
CHAPTER 5

Round-off errors

In the two previous chapters we have seen how numbers can be represented in
the binary numeral system and how this is the basis for representing numbers
in computers. Since any given integer only has a finite number of digits, we
can represent all integers below a certain limit exactly. Non-integer numbers
are considerably more cumbersome since infinitely many digits are needed to
represent most of them, regardless of which numeral system we employ. This
means that most non-integer numbers cannot be represented in a computer
without committing an error which is usually referred to as round-off error or
rounding error.

The standard computer representation of non-integer numbers is as floating
point numbers with a fixed number of bits. Not only is an error usually commit-
ted when a number is represented as a floating point number; most calculations
with floating point numbers will induce further round-off errors. In most situa-
tions these errors will be small, but in a long chain of calculations there is a risk
that the errors may accumulate and seriously pollute the final result. It is there-
fore important to be able to recognise when a given computation is going to be
troublesome or not so that we may know whether the result can be trusted.

In this chapter we will start our study of round-off errors. We will see how
round-off errors arise and study how it affects evaluation of mathematical func-
tions. For this we need to to introduce a way to measure the error, and we need
to understand how arithmetic is performed.

5.1 Measuring the error

Suppose we have a number a and an approximation ã. We are going to consider
two ways to measure the error in such an approximation.
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5.1.1 Absolute error

The first error measure is the most obvious, it is essentially the difference be-
tween a and ã.

Definition 5.1 (Absolute error). Suppose ã is an approximation to the num-
ber a. The absolute error in this approximation is given by |a − ã|.

If a = 100 and ã = 100.1 the absolute error is 0.1, whereas if a = 1 and ã = 1.1
the absolute error is still 0.1. Note that if a is an approximation to ã, then ã is an
equally good approximation to a with respect to the absolute error.

5.1.2 Relative error

For some purposes the absolute error may be what we want, but in many cases
it is reasonable to say that the error is smaller in the first example above than in
the second, since the numbers involved are bigger. The relative error takes this
into account.

Definition 5.2 (Relative error). Suppose that ã is an approximation to the
nonzero number a. The relative error in this approximation is given by

|a − ã|
|a| .

We note that the relative error is obtained by scaling the absolute error with
the size of the number that is approximated. If we compute the relative errors
in the approximations above we find that it is 0.001 when a = 100 and ã = 100.1,
while when a = 1 and ã = 1.1 the relative error is 0.1. In contrast to the absolute
error, we see that the relative error tells us that the approximation in the first
case is much better than in the latter case. In fact we will see in a moment that
the relative error gives a good measure of the number of digits that a and ã have
in common.

We use concepts which are closely related to absolute and relative errors in
many everyday situations. One example is profit from investments, like bank ac-
counts. Suppose you have invested some money and after one year, your profit
is 100 (in your local currency). If your initial investment was 100, this is a very
good profit in one year, but if your initial investment was 10 000 it is not so im-
pressive. If we let a denote the initial investment and ã the investment after one
year, we see that, apart from the sign, the profit of 100 corresponds to the ’abso-
lute error’in the two cases. On the other hand, the relative error corresponds to
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a a

Figure 5.1. In the figure to the left the red parts of the line indicate the numbers which have two digits in
common with a, while the numbers in the blue part have three digits in common with a. The figure on the
right is just a magnification of the figure on the left.

profit measured in %, again apart from the sign. This says much more about how
good the investment is since the profit is compared to the initial investment. In
the two cases here, we find that the profit in % is 1 = 100% in the first case and
0.01 = 1% in the second.

Another situation where we use relative measures is when we give the con-
centration of an ingredient within a substance. If for example the fat content in
milk is 3.5 % we know that a grams of milk will contain 0.035a grams of fat. In
this case ã denotes how many grams that are not fat. Then the difference a − ã
is the amount of fat and the equation a − ã = 0.035a can be written

a − ã

a
= 0.035

which shows the similarity with relative error.

5.1.3 Properties of the relative error

The examples above show that we may think of the relative error as the ‘concen-
tration’of the error |a − ã| in the total ‘volume’|a|. However, this interpretation
can be carried further and linked to the number of common digits in a and ã: If
the size of the relative error is approximately 10−m , then a and ã have roughly
m digits in common. If the relative error is r , this corresponds to − log10 r being
approximately m.

Observation 5.3 (Relative error and significant digits). Let a be a nonzero
number and suppose that ã is an approximation to a with relative error

r = |a − ã|
|a| ≈ 10−m (5.1)

where m is an integer. Then roughly the m most significant decimal digits of
a and ã agree.

Figure 5.1 shows how numbers with two and three digits in common with a
given number are located along the real line.
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a ã r

12.3 12.1 1.6×10−2

12.8 13.1 2.3×10−2

0.53241 0.53234 1.3×10−4

8.96723 8.96704 2.1×10−5

Table 5.1. Some numbers a with approximations ã and corresponding relative errors r .

Sketch of ‘proof’. Since a is nonzero, it can be written as a = α×10n where α

is a number in the range 1 ≤ α < 10 that has the same decimal digits as a, and
n is an integer. The approximation ã be be written similarly as ã = α̃×10n and
the digits of α̃ are exactly those of ã. Our job is to prove that roughly the first m
digits of a and ã agree.

Let us insert the alternative expressions for a and ã in (5.1). If we cancel the
common factor 10n and multiply by α, we obtain

|α− α̃| ≈α×10−m . (5.2)

Since α is a number in the interval [1,10), the right-hand side is roughly a num-
ber in the interval [10−m ,10−m+1). This means that by subtracting α̃ from α, we
cancel out the digit to the left of the decimal point, and m −1 digits to the right
of the decimal point. But this means that the m most significant digits of α and
α̃ agree.

Some examples of numbers a and ã with corresponding relative errors are
shown in Table 5.1. In the first case everything works as expected. In the second
case the rule only works after a and ã have been rounded to two digits. In the
third example there are only three common digits even though the relative error
is roughly 10−4, although the fourth digit is only off by one unit. Similarly, in the
last example, the relative error is approximately 10−5, but a and ã only have four
digits in common, with the fifth digits differing by two units.

The last two examples illustrate that the link between relative error and sig-
nificant digits is just a rule of thumb. If we go back to the ‘proof’of observa-
tion 5.3, we note that as the left-most digit in a (andα) becomes larger, the right-
hand side of (5.2) also becomes larger. This means that the number of com-
mon digits may become smaller, especially when the relative error approaches
10−m+1 as well. In spite of this, observation 5.3 is a convenient rule of thumb.

Observation 5.3 is rather vague when it just assumes that r ≈ 10−m . The basis
for making this more precise is the fact that m is equal to − log10 r , rounded to
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the nearest integer. This means that m is characterised by the inequalities

m −0.5 <− log10 r ≤ m +0.5.

and this is in turn equivalent to

r = ρ×10−m , where
1p
10

< ρ <p
10.

The absolute error has the nice property that if ã is a good approximation to
a, then a is an equally good approximation to ã. The relative error has a similar,
but more complicated property.

Lemma 5.4 (Reciprocal relative error). Suppose that ã is an approximation of
a with relative error r < 1. Then a is an approximation of ã with relative error

|a − ã|
|ã| ≤ r

1− r
. (5.3)

Proof. We first observe that since

1 > r = |a − ã|
|a| =

∣∣∣1− ã

a

∣∣∣,
both a and ã must have the same sign, for otherwise the right-hand side in this
inequality would be greater than 1. On the other hand we also have from the
triangle inequality that

1 =
∣∣∣1− ã

a
+ ã

a

∣∣∣≤ ∣∣∣1− ã

a

∣∣∣+ ∣∣∣ ã

a

∣∣∣ (5.4)

or |1− ã/a| ≥ 1−|ã/a|. We therefore have

1

1− r
= 1

1−|1− ã/a| ≥
1

|ã/a| =
|a|
|ã| .

From this we conclude that

r

1− r
≥

∣∣∣1− ã

a

∣∣∣∣∣∣ a

ã

∣∣∣= ∣∣∣ a

ã
−1

∣∣∣= |a − ã|
|ã| .

The condition r < 1 is essential in Lemma 5.4. An example with r = 1 is
the situation where ã = 0 is an approximation to some arbitrary, nonzero real
number a. Since r = 1 corresponds to such an abnormal case, the condition
r < 1 cannot be very restrictive.
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It is worth pointing out that the inequality in (5.3) often is equality. In fact, if
ã ≤ a, then there is equality in (5.4) and therefore also in (5.3). But even if a < ã,
the inequality in (5.4) is very close to equality for small r . Therefore, as long as
ã is a reaonable approximation of a, the inequality in (5.3) can be considered an
equality. In this situation we also have 1− r ≈ 1 so the right-hand side of (5.3) is
close to r . In other words, if ã is a good approximation to a, it does not matter
much whether we consider ã to be an approximation to a or vice versa, even
when we use a relative error measure.

5.2 Errors in integer arithmetic

Integers and integer arithmetic on a computer is simple both to understand and
analyse. All integers up to a certain size are represented exactly and arithmetic
with integers is exact. The only thing that can go wrong is that the result be-
comes larger than what is representable by the type of integer used. The com-
puter hardware, which usually represents integers with two’s complement (see
section 4.1.3), will not protest and just wrap around from the largest positive
integer to the smallest negative integer or vice versa.

As was mentioned in chapter 4, different programming languages handle
overflow in different ways. Most languages leave everything to the hardware
which means that overflow is not reported, even though it leads to completely
wrong results. This kind of behaviour is not really problematic since it is usually
easy to detect (the results are completely wrong), but it may be difficult to un-
derstand what went wrong unless you are familiar with the basics of two’s com-
plement. Other languages, like Python, gracefully switch to higher precision. In
this case, integer overflow is not serious, but may reduce the computing speed.

Other error situations, like division by zero, or attempts to extract the square
root of negative numbers, lead to error messages and are therefore not serious.

The conclusion is that errors in integer arithmetic are not serious, at least
not if you know a little bit about how integer arithmetic is performed.

5.3 Errors in floating point arithmetic

Errors in floating point arithmetic are much more subtle than errors in integer
arithmetic. In contrast to integers, floating point numbers can be just a little bit
wrong. A result that appears to be reasonable may therefore contain errors, and
it may be difficult to judge how large the error is.

In this section we will discuss the potential for errors in the four elemen-
tary operations, addition, subtraction , multiplication, and division with floating
point numbers. Perhaps a bit surprisingly, the conclusion will be that the most
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critical operation is addition/subtraction, which in certain situations may lead
to dramatic errors.

A word of warning is necessary before we continue. In this chapter, and
in particular in this section, where we focus on the shortcomings of computer
arithmetic, some may conclude that round-off errors are so dramatic that we
had better not use a computer for serious calculations. This is a misunderstand-
ing. The computer is an extremely powerful tool for numerical calculations that
you should use whenever you think it may help you, and most of the time it will
give you answers that are much more accurate than you need. However, you
should be alert and aware of the fact that in certain cases errors may cause con-
siderable problems.

The essential features of round-off errors are present if we use the same
model of floating point numbers as in section 4.2. Recall that any real number a
may be written as a normalised decimal number

α×10n ,

where the number α is in the range [0.1,1) and is called the significand, while
the integer n is called the exponent.

Fact 5.5 (Model of floating point numbers). Most of the shortcomings of float-
ing point arithmetic become visible in a computer model that uses 4 digits for
the significand, 1 digit for the exponent plus an optional sign for both the sig-
nificand and the exponent.

Two typical normalised (decimal) numbers in this model are 0.4521×101 and
−0.9×10−1. The examples in this section will use this model, but the results can
be generalised to a floating point model in base β, see exercise 3.

On most computers, floating point numbers are represented, and arithmetic
performed according to, the IEEE1 standard. This is a carefully designed sugges-
tion for how floating point numbers should behave, and is aimed at providing
good control of round-off errors and prescribing the behaviour when numbers
reach the limits of the floating point model. Regardless of the particular details
of how the floating point arithmetic is performed, however, the use of floating
point numbers inevitably leads to problems, and in this section we will consider
some of those.

1 IEEE is an abbreviation for Institute of Electrical and Electronic Engineers which is a large pro-
fessional society for engineers and scientists in the USA. The floating point standard is described
in a document called IEEE standard reference 754.
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One should be aware of the fact the IEEE standard is extensive and com-
plicated, and far from all computers and programming languages support the
whole standard. So if you are going to do serious floating point calculations you
should check how much of the IEEE standard that is supported in your environ-
ment. In particular, you should realise that if you move your calculations from
one environment to another, the results may change slightly because of different
implementations of the IEEE standard.

5.3.1 Errors in floating point representation

Recall from chapter 3 that most real numbers cannot be represented exactly with
a finite number of decimals. In fact, there are only a finite number of floating
point numbers in total. This means that very few real numbers can be repre-
sented exactly by floating point numbers, and it is useful to have a bound on
how much the floating point representation of a real number deviates from the
number itself.

Lemma 5.6. Suppose that a is a nonzero real number within the range of
base-β normalised floating point numbers with an m digit significand, and
suppose that a is represented by the nearest floating point number ã. Then
the relative error in this approximation is at most

|a − ã|
|a| ≤ 5β−m . (5.5)

Proof. For simplicity we first do the proof in the decimal numeral system. We
write a as a normalised decimal number,

a =α×10n ,

where α is a number in the range [0.1,1). The floating point approximation ã
can also be written as

ã = α̃×10n ,

where α̃ is α rounded to m digits. Suppose for example that m = 4 and α̃ =
0.3218. Then the absolute value of the significand |α| of the original number
must lie in the range [0.32175,0.32185), so in this case the largest possible dis-
tance between α and α̃ is 5 units in the fifth decimal, i.e., the error is bounded
by 5×10−5 = 0.5×10−4. A similar argument shows that in the general decimal
case we have

|α− α̃| ≤ 0.5×10−m .

90



The relative error is therefore bounded by

|α− α̃|
|a| ≤ 0.5×10−m ×10n

|α|×10n = 0.5×10−m

|α| ≤ 5×10−m

where the last inequality follows since |α| ≥ 0.1.
Although we only considered normalised numbers in bases 2 and 10 in chap-

ter 4, normalised numbers may be generalised to any base. In base β the dis-
tance between α and α̃ is at most 0.5ββ−m−1 = 0.5β−m , see exercise 3. Since we
also have |α| ≥β−1, an argument completely analogous to the one in the decimal
case proves (5.5).

Note that lemma 5.6 states what we already know, namely that a and ã have
roughly m −1 or m digits in common.

Floating point numbers on most computers use binary representation, and
we know that in the binary numeral system all fractions a/b where b = 2k for
some positive integer k can be represented exactly, see lemma 3.22. This means
that numbers like 1/2, 1/4 and 5/16 are represented exactly. On the other hand,
it is easy to forget that numbers like 0.1 and 0.43 are not represented exactly.

5.3.2 Floating point errors in addition/subtraction

We are now ready to see how round-off errors affect the arithmetic operations.
Since a −b = a + (−b), it is sufficient to consider addition of numbers. The ba-
sic procedure for adding floating point numbers is simple (in reality it is more
involved than what is stated here).

Algorithm 5.7. To add two real numbers on a computer, the following steps
are performed:

1. The number with largest absolute value is written in normalised form

a =α×10n ,

and the other number b is written as

b =β×10n

with the same exponent as a and the same number of digits for the sig-
nificand β.

2. The significands α and β are added,

γ=α+β

3. The result c = γ×10n is converted to normalised form.

91



This apparently simple algorithm contains a serious pitfall which is most
easily seen from some examples. Let us first consider a situation where every-
thing works out nicely.

Example 5.8. Suppose that a = 5.645 and b = 7.821. We convert the numbers to
normal form and obtain

a = 0.5645×101, b = 0.7821×101.

We add the two significands 0.5645+ 0.7821 = 1.3466 so the correct answer is
1.3466×101. The last step is to convert this to normal form. In exact arithmetic
this would yield the result 0.13466× 102. However, this is not in normal form
since the significand has five digits. We therefore perform rounding 0.13466 ≈
0.1347 and get the final result

0.1347×102.

The relative error in this result is roughly 3×10−4.

Example 5.8 shows that we easily get an error when normalised numbers are
added and the result converted to normalised form with a fixed number of digits
for the significand. In this first example all the digits of the result are correct, so
the error is far from serious.

Example 5.9. If a = 42.34 and b = 0.0033 we convert the largest number to nor-
mal form

42.34 = 0.4234×102.

The smaller number b is then written in the same form (same exponent)

0.0033 = 0.000033×102.

The significand in this second number must be rounded to four digits, and the
result of this is 0.0000. The addition therefore becomes

0.4234×102 +0.0000×102 = 0.4234×102.

Here the relative error is approximately 8×10−5.

The error in example 5.9 may seem serious, but once again the result is cor-
rect to four decimal digits, which is the best we can hope for when we only have
this number of digits available.

Although there have been errors in the two previous examples, it has not
been dramatic. This is reflected in the relative errors which are close to 10−4.
This confirms that there should be about 4 correct digits in the results according
to observation 5.3.
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Example 5.10. Consider next a case where a = 10.34 and b =−10.27 have oppo-
site signs. We first rewrite the numbers in normal form

a = 0.1034×102, b =−0.1027×102.

We then add the significands, which really amounts to a subtraction,

0.1034−0.1027 = 0.0007.

Finally, we write the number in normal form and obtain

a +b = 0.0007 = 0.7000×10−4. (5.6)

In this case the relative error is 0.

Example 5.10 may seem innocent since the result is exact, but in fact it con-
tains the seed for serious problems. A similar example will reveal what may eas-
ily happen.

Example 5.11. Suppose that a = 10/7 and b = −1.42. Conversion to normal
form yields

10

7
≈ a = 0.1429×101, b =−0.142×101.

Adding the significands yield

0.1429−0.142 = 0.0009.

When this is converted to normal form, the result is

0.9000×10−3

while the true result rounded to four correct digits is

0.8571×10−3. (5.7)

The relative error is roughly 10−1.

In example 5.11 there is a serious problem: We started with two numbers
with full four digit accuracy, but the computed result had only one correct digit.
In other words, we lost almost all accuracy when the subtraction was performed.
The potential for this loss of accuracy was present in example 5.10 where we
also had to add digits in the last step (5.6), but there we were lucky in that the
added digits were correct. In example 5.11 however, there would be no way for
a computer to know that the additional digits to be added in (5.7) should be
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taken from the decimal expansion of 10/7. Note how the bad loss of accuracy in
example 5.11 is reflected in the relative error.

One could hope that what happened in example 5.11 is exceptional; after
all example 5.10 worked out very well. This is not the case. It is example 5.10
that is exceptional since we happened to add the correct digits to the result in
(5.6). This was because the numbers involved could be represented exactly in
our decimal model. In example 5.11 one of the numbers was 10/7 which cannot
be represented exactly, and this leads to problems.

Our observations can be summed up as follows.

Observation 5.12. Suppose the k most significant digits in the two numbers
a and b are the same. Then k digits may be lost when the subtraction a −b is
performed with algorithm 5.7.

This observation is very simple: If we start out with m correct digits in both a
and b, and the k most significant of those are equal, they will cancel in the sub-
traction. When the result is normalised, the missing k digits will be filled in from
the right. These new digits are almost certainly wrong and hence the computed
result will only have m −k correct digits. This effect is called cancellation and is
a very common source of major round-off problems. The moral is: Be on guard
when two almost equal numbers are subtracted.

In practice, a computer works in the binary numeral system. However, the
cancellation described in observation 5.12 is just as problematic when the num-
bers are represented as normalised binary numbers.

Example 5.9 illustrates another effect that may cause problems in certain
situations. If we add a very small number ε to a nonzero number a the result
may become exactly a. This means that a test like

if a = a +ε

may in fact become true.

Observation 5.13. Suppose that the floating point model in base β uses m
digits for the significand and that a is a nonzero floating point number. The
addition a +ε will be computed as a if

|ε| < 0.5β−m |a|. (5.8)
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The exact factor to be used on the right in (5.8) depends on the details of the
arithmetic. The factor 0.5β−m used here corresponds to rounding to the nearest
m digits.

A general observation to made from the examples is simply that there are
almost always small errors in floating point computations. This means that if
you have computed two different floating point numbers a and ã that from a
strict mathematical point of view should be equal, it is very risky to use a test
like

if a = ã

since it is rather unlikely that this will be true. One situation where this problem
may occur is in a for loop like

for x = 0.0, 0.1, . . . , 1.0

What happens behind the scenes is that 0.1 is added to x each time we pass
through the loop, and the loop stops when x becomes larger than 1.0. The last
time the result may become 1+ ε rather than 1, where ε is some small positive
number, and hence the last time through the loop with x = 1 may never happen.

In fact, for many floating point numbers a and b, even the two computations
a +b and b +a give different results!

5.3.3 Floating point errors in multiplication and division

We usually think of multiplication and division as being more complicated than
addition, so one may suspect that these operations may also lead to larger errors
for floating point numbers. This is not the case.

Example 5.14. Consider the two numbers a = 23.57 and b = −6.759 which in
normalised form are

a = 0.2357×102, b =−0.6759×101.

To multiply the numbers, we multiply the significands and add the exponents,
before we normalise the result at the end, if necessary. In our example we obtain

a ×b =−0.15930963×103.

The significand in the result must be rounded to four digits and yields the float-
ing point number

−0.1593×103,

i.e., the number −159.3.

Let us also consider an example of division.
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Example 5.15. We use the same numbers as in example 5.14, but now we per-
form the division a/b. We have

a

b
= 0.2357×102

−0.6759×101 = 0.2357

−0.6759
×101,

i.e., we divide the significands and subtract the exponents. The division yields
0.2357/−0.6759 ≈−0.3487202. We round this to four digits and obtain the result

a

b
≈−0.3487×101 =−3.487.

The most serious problem with floating point arithmetic is loss of correct
digits. In multiplication and division this cannot happen, so these operations
are quite safe.

Observation 5.16. Floating point multiplication and division do not lead to
loss of correct digits as long as the the numbers are within the range of the
floating point model. In the worst case, the last digit in the result may be one
digit wrong.

The essence of observation 5.16 is that the above examples are representa-
tive of what happens. However, there are some other potential problems to be
aware of.

First of all observation 5.16 only says something about one multiplication or
division. When many such operations are stringed together with the output of
one being fed to the next, the errors may accumulate and become large even
when they are very small at each step. We will see examples of this in later chap-
ters.

In observation 5.16 there is one assumption, namely that the numbers are
within the range of the floating point model. This applies to each of the operands
(the two numbers to be multiplied or divided) and the result. When the numbers
approach the limits of our floating point model, things will inevitably go wrong.

Underflow. Underflow occurs when a positive result becomes smaller than the
smallest representable, positive number; the result is then set to 0. This also
happens with negative numbers with small magnitude. In most environments
you will get a warning, but otherwise the calculations will continue. This will
usually not be a problem, but you should be aware of what happens.
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Overflow. When the magnitude of a result becomes too large for the float-
ing point standard, overflow occurs. This is indicated by the result becoming
infinity or possibly positive infinity or negative infinity. There is a
special combination of bits in the IEEE standard for these infinity values. When
you see infinity appearing in your calculations, you should be aware; the
chances are high that the reason is some programming error, or even worse, an
error in your algorithm. An operation like a/0.0 will yield infinity when a is a
nonzero number.

Undefined operations. The division 0.0/0.0 is undefined in mathematics, and
in the IEEE standard this will give the result NaN (not a number). Other opera-
tions that may produce NaN are square roots of negative numbers, inverse sine
or cosine of a number larger than 1, the logarithm of a negative number, etc.
(unless you are working with complex numbers). NaN is infectious in the sense
that any arithmetic operation that combines NaN with a normal number always
yields NaN. For example, the result of the operation 1+NaN will be NaN.

5.4 Rewriting formulas to avoid rounding errors

Certain formulas lead to large rounding errors when they are evaluated with
floating point numbers. In some cases though, the number can be computed
with an alternative formula that is not problematic. In this section we will con-
sider some examples of this.

Example 5.17. Suppose we are going to evaluate the expression

1p
x2 +1−x

(5.9)

for a large number like x = 108. The problem here is the fact that x and
p

x2 +1
are almost equal when x is large,

x = 108 = 100000000,√
x2 +1 ≈ 100000000.000000005.

Even with 64-bit floating point numbers the square root will therefore be com-
puted as 108, so the denominator in (5.9) will be computed as 0, and we get
division by 0. This is a consequence of floating point arithmetic since the two
terms in the denominator are not really equal. A simple trick helps us out of this
problem. Note that

1p
x2 +1−x

= (
p

x2 +1+x)

(
p

x2 +1−x)(
p

x2 +1+x)
=

p
x2 +1+x

x2 +1−x2 =
√

x2 +1+x.
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This alternative expression can be evaluated for large values of x without any
problems with cancellation. The result for x = 108 is√

x2 +1+x ≈ 200000000

where all the digits are correct.

The fact that we were able to find an alternative formula in example 5.17 may
seem very special, but it it is not unusual. Here is another example.

Example 5.18. For most values of x, the expression

1

cos2 x − sin2 x
(5.10)

can be computed without problems. However, for x = π/4 the denominator is
0, so we get division by 0 since cos x and sin x are equal for this value of x. This
means that when x is close to π/4 we will get cancellation. This can be avoided
by noting that cos2 x − sin2 x = cos2x, so the expression (5.10) is equivalent to

1

cos2x
.

This can be evaluated without problems for all values of x for which the denom-
inator is nonzero, as long as we do not get overflow.

5.5 Summary

The main content of this chapter is a discussion of basic errors in computer
arithmetic. For integers, the errors are dramatic when they occur and there-
fore quite easy to detect. For floating point numbers, the error is much more
subtle since it is usually not dramatic. This means that it is important to under-
stand and recognise situations and computations that may lead to significant
round-off errors. The most dangerous operation is subtraction of two almost
equal numbers since this leads to cancellation of digits. We may also get large
round-off errors from a long sequence of operations with small round-off errors
in step; we will see examples of this in later chapters.

Exercises

5.1 Suppose that ã is an approximation to a in the problems below, calculate the absolute
and relative errors in each case, and check that the relative error estimates the number of
correct digits as predicted by observation 5.3.

a) a = 1, ã = 0.9994.
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b) a = 24, ã = 23.56.

c) a =−1267, ã =−1267.345.

d) a = 124, ã = 7.

5.2 Use the floating point model defined in this chapter with 4 digits for the significand and 1
digit for the exponent, and use algorithm 5.7 to do the calculations below in this model.

a) 12.24+4.23.

b) 9.834+2.45.

c) 2.314−2.273.

d) 23.45−23.39.

e) 1+x −ex for x = 0.1.

5.3 a) Formulate a model for floating point numbers in base β.

b) Generalise the rule for rounding of fractional numbers in the decimal system to the
octal system and the hexadecimal system.

c) Formulate the rounding rule for fractional numbers in the base-β numeral system.

5.4 From the text it is clear that on a computer, the addition 1.0+ ε will give the result 1.0 if
ε is sufficiently small. Write a computer program which can help you to determine the
smallest integer n such that 1.0+2−n gives the result 1.0.

5.5 Consider the simple algorithm

x = 0.0;
while x ≤ 2.0

print x
x = x +0.1;

What values of x will be printed?

Implement the algorithm in a program and check that the correct values are printed. If
this is not the case, explain what happened.

5.6 a) A fundamental property of real numbers is given by the distributive law

(x + y)z = xz + y z. (5.11)

In this problem you are going to check whether floating point numbers obey this
law. To do this you are going to write a program that runs through a loop 10 000
times and each time draws three random numbers in the interval (0,1) and then
checks whether the law holds (whether the two sides of (5.11) are equal) for these
numbers. Count how many times the law fails, and at the end, print the percentage
of times that it failed. Print also a set of three numbers for which the law failed.

b) Repeat (a), but test the associative law (x + y)+ z = x + (y + z) instead.

c) Repeat (a), but test the commutative law x + y = y +x instead.

d) Repeat (a) and (b), but test the associative and commutative laws for multiplication
instead.

99



5.7 The binomial coefficient
(n

i

)
is defined as(

n

i

)
= n!

i ! (n − i )!
(5.12)

where n ≥ 0 is an integer and i is an integer in the interval 0 ≤ i ≤ n. The binomial coeffi-
cients turn up in a number of different contexts and must often be calculated on a com-
puter. Since all binomial coefficients are integers (this means that the division in (5.12)
can never give a remainder), it is reasonable to use integer variables in such computa-
tions. For small values of n and i this works well, but for larger values we may run into
problems because the numerator and denominator in (5.12) may become larger than the
largest permissible integer, even if the binomial coefficient itself may be relatively small.
In many languages this will cause overflow, but even in a language like Python, which on
overflow converts to a format in which the size is only limited by the resources available,
the performance is reduced considerably. By using floating point numbers we may be
able to handle larger numbers, but again we may encounter too big numbers during the
computations even if the final result is not so big.

An unfortunate feature of the formula (5.12) is that even if the binomial coefficient is small,
the numerator and denominator may both be large. In general, this is bad for numerical
computations and should be avoided, if possible. If we consider the formula (5.12) in some
more detail, we notice that many of the numbers cancel out,(

n

i

)
= 1 ·2 · · · i · (i +1) · · ·n

1 ·2 · · · i ·1 ·2 · · · (n − i )
= i +1

1
· i +2

2
· · · n

n − i
.

Employing the product notation we can therefore write
(n

i

)
as(

n

i

)
=

n−i∏
j=1

i + j

j
.

a) Write a program for computing binomial coefficients based on this formula, and
test your method on the coefficients(

9998

4

)
= 416083629102505,

(
100000

70

)
= 8.14900007813826 ·10249,

(
1000

500

)
= 2.702882409454366 ·10299.

Why do you have to use floating point numbers and what results do you get?

b) Is it possible to encounter too large numbers during those computations if the bi-
nomial coefficient to be computed is smaller than the largest floating point number
that can be represented by your computer?

c) In our derivation we cancelled i ! against n! in (5.12), and thereby obtained the al-
ternative expression for

(n
i

)
. Another method can be derived by cancelling (n − i )!

against n! instead. Derive this alternative method in the same way as above, and
discuss when the two methods should be used (you do not need to program the
other method; argue mathematically).
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5.8 Identify values of x for which the formulas below may lead to large round-off errors, and
suggest alternative formulas which do not have these problems.

a)
p

x +1−p
x.

b) ln x2 − ln(x2 +x).

c) cos2 x − sin2 x.

5.9 Suppose you are going to write a program for computing the real roots of the quadratic
equation ax2 +bx + c = 0, where the coefficients a, b and c are real numbers. The tradi-
tional formulas for the two solutions are

x1 = −b −
√

b2 −4ac

2a
, x2 = −b +

√
b2 −4ac

2a
.

Identify situations (values of the coefficients) where the formulas do not make sense or
lead to large round-off errors, and suggest alternative formulas for these cases which avoid
the problems.
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