
CHAPTER 13

Numerical Solution of
Differential Equations

We have considered numerical solution procedures for two kinds of equations:
In chapter 10 the unknown was a real number; in chapter 6 the unknown was a
sequence of numbers. In a differential equation the unknown is a function, and
the differential equation relates the function to its derivative(s).

In this chapter we start by considering how the simplest differential equa-
tions, the first order ones which only involve the unknown function and its first
derivative, can be solved numerically by the simplest method, namely Euler’s
method. We analyse the error in Euler’s method, and then introduce some more
advanced methods with better accuracy. After this we show that the methods
for handling one equation in one unknown generalise nicely to systems of sev-
eral equations in several unknowns. What about equations that involve higher
order derivatives? It turns out that even systems of higher order equations can
be rewritten as a system of first order equations. At the end we discuss briefly
the important concept of stability.

13.1 What are differential equations?

Differential equations is an essential tool in a wide range of applications. The
reason for this is that many phenomena can be modelled by a relationship be-
tween a function and its derivatives. Let us consider a simple example.

13.1.1 An example from physics

Consider an object moving through space. At time t = 0 it is located at a point P
and after a time t its distance to P corresponds to a number f (t ). In other words,
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the distance can be described by a function of time. The divided difference

f (t +∆t )− f (t )
∆t

(13.1)

then measures the average speed during the time interval from t to t +∆t . If we
take the limit in (13.1) as∆t approaches zero, we obtain the speed v(t ) at time t ,

v(t ) = lim
∆t→0

f (t +∆t )− f (t )
∆t

. (13.2)

Similarly, the divided difference of the speed is given by
�
v(t +∆t )− v(t )

�
/∆t .

This is the average acceleration from time t to time t +∆t , and if we take the
limit as ∆t tends to zero we get the acceleration a(t ) at time t ,

a(t ) = lim
∆t→0

v(t +∆t )− v(t )
∆t

. (13.3)

If we compare the above definitions of speed and acceleration with the defini-
tion of the derivative we notice straightaway that

v(t ) = f �(t ), a(t ) = v �(t ) = f ��(t ). (13.4)

Newton’s second law states that if an object is influenced by a force, its accel-
eration is proportional to the force. More precisely, if the total force is F , New-
ton’s second law can be written

F = ma (13.5)

where the proportionality factor m is the mass of the object.
As a simple example of how Newton’s law is applied, we can consider an

object with mass m falling freely towards the earth. It is then influenced by two
opposite forces, gravity and friction. The gravitational force is Fg = mg , where
g is acceleration due to gravitation alone. Friction is more complicated, but in
many situations it is reasonable to say that it is proportional to the square of the
speed of the object, or F f = cv2 where c is a suitable proportionality factor. The
two forces pull in opposite directions so the total force acting on the object is
F = Fg −F f . From Newton’s law F = ma we then obtain the equation

mg − cv2 = ma.

Gravity g is constant, but both v and a depend on time and are therefore func-
tions of t . In addition we know from (13.4) that a(t ) = v �(t ) so we have the equa-
tion

mg − cv(t )2 = mv �(t )
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which would usually be shortened and rearranged as

mv � = mg − cv2. (13.6)

The unknown here is the function v(t ), the speed, but the equation also in-
volves the derivative (the acceleration) v �(t ), so this is a differential equation.
This equation is just a mathematical formulation of Newton’s second law, and
the hope is that we can solve the equation and determine the speed v(t ).

13.1.2 General use of differential equations

The simple example above illustrates how differential equations are typically
used in a variety of contexts:

Procedure 13.1 (Modelling with differential equations).

1. A quantity of interest is modelled by a function x.

2. From some known principle a relation between x and its derivatives is
derived, in other words, a differential equation.

3. The differential equation is solved by a mathematical or numerical
method.

4. The solution of the equation is interpreted in the context of the original
problem.

There are several reasons for the success of this procedure. The most basic
reason is that many naturally occurring quantities can be represented as math-
ematical functions. This includes physical quantities like position, speed and
temperature, which may vary in both space and time. It also includes quanti-
ties like ’money in the bank’ and even vaguer, but quantifiable concepts like for
instance customer satisfaction, both of which will typically vary with time.

Another reason for the popularity of modelling with differential equations is
that such equations can usually be solved quite effectively. For some equations
it is possible to find an explicit expression for the unknown function, but this
is rare. For a large number of equations though, it is possible to compute good
approximations to the solution via numerical algorithms, and this is the main
topic in this chapter.
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13.1.3 Different types of differential equations

Before we start discussing numerical methods for solving differential equations,
it will be helpful to classify different types of differential equations. The simplest
equations only involve the unknown function x and its first derivative x �, as in
(13.6); this is called a first order differential equation. If the equation involves
higher derivatives up ot order p it is called a pth order differential equation. An
important subclass are given by linear differential equations. A linear differential
equation of order p is an equation on the form

x(p)(t ) = f (t )+ g0(t )x(t )+ g1(t )x �(t )+ g2(t )x ��(t )+·· ·+ gp−1(t )x(p−1)(t ).

For all the equations we study here, the unknown function depends on only
one variable which we usually label as t . Such equations are referred to as ordi-
nary differential equations. This is in contrast to equations where the unknown
function depends on two or more variables, like the three coordinates of a point
in space, these are referred to as partial differential equations.

13.2 First order differential equations

A first order differential equation is an equation on the form

x � = f (t , x).

Here x = x(t ) is the unknown function, and t is the free variable. The function
f tells us how x � depends on both t and x and is therefore a function of two
variables. Some examples may be helpful.

Example 13.2. Some examples of first order differential equations are

x � = 3, x � = 2t , x � = x, x � = t 3 +
�

x, x � = sin(t x).

The first three equations are very simple. In fact the first two can be solved by
integration and have the solutions x(t ) = 3t +C and x(t ) = t 2 +C where C is an
arbitrary constant in both cases. The third equation cannot be solved by inte-
gration, but it is easy to check that the function x(t ) = Cet is a solution for any
value of the constant C . It is worth noticing that all the first three equations are
linear.

For the first three equations there are simple procedures that lead to the so-
lutions. On the other hand, the last two equations do not have solutions given
by simple formulas. In spite of this, we shall see that there are simple numerical
methods that allow us to compute good approximations to the solutions.
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The situation described in example 13.2 is similar to what we had for non-
linear equations and integrals: There are analytic solution procedures that work
in some special situations, but in general the solutions can only be determined
approximately by numerical methods.

In this chapter our main concern will be to derive numerical methods for
solving differential equations on the form x � = f (t , x) where f is a given function
of two variables. The description may seem a bit vague since f is not known
explicitly, but the advantage is that once the method has been deduced we may
plug in almost any f .

When we solve differential equations numerically we need a bit more infor-
mation than just the differential equation itself. If we look back on example 13.2,
we notice that the solution in the first three cases involved a general constant C ,
just like when we determine indefinite integrals. This ambiguity is present in all
differential equations, and cannot be handled very well by numerical solution
methods. We therefore need to supply an extra condition that will specify the
value of the constant. The standard way of doing this for first order equations is
to specify one point on the solution of the equation. In other words, we demand
that the solution should satisfy the equation x(a) = x0 for some real numbers a
and x0.

Example 13.3. Let us consider the differential equation x � = 2x. It is easy to
check that x(t ) =Ce2t is a solution for any value of the constant C . If we add the
initial value x(0) = 1, we are led to the equation 1 = x(0) =Ce0 =C , so C = 1 and
the solution becomes x(t ) = e2t .

If we instead impose the initial condition x(1) = 2, we obtain the equation
2 = x(1) =Ce2 which means that C = 2e−2. In this case the solution is therefore
x(t ) = 2e−2 et = 2e2(t−1).

The general initial condition is x(a) = x0. This leads to x0 = x(a) = Ce2a or
C = x0e−2a . The solution is therefore

x(t ) = x0e2(t−a).

Adding an initial condition to a differential equation is not just a mathemat-
ical trick to pin down the exact solution; it usually has a concrete physical inter-
pretation. Consider for example the differential equation (13.6) which describes
the speed of an object with mass m falling towards earth. The speed at a cer-
tain time is clearly dependent on how the motion started — there is a difference
between just dropping a ball and throwing it towards the ground, but note that
there is nothing in equation (13.6) to reflect this difference. If we measure time
such that t = 0 when the object starts falling, we would have v(0) = 0 in the situ-
ation where it is simply dropped, we would have v(0) = v0 if it is thrown down-
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Figure 13.1. Figure (a) shows the tangents to the solutions of the differential equation x� = cos6t/
�
1+ t + x2�

at 1000 random points in the square [0,1.5]× [0,1]. Figure (b] shows the 11 solutions corresponding to the
initial values x(0) = i /10, for i = 0, 1, . . . , 10.

wards with speed v0, and we would have v(0) = −v0 if it was thrown upwards
with speed v0. Let us sum this up in an observation.

Observation 13.4 (First order differential equation). A first order differential
equation is an equation on the form x � = f (t , x), where f (t , x) is a function of
two variables. In general, this kind of equation has many solutions, but a spe-
cific solution is obtained by adding an initial condition x(a) = x0. A complete
formulation of a first order differential equation is therefore

x � = f (t , x), x(a) = x0. (13.7)

It is equations of this kind that we will be studying in most of the chapter,
with special emphasis on deriving numerical solution algorithms.

13.2.1 A geometric interpretation of first order differential equations

The differential equation in (13.7) has a natural geometric interpretation: At any
point (t , x), the equation x � = f (t , x) prescribes the slope of the solution through
this point. This is illustrated in figure 13.1a for the differential equation

x � = f (t , x) = cos6t
1+ t +x2 . (13.8)

A typical arrow starts at a point (t , x) and has slope given by x � = f (t , x), and
therefore shows the tangent to the solution that passes through the point. The
image was obtained by picking 1000 points at random and drawing the corre-
sponding tangent at each of the points.
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Behind the many arrows in figure 13.1 we perceive a family of wave-like func-
tions. This is shown much more clearly in figure 13.1b. The 11 functions in this
figure represent solutions of the differential equation (13.8), each corresponding
to one of the initial conditions x(0) = i /10 for i = 0, . . . , 10.

Observation 13.5 (Geomteric interpretation of differential equation). The
differential equation x � = f (t , x) describes a family of functions whose tangent
at the point (t , x) has slope f (t , x). By adding an initial condition x(a) = x0, a
particular solution, or solution curve, is selected from the family of solutions.

13.2.2 Conditions that guarantee existence of one solution

The class of differential equations described by (13.7) is quite general since we
have not placed any restrictions on the function f , and this may lead to some
problems. Consider for example the equation

x � =
�

1−x2. (13.9)

Since we are only interested in solutions that are real functions, we have to be
careful so we do not select initial conditions that lead to square roots of negative
numbers. The initial condition x(0) = 0 would be fine, as would x(1) = 1/2, but
x(0) = 2 would mean that x �(0) =

�
1−x(0)2 =

�
−3 which does not make sense.

For the general equation x � = f (t , x) there are many potential pitfalls. As in
the example, the function f may involve roots which require the expressions
under the roots to be nonnegative, there may be logarithms which require the
arguments to be positive, inverse sines or cosines which require the arguments
to not exceed 1 in absolute value, fractions which do not make sense if the de-
nominator becomes zero, and combinations of these and other restrictions. On
the other hand, there are also many equations that do not require any restric-
tions on the values of t and x. This is the case when f (t , x) is a polynomial in t
and x, possibly combined with sines, cosines and exponential functions.

The above discussion suggests that the differential equation x � = f (t , x) may
not have a solution. Or it may have more than one solution if f has certain
kinds of problematic behaviour. The most common problem that may occur is
that there may be one or more points (t , x) for which f (t , x) is not defined, as
with equation (13.9) above. So-called existence and uniqueness theorems specify
conditions on f which guarantee that a unique solutions can be found. Such
theorems may appear rather abstract, and their proofs are often challenging. We
are going to quote one such theorem, but the proof requires techniques which
are beyond the scope of these notes.
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Before we state the theorem, we need to introduce some notation. It turns
out that how f (t , x) depends on x influences the solution in an essential way. We
therefore need to restrict the behaviour of the derivative of f (t , x) when viewed
as a function of x. We will denote this derivative by ∂ f /∂x, or sometimes just fx

to save space. If for instance f (t , x) = t + x2, then fx (t , x) = 2x, while if f (t , x) =
sin(t x) then fx (t , x) = t cos(t x).

The theorem talks about a rectangle. This is just a set in the plane on the
formA= [α,β]×[γ,δ] and a point (t , x) lies inA if t ∈ [α,β] and x ∈ [δ,γ]. A point
(t , x) is an interior point of A if it does not lie on the boundary, i.e., if α < t < β

and γ< x < δ.

Theorem 13.6. Suppose that the functions f and fx are continuous in the
rectangle A = [α,β]× [γ,δ]. If the point (a, x0) lies in the interior of A there
exists a number τ> 0 such that the differential equation

x � = f (t , x), x(a) = x0 (13.10)

has a unique solution on the interval [a−τ, a+τ] which is contained in [α,β].

Theorem 13.6 is positive and tells us that if a differential equation is ’nice’
near an initial condition, it will have a unique solution that extends both to the
left and right of the initial condition. ’Nice’ here means that both f and fx are
continuous in a rectangle A which contains the point (a, x0) in its interior, i.e.,
they should have no jumps, should not blow up to infinity, and so on, inA. This
is sufficient to prove that the equation has a unique solution, but it is generally
not enough to guarantee that a numerical method will converge to the solution.
In fact, it is not even sufficient to guarantee that a numerical method will avoid
areas where the function f is not defined. For this reason we will strengthen the
conditions on f when we state and analyse the numerical methods below and
assume that f (t , x) and fx (t , x) (and sometimes more derivatives) are continu-
ous and bounded for t in some interval [α,β] and any real number x.

Notice also that we seek a solution on an interval [a,b]. The left end is where
the initial condition is and the right end limits the area in which we seek a so-
lution. It should be noted that it is not essential that the initial condition is at
the left end; the numerical methods can be easily adapted to work in a situation
where the initial condition is at the right end, see exercise 1.

Assumption 13.7. In the numerical methods for solving the equation

x � = f (t , x), x(a) = x0,
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to be introduced below, it is assumed that the function f (t , x) and its deriva-
tive fx (t , x) with respect to x are well-defined, continuous, and bounded in a
set [α,β]×R, i.e., for all (t , x) such that α≤ t ≤ β and x ∈ R. It is also assumed
that a solution x(t ) is sought for t in an interval [a,b] that is strictly contained
in [α,β], i.e., that α< a < b <β.

The conditions in assumption 13.7 are quite restrictive and leave out many
differential equations of practical interest. However, our focus is on introducing
the ideas behind the most common numerical methods and analysing their er-
ror, and not on establishing exactly when they will work. It is especially the error
analysis that depends on the functions f and fx (and possibly other derivatives
of f ) being bounded for all values of t and x that may occur during the computa-
tions. In practice, the methods will work for many equations that do not satisfy
assumption 13.7.

13.2.3 What is a numerical solution of a differential equation?

In earlier chapters we have derived numerical methods for solving nonlinear
equations, for differentiating functions, and for computing integrals. A common
feature of all these methods is that the answer is a single number. However, the
solution of a differential equation is a function, and we cannot expect to find a
single number that can approximate general functions well.

All the methods we derive compute the same kind of approximation: They
start at the initial condition x(a) = x0 and then compute successive approxima-
tions to the solution at a sequence of points t1, t2, t3, . . . , tn where a = t0 < t1 <
t2 < t3 < ·· · < tn = b.

Fact 13.8 (General strategy for numerical solution of differential equations).
Suppose the differential equation and initial condition

x � = f (t , x), x(a) = x0

are given together with an interval [a,b] where a solution is sought. Suppose
also that an increasing sequence of t-values (tk )n

k=0 are given, with a = t0 and
b = tn , which in the following will be equally spaced with step length h, i.e.,

tk = a +kh, for k = 0, . . . , n.

A numerical method for solving the equation is a recipe for computing a se-
quence of numbers x0, x1, . . . , xn such that xk is an approximation to the true
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solution x(tk ) at tk . For k > 0, the approximation xk is computed from one
or more of the previous approximations xk−1, xk−2, . . . , x0. A continuous ap-
proximation is obtained by connecting neighbouring points by straight lines.

13.3 Euler’s method

Most methods for finding analytical solutions of differential equations appear
rather tricky and unintuitive. In contrast, many numerical methods are based on
simple, often geometric ideas. The simplest of these methods is Euler’s method
which is based directly on the geometric interpretation in observation 13.5.

13.3.1 Basic idea

We assume that the differential equation is

x � = f (t , x), x(a) = x0,

and our aim is to compute a sequence of approximations (tk , xk )n
k=0 where tk =

a +kh. The initial condition provides us with one point on the true solution, so
our first point is (t0, x0). We compute the slope of the tangent at (t0, x0) as x �

0 =
f (t0, x0) which gives us the tangent T (t ) = x0 + (t − t0)x �

0. As the approximation
x1 at t1 we use the value of the tangent which is given by

x1 = T (t1) = x0 +hx �
0 = x0 +h f (t0, x0).

But now we have a new approximate solution point (t1, x1), and from this we can
compute the slope x �

1 = f (t1, x1). This allows us to compute an approximation
x2 = x1 +hx �

1 = x1 +h f (t1, x1) to the solution at t2. If we continue this we can
compute an approximation x3 to the solution at t3, then an approximation x4 at
t4, and so on.

From this description we see that the basic idea is how to advance the ap-
proximate solution from a point (tk , xk ) to a point (tk+1, xk+1).

Idea 13.9. In Euler’s method, an approximate solution (tk , xk ) is advanced to
(tk+1, xk+1) by following the tangent

T (t ) = xk + (t − tk )x �
k = xk + (t − tk ) f (tk , xk )

to tk+1 = tk +h. This results in the approximation

xk+1 = xk +h f (tk , xk ) (13.11)

to x(tk+1).
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Figure 13.2. The plot in (a) shows the approximation produced by Euler’s method to the solution of the differ-
ential equation x� = cos6t/(1+ t +x2) with initial condition x(0) = 0 (smooth graph). The plot in (b) shows the
same solution augmented with the solution curves that pass through the points produced by Euler’s method.

Idea 13.9 shows how we can get from one point on the approximation to the
next, while the initial condition x(a) = x0 provides us with a starting point. We
therefore have all we need to compute a sequence of approximate points on the
solution of the differential equation.

Algorithm 13.10 (Euler’s method). Let the differential equation x � = f (t , x) be
given together with the initial condition x(a) = x0, the solution interval [a,b],
and the number of steps n. If the following algorithm is performed

h=(b-a)/n;
for k = 0, 1, . . . , n −1

xk+1 = xk +h f (tk , xk );
tk+1 = a + (k +1)h;

the value xk will be an approximation to the solution x(tk ) of the differential
equation, for each k = 0, 1, . . . , n.

Figure 13.2 illustrates the behaviour of Euler’s method for the differential
equation

x � = cos6t
1+ t +x2 , x(0) = 0.

This is just a piecewise linear approximation to the solution, see the figure in
(a), but the figure in (b) illustrates better how the approximation is obtained. We
start off by following the tangent at the initial condition (0,0). This takes us to a
point that is slightly above the graph of the true solution. At this point we com-
pute a new tangent and follow this to the next point. However, there is a solution
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curve that passes through this second point, and the line from the second to the
third point is tangent to the solution curve which has the second point as initial
condition. We therefore see that as we compute new approximate points on the
solution, we jump between different solution curves of the differential equation
x � = f (t , x).

Note that Euler’s method can also be obtained via a completely different ar-
gument. A common approximation to the derivative of x is given by

x �(t ) ≈ x(t +h)−x(t )
h

.

If we rewrite this and make use of the fact that x �(t ) = f
�
t , x(t )

�
, we find that

x(t +h) ≈ x(t )+h f
�
t , x(t )

�

which is the basis for Euler’s method.

13.3.2 Error analysis

We know that Euler’s method in most cases just produces an approximation to
the true solution of the differential equation, but how accurate is the approxima-
tion? To answer this question we need to think more carefully about the various
approximations involved.

The basic idea in Euler’s method is to advance the solution from (tk , xk ) to
(tk+1, xk+1) with the relation

xk+1 = xk +h f (tk , xk ) (13.12)

which stems from the approximation x(tk+1) ≈ x(tk )+hx �(tk ). If we include the
error term in this simple Taylor polynomial, we obtain the identity

x(tk+1) = x(tk )+hx �(tk )+ h2

2
x ��(ξk ) = x(tk )+h f

�
tk , x(tk )

�
+ h2

2
x ��(ξk ), (13.13)

where ξk is a number in the interval (tk , tk+1). We subtract (13.12) and end up
with

x(tk+1)−xk+1 = x(tk )−xk +h
�

f
�
tk , x(tk )

�
− f (tk , xk )

�
+ h2

2
x ��(ξk ). (13.14)

The number �k+1 = x(tk+1) − xk+1 is the global error accumulated by Euler’s
method at tk+1. This error has two sources:

1. The global error �k = x(tk )− xk accumulated up to the previous step. This
also leads to an error in computing x �(tk ) since we use the value f (tk , xk )
instead of the correct value f

�
tk , x(tk )

�
.
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2. The local error we commit when advancing from (tk , xk ) to (tk+1, xk+1
�

and
ignore the remainder in Taylor’s formula,

h2

2
x ��(ξk ).

The right-hand side of (13.14) can be simplified a little bit by noting that

f
�
tk , x(tk )

�
− f (tk , xk ) = fx (tk ,θk )

�
x(tk )−xk

�
= fx (tk ,θk )�k ,

where θk is a number in the interval
�
xk , x(tk )

�
. The result is summarised in the

following lemma.

Lemma 13.11. If the two first derivatives of f exist, the error in using Euler’s
method for solving x � = f (t , x) develops according to the relation

�k+1 =
�
1+h fx (tk ,θk )

�
�k +

h2

2
x ��(ξk ). (13.15)

where ξk is a number in the interval (tk , tk+1) and θk is a number in the inter-
val

�
xk , x(tk )

�
. In other words, the global error at step k +1 has two sources:

1. The advancement of the global error at step k to the next step

�
1+h fx (tk ,θk )

�
�k .

2. The local truncation error committed by only including two terms in
the Taylor polynomial,

h2x ��(ξk )/2.

The lemma tells us how the error develops from one stage to the next, but we
would really like to know explicitly what the global error at step k is. For this we
need to simplify (13.15) a bit. The main complication is the presence of the two
numbers θk and ξk which we know very little about. We use a standard trick: We
take absolute values in (13.15) and replace the two terms | fx (tk ,θk )| and |x ��(ξk )|
by their maximum values,

|�k+1| =
���
�
1+h fx (tk ,θk )

�
�k +

h2

2
x ��(ξk )

���

≤
���1+h fx (tk ,θk )

���|�k |+
h2

2
|x ��(ξk )|

≤ (1+hC )|�k |+
h2

2
D.
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This is where the restrictions on f and fx that we mentioned in assumption 13.7
are needed: We need the two maximum values used to define the constants D =
maxt∈[a,b]|x ��(t )| and C = maxt∈[a,b]| fx (t , x(t ))| to exist. To simplify notation we
write C̃ = 1+hC and D̃ = Dh2/2, so the final inequality is

|�k+1|≤ C̃ |�k |+ D̃

which is valid for k = 0, 1, . . . , n −1. This is a ‘difference inequality’which can be
solved quite easily. We do this by unwrapping the error terms,

|�k+1|≤ C̃ |�k |+ D̃

≤ C̃
�
C̃ |�k−1|+ D̃

�
+ D̃ = C̃ 2|�k−1|+

�
1+ C̃

�
D̃

≤ C̃ 2�C̃ |�k−2|+ D̃
�
+

�
1+ C̃

�
D̃

≤ C̃ 3|�k−2|+
�
1+ C̃ + C̃ 2�D̃

...

≤ C̃ k+1|�0|+
�
1+ C̃ + C̃ 2 +·· ·+ C̃ k�

D̃ .

(13.16)

We note that �0 = x(a)− x0 = 0 because of the initial condition, and the sum we
recognise as a geometric series. This means that

|�k+1|≤ D̃
k�

i=0
C̃ i = D̃

C̃ k+1 −1

C̃ −1
.

We insert the values for C̃ and D̃ and obtain

|�k+1|≤ hD
(1+hC )k+1 −1

2C
. (13.17)

Let us sum up our findings and add some further refinements.

Theorem 13.12 (Error in Euler’s method). Suppose that f , ft and fx are con-
tinuous and bounded functions on the rectangle A = [α,β]×R and that the
interval [a,b] satisfies α < a < b < β. Let �k = x(tk )− xk denote the error at
step k in applying Euler’s method with n steps of length h to the differential
equation x � = f (t , x) on the interval [a,b], with initial condition x(a) = x0.
Then

|�k |≤ h
D
2C

�
e(tk−a)C −1

�
≤ h

D
2C

�
e(b−a)C −1

�
(13.18)
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for k = 0, 1, . . . , n where the constants C and D are given by

C = max
(t ,x)∈A

| fx (t , x)|,

D = max
t∈[a,b]

|x ��(t )|.

Proof. From Taylor’s formula with remainder we know that et = 1+t+t 2eη/2 for
any positive, real number t , with η some real number in the interval (0, t ) (the
interval (t ,0) if t < 0). We therefore have 1+ t ≤ et and therefore (1+ t )k ≤ ekt . If
we apply this to (13.17), with k +1 replaced by k, we obtain

|�k |≤
hD
2C

ekhC ,

and from this the first inequality in (13.18) follows since kh = tk − a. The last
inequality is then immediate since tk −a ≤ b −a.

We will see in lemma 13.18 that x �� = ft + fx f . By assuming that f , ft and fx

are continuous and bounded we are therefore assured that x �� is also continuous,
and therefore that the constant D exists.

The error estimate (13.18) depends on the quantities h, D , C , a and b. Of
these, all except h are given by the differential equation itself, and therefore be-
yond our control. The step length h, however, can be varied as we wish, and the
most interesting feature of the error estimate is therefore how the error depends
on h. This is often expressed as

|�k |≤O(h)

which simply means that |�k | is bounded by a constant times the step length h,
just like in (13.18), without any specification of what the constant is. The error in
numerical methods for solving differential equations typically behave like this.

Definition 13.13 (Accuracy of a numerical method). A numerical method for
solving differential equations with step length h is said to be of order p if the
error �k at step k satisfies

|�k |≤O(hp ).

The significance of the concept of order is that it tells us how quickly the
error goes to zero with h. If we first try to run the numerical method with step
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length h and then reduce the step length to h/2 we see that the error will roughly
be reduced by a factor 1/2p . So the larger the value of p, the better the method,
at least from the point of view of accuracy.

The accuracy of Euler’s method can now be summed up quite concisely.

Corollary 13.14. Euler’s method is of order 1.

In other words, if we halve the step length we can expect the error in Euler’s
method to also be halved. This may be a bit surprising in view of the fact that the
local error in Euler’s method is O(h2), see lemma 13.11. The explanation is that
although the error committed in replacing x(tk+1) by xk +h f (tk , xk ) is bounded
by K h2 for a suitable constant K , the error accumulates so that the global order
becomes 1 even though the local approximation order is 2.

13.4 Differentiating the differential equation

Our next aim is to develop a whole family of numerical methods that can attain
any order of accuracy, namely the Taylor methods. For these methods however,
we need to know how to determine higher order derivatives of the solution of a
differential equation at a point, and this is the topic of the current section.

We consider the standard equation

x � = f (t , x), x(a) = x0. (13.19)

The initial condition explicitly determines a point on the solution, namely the
point given by x(a) = x0, and we want to compute the derivatives x �(a), x ��(a),
x ���(a) and so on. It is easy to determine the derivative of the solution at x = a
since

x �(a) = f
�
a, x(a)

�
= f (a, x0).

To determine higher derivatives, we simply differentiate the differential equa-
tion. This is best illustrated by an example.

Example 13.15. Suppose the equation is x � = t +x2, or more explicitly,

x �(t ) = t +x(t )2, x(a) = x0. (13.20)

At x = a we know that x(a) = x0, while the derivative is given by the differential
equation

x �(a) = a +x2
0.

If we differentiate the differential equation, the chain rule yields

x ��(t ) = 1+2x(t )x �(t ) = 1+2x(t )
�
t +x(t )2� (13.21)
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where we have inserted the expression for x �(t ) given by the differential equation
(13.20). This means that at any point t where x(t ) (the solution) and x �(t ) (the
derivative of the solution) is known, we can also determine the second derivative
of the solution. In particular, at x = a, we have

x ��(a) = 1+2x(a)x �(a) = 1+2x0(a +x2
0).

Note that the relation (13.21) is valid for any value of t , but since the right-hand
side involves x(t ) and x �(t ) these quantities must be known. The derivative in
turn only involves x(t ), so at a point where x(t ) is known, we can determine
both x �(t ) and x ��(t ).

What about higher derivatives? If we differentiate (13.21) once more, we find

x ���(t ) = 2x �(t )x �(t )+2x(t )x ��(t ) = 2
�
x �(t )2 +x(t )x ��(t )

�
. (13.22)

The previous formulas express x �(t ) and x ��(t ) in terms of x(t ) and if we insert
this at x = a we obtain

x ���(a) = 2
�
x �(a)2 +x(a)x ��(a)

�
= 2

��
a +x2

0
�2 +x0

�
1+2x0(a +x2

0)
��

.

In other words, at any point t where the solution x(t ) is known, we can also de-
termine x �(t ), x ��(t ) and x ���(t ). And by differentiating (13.22) the required num-
ber of times, we see that we can in fact determine any derivative x(n)(t ) at a point
where x(t ) is known.

It is important to realise the significance of example 13.15. Even though we
do not have a general formula for the solution x(t ) of the differential equation,
we can easily find explicit formulas for the derivatives of x at a single point where
the solution is known. One particular such point is the point where the initial
condition is given. One obvious restriction is that the derivatives must exist.

Lemma 13.16 (Determining derivatives). Let x � = f (t , x) be a differential
equation with initial condition x(a) = x0, and suppose that the derivatives of
f (t , x) of order p −1 exist at the point

�
a, x0). Then the pth derivative of the

solution x(t ) at x = a can be expressed in terms of a and x0, i.e.,

x(p)(a) = Fp (a, x0), (13.23)

where Fp is a function defined by f and its derivatives of order less than p.

Proof. The proof is essentially the same as in example 13.15, but since f is not
known explicitly, the argument becomes a bit more abstract. We use induction
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on n, the order of the derivative. For p = 1, equation (13.23) just says that x �(a) =
F1(a, x0). In this situation we therefore have F1 = f and the result is immediate.

Suppose now that the result has been shown to be true for p = k, i.e., that

x(k)(a) = Fk (a, x0), (13.24)

where Fk depends on f and its derivatives of order less than k; we must show
that it is also true for p = k +1. To do this we differentiate both sides of (13.24)
and obtain

x(k+1)(a) = ∂Fk

∂t
(a, x0)+ ∂Fk

∂x
(a, x0)x �(a). (13.25)

The right-hand side of (13.25) defines Fk+1,

Fk+1(a, x0) = ∂Fk

∂t
(a, x0)+ ∂Fk

∂x
(a, x0) f (a, x0),

where we have also used the fact that x �(a) = f (a, x0). Since Fk involves partial
derivatives of f up to order k −1, it follows that Fk+1 involves partial derivatives
of f up to order k. This proves all the claims in the theorem.

Example 13.17. The function Fp that appears in Lemma 13.16 may seem a bit
mysterious, but if we go back to example 13.15, we see that it is in fact quite
straightforward. In this specific case we have

x � = F1(t , x) = f (t , x) = t +x2, (13.26)

x �� = F2(t , x) = 1+2xx � = 1+2t x +2x3, (13.27)

x ��� = F3(t , x) = 2(x �2 +xx ��) = 2
�
(t +x2)2 +x(1+2t x +2x3)

�
. (13.28)

This shows the explicit expressions for F1, F2 and F3. The expressions can usu-
ally be simplified by expressing x �� in terms of t , x and x �, and by expressing x ���

in terms of t , x, x � and x ��, as shown in the intermediate formulas in (13.26)–
(13.28).

For later reference we record the general formulas for the first three deriva-
tives of x in terms of f .

Lemma 13.18. Let x(t ) be a solution of the differential equation x � = f (t , x).
Then

x � = f , x �� = ft + fx f , x ��� = ft t +2 ft x f + fxx f 2 + ft fx + f 2
x f ,

at any point where the derivatives exist.
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Lemma 13.16 tells us that at some point t where we know the solution x(t ),
we can also determine all derivatives of the solution, just as we did in exam-
ple 13.15. The obvious place where this can be exploited is at the initial condi-
tion. But this property also means that if in some way we have determined an
approximation x̂ to x(t ) we can compute approximations to all derivatives at t
as well. Consider again example 13.15 and let us imagine that we have an ap-
proximation x̂ to the solution x(t ) at t . We can then successively compute the
approximations

x �(t ) ≈ x̂ � = F1(t , x̂) = f (t , x̂) = x + x̂2,

x ��(t ) ≈ x̂ �� = F2(t , x̂) = 1+2x̂ x̂ �,

x ���(t ) ≈ x̂ ��� = F3(t , x̂) = 2(x̂ �2 + x̂ x̂ ��).

This corresponds to finding the exact derivatives of the solution curve that has
the value x̂ � at t . The same is of course true for a general equation.

The fact that all derivatives of the solution of a differential equation at a point
can be computed as in lemma 13.16 is the foundation of a whole family of nu-
merical methods for solving differential equations.

13.5 Taylor methods

In this section we are going to derive the family of numerical methods that are
usually referred to as Taylor methods. An important ingredient in these meth-
ods is the computation of derivatives of the solution at a single point which we
discussed in section 13.4. We first introduce the idea behind the methods and
the resulting algorithms, and then discuss the error. We focus on the quadratic
case as this is the simplest, but also illustrates the general principle.

13.5.1 Derivation of the Taylor methods

The idea behind Taylor methods is to approximate the solution by a Taylor poly-
nomial of a suitable degree. In Euler’s method, which is the simplest Taylor
method, we used the approximation

x(t +h) ≈ x(t )+hx �(t ).

The quadratic Taylor method is based on the more accurate approximation

x(t +h) ≈ x(t )+hx �(t )+ h2

2
x ��(t ). (13.29)

To describe the algorithm, we need to specify how the numerical solution can
be advanced from a point (tk , xk ) to a new point (tk+1, xk+1) with tk+1 = tk +h.
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The idea is to use (13.29) and compute xk+1 as

xk+1 = xk +hx �
k +

h2

2
x ��

k . (13.30)

The numbers xk , x �
k and x ��

k are approximations to the function value and deriva-
tives of the solution at t . These are obtained via the recipe in lemma 13.16. An
example should make this clear.

Example 13.19. Let us consider the differential equation

x � = f (t , x) = F1(t , x) = t − 1
1+x

, x(0) = 1, (13.31)

which we want to solve on the interval [0,1]. To illustrate the method, we choose
a large step length h = 0.5 and attempt to find an approximate numerical solu-
tion at x = 0.5 and x = 1 using a quadratic Taylor method.

From (13.31) we obtain

x ��(t ) = F2(t , x) = 1+ x �(t )
�
1+x(t )

�2 . (13.32)

To compute an approximation to x(h) we use the quadratic Taylor polynomial

x(h) ≈ x1 = x(0)+hx �(0)+ h2

2
x ��(0).

The differential equation (13.31) and (13.32) yield

x(0) = x0 = 1,

x �(0) = x �
0 = 0−1/2 =−1/2,

x ��(0) = x ��
0 = 1−1/8 = 7/8,

which leads to the approximation

x(h) ≈ x1 = x0 +hx �
0 +

h2

2
x ��

0 = 1− h
2
+ 7h2

16
= 0.859375.

To prepare for the next step we need to determine approximations to x �(h)
and x ��(h) as well. From the differential equation (13.31) and (13.32) we find

x �(h) ≈ x �
1 = F1(t1, x1) = t1 −1/(1+x1) =−0.037815126,

x ��(h) ≈ x ��
1 = F2(t1, x1) = 1+x �

1/(1+x1)2 = 0.98906216,

rounded to eight digits. From this we can compute the approximation

x(1) = x(2h) ≈ x2 = x1 +hx �
1 +

h2

2
x ��

1 = 0.96410021.

The result is shown in figure 13.3a.
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Figure 13.3. The plots show the result of solving a differential equation numerically with the quadratic Taylor
method. The plot in (a) show the first two steps for the equation x� = t −1/(1+ x) with x(0) = 1 and h = 0.5,
while the plot in (b) show the first two steps for the equation x� = cos(3t/2) − 1/(1 + x) with x(0) = 1 and
h = 0.5. The dots show the computed approximations, while the solid curves show the parabolas that are used
to compute the approximations. The exact solution is shown by the dashed curve in both cases.

Figure 13.3 illustrates the first two steps of the quadratic Talor method for
two equations. The solid curve shows the two parabolas used to compute the
approximate solution points in both cases. In figure (a) it seems like the two
parabolas join together smoothly, but this is just a feature of the underlying dif-
ferential equation. The behaviour in (b), where the two parabolas meet at a
slight corner is more representative, although in this case, the first parabola is
almost a straight line. In practice the solution between two approximate solu-
tion points will usually be approximated by a straight line, not a parabola.

Let us record the idea behind the quadratic Taylor method.

Idea 13.20 (Quadratic Taylor method). The quadratic Taylor method ad-
vances the solution from a point (tk , xk ) to a point (tk+1, xk+1) by evaluating
the approximate Taylor polynomial

x(t ) ≈ xk + (t − tk )x �
k +

(t − tk )2

2
x ��

k

at x = tk+1. In other words, the new value xk+1 is given by

xk+1 = xk +hx �
k +

h2

2
x ��

k

where the values xk , x �
k and x ��

k are obtained as described in lemma 13.16 and
h = tk+1 − tk .
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This idea is easily translated into a simple algorithm. At the beginning of
a new step, we know the previous approximation xk , but need to compute the
approximations to x �

k and x ��
k . Once these are known we can compute x �

k+1 and
tk+1 before we proceed with the next step. Note that in addition to the func-
tion f (t , x) which defines the differential equation we also need the function F2

which defines the second derivative, as in lemma 13.16. This is usually deter-
mined by manual differentiation as in the examples above.

Algorithm 13.21 (Quadratic Taylor method). Let the differential equation
x � = f (t , x) be given together with the initial condition x(a) = x0, the solu-
tion interval [a,b] and the number of steps n, and let the function F2 be such
that x ��(t ) = F2

�
t , x(t )

�
. The quadratic Taylor method is given by the algorithm

h = (b −a)/n;
t0 = a;
for k = 0, 1, . . . , n −1

x �
k = f (tk , xk );

x ��
k = F2(tk , xk );

xk+1 = xk +hx �
k +h2x ��

k /2;
tk+1 = a + (k +1)h;

After these steps the value xk will be an approximation to the solution x(tk ) of
the differential equation, for each k = 0, 1, . . . , n.

The quadratic Taylor method is easily generalised to higher degrees by in-
cluding more terms in the Taylor polynomial. The Taylor method of degree p
uses the formula

xk+1 = xk +hx �
k +

h2

2
x ��

k +·· ·+ hp−1

(p −1)!
x(p−1)

k + hp

p !
x(p)

k (13.33)

to advance the solution from the point (tk , xk ) to (tk+1, xk+1). Just like for the
quadratic method, the main challenge is the determination of the derivatives,
whose complexity may increase quickly with the degree. It is possible to make
use of software for symbolic computation to produce the derivatives, but it is
much more common to use a numerical method that mimics the behaviour of
the Taylor methods by evaluating f (t , x) at intermediate steps instead of com-
puting higher order derivatives, like the Runge-Kutta methods in section 13.6.3.

13.5.2 Error analysis for Taylor methods

In section 13.3.2 we discussed the error in Euler’s method. In this section we use
the same technique to estimate the error in the Taylor methods.
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The Taylor method of degree p advances the numerical solution from the
point (tk , xk ) to (tk+1, xk+1) with the formula (13.33). This is based on the exact
relation

x(tk+1) = x(tk )+hx �(tk )+·· ·+ hp

p !
x(p)(tk )+ hp+1

(p +1)!
x(p+1)(ξk ), (13.34)

where ξk is a number in the interval (tk , tk+1). When we omit the last term on
the right and use (13.33) instead we have a local truncation error given by

hp+1

(p +1)!
x(p+1)(ξk ),

i.e., of order O(hp+1). As for Euler’s method, the challenge is to see how this local
error at each step filters through and leads to the global error.

We will follow a procedure very similar to the one that we used to estimate
the error in Euler’s method. We start by rewriting (13.33) as

xk+1 = xk +hΦ(tk , xk ,h) (13.35)

with the functionΦ given by

Φ(tk , xk ,h) = x �
k +

h
2

x ��
k +·· ·+ hp−1

(p −1)!
x(p−1)

k

= F1(tk , xk )+ h2

2
F2(tk , xk )+·· ·+ hp−1

(p −1)!
Fp−1(tk , xk ),

(13.36)

where F1, F2, . . . , Fp−1 are the functions given in lemma 13.16. With the same
notation we can write (13.34) as

x(tk+1) = x(tk )+hΦ
�
tk , x(tk ),h

�
+ hp+1

(p +1)!
x(p+1)(ξk ). (13.37)

The first step is to derive the relation which corresponds to (13.14) by sub-
tracting (13.35) from (13.37),

x
�
tk+1

�
−xk+1 = x(tk )−xk +h

�
Φ

�
tk , x(tk ),h

�
−Φ(tk , xk ,h)

�
+ hp+1

(p +1)!
x(p+1)(ξk ).

We introduce the error �k = x(tk )−xk and rewrite this as

�k+1 = �k +h
�
Φ

�
tk , x(tk ),h

�
−Φ(tk , xk ,h)

�
+ hp+1

(p +1)!
x(p+1)(ξk ). (13.38)
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In the following we assume that the derivatives of the functions {Fi }p−1
i=1 with re-

spect to x exist. This means that the derivative of Φ(t , x) with respect to x also
exist, so the mean value theorem means that (13.38) can be written as

�k+1 = �k +h
∂Φ

∂x
(tk ,θk ,h)�k +

hp+1

(p +1)!
x(p+1)(ξk )

=
�
1+h

∂Φ

∂x
(tk ,θk ,h)

�
�k +

hp+1

(p +1)!
x(p+1)(ξk ),

(13.39)

where θk is a number in the interval
�
xk , x(tk )

�
. This relation is similar to equa-

tion (13.15), and the rest of the analysis can be performed as in section 13.3.2.
We take absolute values, use the triangle inequality, and introduce the constants
C and D . This gives us the inequality

|�k+1|≤ (1+hC )|�k |+
hp+1

(p +1)!
D. (13.40)

Proceedings just as in section 13.3.2 we end up with an analogous result.

Theorem 13.22 (Error in Taylor method of degree p). Let �k = x(tk )− xk de-
note the error at step k in applying the Taylor method of degree p with n steps
of length h to the differential equation x � = f (t , x) on the interval [a,b], with
initial condition x(a) = x0. Suppose that the derivatives of f of order p exist
and are continuous in a set [α,β]×Rwith α< a < b <β. Then

|�k |≤ hp D
C (p +1)!

�
e(tk−a)C −1

�
≤ hp D

C (p +1)!

�
e(b−a)C −1

�
(13.41)

for k = 0, 1, . . . , n where

C = max
(t ,x)∈A

����
∂Φ

∂x

�
t , x(t )

�����,

D = max
t∈[a,b]

|x(p+1)(t )|.

Note that even though the local truncation error in (13.34) is O(hp+1), the
global approximation order is p. In other words, the local errors accumulate so
that we lose one approximation order in passing from local error to global error,
just like for Euler’s method. In fact the error analysis we have used here both for
Euler’s method and for the Taylor methods (which include Euler’s method as a
special case), work in quite general situations, and below we will use it to analyse
other methods as well.
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We end the section with a shorter version of theorem 13.22.

Corollary 13.23. The Taylor method of degree p has global approximation
order p.

13.6 Other methods

The big advantage of the Taylor methods is that they can attain any approxima-
tion order. Their disadvantage is that they require symbolic differentiation of the
differential equation (except for Euler’s method). In this section we are going to
develop some methods of higher order than Euler’s method that do not require
differentiation of the differential equation. Instead they advance from (tk , xk ) to
(tk+1, xk+1) by evaluating f (t , x) at intermediate points in the interval [tk , tk+1].

13.6.1 Euler’s midpoint method

The first method we consider is a simple extension of Euler’s method. If we look
at the plots in figure 13.2, we notice how the tangent is a good approximation
to a solution curve at the initial condition, but the quality of the approximation
deteriorates as we move to the right. One way to improve on Euler’s method is
therefore to estimate the slope of each line segment better. In Euler’s midpoint
method this is done via a two-step procedure which aims to estimate the slope
at the midpoint between the two solution points. In proceeding from (tk , xk ) to
(tk+1, xk+1) we would like to use the tangent to the solution curve at the midpoint
tk +h/2. But since we do not know the value of the solution curve at this point,
we first compute an approximation xk+1/2 to the solution at tk +h/2 using the
traditional Euler’s method. Once we have this approximation, we can determine
the slope of the solution curve that passes through the point and use this as
the slope for a straight line that we follow from tk to tk+1 to determine the new
approximation xk+1. This idea is illustrated in figure 13.4.

Idea 13.24 (Euler’s midpoint method). In Euler’s midpoint method the solu-
tion is advanced from (tk , xk ) to (tk +h, xk+1) in two steps: First an approxi-
mation to the solution is computed at the midpoint tk +h/2 by using Euler’s
method with step length h/2,

xk+1/2 = xk +
h
2

f (tk , xk ).

Then the solution is advanced to tk+1 by following the straight line from
(tk , xk ) with slope given by f (tk +h/2, xk+1/2),

xk+1 = xk +h f (tk +h/2, xk+1/2).
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Figure 13.4. The figure illustrates the first step of the midpoint Euler method, starting at x = 0.2 and with
step length h = 0.2. We start by following the tangent at the starting point (x = 0.2) to the midpoint (x =
0.3). Here we determine the slope of the solution curve that passes through this point and use this as the
slope for a line through the starting point. We then follow this line to the next t-value (x = 0.4) to determine
the first approximate solution point. The solid curve is the correct solution and the open circle shows the
approximation produced by Euler’s method.

Once the basic idea is clear it is straightforward to translate this into a com-
plete algorithm for computing an approximate solution to the differential equa-
tion.

Algorithm 13.25 (Euler’s midpoint method). Let the differential equation x � =
f (t , x) be given together with the initial condition x(a) = x0, the solution in-
terval [a,b] and the number of steps n. Euler’s midpoint method is given by

h = (b −a)/n;
for k = 0, 1, . . . , n −1

xk+1/2 = xk +h f (tk , xk )/2;
xk+1 = xk +h f (tk +h/2, xk+1/2);
tk+1 = a + (k +1)h;

After these steps the value xk will be an approximation to the solution x(tk ) of
the differential equation, for each k = 0, 1, . . . , n.

As an alternative viewpoint, let us recall the two approximations for numer-
ical differentiation given by

x �(t ) ≈ x(t +h)−x(t )
h

,

x �(t +h/2) ≈ x(t +h)−x(t )
h

.
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Figure 13.5. Comparison of Euler’s method and Euler’s midpoint method for the differential equation x� =
cos(6t )/(1+ t +x2) with initial condition x(0) = 1 with step length h = 0.1. The solid curve is the exact solution
and the two approximate solutions are dashed. The dotted curve in the middle is the approximation pro-
duced by Euler’s method with step length h = 0.05. The approximation produced by Euler’s midpoint method
appears almost identical to the exact solution.

As we saw above, the first one is the basis for Euler’s method, but we know from
our study of numerical differentiation that the second one is more accurate. If
we solve for x(t +h) we find

x(t +h) ≈ x(t )+hx �(t +h/2)

and this relation is the basis for Euler’s midpoint method.
In general Euler’s midpoint method is more accurate than Euler’s method

since it is based on a better approximation of the first derivative, see Figure 13.5
for an example. However, this extra accuracy comes at a cost: the midpoint
method requires two evaluations of f (t , x) per iteration instead of just one for
the regular method. In many cases this is insignificant, although there may be
situations where f is extremely complicated and expensive to evaluate, or the
added evaluation may just not be feasible. But even then it is generally better to
use Euler’s midpoint method with a double step length, see figure 13.5.

13.6.2 Error analysis for Euler’s midpoint method

In this section we are going to analyse the error in Euler’s midpoint method with
the same technique as was used to analyse Euler’s method and the Taylor meth-
ods. From idea 13.24 we recall that the approximation is advanced from (tk , xk )
to (tk+1, xk+1) with the formula

xk+1 = xk +h f
�
tk +h/2, xk +h f (tk , xk )/2

�
. (13.42)

The idea behind the analysis is to apply Taylor’s formula and replace the outer
evaluation of f to an evaluation of f and its derivatives at (tk , xk ), and then sub-
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tract a Taylor expansion of f , in analogy to the analysis of Euler’s method. We
first do a Taylor expansion with respect to the first variable in (13.42),

f (tk +h/2, x) = f (tk , x)+ h
2

ft (tk , x)+ h2

8
ft t (tk , x)+O(h3), (13.43)

where x = xk +h f (tk , xk )/2, and the error is indicated by the O(h3) term. We
then replace each of the function terms by Taylor expansions with respect to the
second variable about xk ,

f (tk , x) = f + h f
2

fx +
h2 f 2

8
fxx +O(h3),

ft (tk , x) = ft +
h f
2

ft x +O(h2),

ft t (tk , x) = ft t +O(h),

where the functions with no arguments are evaluated at (tk , xk ). If we insert this
in (13.43) we obtain

f (tk +h/2, x) = f + h
2

fx f + h2

8
fxx f 2 + h

2
ft +

h2

4
ft x f + h2

8
ft t +O(h3)

= f + h
2

( ft + fx f )+ h2

8
( ft t +2 ft x f + fxx f 2)+O(h3).

This means that (13.42) can be written

xk+1 = xk +h f + h2

2
( ft + fx f )+ h3

8
( ft t +2 ft x f + fxx f 2)+O(h4). (13.44)

On the other hand, a standard Taylor expansion of x(tk+1) about tk with remain-
der yields

x(tk+1) = x(tk )+hx �(tk )+ h2

2
x ��(tk )+ h3

6
x ���(ξk )

= x(tk )+h f
�
tk , x(tk )

�
+ h2

2

��
ft (tk , x(tk )

�
+ fx

�
tk , x(tk )

��
f
�
tk , x(tk )

�

+ h3

6
x ���(ξk ). (13.45)

If we compare this with (13.44) we notice that the first three terms are similar.
We follow the same recipe as for the Taylor methods and introduce the function

Φ(t , x,h) = f (t , x)+ h
2

�
ft (t , x)+ fx (t , x) f (t , x)

�
. (13.46)
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The equations (13.44) and (13.45) can then be written as

xk+1 = xk +hΦ(tk , xk ,h)+ h3

8
( ft t +2 ft x f + fxx f 2)+O(h4), (13.47)

x(tk+1) = x(tk )+hΦ
�
tk , x(tk ),h

�
+ h3

6
x ���(ξk ). (13.48)

We subtract (13.47) from (13.48) and obtain

x(tk+1)−xk+1 = x(tk )−xk +h
�
Φ

�
tk , x(tk ),h

�
−Φ(tk , xk ,h)

�
+O(h3), (13.49)

where all the terms of degree higher than 2 have been collected together in the
O(h3) term.

Theorem 13.26. The global error �k = x(tk )− xk in Euler’s midpoint method
is advanced from step k to step k +1 by the relation

�k+1 = �k +h
�
Φ

�
tk , x(tk ),h

�
−Φ(tk , xk ,h)

�
+O(h3), (13.50)

where Φ is defined in equation (13.46). This means that |�k | = O(h2), i.e., the
global error in Euler’s midpoint method is of second order, provided f , ft , fx

and fxx are all continuous and bounded on a set [α,β]×R such that α < a <
b < δ.

Proof. The relation (13.50) is completely analogous to relation (13.38) for the
Taylor methods. We can therefore proceed in the same way and end up with an
inequality like (13.40),

|�k+1|≤ (1+hC )|�k |+Dh3.

As for Euler’s method and the Taylor methods we lose one order of approxima-
tion when we account for error accumulation which means that |�k | =O(h2).

Theorem 13.26 shows that Euler’s midpoint method is of second order, just
like the second order Taylor method, but without the need for explicit formulas
for the derivatives of f . Instead the midpoint method uses an extra evaluation of
f halfway between tk and tk+1. The derivation of the error formula (13.49) illus-
trates why the method works; the formula (13.42), which is equivalent to (13.44),
reproduces the first three terms of the Taylor expansion (13.45). We therefore see
that the accuracy of the Taylor methods may be mimicked by performing extra
evaluations of f between tk and tk+1. The Runge-Kutta methods achieve the
same accuracy as higher order Taylor methods in this way.
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In our error analysis we did not compare the O(h3) terms in (13.44) and
(13.45), so one may wonder if perhaps these match as well? Lemma 13.18 gives
an expression for x ��� in terms of f and its derivatives and we see straightaway
that (13.44) only matches some of these terms.

13.6.3 Runge-Kutta methods

Runge-Kutta methods is a family of methods that generalise the midpoint Euler
method. The methods use several evaluations of f between each step in a clever
way which leads to higher accuracy.

In the simplest Runge-Kutta methods, the new value xk+1 is computed from
xk with the formula

xk+1 = xk +h
�
λ1 f (tk , xk )+λ2 f (tk + r1h, xk + r2h f (tk , xk )

�
, (13.51)

where λ1, λ2, r1, and r2 are constants to be determined. The idea is to choose
the constants in such a way that (13.51) mimics a Taylor method of the highest
possible order. This can be done by following the recipe that was used in the
analysis of Euler’s midpoint method: Replace the outer function evaluation in
(13.51) by a Taylor polynomial and choose the constants such that this matches
as many terms as possible in the Taylor polynomial of x(t ) about x = tk , see
(13.44) and (13.45). It turns out that the first three terms in the Taylor expansion
can be matched. This leaves one parameter free (we choose this to be λ = λ2),
and determines the other three in terms of λ,

λ1 = 1−λ, λ2 =λ, r1 = r2 =
1

2λ
.

This determines a whole family of second order accurate methods.

Theorem 13.27 (Second order Runge-Kutta methods). Let the differential
equation x � = f (t , x) with initial condition x(a) = x0 be given. Then the nu-
merical method which advances from (tk , xk ) to (tk+1, xk+1 according to the
formula

xk+1 = xk +h
�
(1−λ) f (tk , xk )+λ f

�
tk +

h
2λ

, xk +
h f (tk , xk )

2λ

��
, (13.52)

is second order accurate for any nonzero value of the parameterλ, provided f ,
ft , fx and fxx are continuous and bounded in a set [α,β]×Rwithα< a < b <β.

The proof is completely analogous to the argument used to establish the
convergence rate of Euler’s midpoint method. In fact, Euler’s midpoint method
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corresponds to the particular second order Runge-Kutta method with λ= 1. An-
other commonly used special case is λ = 1/2. This results in the iteration for-
mula

xk+1 = xk +
h
2

�
f (tk , xk )+ f

�
(tk , xk +h(tk , xk )

��
,

which is often referred to as Heun’s method or the improved Euler’s method.
Note also that the original Euler’s may be considered as the special case λ = 0,
but then the accuracy drops to first order.

It is possible to devise methods that reproduce higher degree polynomials
at the cost of more intermediate evaluations of f . The derivation is analogous
to the procedure used for the second order Runge-Kutta method, but more in-
volved because the degree of the Taylor polynomials are higher. One member of
the family of fourth order methods is particularly popular.

Theorem 13.28 (Fourth order Runge-Kutta method). Suppose the differential
equation x � = f (t , x) with initial condition x(a) = x0 is given. The numerical
method given by the formulas

k0 = f (tk , xk ),

k1 = f (tk +h/2, xk +hk0/2),

k2 = f (tk +h/2, xk +hk1/2),

k3 = f (tk +h, xk +hk2),

xk+1 = xk +
h
6

(k0 +2k1 +2k2 +k3),






k = 0, 1, . . . , n

is fourth order accurate provided the derivatives of f up to order four are con-
tinuous and bounded in the set [α,β]×Rwith a <α<β< b.

It can be shown that Runge-Kutta methods which use p evaluations pr. step
are pth order accurate for p = 1, 2, 3, and 4. However, it turns out that 6 evalua-
tions pr. step are necessary to get a method of order 5. This is one of the reasons
for the popularity of the fourth order Runge-Kutta methods—they give the most
orders of accuracy pr. evaluation.

13.6.4 Multi-step methods

The methods we have discussed so far are all called one-step methods since they
advance the solution by just using information about one previous step. This is
in contrast to an order m multi-step method which computes xk+1 based on xk ,
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xk−1, . . . , xk+1−m . The methods are based on integrating the differential equa-
tion,

x(tk+1) = x(tk )+
�tk+1

tk

x �(t )d t = x(tk )+
�tk+1

tk

f
�
t , x(t )

�
d t .

The idea is to replace x �(t ) with a polynomial that interpolates x �(t ) = f (t , x) at
previously computed points. More specifically, suppose that the m approximate
values xk−(m−1), . . . , xk have been computed. We then determine the polynomial
pm(t ) of degree m −1 such that

pm(tk−i ) = fk−i = f (tk−i , xk−i ), i = 0, 1, . . . , m −1 (13.53)

and compute xk+1 by integrating pm instead of f
�
t , x(t )

�
,

xk+1 = xk +
�tk+1

tk

pm(t )d t .

Recall from chapter 9 that the interpolating polynomial may be written as

pm(t ) =
m−1�

i=0
fk−i�k−i (t ) (13.54)

where �k−i is the polynomial of degree m − 1 that has the value 1 at tk−i and
is 0 at all the other interpolation points tk−m+1, . . . , tk−i−1, tk−i+1, . . . , tk . We
integrate (13.54) and obtain

�tk+1

tk

pm(t )d t =
m−1�

i=0
fk−i

�tk+1

tk

�k−i (t )d t = h
m−1�

i=0
ck−i fk−i

where

ck−i =
1
h

�tk+1

tk

�k−i (x)d t .

The division by h has the effect that the coefficients are independent of h. The
final formula for solving the differential equation becomes

xk+1 = xk +h
m−1�

i=0
ck−i fk−i . (13.55)

The advantage of multi-step methods is that they achieve high accuracy but
just require one new evaluation of f each time the solution is advanced one step.
However, multi-step methods must be supplemented with alternative methods
with the same accuracy during the first iterations as there are then not suffi-
ciently many previously computed values.
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13.6.5 Implicit methods

All the methods we have considered so far advance the solution via a formula
which is based on computing an approximation at a new time step from approx-
imations computed at previous time steps. This is not strictly necessary though.
The simplest example is the backward Euler method given by

xk+1 = xk +h f (tk+1, xk+1), k = 1, . . . , n. (13.56)

Note that the value xk+1 to be computed appears on both sides of the equation
which means that in general we are left with a nonlinear equation or implicit
equation for xk+1. To determine xk+1 this equation must be solved by some non-
linear equation solver like Newton’s method.

Example 13.29. Suppose that f (t , x) = t+sin x. In this case the implicit equation
(13.56) becomes

xk+1 = xk +h(tk+1 + sin xk+1)

which can only be solved by a numerical method.
Another example is x � = 1/(t +x). Then (13.56) becomes

xk+1 = xk +
h

tk+1 +xk+1
.

In this case we obtain a quadratic equation for xk+1,

x2
k+1 − (xk − tk+1)xk+1 − tk+1xk −h = 0.

This can be solved with some nonlinear equation solver or the standard formula
for quadratic equations.

The idea of including xk+1 in the estimate of itself can be used for a variety
of methods. An alternative midpoint method is given by

xk+1 = xk +
h
2

�
f (tk , xk )+ f (tk+1, xk+1)

�
,

and more generally xk+1 can be included on the right-hand side to yield im-
plicit Runge-Kutta like methods. A very important class of methods is implicit
multi-step methods where the degree of the interpolating polynomial in (13.53)
is increased by one and the next point

�
tk+1, f (tk+1, xk+1)

�
is included as an in-

terpolation point. More specifically, if the interpolating polynomial is qm , the
interpolation conditions are taken to be

qm(tk+1−i ) = fk+1−i = f (tk+1−i , xk+1−i ), i = 0, 1, . . . , m.
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At tk+1 , the value xk+1 is unknown so the equation (13.55) is replaced by

xk+1 = xk +hck+1 f (tk+1, xk+1)+h
m−1�

i=0
ck−i fk−i (13.57)

where (ck+1−i )m
i=0 are coefficients that can be computed in the same way as in-

dicated in section 13.6.4 (they will be different though, since the degree is differ-
ent). This shows clearly the implicit nature of the method. The same idea can be
used to adjust most other explicit methods as well.

It turns out that an implicit method has quite superior convergence proper-
ties and can achieve a certain accuracy with considerably larger time steps than
a comparable explicit method. The obvious disadvantage of implicit methods is
the need to solve a nonlinear equation at each time step. However, this disad-
vantage is not as bad as it may seem. Consider for example equation (13.57). If
in some way we can guess a first approximation x0

k+1 for xk+1, we can insert this
on the right and compute a hopefully better approximation x1

k+1 as

x1
k+1 = xk +hck+1 f (tk+1, x0

k+1)+h
m−1�

i=0
ck−i fk−i .

But now we can compute a new approximation to x2
k+1 by inserting x1

k+1 on the
right, and in this way we obtain a tailor-made numerical method for solving
(13.57).

In practice the first approximation x0
k+1 is obtained via some explicit numer-

ical method like a suitable multi-step method. This is often referred to as a pre-
dictor and the formula (13.57) as the corrector; the combination is referred to as
a predictor-corrector method. In many situations it turns out that it is sufficient
to just use the corrector formula once.

13.7 Stability

An important input parameter for a differential equation, and therefore for any
numerical method for finding an approximate solution, is the value x0 that en-
ters into the initial condition x(a) = x0. In general, this is a real number that
cannot be be represented exactly by floating point numbers, so an initial condi-
tion like x�(a) = x0 + � will be used instead, where � is some small number. This
will obviously influence the computations in some way; the question is by how
much?
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13.7.1 Stability of a differential equation

Initially, we just focus on the differential equation and ignore effects introduced
by particular numerical methods. A simple example will illustrate what can hap-
pen.

Example 13.30. Consider the differential equation

x � =λ
�
x −

�
2
�
, x(0) =

�
2

for t in some interval [0,b] where b > 0. It is quite easy to see that the exact
solution of this equation is

x(t ) =
�

2. (13.58)

On the other hand, if the initial condition is changed to x�(0) =
�

2+�, where � is
a small number, the solution becomes

x�(t ) =
�

2+�eλt . (13.59)

If we try to solve the equation numerically using floating point numbers, and
commit no errors other than replacing

�
2 by the nearest floating point number,

we end up with the solution given by (13.59) rather than the correct solution
(13.58).

For small values of t , the solution given by (13.59) will be a good approxi-
mation to the correct solution. However, if λ > 0, the function eλt grows very
quickly with t even for moderate values of λ, so the second term in (13.59) will
dominate. If for example λ = 2, then eλt ≈ 5×1021 already for t = 25. If we use
64 bit floating point numbers we will have �≈ 10−17 and therefore

x�(25) ≈
�

2+10−17 ×5×1021 ≈ 5×104

which is way off the correct value.
This kind of error is unavoidable whichever numerical method we choose

to use. In practice we will also commit other errors which complicates matters
further.

Example 13.30 shows that it is possible for a simple differential equation to
be highly sensitive to perturbations of the initial value. As we know, different
initial values pick different solutions from the total family of solution curves.
Therefore, if the solution curves separate more and more when t increases, the
equation will be sensitive to perturbations of the initial values, whereas if the
solution curves come closer together, the equation will not be sensitive to per-
turbations. This phenomenon is called stability of the equation, and it can be
shown that stability can be measured by the size of the derivative of f (t , x) with
respect to x.

303



1 2 3 4

1

2

3

4

5

6

Figure 13.6. Solutions of the equation x� = (1− t )x with initial values x(0) = i /10 for i = 0, . . . , 15.

Definition 13.31 (Stability of differential equation). The differential equation
x � = f (t , x) is said to be stable in an area where the derivative fx (t , x) is nega-
tive (the solution curves approach each other), while it is said to be unstable
(the solution curves separate) if fx (t , x) > 0. Here fx (t , x) denotes the deriva-
tive of f with respect to x.

If we return to example 13.30, we see that the equation considered there is
stable when λ< 0 and unstable when λ> 0. For us the main reason for studying
stability is to understand why the computed solution of some equations may
blow up and become completely wrong, like the one in (13.59). However, even
if λ > 0, the instability will not be visible for small t . This is true in general: It
takes some time for instability to develop, and for many unstable equations, the
instability may not be very strong. Likewise, there may be equations where fx

is negative in certain areas, but very close to 0, which means that the effect of
dampening the errors is not very pronounced. For this reason it often makes
more sense to talk about weakly unstable or weakly stable equations.

Example 13.32. Consider the differential equation

y � = f (t , x) = (1− t )x2.

The solutions of this equation with initial values x(0) = i /10 for i = 0, 1, . . . , 15
are shown in figure 13.6. If we differentiate f with respect to x we obtain

fx (t , x) = (1− t )x.

This equation is therefore unstable for t < 1 and stable for t > 1 which corre-
sponds well with the plots in figure 13.6. However, the stability effects visible in
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the plot are not extreme and it makes more sense to call this weak stability and
instability.

13.7.2 Stability of Euler’s method

Stability is concerned with a differential equation’s sensitivity to perturbations
of the initial condition. Once we use a numerical method to solve the differ-
ential equation, there are additional factors that can lead to similar behaviour.
The perturbation of the initial condition is usually insignificant compared to the
error we commit when we step from one solution point to another with some
approximate formula; and these errors accumulate as we step over the total so-
lution interval [a,b]. The effect of all these errors is that we keep jumping from
one solution curve to another, so we must expect the stability of the differential
equation to be amplified further by a numerical method. It also seems inevitable
that different numerical methods will behave differently with respect to stability
since they use different approximations. However, no method can avoid insta-
bilities in the differential equation itself.

We will only consider stability for Euler’s method. The crucial relation is
(13.15) which relates the global error �k = x(tk )− xk to the corresponding er-
ror at time tk+1. The important question is whether the error is magnified or not
as it is filtered through many time steps.

We rewrite (13.15) as

�k+1 =
�
1+hLk

�
�k +Gk ,

with Lk = fx (tk ,θk ) with θk some real number between xk and x(tk ), and Gk =
h2x ��(ξk )/2 with ξk some number between tk and tk+1. The decisive part of this
relation is the factor that multiplies �k . We see this quite clearly if we unwrap the
error as in (13.16),

�k+1 = (1+hLk )�k +Gk

= (1+hLk )((1+hLk−1)�k−1 +Gk−1)+Gk

=
k�

j=k−1
(1+hL j )�k−1 + (1+hLk )Gk−1 +Gk

=
k�

j=k−1
(1+hL j )((1+hLk−2)�k−2 +Gk−2)+ (1+hLk )Gk−1 +Gk

=
k�

j=k−2
(1+hL j )�k−2 +

k�

j=k−1
(1+hL j )Gk−2 + (1+hLk )Gk−1 +Gk
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=
k�

j=k−2
(1+hL j )�k−2 +

k�

i=k−2

k�

j=i+1
(1+hL j )Gi

...

=
k�

j=0
(1+hL j )�0 +

k�

i=0

k�

j=i+1
(1+hL j )Gi .

This is a bit more complicated than what we did in (13.16) since we have taken
neither absolute nor maximum values, as this would hide some of the informa-
tion we are looking for. On the other hand, we have an identity which deserves
to be recorded in a lemma.

Lemma 13.33. The error in Euler’s method for the equation x � = f (t , x) at time
tk+1 is given by

�k+1 =
k�

j=0
(1+hL j )�0 +

k�

i=0

k�

j=i+1
(1+hL j )Gi , (13.60)

for k = 0, . . . , n − 1. Here L j = fx (t j ,θ j ) where θ j is a number between x j

and x(t j ), while G j = h2x ��(ξ j )/2 with ξ j some number between tk and tk+1.
The number �0 is the error committed in implementing the initial condition
x(a) = x0.

We can now more easily judge what can go wrong with Euler’s method. We
see that the error in the initial condition, �0, is magnified by the factor

�k
j=0(1+

hL j ). If each of the terms in this product has absolute value larger than 1, this
magnification factor can become very large, similarly to what we saw in exam-
ple 13.30. Equation 13.60 also shows that similar factors multiply the truncation
errors (the remainders in the Taylor expansions) which are usually much larger
than �0, so these may also be magnified in the same way.

What does this say about stability in Euler’s method? If |1+hL j | > 1, i.e., if
either hL j > 0 or hL j <−2 for all j , then the errors will be amplified and Euler’s
method will be unstable. On the other hand, if |1+hL j | < 1, i.e., if −2 < hL j <
0, then the factors will dampen the error sources and Eulers’s method will be
stable.

This motivates a definition of stability for Euler’s method.
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Definition 13.34. Euler’s method for the equation

x � = f (t , x), x(a) = x0,

is said to be stable in an area where |1+h fx (t , x)| > 1 and unstable in an area
where |1+h fx (t , x)| < 1.

We observe that Euler’s method has no chance of being stable if the differ-
ential equation is unstable, i.e., if fx > 0. On the other hand, it is not necessarily
stable even if the differential equation is stable, that is if fx < 0; we must then
avoid 1+h fx becoming smaller than −1. This means that we must choose h so
small that −1−h fx (t , x) >−1 or

h < 2
| fx (t , x)|

for all t and x. Otherwise, Euler’s method will be unstable, although in many
cases it is more correct to talk about weak stability or weak instability, just like
for differential equations.

Example 13.35. The prototype of a stable differential equation is

x � =−λx, x(0) = 1

with the exact solution x(t ) = e−λt which approaches 0 quickly with increasing t .
We will try and solve this with Euler’s method whenλ=−10, on the interval [0,2].
In this case fx (t , x) =−10 so the stability estimate demands that |1−10h| < 1 or
h < 1/5 = 0.2. To avoid instability in Euler’s method we therefore need to use
at least 11 time steps on the interval [0,2]. Figure 13.7 illustrates how Euler’s
method behaves. In figure (a) we have used a step length of 2/9 which is just
above the requirement for stability and we notice how the size of the computed
solution grows with t , a clear sign of instability. In figure (b), the step length is
chosen so that |1+h fx (t , x)| = 1 and we see that the computed solution does not
converge to 0 as it should, but neither is the error amplified. In figure (c), the
step length is just below the limit and the solution decreases, but rather slowly.
Finally, in figure (d), the step size is well below the limit and the numerical solu-
tion behaves as it should.

Stability of other numerical methods can be studied in much the same way
as for Euler’s method. It is essentially the derivative of the functionΦ (see (13.36)
and (13.46)) with respect to x that decides the stability of a given method. This
is a vast area and the reader is referred to advanced books on numerical analysis
to learn more.

307



0.5 1.0 1.5 2.0

�5

5

(a)

0.5 1.0 1.5 2.0

�1.0

�0.5

0.5

1.0

(b)

0.5 1.0 1.5 2.0

�0.5

0.5

1.0

(c)

0.5 1.0 1.5 2.0

0.2

0.4

0.6

0.8

1.0

(d)

Figure 13.7. The plots illustrate the result of using Euler’s method for solving the equation x� = −10x with
initial condition x(0) = 1. In (a) a step length of 2/9 was used, in (b) the step length was 2/10, and in (c) it
was 2/11. The dashed curve in (d) shows the exact solution x(t ) = e−10t while the solid curve shows the result
produced by Euler’s method with a step length of 1/25.

13.8 Systems of differential equations

So far we have focused on how to solve a single first order differential equa-
tion. In practice two or more such equations, coupled together, are necessary
to model a problem, and perhaps even equations of higher order. In this section
we are going to see how the methods we have developed above can easily be
adapted to deal with both systems of equations and equations of higher order.

13.8.1 Vector notation and existence of solution

Many practical problems involve not one, but two or more differential equa-
tions. For example many processes evolve in three dimensional space, with sep-
arate differential equations in each space dimension.

Example 13.36. At the beginning of this chapter we saw that a vertically falling
object subject to gravitation and friction can be modelled by the differential
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equation

v � = g − c
m

v2, (13.61)

where v = v(t ) is the speed at time t . How can an object that also has a hori-
zontal speed be modelled? A classical example is that of throwing a ball. In the
vertical direction, equation (13.61) is still valid, but since the y-axis points up-
wards, we change signs on the right-hand side and label the speed by a subscript
2 to indicate that this is movement along the y- (the second) axis,

v �
2 =

c
m

v2
2 − g .

In the x-direction a similar relation holds, except there is no gravity. If we as-
sume that the positive x-axis is in the direction of the movement we therefore
have

v �
1 =− c

m
v2

1.

In total we have

v �
1 =− c

m
v2

1, v1(0) = v0x , (13.62)

v �
2 =

c
m

v2
2 − g , v2(0) = v0y , (13.63)

where v0x is the initial speed of the object in the x-direction and v0y is the initial
speed of the object in the y-direction. If we introduce the vectors v = (v1, v2)
and f = ( f1, f2) where

f1(t , v ) = f1(t , v1, v2) =− c
m

v2
1,

f2(t , v ) = f2(t , v1, v2) = c
m

v2
2 − g ,

and the initial vector v 0 = (v0x , v0y ), the equations (13.62)–(13.63) may be rewrit-
ten more compactly as

v � = f (t , v ), v (0) = v 0.

Apart from the vector symbols, this is exactly the same equation as we have stud-
ied throughout this chapter.

The equations in example 13.36 are quite specialised in that the time vari-
able does not appear on the right, and the two equations are independent of
each other. The next example is more general.
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Example 13.37. Consider the three equations with initial conditions

x � = x y +cos z, x(0) = x0, (13.64)

y � = 2− t 2 + z2 y, x(0) = y0, (13.65)

z � = sin t −x + y, z(0) = z0. (13.66)

If we introduce the vectors x = (x, y, z), x0 = (x0, y0, z0), and the vector of func-
tions f (t , x) =

�
f1(t , x), f2(t , x), f3(t , x)

�
defined by

x � = f1(t , x) = f1(t , x, y, z) = x y +cos z,

y � = f2(t , x) = f2(t , x, y, z) = 2− t 2 + z2 y,

z � = f3(t , x) = f3(t , x, y, z) = sin t −x + y,

we can write (13.64)–(13.66) simply as

x � = f (t , x), x(0) = x0.

Examples 13.36–13.37 illustrate how vector notation may camouflage a sys-
tem of differential equations as a single equation. This is helpful since it makes
it quite obvious how the theory for scalar equations can be applied to systems of
equations. Let us first be precise about what we mean with a system of differen-
tial equations.

Definition 13.38. A system of M first order differential equations in M un-
knowns with corresponding initial conditions is given by a vector relation on
the form

x � = f (t , x), x(0) = x0. (13.67)

Here x = x(t ) =
�
x1(t ), . . . , x M (t )

�
is a vector of M unknown scalar functions

and f (t , x) : RM+1 → RM is a vector function of the M +1 variables t and x =
(x1, . . . , xM ), i.e.,

f (t , x) =
�

f1(t , x), . . . , fM (t , x)
�
.

The notation x � denotes the vector of derivatives of the components of x with
respect to t ,

x � = x �(t ) =
�
x �

1(t ), . . . , x �
M (t )

�
.

It may be helpful to write out the vector equation (13.67) in detail,

x �
1 = f1(t , x) = f1(t , x1, . . . , xM ), x1(0) = x1,0

...

x �
M = fM (t , x) = fM (t , x1, . . . , xM ), xM (0) = xM ,0.
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We see that both the examples above fit into this setting, with M = 2 for exam-
ple 13.36 and M = 3 for example 13.37.

Before we start considering numerical solutions of systems of differential
equations, we need to know that solutions exist. This is settled by the follow-
ing theorem which is completely analogous to theorem 13.6.

Theorem 13.39. Suppose that the function f (t , x) and its first derivatives with
respect to the components of x are continuous on the set

A= [α,β]× [γ1,δ1]× [γ2,δ2]× · · ·× [γM ,δM ]. (13.68)

If the point (a, x0) lies in the interior of A there exists an τ > 0 such that the
differential equation

x � = f (t , x), x(a) = x0 (13.69)

has a unique solution on the interval [a−τ, a+τ] which is contained in [α,β].

The setA defined in (13.68) may seem mysterious. It is just the collection of
all points (t , x1, . . . , xM ) such that t ∈ [α,β] and xi ∈ [γi ,δi ] for i = 1, . . . , M . The
precise derivatives of the components of f that are required to be continuous
are

∂ f1

∂x1
,

∂ f1

∂x2
, . . .

∂ f1

∂xM
,

∂ f2

∂x1
,

∂ f2

∂x2
, . . .

∂ f2

∂xM
,

...
...

. . .
...

∂ fM

∂x1
,

∂ fM

∂x2
, . . .

∂ fM

∂xM
.

This may all seem complicated, but the conclusion is rather simple: the system
of equations (13.69) has a solution near the initial value (t , x0) provided all the
component functions are reasonably well behaved near the point.

13.8.2 Numerical methods for systems of first order equations

There are very few analytic methods for solving systems of differential equa-
tions, so numerical methods are essential. It turns out that most of the meth-
ods for a single equation generalise to systems. A simple example illustrates the
general principle

Example 13.40 (Euler’s method for a system). We consider the equations in ex-
ample 13.37,

x � = f (t , x), x(0) = x0,
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where

f (t , x) =
�

f1(t , x1, x2, x3), f2(t , x1, x2, x3), f3(t , x1, x2, x3)
�

= (x1x2 +cos x3,2− t 2 +x2
3 x2,sin t −x1 +x2).

Euler’s method is easily generalised to vector equations as

xk+1 = xk +h f (tk , xk ), k = 0, 1, . . . , n −1. (13.70)

If we write out the three components explicitly, this becomes

xk+1
1 = xk

1 +h f1(tk , xk
1 , xk

2 , xk
3 ) = xk

1 +h
�
xk

1 xk
2 +cos xk

3
�
,

xk+1
2 = xk

2 +h f2(tk , xk
1 , xk

2 , xk
3 ) = xk

2 +h
�
2− t 2

k + (xk
3 )2xk

2
�
,

xk+1
3 = xk

3 +h f3(tk , xk
1 , xk

2 , xk
3 ) = xk

3 +h
�
sin tk −xk

1 +xk
2
�
,





(13.71)

for k = 0, 1, . . . , n − 1, with the starting values (x0
1, x0

2, x0
3) given by the initial

condition. Although they look rather complicated, these formulas can be pro-
grammed quite easily. The trick is to make use of the vector notation in (13.70),
since it nicely hides the details in (13.71).

Example 13.40 illustrates Euler’s method for a system of equations, and for
most of the numerical methods we have encountered earlier in the chapter it is
equally straightforward to generalise to systems of equations.

Observation 13.41 (Generalisation to systems). Euler’s method, Euler’s mid-
point method, and the Runge-Kutta methods all generalise naturally to sys-
tems of differential equations.

For example the formula for advancing one time step with Euler’s midpoint
method becomes

xk+1 = xk +h f
�
tk +h/2, xk +h f (tk , xk )/2

�
,

while the fourth order Runge-Kutta method becomes

k0 = f (tk , xk ),

k1 = f (tk +h/2, xk +hk0/2),

k2 = f (tk +h/2, xk +hk1/2),

k3 = f (tk +h, xk +hk2),

xk+1 = xk +
h
6

(k0 +k1 +k2 +k3).
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Systems of differential equations is an example where the general mathe-
matical formulation is simpler than most concrete examples. In fact, if each
component of these formulas are written out in detail, the details quickly be-
come overwhelming, so it is important to stick with the vector notation. This
also applies to implementation in a program: It is wise to use the vector formal-
ism and mimic the mathematical formulation as closely as possible.

In principle the Taylor methods also generalise to systems of equations, but
because of the need for manual differentiation of each component equation, the
details swell up even more than for the other methods. Multi-step methods gen-
eralise nicely to systems as well. Implicit methods are not so easy to generalise
though, since nonlinear solutions methods are considerably more complicated
for systems than for scalar equations. However, a predictor-corrector approach
works quite well for systems.

13.8.3 Higher order equations as systems of first order equations

Many practical modelling problems lead to systems of differential equations,
and sometimes higher order equations are necessary. It turns out that these can
be reduced to systems of first order equations as well.

Example 13.42. Consider the second order equation

x �� = t 2 + sin(x +x �), x(0) = 1, x �(0) = 0. (13.72)

This equation is nonlinear and cannot be solved with any of the standard ana-
lytical methods. If we introduce the new function x2 = x �, we notice that x �

2 = x ��,
so the differential equation can be written

x �
2 = t 2 + sin(x +x2), x(0) = 1, x2(0) = 0.

If we also rename x as x1 = x we see that the second order equation in (13.72) can
be written as the system

x �
1 = x2, x1(0) = 1, (13.73)

x �
2 = t 2 + sin(x1 +x2), x2(0) = 0. (13.74)

In other words, equation (13.72) can be written as the system (13.73)–(13.74).
We also see that this system can be expressed as the single equation in (13.72),
so the two equations (13.73)–(13.74) and the single equation (13.72) are in fact
equivalent in the sense that a solution of one automatically gives a solution of
the other.

The technique used in example 13.42 works in general—a pth order equa-
tion can be rewritten as a system of p first order equations.
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Theorem 13.43. The pth order differential equation

x(p) = g
�
t , x, x �, . . . , x(p−1)� (13.75)

with initial conditions

x(a) = d0, x �(a) = d1, . . . , x(p−2)(0) = dp−2, x(p−1)(0) = dp−1 (13.76)

is equivalent to the system of p equations in the p unknown functions x1, x2,
. . . , xp ,

x �
1 = x2, x1(a) = d0,

x �
2 = x3, x2(a) = d1,

...

x �
p−1 = xp , xp−1(a) = dp−2,

x �
p = g (t , x1, x2, . . . , xp−1), xp (a) = dp−1,

(13.77)

in the sense that the component solution x1(t ) of (13.77) agrees with the so-
lution x(t ) of (13.75)–(13.76).

Proof. The idea of the proof is just like in example 13.42. From the first p − 1
relations in (13.77) we see that

x2 = x �
1, x3 = x �

2 = x ��
1 , . . . , xp = x �

p−1 = x ��
p−2 = ·· · = x(p−1)

1 .

If we insert this in the last equation in (13.77) we obtain a pth order equation for
x1 that is identical to (13.75). In addition, the initial values in (13.77) translate
into initial values for x1 that are identical to (13.76) so x1 must solve (13.75)–
(13.76). Conversely, if x is a solution of (13.75)–(13.76) it is easy to see that the
functions

x1 = x, x2 = x �, x3 = x ��, . . . , xp−1 = x(p−2), xp = x(p−1)

solve the system (13.77).

Theorem 13.43 shows that if we can solve systems of differential equations
we can also solve single equations of order higher than one. We can also handle
systems of higher order equations in this way.

Example 13.44 (System of higher order equations). Consider the system of dif-
ferential equations given by

x �� = t +x �+ y �, x(0) = 1, x �(0) = 2,

y ��� = x �y ��+x, y(0) =−1, y �(0) = 1, y ��(0) = 2.
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We introduce the new functions x1 = x, x2 = x �, y1 = y , y2 = y �, and y3 = y ��. Then
the above system can be written as

x �
1 = x2, x1(0) = 1,

x �
2 = t +x2 + y2, x2(0) = 2,

y �
1 = y2, y1(0) =−1,

y �
2 = y3, y2(0) = 1,

y �
3 = x2 y3 +x1, y3(0) = 2.

Example 13.44 illustrates how a system of higher order equations may be
expressed as a system of first order equations. Perhaps not surprisingly, a gen-
eral system of higher order equations can be converted to a system of first order
equations. The main complication is in fact notation. We assume that we have
r equations involving r unknown functions x1, . . . , xr . Equation no. i expresses
some derivative of xi on the left in terms of derivatives of itself and the other
functions on the right,

x(pi )
i = gi

�
t , x1, x �

1, . . . , x(p1−1)
1 , . . . , xr , x �

r , . . . , x(pr −1)
r

�
, i = 1, . . . , r . (13.78)

In other words, the integer pi denotes the derivative of xi on the left in equation
no. i , and it is assumed that in the other equations the highest derivative of xi is
pi −1 (this is not an essential restriction, see exercise 20).

To write the system (13.78) as a system of first order equations, we just follow
the same strategy as in example 13.44: For each variable xi , we introduce the pi

variables
xi ,1 = xi , xi ,2 = x �

i , xi ,3 = x ��
i , . . . , xi ,pi = x(pi−1)

i .

Equation no. i in (13.78) can then be replaced by the pi first order equations

x �
i ,1 = xi ,2,

x �
i ,2 = xi ,3,

...

x �
i ,pi−1 = xi ,pi ,

x �
i ,pi

= gi
�
t , x1,1, . . . , x1,p1 , . . . , xr,1, . . . , xr,pr

�

for i = 1, . . . , r . We emphasise that the general procedure is exactly the same as
the one used in example 13.44, it is just that the notation becomes rather heavy
in the general case.

We record the conclusion in a non-technical theorem.
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Theorem 13.45. A system of differential equations can always be written as a
system of first order equations.

13.9 Final comments

Our emphasis in this chapter has been to derive some of the best-known meth-
ods for numerical solution of first order ordinary differential equations, includ-
ing a basic error analysis, and treatment of systems of equations. There are a
number of additional issues we have not touched upon.

There are numerous other numerical methods in addition to the ones we
have discussed here. The universal method that is optimal for all kinds of appli-
cations does not exist; you should choose the method that works best for your
particular kind of application.

We have assumed that the step size h remains fixed during the solution pro-
cess. This is convenient for introducing the methods, but usually too simple
for solving realistic problems. A good method will use a small step size in areas
where the solution changes quickly and longer step sizes in areas where the so-
lution varies more slowly. A major challenge is therefore to detect, during the
computations, how quickly the solution varies, or equivalently, how large the
error is locally. If the error is large in an area, it means that the local step size
needs to be reduced; it may even mean that another numerical method should
be used in the area in question. This kind of monitoring of the error, coupled
with local control of the step size and choice of method, is an important and
challenging characteristic of modern software for solving differential equations.
Methods like these are called adaptive methods.

We have provided a basic error analysis of the simplest methods, and this
kind of analysis can be extended to a number of other methods without much
change. The analysis accounts for the error committed by making use of certain
mathematical approximations. In most cases this kind of error analysis is ade-
quate, but in certain situations it may also be necessary to pay attention to the
round-off error.

Exercises

13.1 Suppose we have the differential equation

x� = f (t , x), x(b) = x0,

and we seek a solution on the interval [a,b] where a < b. Adjust Euler’s method so that it
works in this alternative setting where the initial value is at the right end of the interval.
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13.2 Compute numerical solutions to x(1) for the equations below using two steps with Euler’s
method, the quadratic Taylor method and the quartic Taylor method. For comparison the
correct solution to 14 decimal digits is given in each case.

a) x� = t 5 +4, x(0) = 1,
x(1) = 31/6 ≈ 5.166666666667.

b) x� = x + t , x(0) = 1,
x(1) ≈ 3.4365636569181.

c) x� = x + t 3 −3(t 2 +1)− sin t +cos t , x(0) = 7,
x(1) ≈ 13.714598298644.

13.3 We are given the differential equation

x� = e−t 2
, x(0) = 0.

Compute an estimate of x(0.5) by taking one step with each of the methods below, and
find an upper bound on the absolute error in each case.

a) Euler’s method.

b) The quadratic Taylor method.

c) The cubic Taylor method.

13.4 Suppose we perform one step of Euler’s method for the differential equation

x� = sin x, x(0) = 1.

Find an upper bound for absolute the error.

13.5 Estimate the error in exercise 2 (a) (using Euler’s method). Hint: Use equation 13.15.

13.6 This exercise is based on example 13.36 in which we modelled the movement of a ball
thrown through air with the equations

v �
1 =− c

m
v2

1, v1(0) = v0x ,

v �
2 = c

m
v2

2 − g , v2(0) = v0y ,

We now consider the launch of a rocket. In this case, the constants g and c will become
complicated functions of the height y , and possibly also of x. We make the (rather unreal-
istic) assumption that

c
m

= c0 −ay

where c0 is the air resistance constant at the surface of the earth and y is the height above
the earth given in kilometers. We will also use the fact that gravity varies with the height
according to the formula

g = g0

(y + r )2 ,

where g0 is the gravitational constant times the mass of the earth, and r is the radius of the
earth. Finally, we use the facts that x� = v1 and y � = v2.

317



a) Find the second order differential equation for the vertical motion (make sure that
the positive direction is upwards).

b) Rewrite the differential equation for the horisontal motion as a second order differ-
ential equation that depends on x, x�, y and y �.

c) Rewrite the coupled second order equations from (a) and (b) as a system of four first
order differential equations.

d) Optional: Use a numerical method to find a solution at t = 1 hour for the ini-
tial conditions x(0) = y(0) = 0, x�(0) = 200 km/h and y �(0) = 300 km/h. Use a =
1.9∗10−4 Nh2

km3kg
, g0 = 3.98∗108 (km)2m

s2 and c0 = 0.19 Nh2

km2kg
. These units are not so

important, but mean that distances can be measured in km and speeds in km/h.

13.7 Consider the first order differential equation

x� = x2, x(0) = 1.

a) Estimate x(1) by using one step with Euler’s method.

b) Estimate x(1) by using one step with the quadratic Taylor method.

c) Estimate x(1) by using one step with Euler’s midpoint method.

d) Estimate x(1) by using one step with the Runge Kutta fourth order method.

e) Estimate x(1) by using two steps with the Runge Kutta fourth order method.

f ) Optional: Write a computer program that implements one of the above mentioned
methods and use it to estimate the value of y(1) with 10, 100, 1000 and 10000 steps?

g) Do the estimates seem to converge?

h) Solve the equation analytically and explain your numerical results.

13.8 Solve the differential equation
x�+x sin t = sin t

and plot the solution on the interval t ∈ [−2π,2π] for the following initial values:

a) x(0) = 1−e.

b) x(4) = 1.

c) x(π/2) = 2.

d) x(−π/2) = 3.

13.9 Rn-222 is a common radioactive isotope. It decays to 218-Po through α-decay with a half-
life of 3.82 days. The average concentration is about 150 atoms per mL of air. Radon em-
anates naturally from the ground, and so is typically more abundant in cellars than in a
sixth floor apartment. Certain rocks like granite emanates much more radon than other
substances.

In this exercise we assume that we have collected air samples from different places, and
these samples have been placed in special containers so that no new Rn-222 (or any other
element) may enter the sample after the sampling has been completed. We now want to
measure the Rn-222 abundance as a function of time, f (t ).

a) The abundance x(t ) of Rn-222 is governed the differential equation x� = λx. Solve
the differential equation analytically and determineλ from the half-life given above.
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b) Make a plot of the solution for the first 10 days for the initial conditions x(0) = 100,
150, 200 and 300 atoms per mL.

c) The different initial conditions give rise to a family of functions. Do any of the func-
tions cross each other? Can you find a reason why they do/do not?

d) The four initial conditions correspond to four different air samples. Two of them
were taken from two different cellars, one was taken from an upstairs bedroom,
and the fourth is an average control sample. Which is which?

13.10 In this problem we are going to use Euler’s method to solve the differential equation you
found in exercise 9 with the inital condition x(0) = 300 atoms per mL sample over a time
period from 0 to 6 days.

a) Use 3 time steps and make a plot where the points (ti , xi ) for each time step are
marked. What is the relative error at each point? (Compare with the exact solution.)

b) For each point computed by Euler’s method, there is an exact solution curve that
passes through the point. Determine these solutions and draw them in the plot you
made in (a).

c) Use Euler’s midpoint method with 3 time steps to find the concentration of Rn-222
in the 300 atoms per mL sample after 6 days. Compare with the exact result, and
your result from exercise 10. What are the relative errors at the computed points?

d) Repeat (a), but use the quadratic Taylor method instead.

13.11 In this exercise we are going to derive the quartic (degree four) Taylor method and use it
to solve the equation for radioactive decay in exercise 9.

a) Derive the quartic Taylor method.

b) Use the quartic Taylor method to find the concentration of RN-222 in the 300 atoms
per mL sample after 6 days using 3 time steps and compare your results with those
produced by the quadratic Taylor method in exercise 10. How much has the solu-
tion improved (in terms of absolute and relative errors)?

c) How many time steps would you have to use in the two Taylor methods to achive a
relative error smaller than 10−5?

d) What order would the Taylor order have to be to make sure that the relative error is
smaller than 10−5 with only 3 steps?

13.12 Write a program that implements Euler’s method for first order differential equations on
the form

x� = f (t , x), x(a) = x0,

on the interval [a,b], with n time steps. You may assume that the function f and the
numbers a, b, x0, and n are given. Test the program with the equation x� = x and x(0) = 1
on the interval [0,1]. Plot the exact solution y(x) = ex alongside the approximation and
experiment with different values of n.

13.13 In this problem we are going to solve the equation

x� = f (t , x) =−x sin t + sin t , x(0) = 2+e,

numerically on the interval [0,2π].
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a) Use Euler’s method with 1, 2, 5, and 10 steps and plot the results. How does the
solution evolve with the number of steps?

b) Use Euler’s mid-point method with 1 and 5 steps and plot the results.

c) Compare the results from Euler’s mid-point method with those form Euler’s method
including the number of evaluations of f in each case. Which method seems to be
best?

13.14 In this exercise we are going to solve the differential equation

x� = f (t , x) = t 2 +x3 −x, x(0) = 1 (13.79)

numerically with the quadratic Taylor method.

a) Find a formula for x��(t ) by differentiating equation 13.79.

b) Use the quadratic Taylor method and your result from a) to find an approximation
to x(1) using 1, 2 and, 5 steps. .

c) Write a computer program that implements the quadratic Taylor method and uses
it to find an approximation of x(1) with 10, 100 and 1000 steps.

13.15 In this exercise we are going to derive the cubic Taylor method and use it for solving equa-
tion (13.79) in exercise 14.

a) Derive a general algorithm for the cubic Taylor method.

b) Find a formula for x���(t ) by differentiating equation 13.79, and find an approxima-
tion to x(1) using 1 time step with the cubic Taylor method. Repeat using 2 time
steps.

c) How do the results from the cubic Taylor method compare with the results from the
quadratic Taylor method obtained in exercise 14?

d) Implement the cubic Taylor method in a program and compute an approximation
to x(2) with 10, 100 and 1000 steps.

13.16 When investigating the stability of a numerical method it is common to apply the method
to the model equation

x� =−λx, x(0) = 1

and check for which values of the step length h the solution blows up.

a) Apply Euler’s method to the model equation and determine the range of h-values
that for which the solution remains bounded.

b) Repeat (a) for Euler’s midpoint method.

c) Repeat (a) for the second order Taylor method.

d) Repeat (a) for the fourth order Runge-Kutte method.

13.17 Radon-222 is actually an intermediate decay product of a decay chain from Uranium-238.
In this chain there are 16 subsequent decays which takes 238-U into a stable lead isotope
(206-Pb). In one part of this chain 214-Pb decays through β-decay to 214-Bi which then
decays through another β-decay to 214-Po. The two decays have the respective halflifes of
26.8 minutes and 19.7 minutes.

Suppose that we start with a certain amount of 214-Pb atoms and 214-Bi atoms, we want
to determine the amounts of 214-Pb and 214-Bi as functions of time.
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a) Phrase the problem as a system of two coupled differential equations.

b) Solve the equations from (a) analytically.

c) Suppose that the inital amounts of lead and bismuth are 600 atoms and 10 atoms re-
spectively. Find the solutions for these initial conditions and plot the two functions
for the first 1.5 hours.

d) When is the amount of bismuth at its maximum?

e) Compute the number of lead and bismuth atoms after 1 hour with Euler’s method.
Choose the number of steps to use yourself.

f ) Repeat (e), but use the fourth order Runge-Kutta method instead and the same
number of steps as in (e).

13.18 Write the following differential equations as systems of first order equations. The un-
knowns x, y , and z are assumed to be functions of t .

a) x��+ t 2x�+3x = 0.

b) mx�� =−ks x −kd x�.

c) y ��(t ) = 2(e2t − y2)1/2.

d) 2x�� −5x�+x = 0 with initial condi-
tions x(3) = 6, x�(3) =−1.

13.19 Write the following systems of differential equations as systems of first order equations.
The unknowns x, y , and z are assumed to be functions of t .

a)
y �� = y2 −x +et ,

x�� = y −x2 −et .

b)
x�� = 2y −4t 2x,

y �� =−2x −2t x�.

c)
x�� = y ��x + (y �)2x,

y �� =−y.

d)

x��� = y ��x2 −3(y �)2x,

y �� = t +x�.

13.20 Write the system

x�� = t +x + y �,

y ��� = x���+ y ��,

as a system of 5 first order equations. Note that this system is not on the form (13.78) since
x��� appears on the right in the second equation. Hint: You may need to differentiate one
of the equations.

13.21 Solve the system
x�� = 2y −4t 2x, x(0) = 1,

y �� =−2x −2t x�, y(0) = 0,

numerically on the interval [0,2]. Try both Euler’s method and Euler’s mid-point method
with two time steps and plot the results.

13.22 A block of mass m is attached to a horizontal spring. As long as the displacement x (mea-
sured in centimeters) from the equilibrium position of the spring is small, we can model
the force as a constant times this displacement, i.e. F =−kx, where k = 0.114 N/cm is the
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spring constant. (This is Hooke’s law). We assume the motion of the spring to be along
the x-axis and the position of the centre of mass of the block at time t to be x(t ). We then
know that the acceleration is given by a(t ) = x��(t ). Newton’s second law applied to the
spring now yields

mx��(t ) =−kx(t ). (13.80)

Suppose that the block has mass m = 0.25kg and that the spring starts from rest in a posi-
tion 5.0cm from its equilibrium so x(0) = 5.0 cm and x�(0) = 0.0cm/s.

a) Rewrite this second order differential equation (13.80) as a system of two coupled
differential equations and solve the system analytically.

b) Use the second order Runge-Kutta method to solve the set of differential equations
in the domain t ∈ [0,1.5] seconds with 3 time steps, and plot the analytical and ap-
proximate numerical solutions together.

c) Did your numerical method and the number of steps suffice to give a good approx-
imation?

13.23 This is a continuation of exercise 22, and all the constants given in that problem will be
reused here. We now consider the case of a vertical spring and denote the position of the
block at time t by y(t ). This means that in addition to the spring force, gravity will also
influence the problem. If we take the positive y-direction to be up, the force of gravity will
be given by

Fg =−mg . (13.81)

Applying Newton’s second law we now obtain the differential equation

my ��(t ) =−k y(t )−mg . (13.82)

The equilibrium position of the spring will now be slightly altered, but we assume that
y = 0 corresponds to the horizontal spring equilibrium position.

a) What is the new equilibrium position y0?

b) We let the spring start from rest 5.0cm above the new equilibrium, which means
that we have x(0) = 5.0cm+ y0, x�(0) = 0.0cm/s. Rewrite the second order differen-
tial equation as a system of two first order ones and solve the new set of equations
analytically.

c) Choose a numerical method for solving the equations in the interval t ∈ [0,1.5] sec-
onds. Choose a method and the number of time steps that you think should make
the results good enough.

d) Plot your new analytical and numerical solutions and compare with the graph from
exercise 22. What are the differences? Did your choice of numerical method work
better than the second order Runge-Kutta method in exercise 22?
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