) on the right in (10.12), for all x and y in the interval
I . If f �(c) = 0 this constant will not exist.

When we know that Newton’s method converges, the relation (10.12) tells us
how quickly it converges. If at some stage we have obtained ek ≈ 10−1 and K ≈ 1,
we see that

ek+1 ≈ e2
k ≈ 10−2,

ek+2 ≈ e2
k+1 ≈ 10−4,

ek+3 ≈ e2
k+2 ≈ 10−8,

ek+4 ≈ e2
k+3 ≈ 10−16.

This means that if the root is approximately 1 in size and we somehow manage
to reach an error of about 10−1, we only need four more iterations to reach ma-
chine accuracy with 64-bit floating-point numbers. This shows the power of the
relation (10.12). An algorithm for which the error satisfies this kind of relation is
said to be quadratically convergent.

Observation 10.21. When Newon’s method converges to a zero c for which
f �(c) �= 0, the number of correct digits doubles per iteration.

Let us end by redoing example 10.16 with Newton’s method and checking
observation 10.21 on a practical example.

Example 10.22. The equation is f (x) = x2 −2 which has the solution c =
�

2 ≈
1.41421356237309505. If we run Newton’s method with the initial value x0 = 1.7,

218

we find

x1 ≈ 1.43823529411764706, e2 ≈ 2.3×10−1,

x2 ≈ 1.41441417057620594, e3 ≈ 2.4×10−2,

x3 ≈ 1.41421357659935635, e4 ≈ 2.0×10−4,

x4 ≈ 1.41421356237309512, e5 ≈ 1.4×10−8,

x5 ≈ 1.41421356237309505, e6 ≈ 7.2×10−17.

We see that although we only use one starting value, which is further from the
root than best of the two starting values used with the Secant method, we still
end up with a smaller error than with the Secant method after five iterations.

10.5 Summary

We have considered three methods for computing zeros of functions, the Bisec-
tion method, the Secant method, and Newton’s method. The Bisection method
is robust and works for almost any kind of equations and even for a zero c where
f (c) = f �(c) = 0, but the convergence is relatively slow. The other two methods
converge much faster when the root c is simple, i.e., when f �(c) �= 0. The Se-
cant method is then a bit slower than Newton’s method, but it does not require
knowledge of the derivative of f .

If f �(c) = 0, the Bisection method still converges with the same speed, as
long as an interval where f has opposite signs at the ends can be found. In this
situation the Secant method and Newton’s method are not much faster than the
Bisection method.

A major problem with all three methods is the need for starting values. This
is especially true for the Secant method and Newton’s method which may eas-
ily diverge if the starting values are not good enough. There are other, more
advanced, methods available which converge as quickly as Newton’s method,
without requiring precise starting values.

If you try the algorithms in this chapter on some examples, you are very likely
to discover that they do not always behave like you expect. The most likely prob-
lem is going to be the estimation of the (relative) error and therefore the stop-
ping criteria for the while loops. We therefore emphasise that the algorithms
given here are not at all fool-proof codes, but are primarily meant to illustrate
the ideas behind the methods.

Out of the many other methods available for solving equations, one deserves
to be mentioned specially. The Regula Falsi method is a mix between the Secant
method and the Bisection method. It is reminiscent of the Bisection method in
that it generates a sequence of intervals for which f has opposite signs at the

219

ends, but the intervals are not bisected at the midpoints. Instead, they are sub-
divided at the point where the secant between the graph at the two endpoints
is zero. This may seem like a good idea, but it is easy to construct examples
where this does not work particularly well. However, there are standard ways to
improve the method to avoid these problems.

Exercises

10.1 In this exercise we are going to test the three numerical methods that are discussed in
this chapter. We use the equation f (x) = sin x = 0, and want to compute the zero x = π ≈
3.1415926535897932385.

a) Determine an approximation to π by performing ten manual steps with the Bisec-
ton method, starting with the interval [3,4]. Compute the error in each step by com-
paring with the exact value.

b) Determine an approximation by performing four steps with the Secant method with
starting values x0 = 4 and x1 = 3. Compute the error in each step.

c) Determine an approximation by performing four steps with Newton’s method with
initial value x0 = 3. Compute the error in each step.

d) Compare the errors for the three methods. Which one converges the fastest?

10.2 Repeat exercise 1 with the equation (x −10/3)5 = 0. Why do you think the error behaves
differently than in exercise 1? Hint: Take a careful look at the conditions in theorems 10.14
and 10.20.

10.3 The equation f (x) = x −cos x = 0 has a zero at x ≈ 0.739085133215160642.

a) Use the Bisection method to find an approximation to the zero, starting with [a,b] =
[0,1]. How many correct digits do you have after ten steps?

b) How many steps do you need to get ten correct digits with the Bisection method?

c) Write a program that implements the Bisection method, and compute an approx-
imation to the root with the number of iterations that you found in (b). How does
the actual error compare with the requirement of ten correct digits?

10.4 Repeat exercise 3, but use Newtons method instead of the bisection method. Make a plot
giving a visual image of the iteration process

10.5 a) Find an equation which is zero at c =
�

3. Use the Secant method and determine an
approximation to c with 2 correct digits by hand. Program the Secant method, and
determine an approximation with 15 correct digits using the program.

b) Repeat (a), but with c = 21/12.

c) Repeat (a) but with c = e, where e = 2.71828 · · · is the base for natural logarithms.

10.6 In this exercise we will analyse the behaviour of the Secant method and Newton’s method
applied to the equation f (x) = x2 −2 = 0.

220

a) Let {xn } denote the sequence generated by Newton’s method, and set en = xn −
�

2.
Derive the formula

en+1 =
e2

n
2xn

(10.13)

directly (do not use lemma 10.19), and verify that the values computed in exam-
ple 10.22 satisfy this equation.

b) Derive a relation similar to (10.13) for the Secant method, and verify that the num-
bers computed in example 10.16 satisfy this relation.

10.7 Some computers do not have hardware for division, and need to compute numbers like
1/R in some other way.

a) Set f (x) = 1/x −R. Verify that the Newton iteration for this function is

xn+1 = xn (2−Rxn),

and explain how this can be used to compute 1/R without division.

b) Use the idea in (a) to compute 1/7 with an accuracy of ten decimal digits.

10.8 Suppose that you are working with a function f where both f , f � and f �� are continous
on all of R. Suppose also that f has a zero at c, that f �(c) �= 0 and that Newton’s method
generates a sequence {xn } that converges to c. From lemma 10.19 we know that the error
en = xn − c satisfies the relation

en+1 = 1
2

f ��(ξn)
f �(xn)

e2
n for n ≥ 0, (10.14)

where ξn is a number in the interval (c, xn) (or the interval (xn ,c) if xn < c).

a) Use 10.14 to show that if f ��(c) �= 0, there exists an N such that either xn > c for all
n > N or xn < c for all n > N . (Hint: Use the fact that {xn } converges to c and that
neither f � nor f �� changes sign in sufficiently small intervals around c.)

b) Suppose that f �(c) > 0, but that f ��(c) = 0 and that the sign of f �� changes from
positive to negative at c (when we move from left to right). Show that there exists an
N such that (xn+1 − z)(xn − z) < 0 for all n > N . In other words, the approximations
xn will alternately lie to the left and right of c when n becomes sufficiently large.

c) Find examples that illustrate each of the three types of convergence found in (a) and
(b), and verify that the behaviour is as expected by performing the computations
(with a computer program).

221

