
CHAPTER 11

Numerical Differentiation

Differentiation is a basic mathematical operation with a wide range of applica-
tions in many areas of science. It is therefore important to have good meth-
ods to compute and manipulate derivatives. You probably learnt the basic rules
of differentiation in school — symbolic methods suitable for pencil-and-paper
calculations. Such methods are of limited value on computers since the most
common programming environments do not have support for symbolic com-
putations.

Another complication is the fact that in many practical applications a func-
tion is only known at a few isolated points. For example, we may measure the
position of a car every minute via a GPS (Global Positioning System) unit, and
we want to compute its speed. When the position is known at all times (as a
mathematical function), we can find the speed by differentiation. But when the
position is only known at isolated times, this is not possible.

The solution is to use approximate methods of differentiation. In our con-
text, these are going to be numerical methods. We are going to present a number
of such methods, but more importantly, we are going to present a general strat-
egy for deriving numerical differentiation methods. In this way you will not only
have a number of methods available to you, but you will also be able to develop
new methods, tailored to special situations that you may encounter.

The basic strategy for deriving numerical differentiation methods is to evalu-
ate a function at a few points, find the polynomial that interpolates the function
at these points, and use the derivative of this polynomial as an approximation to
the derivative of the function. This technique also allows us to keep track of the
so-called truncation error, the mathematical error committed by differentiating
the polynomial instead of the function itself. In addition to the truncation error,
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there are also round-off errors, which are unavoidable when we use floating-
point numbers to perform calculations with real numbers. It turns out that nu-
merical differentiation is very sensitive to round-off errors, but these errors are
quite easy to analyse.

If you just read through this chapter you may be overwhelmed by all the de-
tails and inequalities. But the key is to study the first and simplest method in
section 11.1 in detail. If you understand this method, you should have no prob-
lems understanding the others as well, since both the derivation and the analysis
is essentially the same for all the methods. The general strategy is summarised in
section 11.2. Note also that the methods for numerical integration in Chapter 12
are derived and analysed in much the same way as the differentiation methods
in this chapter.

11.1 A simple method for numerical differentiation

We start by introducing the simplest method for numerical differentiation, de-
rive its error, and its sensitivity to round-off errors. The procedure used here for
deriving the method and analysing the error is used over again in later sections
to derive and analyse additional methods.

Let us first clarify what we mean by numerical differentiation.

Problem 11.1 (Numerical differentiation). Let f be a given function that is
only known at a number of isolated points. The problem of numerical differ-
entiation is to compute an approximation to the derivative f � of f by suitable
combinations of the known values of f .

A typical example is that f is given by a computer program (more specifi-
cally a function, procedure or method, depending on you choice of program-
ming language), and you can call the program with a floating-point argument
x and receive back a floating-point approximation of f (x). The challenge is to
compute an approximation to f �(a) for some real number a when the only aid
we have at our disposal is the program to compute values of f .

11.1.1 The basic idea

Since we are going to compute derivatives, we must be clear about how they are
defined. Recall that f �(a) is defined by

f �(a) = lim
h→0

f (a +h)− f (a)
h

. (11.1)
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In the following we will assume that this limit exists; i.e., that f is differentiable
at x = a. From (11.1) we immediately have a natural approximation to f �(a); we
simply pick a positive h and use the approximation

f �(a) ≈ f (a +h)− f (a)
h

. (11.2)

Note that this corresponds to approximating f by the straight line p1 that inter-
polates f at a and a +h, and then using p �

1(a) as an approximation to f �(a).

Observation 11.2. The derivative of f at a can be approximated by

f �(a) ≈ f (a +h)− f (a)
h

.

In a practical situation, the number a would be given, and we would have to
locate the two nearest values a1 and a2 to the left and right of a such that f (a1)
and f (a2) are known. Then we would use the approximation

f �(a) ≈ f (a2)− f (a1)
a2 −a1

.

In later sections, we will derive several formulas like (11.2). Which formula to
use in a particular situation, and exactly how to apply it, will have to be decided
in each case.

Example 11.3. Let us test the approximation (11.2) for the function f (x) = sin x
at a = 0.5 (using 64-bit floating-point numbers). In this case we know that the
exact derivative is f �(x) = cos x so f �(a) = 0.87758256. This makes it is easy to
check the accuracy of the numerical method. We try with a few values of h and
find

h
�

f (a +h)− f (a)
��

h E1( f ; a,h)

10−1 0.8521693479 2.5×10−2

10−2 0.8751708279 2.4×10−3

10−3 0.8773427029 2.4×10−4

10−4 0.8775585892 2.4×10−5

10−5 0.8775801647 2.4×10−6

10−6 0.8775823222 2.4×10−7

where E1( f ; a,h) = f �(a)−
�

f (a+h)− f (a)
��

h. In other words, the approximation
seems to improve with decreasing h, as expected. More precisely, when h is
reduced by a factor of 10, the error is reduced by the same factor.
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11.1.2 The truncation error

Whenever we use approximations, it is important to try and keep track of the
error, if at all possible. To analyse the error in numerical differentiation, Taylor
polynomials with remainders are useful. To analyse the error in the approxima-
tion above, we do a Taylor expansion of f (a +h). We have

f (a +h) = f (a)+h f �(a)+ h2

2
f ��(ξh),

where ξh lies in the interval (a, a +h). If we rearrange this formula, we obtain

f �(a)− f (a +h)− f (a)
h

=−h
2

f ��(ξh). (11.3)

This is often referred to as the truncation error of the approximation, and is a
reasonable error formula, but it would be nice to get rid of ξh . We first take
absolute values in (11.3),

���� f �(a)− f (a +h)− f (a)
h

����=
h
2

�� f ��(ξh)
�� .

Recall from the Extreme value theorem that if a function is continuous, then its
maximum always exists on any closed and bounded interval. In our setting here,
it is natural to let the closed and bounded interval be [a, a+h]. This leads to the
following lemma.

Lemma 11.4. Suppose f has continuous derivatives up to order two near a.
If the derivative f �(a) is approximated by

f (a +h)− f (a)
h

,

then the truncation error is bounded by

E( f ; a,h) =
���� f �(a)− f (a +h)− f (a)

h

����≤
h
2

max
x∈[a,a+h]

�� f ��(x)
�� . (11.4)

Let us check that the error formula (11.3) agrees with the numerical values
in example 11.3. We have f ��(x) =−sin x, so the absolute value of the right-hand
side in (11.3) becomes

E(sin;0.5,h) = h
2

sinξh ,
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where ξh ∈ (0.5,0.5+h). For h = 0.1 we therefore have that the error must lie in
the interval

[0.05sin0.5, 0.05sin0.6] = [2.397×10−2, 2.823×10−2],

and the right end of the interval is the maximum value of the right-hand side in
(11.4). When h is reduced by a factor of 10, the number h/2 is reduced by the
same factor, while ξh is restricted to an interval whose width is also reduced by
a factor of 10. This means that ξh will approach 0.5 so sinξh will approach the
lower value sin0.5 ≈ 0.479426. For h = 10−n , the error will therefore tend to

10−n

2
sin0.5 ≈ 0.2397

10n ,

which is in complete agreement with example 11.3.

This is true in general. If f �� is continuous, then ξh will approach a when h
goes to zero. But even when h > 0, the error in using the approximation f ��(ξh) ≈
f ��(a) is usually acceptable. This is the case since it is usually only necessary to
know the magnitude of the error, i.e., it is sufficient to know the error with one
or two correct digits.

Observation 11.5. The truncation error is given approximately by
���� f �(a)− f (a +h)− f (a)

h

����≈
h
2

�� f ��(a)
�� .

11.1.3 The round-off error

So far, we have just considered the mathematical error committed when f �(a)
is approximated by

�
f (a +h)− f (a)

��
h. But what about the round-off error? In

fact, when we compute this approximation we have to perform the one critical
operation f (a +h)− f (a) — subtraction of two almost equal numbers — which
we know from chapter 5 may lead to large round-off errors. Let us continue
example 11.3 and see what happens if we use smaller values of h.

Example 11.6. Recall that we estimated the derivative of f (x) = sin x at a = 0.5
and that the correct value with ten digits is f �(0.5) ≈ 0.8775825619. If we check
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values of h from 10−7 and smaller we find

h
�

f (a +h)− f (a)
��

h E( f ; a,h)

10−7 0. 8775825372 2.5×10−8

10−8 0.8775825622 −2.9×10−10

10−9 0.8775825622 −2.9×10−10

10−11 0.8775813409 1.2×10−6

10−14 0.8770761895 5.1×10−4

10−15 0.8881784197 −1.1×10−2

10−16 1.110223025 −2.3×10−1

10−17 0.000000000 8.8×10−1

This shows very clearly that something quite dramatic happens. Ultimately,
when we come to h = 10−17, the derivative is computed as zero.

If f (a) is the floating-point number closest to f (a), we know from lemma 5.6
that the relative error � in this approximation will be bounded by 5×2−53 since
floating-point numbers are represented in binary (β = 2) with 53 bits for the
significand (m = 53). We therefore have |�|≤ 5×2−53 ≈ 6×10−16. In practice, the
real upper bound on � is usually smaller, and in the following we will denote this
upper bound by �∗. This means that a definite upper bound on �∗ is 6×10−16.

Notation 11.7. The maximum relative error when a real number is repre-
sented by a floating-point number is denoted by �∗.

There is a handy way to express the relative error in f (a). If we denote the
computed value of f (a) by f (a), we will have

f (a) = f (a)(1+�)

which corresponds to the relative error being |�|.

Observation 11.8. Suppose that f (a) is computed with 64-bit floating-point
numbers and that no underflow or overflow occurs. Then the computed value
f (a) satisfies

f (a) = f (a)(1+�) (11.5)

where |�|≤ �∗, and � depends on both a and f .

The computation of f (a +h) is of course also affected by round-off error, so
we have

f (a) = f (a)(1+�1), f (a +h) = f (a +h)(1+�2) (11.6)
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where |�i | ≤ �∗ for i = 1, 2. Here we should really write �2 = �2(h), because the
exact round-off error in f (a +h) will inevitably depend on h in a rather random
way.

The next step is to see how these errors affect the computed approximation
of f �(a). Recall from example 5.11 that the main source of round-off in subtrac-
tion is the replacement of the numbers to be subtracted by the nearest floating-
point numbers. We therefore consider the computed approximation to be

f (a +h)− f (a)
h

.

If we insert the expressions (11.6), and also make use of lemma 11.4, we obtain

f (a +h)− f (a)
h

= f (a +h)− f (a)
h

+ f (a +h)�2 − f (a)�1

h

= f �(a)+ h
2

f ��(ξh)+ f (a +h)�2 − f (a)�1

h

(11.7)

where ξh ∈ (a, a+h). This shows that the total error in the computed approxima-
tion to the derivative consists of two parts: The truncation error that we derived
in the previous section, plus the last term on the right in (11.7), which is due to
the round-off in floating-point numbers. The truncation error is proportional to
h and therefore tends to 0 when h tends to 0. The error due to round-off how-
ever, is proportional to 1/h and therefore becomes large when h tends to 0.

Below we will see that the error formula (11.7) provides a reasonable expla-
nation of example 11.6. First we tidy up the expression a little bit and sum it up
in a theorem.

Theorem 11.9. Suppose that f and its first two derivatives are continuous
near a. When the derivative of f at a is approximated by

f (a +h)− f (a)
h

,

the error in the computed approximation is given by

���� f �(a)− f (a +h)− f (a)
h

����≤
h
2

M1 +
2�∗

h
M2, (11.8)

where
M1 = max

x∈[a,a+h]

�� f ��(a)
�� , M2 = max

x∈[a,a+h]

�� f (a)
�� .
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Proof. To get to (11.8) we have rearranged (11.7) and used the triangle inequal-
ity. We have also replaced

�� f ��(ξh)
�� by its maximum on the interval [a, a +h], as

in (11.4). Similarly, we have replaced f (a) and f (a +h) by their common maxi-
mum on [a, a+h]. The last term then follows by applying the triangle inequality
to the last term in (11.7) and replacing |�1| and |�2(h)| by the upper bound �∗.

The inequality (11.8) can be replaced by an approximate equality by making
the approximations M1 ≈

�� f ��(a)
�� and M2 ≈

�� f (a)
��, just like in observation 11.8

and using the maximum of �1 and �2 in (11.7), which we denote �(h).

Observation 11.10. The inequality (11.8) is approximately equivalent to

���� f �(a)− f (a +h)− f (a)
h

����≈
h
2

�� f ��(a)
��+ 2 |�(h)|

h

�� f (a)
�� . (11.9)

Let us check how well observation 11.10 agrees with the computations in
examples 11.3 and 11.6.

Example 11.11. For large values of h the first term on the right in (11.9) will
dominate the error and we have already seen that this agrees very well with the
computed values in example 11.3. The question is how well the numbers in ex-
ample 11.6 can be modelled when h becomes smaller.

To estimate the size of �(h), we consider the case when h = 10−16. Then the
observed error is −2.3×10−1 so we should have

10−16

2
sin0.5−

2�
�
10−16�

10−16 =−2.3×10−1.

We solve this equation and find

�
�
10−16�= 10−16

2

�
2.3×10−1 + 10−16

2
sin0.5

�
= 1.2×10−17.

If we try some other values of h we find

�
�
10−11�=−6.1×10−18, �

�
10−13�= 2.4×10−18, �

�
10−15�= 5.3×10−18.

We observe that all these values are considerably smaller than the upper limit
6×10−16 which we mentioned above.

Figure 11.1 shows plots of the error. The numerical approximation has been
computed for the values n = 0.01i , i = 0, . . . , 200 and plotted in a log-log plot.
The errors are shown as isolated dots, and the function

g (h) = h
2

sin0.5+�∗
2
h

sin0.5 (11.10)

230



�20 �15 �10 �5

�10

�8

�6

�4

�2

Figure 11.1. Numerical approximation of the derivative of f (x) = sin x at x = 0.5 using the approximation in
lemma 11.4. The plot is a log10-log10 plot which shows the logarithm to base 10 of the absolute value of the
total error as a function of the logarithm to base 10 of h, based on 200 values of h. The point −10 on the
horizontal axis therefore corresponds h = 10−10, and the point −6 on the vertical axis corresponds to an error
of 10−6. The plot also includes the function given by (11.10).

with �∗ = 7×10−17 is shown as a solid graph. It seems like this choice of �∗ makes
g (h) a reasonable upper bound on the error.

11.1.4 Optimal choice of h

Figure 11.1 indicates that there is an optimal value of h which minimises the
total error. We can find this mathematically by minimising the upper bound in
(11.9), with |�(h)| replaced by the upper bound �∗. This gives

g (h) = h
2

�� f ��(a)
��+ 2�∗

h

�� f (a)
�� . (11.11)

To find the value of h which minimises this expression, we differentiate with
respect to h and set the derivative to zero. We find

g �(h) =
�� f ��(a)

��

2
− 2�∗

h2

�� f (a)
�� .

If we solve the equation g (h) = 0, we obtain the approximate optimal value.

Lemma 11.12. Let f be a function with continuous derivatives up to order 2.
If the derivative of f at a is approximated as in lemma 11.4, then the value
of h which minimises the total error (truncation error + round-off error) is
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approximately

h∗ ≈ 2

�
�∗

�� f (a)
��

��� f ��(a)
��

.

It is easy to see that the optimal value of h is the value that balances the two
terms in (11.11)l, i.e., the truncation error and the round-off error are equal. In
the example with f (x) = sin x and a = 0.5 we can use �∗ = 7×10−17 which gives

h∗ = 2
�
�= 2

�
7×10−17 ≈ 1.7×10−8.

11.2 Summary of the general strategy

Before we continue, let us sum up the derivaton and analysis of the numerical
differentiation method in section 11.1, since we will use this over and over again.

The first step was to derive the numerical method. In section 11.1 this was
very simple since the method came straight out of the definition of the deriva-
tive. Just before observation 11.2 we indicated that the method can also be de-
rived by approximating f by a polynomial p and using p �(a) as an approxima-
tion to f �(a). This is the general approach that we will use below.

Once the numerical method is known, we estimate the mathematical error
in the approximation, the truncation error. This we do by performing Taylor
expansions with remainders. For numerical differentiation methods which pro-
vide estimates of a derivative at a point a, we replace all function values at points
other than a by Taylor polynomials with remainders. There may be a challenge
to choose the degree of the Taylor polynomial.

The next task is to estimate the total error, including round-off error. We con-
sider the difference between the derivative to be computed and the computed
approximation, and replace the computed function evaluations by expressions
like the ones in observation 11.8. This will result in an expression involving the
mathematical approximation to the derivative. This can be simplified in the
same way as when the truncation error was estimated, with the addition of an
expression involving the relative round-off errors in the function evaluations.
These expressions can then be simplified to something like (11.8) or (11.9).

As a final step, the optimal value of h can be found by minimising the total
error.
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Procedure 11.13. The following is a general procedure for deriving numerical
methods for differentiation:

1. Interpolate the function f by a polynomial p at suitable points.

2. Approximate the derivative of f by the derivative of p. This makes it
possible to express the approximation in terms of function values of f .

3. Derive an estimate for the error by expanding the function values (other
than the one at a) in Taylor series with remainders.

4. Derive an estimate of the round-off error by assuming that the relative
errors in the function values are bounded by �∗. By minimising the total
error, an optimal step length h can be determined.

11.3 A simple, symmetric method

The numerical differentiation method in section 11.1 is not symmetric about a,
so let us try and derive a symmetric method.

11.3.1 Construction of the method

We want to find an approximation to f �(a) using values of f near a. To obtain
a symmetric method, we assume that f (a −h), f (a), and f (a +h) are known
values, and we want to find an approximation to f �(a) using these values. The
strategy is to determine the quadratic polynomial p2 that interpolates f at a−h,
a and a +h, and then we use p �

2(a) as an approximation to f �(a).
We write p2 in Newton form,

p2(x) = f [a −h]+ f [a −h, a](x − (a −h))

+ f [a −h, a, a +h](x − (a −h))(x −a). (11.12)

We differentiate and find

p �
2(x) = f [a −h, a]+ f [a −h, a, a +h](2x −2a +h).

Setting x = a yields

p �
2(a) = f [a −h, a]+ f [a −h, a, a +h]h.

To get a practically useful formula we must express the divided differences in
terms of function values. If we expand the second expression we obtain

p �
2(a) = f [a−h, a]+ f [a, a +h]− f [a −h, a]

2h
h = f [a, a +h]+ f [a −h, a]

2
(11.13)
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The two first order differences are

f [a −h, a] = f (a)− f (a −h)
h

, f [a, a +h] = f (a +h)− f (a)
h

,

and if we insert this in (11.13) we end up with

p �
2(a) = f (a +h)− f (a −h)

2h
.

Lemma 11.14. Let f be a given function, and let a and h be given numbers.
If f (a −h), f (a), f (a +h) are known values, then f �(a) can be approximated
by p �

2(a) where p2 is the quadratic polynomial that interpolates f at a −h, a,
and a +h. The approximation is given by

f �(a) ≈ p �
2(a) = f (a +h)− f (a −h)

2h
. (11.14)

Let us test this approximation on the function f (x) = sin x at a = 0.5 so we
can compare with the method in section 11.1.

Example 11.15. We test the approximation (11.14) with the same values of h as
in examples 11.3 and 11.6. Recall that f �(0.5) ≈ 0.8775825619 with ten correct
decimals. The results are

h
�

f (a +h)− f (a −h)
��

(2h) E( f ; a,h)

10−1 0.8761206554 1.5×10-3

10−2 0.8775679356 1.5×10-5

10−3 0.8775824156 1.5×10-7

10−4 0.8775825604 1.5×10-9

10−5 0.8775825619 1.8×10-11

10−6 0.8775825619 −7.5×10-12

10−7 0.8775825616 2.7×10-10

10−8 0.8775825622 −2.9×10-10

10−11 0.8775813409 1.2×10-6

10−13 0.8776313010 −4.9×10-5

10−15 0.8881784197 −1.1×10-2

10−17 0.0000000000 8.8×10-1

If we compare with examples 11.3 and 11.6, the errors are generally smaller. In
particular we note that when h is reduced by a factor of 10, the error is reduced
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by a factor of 100, at least as long as h is not too small. However, when h be-
comes smaller than about 10−6, the error becomes larger. It therefore seems like
the truncation error is smaller than in the first method, but the round-off error
makes it impossible to get accurate results for small values of h. The optimal
value of h seems to be h∗ ≈ 10−6, which is larger than for the first method, but
the error is then about 10−12, which is smaller than the best we could do with
the first method.

11.3.2 Truncation error

Let us attempt to estimate the truncation error for the method in lemma 11.14.
The idea is to do replace f (a −h) and f (a +h) with Taylor expansions about a.
We use the Taylor expansions

f (a +h) = f (a)+h f �(a)+ h2

2
f ��(a)+ h3

6
f ���(ξ1),

f (a −h) = f (a)−h f �(a)+ h2

2
f ��(a)− h3

6
f ���(ξ2),

where ξ1 ∈ (a, a +h) and ξ2 ∈ (a −h, a). If we subtract the second formula from
the first and divide by 2h, we obtain

f (a +h)− f (a −h)
2h

= f �(a)+ h2

12

�
f ���(ξ1)+ f ���(ξ2)

�
. (11.15)

This leads to the following lemma.

Lemma 11.16. Suppose that f and its first three derivatives are continuous
near a, and suppose we approximate f �(a) by

f (a +h)− f (a −h)
2h

. (11.16)

The truncation error in this approximation is bounded by

��E2( f ; a,h)
��=

���� f �(a)− f (a +h)− f (a −h)
2h

����≤
h2

6
max

x∈[a−h,a+h]

�� f ���(x)
�� . (11.17)

Proof. What remains is to simplify the last term in (11.15) to the term on the
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right in (11.17). This follows from

�� f ���(ξ1)+ f ���(ξ2)
��≤ max

x∈[a,a+h]

�� f ���(x)
��+ max

x∈[a−h,a]

�� f ���(x)
��

≤ max
x∈[a−h,a+h]

�� f ���(x)
��+ max

x∈[a−h,a+h]

�� f ���(x)
��

= 2 max
x∈[a−h,a+h]

�� f ���(x)
�� .

The last inequality is true because the width of the intervals over which we take
the maximums are increased, so the maximum values may also increase.

The error formula (11.17) confirms the numerical behaviour we saw in ex-
ample 11.15 for small values of h since the error is proportional to h2: When h is
reduced by a factor of 10, the error is reduced by a factor 102.

11.3.3 Round-off error

The round-off error may be estimated just like for the first method. When the ap-
proximation (11.16) is computed, the values f (a −h) and f (a +h) are replaced
by the nearest floating point numbers f (a −h) and f (a +h) which can be ex-
pressed as

f (a +h) = f (a +h)(1+�1), f (a −h) = f (a −h)(1+�2),

where both �1 and �2 depend on h and satisfy |�i | ≤ �∗ for i = 1, 2. Using these
expressions we obtain

f (a +h)− f (a −h)
2h

= f (a +h)− f (a −h)
2h

+ f (a +h)�1 − f (a −h)�2

2h
.

We insert (11.15) and get the relation

f (a +h)− f (a −h)
2h

= f �(a)+ h2

12

�
f ���(ξ1)+ f ���(ξ2)

�
+ f (a +h)�1 − f (a −h)�2

2h
.

This leads to an estimate of the total error if we use the same technique as in the
proof of lemma 11.8.

Theorem 11.17. Let f be a given function with continuous derivatives up to
order three, and let a and h be given numbers. Then the error in the approxi-
mation

f �(a) ≈ f (a +h)− f (a −h)
2h

,
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including round-off error and truncation error, is bounded by
����� f �(a)− f (a +h)− f (a −h)

2h

�����≤
h2

6
M1 +

�∗

h
M2 (11.18)

where

M1 = max
x∈[a−h,a+h]

�� f ���(x)
�� , M2 = max

x∈[a−h,a+h]

�� f (x)
�� . (11.19)

In practice, the interesting values of h will usually be so small that there is
very little error in making the approximations

M1 = max
x∈[a−h,a+h]

�� f ���(x)
��≈

�� f ���(a)
�� , M2 = max

x∈[a−h,a+h]

�� f (x)
��≈

�� f (a)
�� .

If we make this simplification in (11.18) we obtain a slightly simpler error esti-
mate.

Observation 11.18. The error (11.18) is approximately bounded by
����� f �(a)− f (a +h)− f (a −h)

2h

����� �
h2

6

�� f ���(a)
��+

�∗
�� f (a)

��

h
. (11.20)

A plot of how the error behaves in this approximation, together with the es-
timate of the error on the right in (11.20), is shown in figure 11.2.

11.3.4 Optimal choice of h

As for the first numerical differentiation method, we can find an optimal value
of h which minimises the error. The error is minimised when the truncation
error and the round-off error have the same magnitude. We can find this value
of h if we differentiate the right-hand side of (11.18) with respect to h and set the
derivative to 0. This leads to the equation

h
3

M1 −
�∗

h2 M2 = 0

which has the solution

h∗ =
3
�

3�∗M2
3
�

M1
≈

3
�

3�∗
�� f (a)

��

3
��� f ���(a)

��
.
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Figure 11.2. Log-log plot of the error in the approximation to the derivative of f (x) = sin x at x = 1/2 for values
of h in the interval [0,10−17], using the method in theorem 11.17. The function plotted is the right-hand side
of (11.20) with �∗ = 7×10−17, as a function of h.

At the end of section 11.1.4 we saw that a reasonable value for �∗ was �∗ = 7×
10−17. The optimal value of h in example 11.15, where f (x) = sin x and a = 1/2,
then becomes h = 4.6×10−6. For this value of h the approximation is f �(0.5) ≈
0.877582561887 with error 3.1×10−12.

11.4 A four-point method for differentiation

In a way, the two methods for numerical differentiation that we have consid-
ered so far are the same. If we use a step length of 2h in the first method, the
approximation becomes

f �(a) ≈ f (a +2h)− f (a)
2h

.

The analysis of the symmetric method shows that the approximation is consid-
erably better if we associate the approximation with the midpoint between a
and a +h,

f �(a +h) ≈ f (a +2h)− f (a)
2h

.

At the point a+h the approximation is proportional to h2 rather than h, and this
makes a big difference as to how quickly the error goes to zero, as is evident if we
compare examples 11.3 and 11.15. In this section we derive another method for
which the truncation error is proportional to h4.

The computations below may seem overwhelming, and have in fact been
done with the help of a computer to save time and reduce the risk of miscal-
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culations. The method is included here just to illustrate that the principle for
deriving both the method and the error terms is just the same as for the simple
symmetric method in the previous section. To save space we have only included
one highlighted box, where both the approximation method and the total error
are given.

11.4.1 Derivation of the method

We want better accuracy than the symmetric method which was based on inter-
polation with a quadratic polynomial. It is therefore natural to base the approxi-
mation on a cubic polynomial, which can interpolate four points. We have seen
the advantage of symmetry, so we choose the interpolation points x0 = a −2h,
x1 = a −h, x2 = a +h, and x3 = a +2h. The cubic polynomial that interpolates f
at these points is

p3(x) = f (x0)+ f [x0, x1](x −x0)+ f [x0, x1, x2](x −x0)(x −x1)

+ f [x0, x1, x2, x3](x −x0)(x −x1)(x −x2).

and its derivative is

p �
3(x) = f [x0, x1]+ f [x0, x1, x2](2x −x0 −x1)

+ f [x0, x1, x2, x3]
�
(x −x1)(x −x2)+ (x −x0)(x −x2)+ (x −x0)(x −x1)

�
.

If we evaluate this expression at x = a and simplify (this is quite a bit of work),
we find that the resulting approximation of f �(a) is

f �(a) ≈ p �
3(a) = f (a −2h)−8 f (a −h)+8 f (a +h)− f (a +2h)

12h
. (11.21)

11.4.2 Truncation error

To estimate the error, we expand the four terms in the numerator in (11.21) in
Taylor series,

f (a −2h) = f (a)−2h f �(a)+2h2 f ��(a)− 4h3

3
f ���(a)+ 2h4

3
f (i v)(a)− 4h5

15
f (v)(ξ1),

f (a −h) = f (a)−h f �(a)+ h2

2
f ��(a)− h3

6
f ���(a)+ h4

24
f (i v)(a)− h5

120
f (v)(ξ2),

f (a +h) = f (a)+h f �(a)+ h2

2
f ��(a)+ h3

6
f ���(a)+ h4

24
f (i v)(a)+ h5

120
f (v)(ξ3),

f (a +2h) = f (a)+2h f �(a)+2h2 f ��(a)+ 4h3

3
f ���(a)+ 2h4

3
f (i v)(a)+ 4h5

15
f (v)(ξ4),
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where ξ1 ∈ (a − 2h, a), ξ2 ∈ (a −h, a), ξ3 ∈ (a, a +h), and ξ4 ∈ (a, a + 2h). If we
insert this into the formula for p �

3(a) we obtain

f (a −2h)−8 f (a −h)+8 f (a +h)− f (a +2h)
12h

=

f �(a)− h4

45
f (v)(ξ1)+ h4

180
f (v)(ξ2)+ h4

180
f (v)(ξ3)− h4

45
f (v)(ξ4).

If we use the same trick as for the symmetric method, we can combine all last
four terms in and obtain an upper bound on the truncation error. The result is

���� f �(a)− f (a −2h)−8 f (a −h)+8 f (a +h)− f (a +2h)
12h

����≤
h4

18
M (11.22)

where
M = max

x∈[a−2h,a+2h]

�� f (v)(x)
�� .

11.4.3 Round-off error

The truncation error is derived in the same way as before. The quantities we
actually compute are

f (a −2h) = f (a −2h)(1+�1), f (a +2h) = f (a +2h)(1+�3),

f (a −h) = f (a −h)(1+�2), f (a +h) = f (a +h)(1+�4).

We estimate the difference between f �(a) and the computed approximation,
make use of the estimate (11.22), combine the function values that are multi-
plied by �s, and approximate the maximum values by function values at a. We
sum up the result.

Observation 11.19. Suppose that f and its first five derivatives are continu-
ous. If f �(a) is approximated by

f �(a) ≈ f (a −2h)−8 f (a −h)+8 f (a +h)− f (a +2h)
12h

,

the total error is approximately bounded by

����� f �(a)− f (a −2h)−8 f (a −h)+8 f (a +h)− f (a +2h)
12h

����� �

h4

18

�� f (v)(a)
��+ 3�∗

h

�� f (a)
�� . (11.23)
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Figure 11.3. Log-log plot of the error in the approximation to the derivative of f (x) = sin x at x = 1/2, using
the method in observation 11.19, with h in the interval [0,10−17]. The function plotted is the right-hand side
of (11.23) with �∗ = 7×10−17.

A plot of the error in the approximation for the sin x example is shown in
figure 11.3.

11.4.4 Optimal value of h

From observation 11.19 we can compute the optimal value of h by differentiat-
ing the right-hand side with respect to h and setting it to zero,

2h3

9

�� f (v)(a)
��− 3�∗

h2

�� f (a)
��= 0

which has the solution

h∗ =
5
�

27�∗
�� f (a)

��

5
�

2
�� f (v)(a)

��
.

For the case above with f (x) = sin x and a = 0.5 the solution is h∗ ≈ 8.8×10−4.
For this value of h the actual error is 10−14.

11.5 Numerical approximation of the second derivative

We consider one more method for numerical approximation of derivatives, this
time of the second derivative. The approach is the same: We approximate f by a
polynomial and approximate the second derivative of f by the second derivative
of the polynomial. As in the other cases, the error analysis is based on expansion
in Taylor series.
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11.5.1 Derivation of the method

Since we are going to find an approximation to the second derivative, we have
to approximate f by a polynomial of degree at least two, otherwise the second
derivative is identically 0. The simplest is therefore to use a quadratic polyno-
mial, and for symmetry we want it to interpolate f at a −h, a, and a +h. The
resulting polynomial p2 is the one we used in section 11.3 and it is given in equa-
tion (11.12). The second derivative of p2 is constant, and the approximation of
f �(a) is

f ��(a) ≈ p ��
2 (a) = f [a −h, a, a +h].

The divided difference is easy to expand.

Lemma 11.20. The second derivative of a function f at a can be approxi-
mated by

f ��(a) ≈ f (a +h)−2 f (a)+ f (a −h)
h2 . (11.24)

11.5.2 The truncation error

Estimation of the error goes as in the other cases. The Taylor series of f (a −h)
and f (a +h) are

f (a −h) = f (a)−h f �(a)+ h2

2
f ��(a)− h3

6
f ���(a)+ h4

24
f (i v)(ξ1),

f (a +h) = f (a)+h f �(a)+ h2

2
f ��(a)+ h3

6
f ���(a)+ h4

24
f (i v)(ξ2),

where ξ1 ∈ (a −h, a) and ξ2 ∈ (a, a +h). If we insert these Taylor series in (11.24)
we obtain

f (a +h)−2 f (a)+ f (a −h)
h2 = f ��(a)+ h2

24

�
f (i v)(ξ1)+ f (i v)(ξ2)

�
.

From this we obtain an expression for the truncation error.

Lemma 11.21. Suppose f and its first three derivatives are continuous near
a. If the second derivative f ��(a) is approximated by

f ��(a) ≈ f (a +h)−2 f (a)+ f (a −h)
h2 ,

the error is bounded by
���� f ��(a)− f (a +h)−2 f (a)+ f (a −h)

h2

����≤
h2

12
max

x∈[a−h,a+h]

�� f ���(x)
�� . (11.25)
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11.5.3 Round-off error

The round-off error can also be estimated as before. Instead of computing the
exact values, we compute f (a −h), f (a), and f (a +h), which are linked to the
exact values by

f (a −h) = f (a −h)(1+�1), f (a) = f (a)(1+�2), f (a +h) = f (a +h)(1+�3),

where |�i | ≤ �∗ for i = 1, 2, 3. The difference between f ��(a) and the computed
approximation is therefore

f ��(a)− f (a +h)−2 f (a)+ f (a −h)
h2

=−h2

24

�
f ���(ξ1)+ f ���(ξ2)

�
− �1 f (a −h)−�2 f (a)+�3 f (a +h)

h2 .

If we combine terms on the right as before, we end up with the following theo-
rem.

Theorem 11.22. Suppose f and its first three derivatives are continuous near
a, and that f ��(a) is approximated by

f ��(a) ≈ f (a +h)−2 f (a)+ f (a −h)
h2 .

Then the total error (truncation error + round-off error) in the computed ap-
proximation is bounded by

����� f ��(a)− f (a +h)−2 f (a)+ f (a −h)
h2

�����≤
h2

12
M1 +

3�∗

h2 M2. (11.26)

where
M1 = max

x∈[a−h,a+h]

��� f (i v)(x)
��� , M2 = max

x∈[a−h,a+h]

�� f (x)
�� .

As before, we can simplify the right-hand side to

h2

12

��� f (i v)(a)
���+

3�∗

h2

�� f (a)
�� (11.27)

if we can tolerate a slightly approximate upper bound.
Figure 11.4 shows the errors in the approximation to the second derivative

given in theorem 11.22 when f (x) = sin x and a = 0.5 and for h in the range
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Figure 11.4. Log-log plot of the error in the approximation to the derivative of f (x) = sin x at x = 1/2 for h
in the interval [0,10−8], using the method in theorem 11.22. The function plotted is the right-hand side of
(11.23) with �∗ = 7×10−17.

[0,10−8]. The solid graph gives the function in (11.27) which describes the upper
limit on the error as function of h, with �∗ = 7×10−17. For h smaller than 10−8,
the approximation becomes 0, and the error constant. Recall that for the ap-
proximations to the first derivative, this did not happen until h was about 10−17.
This illustrates the fact that the higher the derivative, the more problematic is
the round-off error, and the more difficult it is to approximate the derivative
with numerical methods like the ones we study here.

11.5.4 Optimal value of h

Again, we find the optimal value of h by minimising the right-hand side of (11.26).
To do this we find the derivative with respect to h and set it to 0,

h
6

M1 −
6�∗

h3 M2 = 0.

As usual it does not make much difference if we use the approximations M1 ≈�� f ���(a)
�� and M2 =

�� f (a)
��.

Observation 11.23. The upper bound on the total error (11.26) is minimised
when h has the value

h∗ =
4
�

36�∗
�� f (a)

��

4
��� f (i v)(a)

��
.

244



When f (x) = sin x and a = 0.5 this gives h∗ = 2.2×10−4 if we use the value
�∗ = 7×10−17. Then the approximation to f ��(a) =−sin a is −0.4794255352 with
an actual error of 3.4×10−9.

11.6 Summary

In this chapter we have derived three methods for numerical differentiation. All
these methods and their error analyses may seem rather overwhelming, but they
all follow the general recipe in procedure 12.15. Perhaps the most delicate part
of the procedure is to choose the degree of the Taylor polynomials. This is dis-
cussed in exercise 4.

It is procedure 12.15 that is the main content of this chapter. The individual
methods are important in practice, but also serve as examples of how this proce-
dure is implemented, and should show you how to derive other methods more
suitable for your specific needs.

Exercises
11.1 a) Write a program that implements the numerical differentiation method

f �(a) ≈ f (a +h)− f (a −h)
2h

,

and test the method on the function f (x) = ex at a = 1.

b) Determine the optimal value of h given in section 11.3.4 which minimises the total
error. Use �∗ = 7×10−17.

c) Use your program to determine the optimal value h of experimentally.

d) Use the optimal value of h that you found in (c) to determine a better value for �∗ in
this specific example.

11.2 Repeat exercise 1, but compute the second derivative using the approximation

f ��(a) ≈ f (a +h)−2 f (a)+ f (a −h)

h2 .

In (b) you should use the value of h given in observation 11.23.

11.3 a) Suppose that we want to derive a method for approximating the derivative of f at a
which has the form

f �(a) ≈ c1 f (a −h)+ c2 f (a +h), c1,c2 ∈R.

We want the method to be exact when f (x) = 1 and f (x) = x. Use these conditions
to determine c1 and c2.

b) Show that the method in (a) is exact for all polynomials of degree 1, and compare it
to the methods we have discussed in this chapter.
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c) Use the procedure in (a) and (b) to derive a method for approximating the second
derivative of f ,

f ��(a) ≈ c1 f (a −h)+ c2 f (a)+ c3 f (a +h), c1,c2,c3 ∈R,

by requiring that the method should be exact when f (x) = 1, x and x2.

d) Show that the method in (c) is exact for all quadratic polynomials.

11.4 It may sometimes be difficult to judge how many terms to include in the Taylor series used
in the analysis of numerical methods. In this exercise we are going to see how this can be
done. We use the numerical approximation

f �(a) ≈ f (a +h)− f (a −h)
2h

in section 11.3 for our experiments.

a) Do the same derivation as section 11.3.2, but include only two terms in the Taylor
series (plus remainder). What happens?

b) Do the same derivation as section 11.3.2, but include four terms in the Taylor series
(plus remainder). What happens now?
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