
Lecture Notes for MAT-INF 4130

Tom Lyche

July 2, 2013



2



Contents

Preface ix

0 A Short Review of Linear Algebra 1
0.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
0.2 Vector Spaces and Subspaces . . . . . . . . . . . . . . . . . . . 4

0.2.1 Linear independence and bases . . . . . . . . . . . 6
0.2.2 Subspaces . . . . . . . . . . . . . . . . . . . . . . . 8
0.2.3 The vector spaces Rn and Cn . . . . . . . . . . . . 11

0.3 Vector Norms . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
0.4 Inner Products . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

0.4.1 Real and complex inner products . . . . . . . . . . 14
0.4.2 Orthogonality . . . . . . . . . . . . . . . . . . . . 17

0.5 Linear Systems . . . . . . . . . . . . . . . . . . . . . . . . . . 20
0.5.1 Basic properties . . . . . . . . . . . . . . . . . . . 20
0.5.2 The inverse matrix . . . . . . . . . . . . . . . . . . 22

0.6 Determinants . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
0.7 Eigenpairs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
0.8 Algorithms and Numerical Stability . . . . . . . . . . . . . . . 30

I Direct Methods for Linear Systems 33

1 A Special Linear System 35
1.1 Gaussian Elimination Example . . . . . . . . . . . . . . . . . . 36
1.2 The Tridiagonal Second Derivative Matrix . . . . . . . . . . . 38
1.3 LU Factorization of a Tridiagonal System . . . . . . . . . . . . 39

1.3.1 Algorithms . . . . . . . . . . . . . . . . . . . . . . 39
1.3.2 Diagonal dominance . . . . . . . . . . . . . . . . . 41

1.4 Block Multiplication . . . . . . . . . . . . . . . . . . . . . . . 44
1.5 Triangular Matrices; Basic facts . . . . . . . . . . . . . . . . . 48

i



ii Contents

1.6 Review Questions . . . . . . . . . . . . . . . . . . . . . . . . . 50

2 LU Factorizations 51
2.1 Algorithms for triangular systems . . . . . . . . . . . . . . . . 51
2.2 The LU Factorization . . . . . . . . . . . . . . . . . . . . . . . 54

2.2.1 The LU theorem . . . . . . . . . . . . . . . . . . . 55
2.2.2 Operation count . . . . . . . . . . . . . . . . . . . 59

2.3 The Symmetric LU Factorization . . . . . . . . . . . . . . . . 61
2.4 Block LU factorization . . . . . . . . . . . . . . . . . . . . . . 63
2.5 Positive Definite and Semidefinite Matrices . . . . . . . . . . . 64

2.5.1 Definitions and examples . . . . . . . . . . . . . . 64
2.5.2 The nonsymmetric case . . . . . . . . . . . . . . . 67
2.5.3 The symmetric case . . . . . . . . . . . . . . . . . 68

2.6 The Cholesky Factorization . . . . . . . . . . . . . . . . . . . . 70
2.7 The Symmetric Positive Semidefinite Case . . . . . . . . . . . 72
2.8 Semi-Cholesky factorization of a banded matrix . . . . . . . . 74
2.9 Gaussian Elimination . . . . . . . . . . . . . . . . . . . . . . . 77

2.9.1 Reduction to upper triangular form . . . . . . . . 77
2.9.2 Pivot strategies . . . . . . . . . . . . . . . . . . . . 78
2.9.3 Permutation matrices . . . . . . . . . . . . . . . . 80
2.9.4 Gauss transformations . . . . . . . . . . . . . . . . 81
2.9.5 PLU factorization . . . . . . . . . . . . . . . . . . 82
2.9.6 The LU factorization . . . . . . . . . . . . . . . . 85

2.10 Review Questions . . . . . . . . . . . . . . . . . . . . . . . . . 87

3 The Kronecker Product 89
3.1 Test Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

3.1.1 The 2D Poisson problem . . . . . . . . . . . . . . 90
3.1.2 The test matrices . . . . . . . . . . . . . . . . . . 92

3.2 The Kronecker Product . . . . . . . . . . . . . . . . . . . . . . 94
3.3 Properties of the 1D and 2D Test Matrices . . . . . . . . . . . 97
3.4 Review Questions . . . . . . . . . . . . . . . . . . . . . . . . . 102

4 Fast Direct Solution of a Large Linear System 103
4.1 Algorithms for a Banded Positive Definite System . . . . . . . 103

4.1.1 Cholesky factorization . . . . . . . . . . . . . . . . 104
4.1.2 Block LU factorization of a block tridiagonal matrix104
4.1.3 Other methods . . . . . . . . . . . . . . . . . . . . 105

4.2 A Fast Poisson Solver based on Diagonalization . . . . . . . . 105
4.3 A Fast Poisson Solver based on the discrete sine and Fourier

transforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
4.3.1 The discrete sine transform (DST) . . . . . . . . . 108



Contents iii

4.3.2 The discrete Fourier transform (DFT) . . . . . . . 108
4.3.3 The fast Fourier transform (FFT) . . . . . . . . . 110
4.3.4 A poisson solver based on the FFT . . . . . . . . . 113

4.4 Review Questions . . . . . . . . . . . . . . . . . . . . . . . . . 116

II Some Matrix Theory 117

5 Matrix Reduction by Similarity Transformations 119
5.1 Some Properties of Eigenpairs . . . . . . . . . . . . . . . . . . 119

5.1.1 Transformations of eigenpairs and trace . . . . . . 119
5.1.2 Similarity transformations . . . . . . . . . . . . . . 122

5.2 Unitary Similarity Transformations . . . . . . . . . . . . . . . 123
5.2.1 Unitary and orthonormal and matrices . . . . . . 123
5.2.2 The Schur decomposition . . . . . . . . . . . . . . 124
5.2.3 Normal matrices . . . . . . . . . . . . . . . . . . . 127

5.3 Minmax theorems for Hermitian Matrices . . . . . . . . . . . . 129
5.3.1 The Rayleigh quotient . . . . . . . . . . . . . . . . 129
5.3.2 Minmax and maxmin . . . . . . . . . . . . . . . . 129
5.3.3 The Hoffman-Wielandt theorem . . . . . . . . . . 132

5.4 The Jordan Form . . . . . . . . . . . . . . . . . . . . . . . . . 133
5.4.1 Diagonalizable matrices and linear independence

of eigenvectors . . . . . . . . . . . . . . . . . . . . 133
5.4.2 Algebraic and geometric multiplicity of eigenvalues 134
5.4.3 The Jordan form . . . . . . . . . . . . . . . . . . 136

5.5 The Minimal Polynomial . . . . . . . . . . . . . . . . . . . . . 139
5.6 Left Eigenvectors . . . . . . . . . . . . . . . . . . . . . . . . . 141
5.7 Proof of the Real Schur Form . . . . . . . . . . . . . . . . . . 143
5.8 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
5.9 Review Questions . . . . . . . . . . . . . . . . . . . . . . . . . 145

6 The Singular Value Decomposition 147
6.1 SVD and SVF . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

6.1.1 Definition and examples . . . . . . . . . . . . . . . 147
6.1.2 Existence . . . . . . . . . . . . . . . . . . . . . . . 149
6.1.3 The singular value factorization . . . . . . . . . . 151
6.1.4 Examples . . . . . . . . . . . . . . . . . . . . . . . 152

6.2 SVD and the Four Fundamental Subspaces . . . . . . . . . . . 155
6.3 A Geometric Interpretation . . . . . . . . . . . . . . . . . . . . 157
6.4 Determining the Rank of a Matrix Numerically . . . . . . . . 158

6.4.1 The Frobenius norm . . . . . . . . . . . . . . . . . 159
6.4.2 Low rank approximation . . . . . . . . . . . . . . 160



iv Contents

6.5 The Minmax Theorem for Singular Values and the Hoffman-
Wielandt Theorem . . . . . . . . . . . . . . . . . . . . . . . . 161

6.6 Proof of the Hoffman-Wielandt Theorem for Singular Values . 162
6.7 Review Questions . . . . . . . . . . . . . . . . . . . . . . . . . 163

7 Matrix Norms 165
7.1 Matrix Norms . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

7.1.1 Consistent and subordinate matrix norms . . . . . 166
7.1.2 Operator norms . . . . . . . . . . . . . . . . . . . 168
7.1.3 The operator p-norms . . . . . . . . . . . . . . . . 169
7.1.4 Unitary invariant matrix norms . . . . . . . . . . . 172
7.1.5 Absolute and monotone norms . . . . . . . . . . . 173

7.2 The Condition Number with Respect to Inversion . . . . . . . 173
7.3 Proof that the p-Norms are Norms . . . . . . . . . . . . . . . 179
7.4 Review Questions . . . . . . . . . . . . . . . . . . . . . . . . . 185

III Iterative Methods for Large Linear Systems 187

8 The Classical Iterative Methods 189
8.1 Classical Iterative Methods; Component Form . . . . . . . . . 190

8.1.1 The discrete Poisson system . . . . . . . . . . . . . 192
8.2 Classical Iterative Methods; Matrix Form . . . . . . . . . . . . 195

8.2.1 Fixed-point form . . . . . . . . . . . . . . . . . . . 196
8.2.2 The preconditioning and splitting matrix . . . . . 196
8.2.3 The splitting matrices for the classical methods . . 196

8.3 Convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198
8.3.1 Convergence of Richardson’s method. . . . . . . . 199
8.3.2 Convergence of SOR . . . . . . . . . . . . . . . . . 200
8.3.3 Convergence of the classical methods for the dis-

crete Poisson matrix . . . . . . . . . . . . . . . . . 202
8.3.4 Number of iterations . . . . . . . . . . . . . . . . . 204
8.3.5 Stopping the iteration . . . . . . . . . . . . . . . . 206

8.4 Powers of a matrix . . . . . . . . . . . . . . . . . . . . . . . . 207
8.4.1 The spectral radius . . . . . . . . . . . . . . . . . 207
8.4.2 Neumann series . . . . . . . . . . . . . . . . . . . . 209

8.5 The Optimal SOR Parameter ω . . . . . . . . . . . . . . . . . 210
8.6 Review Questions . . . . . . . . . . . . . . . . . . . . . . . . . 213

9 The Conjugate Gradient Method 215
9.1 Quadratic Minimization and Steepest Descent . . . . . . . . . 216
9.2 The Conjugate Gradient Method . . . . . . . . . . . . . . . . 219



Contents v

9.2.1 Derivation of the method . . . . . . . . . . . . . . 219
9.2.2 The conjugate gradient algorithm . . . . . . . . . 222
9.2.3 Numerical example . . . . . . . . . . . . . . . . . . 222
9.2.4 Implementation issues . . . . . . . . . . . . . . . . 223

9.3 Convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225
9.3.1 The A-norm . . . . . . . . . . . . . . . . . . . . . 225
9.3.2 The Main Theorem . . . . . . . . . . . . . . . . . 225
9.3.3 The number of iterations for the model problems . 226

9.4 Proof of the Convergence Estimates . . . . . . . . . . . . . . . 227
9.4.1 Convergence proof for steepest descent . . . . . . . 227
9.4.2 Krylov spaces and the best approximatetion property229
9.4.3 Chebyshev polynomials . . . . . . . . . . . . . . . 233
9.4.4 Monotonicity of the error . . . . . . . . . . . . . . 236

9.5 Preconditioning . . . . . . . . . . . . . . . . . . . . . . . . . . 237
9.6 Preconditioning Example . . . . . . . . . . . . . . . . . . . . . 240

9.6.1 A variable coefficient problem . . . . . . . . . . . . 240
9.6.2 Applying preconditioning . . . . . . . . . . . . . . 243

9.7 Review Questions . . . . . . . . . . . . . . . . . . . . . . . . . 245

IV Orthonormal Transformations and Least Squares 247

10 Orthonormal and Unitary Transformations 249
10.1 The Householder Transformation . . . . . . . . . . . . . . . . 250
10.2 Householder Triangulation . . . . . . . . . . . . . . . . . . . . 253

10.2.1 Solving linear systems using unitary transformations255
10.2.2 The number of arithmetic operations . . . . . . . . 256

10.3 The QR Decomposition and QR Factorization . . . . . . . . . 256
10.3.1 Existence . . . . . . . . . . . . . . . . . . . . . . . 256
10.3.2 QR and Gram-Schmidt . . . . . . . . . . . . . . . 259

10.4 Givens Rotations . . . . . . . . . . . . . . . . . . . . . . . . . 260
10.5 Review Questions . . . . . . . . . . . . . . . . . . . . . . . . . 263

11 Least Squares 265
11.1 Numerical Examples . . . . . . . . . . . . . . . . . . . . . . . 266
11.2 Curve Fitting . . . . . . . . . . . . . . . . . . . . . . . . . . . 267
11.3 Least Squares and Singular Value Decomposition and Factor-

ization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 270
11.3.1 Sum of subspaces and orthogonal projections . . . 271
11.3.2 The generalized inverse . . . . . . . . . . . . . . . 274

11.4 Numerical Solution . . . . . . . . . . . . . . . . . . . . . . . . 277
11.4.1 Normal equations . . . . . . . . . . . . . . . . . . 277



vi Contents

11.4.2 QR factorization . . . . . . . . . . . . . . . . . . . 278
11.4.3 Singular value factorization . . . . . . . . . . . . . 279

11.5 Perturbation Theory for Least Squares . . . . . . . . . . . . . 280
11.5.1 Perturbing the right hand side . . . . . . . . . . . 280
11.5.2 Perturbing the matrix . . . . . . . . . . . . . . . . 282

11.6 Perturbation Theory for Singular Values . . . . . . . . . . . . 283
11.7 Review Questions . . . . . . . . . . . . . . . . . . . . . . . . . 284

V Eigenvalues and Eigenvectors 287

12 Numerical Eigenvalue Problems 289
12.1 Eigenpars . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289
12.2 Gerschgorin’s Theorem . . . . . . . . . . . . . . . . . . . . . . 290
12.3 Perturbation of Eigenvalues . . . . . . . . . . . . . . . . . . . 293
12.4 Unitary Similarity Transformation of a Matrix into Upper Hes-

senberg Form . . . . . . . . . . . . . . . . . . . . . . . . . . . 296
12.5 Computing a Selected Eigenvalue of a Symmetric Matrix . . . 299

12.5.1 The inertia theorem . . . . . . . . . . . . . . . . . 301
12.5.2 Approximating λm . . . . . . . . . . . . . . . . . . 303

12.6 Review Questions . . . . . . . . . . . . . . . . . . . . . . . . . 304

13 The QR Algorithm 307
13.1 The Power Method and its variants . . . . . . . . . . . . . . . 307

13.1.1 The power method . . . . . . . . . . . . . . . . . . 307
13.1.2 The inverse power method . . . . . . . . . . . . . 311
13.1.3 Rayleigh quotient iteration . . . . . . . . . . . . . 312

13.2 The basic QR Algorithm . . . . . . . . . . . . . . . . . . . . . 313
13.2.1 Relation to the power method . . . . . . . . . . . 315
13.2.2 Invariance of the Hessenberg form . . . . . . . . . 316
13.2.3 Deflation . . . . . . . . . . . . . . . . . . . . . . . 316

13.3 The Shifted QR Algorithms . . . . . . . . . . . . . . . . . . . 317
13.4 A Convergence Theorem . . . . . . . . . . . . . . . . . . . . . 318
13.5 Review Questions . . . . . . . . . . . . . . . . . . . . . . . . . 319

VI Appendix 321

A Determinants 323
A.1 Permutations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 323
A.2 Basic Properties of Determinants . . . . . . . . . . . . . . . . 325
A.3 The Adjoint Matrix and Cofactor Expansion . . . . . . . . . . 329
A.4 Computing Determinants . . . . . . . . . . . . . . . . . . . . . 332



Contents vii

A.5 Some Useful Determinant Formulas . . . . . . . . . . . . . . . 332

B Computer Arithmetic 335
B.1 Absolute and Relative Errors . . . . . . . . . . . . . . . . . . . 335
B.2 Floating Point Numbers . . . . . . . . . . . . . . . . . . . . . 336
B.3 Rounding and Arithmetic Operations . . . . . . . . . . . . . . 339

B.3.1 Rounding . . . . . . . . . . . . . . . . . . . . . . . 339
B.3.2 Arithmetic operations . . . . . . . . . . . . . . . . 340

B.4 Backward Rounding-Error Analysis . . . . . . . . . . . . . . . 340
B.4.1 Computing a sum . . . . . . . . . . . . . . . . . . 340
B.4.2 Computing an inner product . . . . . . . . . . . . 343
B.4.3 Computing a matrix product . . . . . . . . . . . . 343

C Differentiation of Vector Functions 345

Bibliography 349

Index 375



viii Contents



Preface

These lecture notes contains the text for a course in matrix analysis and numerical
linear algebra given at the beginning graduate level at the University of Oslo. Most
of the chapters correspond approximately to one week of lectures. Earlier versions
of this manuscript were converted to LaTeX by Are Magnus Bruaset and Nj̊al
Foldnes. A special thanks goes to Christian Schulz and Georg Muntingh who
helped me with the exercise sessions and have provided solutions to all problems
in this book.

Oslo, 1. July 2013

Tom Lyche

ix



x Preface



Chapter 0

A Short Review of Linear
Algebra

In this introductory chapter we give a compact introduction to linear algebra with
emphasis on Rn and Cn. For a more elementary introduction, see for example the
book [22]. We start by introducing the notation used.

0.1 Notation
The following sets and notations will be used in this book.

1. The sets of natural numbers, integers, rational numbers, real numbers, and
complex numbers are denoted by N,Z,Q,R,C, respectively.

2. We use the “colon equal” symbol v := e to indicate that the symbol v is
defined by the expression e.

3. Rn is the set of n-tuples of real numbers which we will represent as column
vectors. Thus x ∈ Rn means

x =


x1

x2

...
xn

 ,

where xi ∈ R for i = 1, . . . , n. Row vectors are normally identified using the
transpose operation. Thus if x ∈ Rn then x is a column vector and xT is a
row vector.

1



2 Chapter 0. A Short Review of Linear Algebra

4. Addition and scalar multiplication are denoted and defined by

x+ y =

x1 + y1

...
xn + yn

 , ax =

ax1

...
axn

 , x,y ∈ Rn, a ∈ R.

5. Rm×n is the set of matrices A with real elements. The integers m and n are
the number of rows and columns in the tableau

A =


a11 a12 · · · a1n

a21 a22 · · · a2n

...
...

. . .
...

am1 am2 · · · amn

 .
The element in the ith row and jth column of A will be denoted by ai,j , aij ,
A(i, j) or (A)i,j . We use the notations

a:j =


a1j

a2j

...
amj

 , aTi: = [ai1, ai2, . . . , ain], A = [a:1,a:2, . . .a:n] =


aT1:

aT2:
...
aTm:


for the columns a:j and rows aTi: of A. We often drop the colon and write aj
and aTi with the risk of some confusion. If m = 1 then A is a row vector, if
n = 1 then A is a column vector, while if m = n then A is a square matrix.
In this text we will denote matrices by boldface capital letters A,B,C, · · ·
and vectors most often by boldface lower case letters x,y, z, · · · .

6. The imaginary unit
√
−1 is denoted by i. The complex conjugate and the

modulus of a complex number z is denoted by z and |z|, respectively. Thus
if z = x+ iy = reiφ = r(cosφ+ i sinφ), with x, y ∈ R, is a complex number

then z := x − iy = re−iφ = cosφ − i sinφ and |z| :=
√
zz =

√
x2 + y2 = r.

Re(z) := x and Im(z) := y denote the real and imaginary part of the complex
number z.

7. For matrices and vectors with complex elements we use the notation A ∈
Cm×n and x ∈ Cn. We define complex row vectors using either the transpose
xT or the conjugate transpose operation x∗ := xT = [x1, . . . , xn].

8. For x,y ∈ Cn and a ∈ C the operations of vector addition and scalar
multiplication is defined by component operations as in the real case (cf.
4.).

9. The arithmetic operations on rectangular matrices are

• matrix addition C = A+B if A,B,C are matrices of the same size,
i. e., with the same number of rows and columns, and cij = aij + bij
for all i, j.
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• multiplication by a scalar C = αA, where cij = αaij for all i, j.

• matrix multiplication C = AB, C = A ·B or C = A ∗B, where
A ∈ Cm×p, B ∈ Cp×n, C ∈ Cm×n, and cij =

∑p
k=1 aikbkj for i =

1, . . . ,m, j = 1, . . . , n.

• element-by-element matrix operations C = A ×B, D = A/B,
and E = A∧ r where all matrices are of the same size and cij = aijbij ,
dij = aij/bij and eij = arij for all i, j and suitable r. The element-by-
element product C = A×B is known as the Schur product and also
the Hadamard product.

10. Let A ∈ Rm×n or A ∈ Cm×n. The transpose AT and conjugate trans-
pose A∗ are n×m matrices with elements aTij = aji and a∗ij = aji, respec-

tively. If B is an n, p matrix then (AB)T = BTAT and (AB)∗ = B∗A∗.

11. The unit vectors in Rn and Cn are denoted by

e1 :=


1
0
0
...
0

 , e2 :=


0
1
0
...
0

 , e3 :=


0
0
1
...
0

 , . . . , en :=


0
0
0
...
1

 ,

while In = I := [δij ]
n
i,j=1, where

δij :=

{
1 if i = j,

0 otherwise,
(1)

is the identity matrix of order n. Both the collumns and the transpose of
the rows of I are the unit vectors e1, e2, . . . , en.

12. Some matrices with many zeros have names indicating their “shape”. Sup-
pose A ∈ Rn×n or A ∈ Cn×n. Then A is

• diagonal if aij = 0 for i 6= j.

• upper triangular or right triangular if aij = 0 for i > j.

• lower triangular or left triangular if aij = 0 for i < j.

• upper Hessenberg if aij = 0 for i > j + 1.

• lower Hessenberg if aij = 0 for i < j + 1.

• tridiagonal if aij = 0 for |i− j| > 1.

• d-banded if aij = 0 for |i− j| > d.
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13. We use the following notations for diagonal- and tridiagonal n× n matrices

diag(di) = diag(d1, . . . , dn) :=


d1 0 · · · 0
0 d2 · · · 0
...

...
. . .

...
0 0 · · · dn

 =

d1

. . .

dn

 ,

B = tridiag(ai, di, ci) = tridiag(a,d, c) :=


d1 c1
a1 d2 c2

. . .
. . .

. . .

an−2 dn−1 cn−1

an−1 dn

 .
Here bii = di for i = 1, . . . , n, bi+1,i = ai, bi,i+1 = ci for i = 1, . . . , n− 1, and
bij = 0 otherwise.

14. Suppose A ∈ Cm×n and 1 ≤ i1 < i2 < · · · < ir ≤ m, 1 ≤ j1 < j2 < · · · <
jc ≤ n. The matrix A(i, j) ∈ Cr×c is the submatrix of A consisting of rows
i := [i1, . . . , ir] and columns j := [j1, . . . , jc]

A(i, j) := A

(
i1 i2 · · · ir
j1 j2 · · · jc

)
=


ai1,j1 ai1,j2 · · · ai1,jc
ai2,j1 ai2,j2 · · · ai2,jc

...
...

. . .
...

air,j1 air,j2 · · · air,jc

 .
For the special case of consecutive rows and columns we use the notation

A(r1 : r2, c1 : c2) :=


ar1,c1 ar1,c1+1 · · · ar1,c2

ar1+1,c1 ar1+1,c1+1 · · · ar1+1,c2
...

...
. . .

...
ar2,c1 ar2,c1+1 · · · ar2,c2

 .

0.2 Vector Spaces and Subspaces
Many mathematical systems have analogous properties to vectors in R2 or R3.

Definition 0.1 (Real vector space)
A real vector space is a nonempty set V, whose objects are called vectors,
together with two operations + : V×V −→ V and · : R×V −→ V, called addition
and scalar multiplication, satisfying the following axioms for all vectors u,v,w
in V and scalars c, d in R.

(V1) The sum u+ v is in V,
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(V2) u+ v = v + u,

(V3) u+ (v +w) = (u+ v) +w,

(V4) There is a zero vector 0 such that u+ 0 = u,

(V5) For each u in V there is a vector −u in V such that u+ (−u) = 0,

(S1) The scalar multiple c · u is in V,

(S2) c · (u+ v) = c · u+ c · v,

(S3) (c+ d) · u = c · u+ d · u,

(S4) c · (d · u) = (cd) · u,

(S5) 1 · u = u.

The scalar multiplication symbol · is often omitted, writing cv instead of c ·v. We
define u − v := u + (−v). We call V a complex vector space if the scalars
consist of all complex numbers C. In this book a vector space is either real or
complex.

From the axioms it follows that

1. The zero vector is unique.

2. For each u ∈ V the negative −u of u is unique.

3. 0u = 0, c0 = 0, and −u = (−1)u.

Here are some examples

1. The space Rn, where n ∈ N, is a real vector space.

2. Similarly, Cn is a complex vector space.

3. Let D be a subset of R and d ∈ N. The set V of all functions f , g : D → Rd
is a real vector space with

(f + g)(t) := f(t) + g(t), (cf)(t) := cf(t), t ∈ D, c ∈ R.

Two functions f , g in V are equal if f(t) = g(t) for all t ∈ D. The zero
element is the zero function given by f(t) = 0 for all t ∈ D and the
negative of f is given by −f = (−1)f . In the following we will use boldface
letters for functions only if d > 1.
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4. For n ≥ 0 the space Πn of polynomials of degree at most n consists of all
polynomials p : R→ R, p : R→ C, or p : C→ C of the form

p(t) = a0 + a1t+ a2t
2 + · · ·+ ant

n, (2)

where the coefficients a0, . . . , an are real or complex numbers. p is called the
zero polynomial if all coefficients are zero. All other polynomials are said
to be nontrivial. The degree of a nontrivial polynomial p given by (2) is
the smallest integer 0 ≤ k ≤ n such that p(t) = a0 + · · ·+ akt

k with ak 6= 0.
The degree of the zero polynomial is not defined. Πn is a vector space if we
define addition and scalar multiplication as for functions.

Definition 0.2 (Linear combination)
For n ≥ 1 let X := {x1, . . . ,xn} be a set of vectors in a vector space V and let
c1, . . . , cn be scalars.

1. The sum c1x1 + · · ·+ cnxn is called a linear combination of x1, . . . ,xn.

2. The linear combination is nontrivial if cjxj 6= 0 for at least one j.

3. The set of all linear combinations of elements in X is denoted span(X ).

4. A vector space is finite dimensional if it has a finite spanning set; i. e.,
there exists n ∈ N and {x1, . . . ,xn} in V such that V = span({x1, . . . ,xn}).

Example 0.3 (Linear combinations)

1. Any x = [x1, . . . , xm]T in Cm can be written as a linear combination of the
unit vectors as x = x1e1+x2e2+· · ·+xmem. Thus, Cm = span({e1, . . . , em})
and Cm is finite dimensional. Similarly Rm is finite dimensional.

2. Let Π = ∪nΠn be the space of all polynomials. Π is a vector space that
is not finite dimensional. For suppose Π is finite dimensional. Then Π =
span({p1, . . . , pm}) for some polynomials p1, . . . , pm. Let d be an integer such
that the degree of pj is less than d for j = 1, . . . ,m. A polynomial of degree
d cannot be written as a linear combination of p1, . . . , pm, a contradiction.

0.2.1 Linear independence and bases

Definition 0.4 (Linear independence)
A set X = {x1, . . . ,xn} of nonzero vectors in a vector space is linearly de-
pendent if 0 can be written as a nontrivial linear combination of {x1, . . . ,xn}.
Otherwise X is linearly independent.
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A set of vectors X = {x1, . . . ,xn} is linearly independent if and only if

c1x1 + · · ·+ cnxn = 0 =⇒ c1 = · · · = cn = 0. (3)

Suppose {x1, . . . ,xn} is linearly independent. Then

1. If x ∈ span(X ) then the scalars c1, . . . , cn in the representation x = c1x1 +
· · ·+ cnxn are unique.

2. Any nontrivial linear combination of x1, . . . ,xn is nonzero,

Lemma 0.5 (Linear independence and span)
Suppose v1, . . . ,vn span a vector space V and that w1, . . . ,wk are linearly inde-
pendent vectors in V. Then k ≤ n.

Proof. Suppose k > n. Write w1 as a linear combination of elements from
the set X0 := {v1, . . . ,vn}, say w1 = c1v1 + · · · + cnvn. Since w1 6= 0 not
all the c’s are equal to zero. Pick a nonzero c, say ci1 . Then vi1 can be
expressed as a linear combination of w1 and the remaining v’s. So the set
X1 := {w1,v1, . . . ,vi1−1,vi1+1, . . . ,vn} must also be a spanning set for V. We
repeat this for w2 and X1. In the linear combination w2 = di1w1 +

∑
j 6=i1 djvj ,

we must have di2 6= 0 for some i2 with i2 6= i1. For otherwise w2 = d1w1 con-
tradicting the linear independence of the w’s. So the set X2 consisting of the
v’s with vi1 replaced by w1 and vi2 replaced by w2 is again a spanning set for
V. Repeating this process n − 2 more times we obtain a spanning set Xn where
v1, . . . ,vn have been replaced by w1, . . . ,wn. Since k > n we can then write wk

as a linear combination of w1, . . . ,wn contradicting the linear independence of
the w’s. We conclude that k ≤ n.

Definition 0.6 (basis)
A finite set of vectors {v1, . . . ,vn} in a vector space V is a basis for V if

1. span{v1, . . . ,vn} = V.

2. {v1, . . . ,vn} is linearly independent.

Theorem 0.7 (Basis subset of a spanning set)
Suppose V is a vector space and that {v1, . . . ,vn} is a spanning set for V. Then
we can find a subset {vi1 , . . . ,vik} that forms a basis for V.

Proof. If {v1, . . . ,vn} is linearly dependent we can express one of the v’s as a
nontrivial linear combination of the remaining v’s and drop that v from the span-
ning set. Continue this process until the remaining v’s are linearly independent.
They still span the vector space and therefore form a basis.
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Corollary 0.8 (Existence of a basis)
A vector space is finite dimensional if and only if it has a basis.

Proof. Let V = span{v1, . . . ,vn} be a finite dimensional vector space. By
Theorem 0.7, V has a basis. Conversely, if V = span{v1, . . . ,vn} and {v1, . . . ,vn}
is a basis then it is by definition a finite spanning set.

Theorem 0.9 (Dimension of a vector space)
Every basis for a vector space V has the same number of elements. This number
is called the dimension of the vector space and denoted dim V.

Proof. Suppose X = {v1, . . . ,vn} and Y = {w1, . . . ,wk} are two bases for V.
By Lemma 0.5 we have k ≤ n. Using the same Lemma with X and Y switched
we obtain n ≤ k. We conclude that n = k.

The set of unit vectors {e1, . . . , en} form a basis for both Rn and Cn.

Theorem 0.10 (Enlarging vectors to a basis )
Every linearly independent set of vectors {v1, . . . ,vk} in a finite dimensional vec-
tor space V can be enlarged to a basis for V.

Proof. If {v1, . . . ,vk} does not span V we can enlarge the set by one vector vk+1

which cannot be expressed as a linear combination of {v1, . . . ,vk}. The enlarged
set is also linearly independent. Continue this process. Since the space is finite
dimensional it must stop after a finite number of steps.

0.2.2 Subspaces

Definition 0.11 (Subspace)
A nonempty subset S of a real or complex vector space V is called a subspace of
V if

(V1) The sum u+ v is in S for any u,v ∈ S.

(S1) The scalar multiple cu is in S for any scalar c and any u ∈ S.

Using the operations in V, any subspace S of V is a vector space, i. e., all 10
axioms V 1 − V 5 and S1 − S5 are satisfied for S. In particular, S must contain
the zero element in V. This follows since the operations of vector addition and
scalar multiplication are inherited from V.

Example 0.12 (Examples of subspaces)
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1. {0}, where 0 is the zero vector is a subspace, the trivial subspace. The
dimension of the trivial subspace is defined to be zero. All other subspaces
are nontrivial.

2. V is a subspace of itself.

3. span(X ) is a subspace of V for any X = {x1, . . . ,xn} ⊆ V. Indeed, it is
easy to see that (V1) and (S1) hold.

4. The sum of two subspaces R and S of a vector space V is defined by

R+ S := {r + s : r ∈ R and s ∈ S}. (4)

Clearly (V1) and (S1) hold and it is a subspace of V .

5. The intersection of two subspaces R and S of a vector space V is defined
by

R∩ S := {x : x ∈ R and x ∈ S}. (5)

It is a subspace of V.

6. The union of two subspaces R and S of a vector space V is defined by

R∪ S := {x : x ∈ R or x ∈ S}. (6)

In general it is not a subspace of V.

7. A sum of two subspaces R and S of a vector space V is called a direct
sum and denoted R⊕S if R∩S = {0}. The subspaces R and S are called
complementary in the subspace R⊕ S.

Theorem 0.13 (Dimension formula for sums of subspaces)
Let R and S be two finite dimensional subspaces of a vector space V. Then

dim(R+ S) = dim(R) + dim(S)− dim(R∩ S). (7)

In particular, for a direct sum

dim(R⊕ S) = dim(R) + dim(S). (8)

Proof. Let {u1, . . . ,up} be a basis for R∩S, where {u1, . . . ,up} = ∅, the empty
set, in the case R∩S = {0}. We use Theorem 0.10 to extend {u1, . . . ,up} to a ba-
sis {u1, . . . ,up, r1, . . . , rq} for R and a basis {u1, . . . ,up, s1, . . . , st} for S. Every
x ∈ R+S can be written as a linear combination of {u1, . . . ,up, r1, . . . , rq, s1, . . . , st}
so these vectors span R + S. We show that they are linearly independent and
hence a basis. Suppose u + r + s = 0, where u :=

∑p
j=1 αjuj , r :=

∑q
j=1 ρjrj ,
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and s :=
∑t
j=1 σjsj . Now r = −(u+s) belongs to both R and to S and hence r ∈

R∩ S. Therefore r can be written as a linear combination of u1, . . . ,up say r :=∑p
j=1 βjuj . But then 0 =

∑p
j=1 βjuj−

∑q
j=1 ρjrj and since {u1, . . . ,up, r1, . . . , rq}

is linearly independent we must have β1 = · · · = βp = ρ1 = · · · = ρq = 0
and hence r = 0. We then have u + s = 0 and by linear independence of
{u1, . . . ,up, s1, . . . , st} we obtain α1 = · · · = αp = σ1 = · · · = σt = 0. We have
shown that the vectors {u1, . . . ,up, r1, . . . , rq, s1, . . . , st} constitute a basis for
R+ S. But then

dim(R+ S) = p+ q + t = (p+ q) + (p+ t)− p = dim(R) + dim(S)− dim(R∩ S)

and (7) follows. (7) implies (8) since dim{0} = 0.

It is convenient to introduce a matrix transforming a basis in a subspace
into a basis for the space itself.

Lemma 0.14 (Change of basis matrix)
Suppose S is a subspace of a finite dimensional vector space V and let {s1, . . . , sn}
be a basis for S and {v1, . . . ,vm} a basis for V. Then each sj can be expressed
as a linear combination of v1, . . . ,vm, say

sj =

m∑
i=1

aijvi for j = 1, . . . , n. (9)

If x ∈ S then x =
∑n
j=1 cjsj =

∑m
i=1 bivi for some coefficients b := [b1, . . . , bm]T ,

c := [c1, . . . , cn]T . Moreover b = Ac, where A = [aij ] ∈ Cm×n is given by (9).
The matrix A has linearly independent columns.

Proof. (9) holds for some aij since sj ∈ V and {v1, . . . ,vm} spans V. Since
{s1, . . . , sn} is a basis for S and {v1, . . . ,vm} a basis for V, every x ∈ S can be
written x =

∑n
j=1 cjsj =

∑m
i=1 bivi for some scalars (cj) and (bi). But then

m∑
i=1

bivi = x =

n∑
j=1

cjsj
(9)
=

n∑
j=1

cj
( m∑
i=1

aijvi
)

=

m∑
i=1

( n∑
j=1

aijcj
)
vi.

Since {v1, . . . ,vm} is linearly independent it follows that bi =
∑n
j=1 aijcj for

i = 1, . . . ,m or b = Ac. Finally, to show that A has linearly independent columns
suppose b := Ac = 0 for some c = [c1, . . . , cn]T . Define x :=

∑n
j=1 cjsj . Then

x =
∑m
i=1 bivi and since b = 0 we have x = 0. But since {s1, . . . , sn} is linearly

independent it follows that c = 0.

The matrix A in Lemma 0.14 is called a change of basis matrix.
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0.2.3 The vector spaces Rn and Cn

When V = Rm we can think of n vectors in Rm, say x1, . . . ,xn, as a set X :=
{x1, . . . ,xn} or as the columns of a matrix X = [x1, . . . ,xn] ∈ Rm×n. A
linear combination can then be written as a matrix times vector Xc, where
c = [c1, . . . , cn]T is the vector of scalars. Thus

span(X ) = span(X) = {Xc : c ∈ Rn}.

Of course the same holds for Cm.
In Rm and Cm each of the following statements is equivalent to linear inde-

pendence of X .

(i) Xc = 0⇒ c = 0,

(ii) X has linearly independent columns,

Definition 0.15 (Column space and null space)
Associated with a matrix X = [x1, . . . ,xn] ∈ Rm×n are the following subspaces

1. The subspace span(X) is called the column space of X. It is the smallest
subspace containing X = {x1, . . . ,xn}.

2. span(XT ) is called the row space of X. It is generated by the rows of X
written as column vectors.

3. The subspace ker(X) := {y ∈ Rn : Xy = 0} is called the null space or
kernel space of X.

Note that the subspace ker(X) is nontrivial if and only if X is linearly
dependent.

0.3 Vector Norms
To measure the size of a vector we use norms.

Definition 0.16 (Vector norm)
A (vector) norm in a real (resp. complex) vector space V is a function ‖·‖ :
V → R that satisfies for all x,y in V and all a in R (resp. C)

1. ‖x‖ ≥ 0 with equality if and only if x = 0. (positivity)

2. ‖ax‖ = |a| ‖x‖. (homogeneity)

3. ‖x+ y‖ ≤ ‖x‖+ ‖y‖. (subadditivity)
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The triple (V,R, ‖·‖) (resp. (V,C, ‖·‖)) is called a normed vector space and
the inequality 3. is called the triangle inequality.

In this book we will use the following family of vector norms on V = Cn and
V = Rn.

Otto Ludwig Hölder, 1859-1937 (left), Hermann Minkowski, 1864-1909 (right).

Definition 0.17 (Vector p-norms)
We define for p ≥ 1 and x ∈ Rn or x ∈ Cn the p-norms by

‖x‖p :=

( n∑
j=1

|xj |p
)1/p

, (10)

‖x‖∞ := max
1≤j≤n

|xj |. (11)

The most important cases are p = 1, 2,∞:

1. ‖x‖1 =

n∑
j=1

|xj | , (the one-norm or l1-norm)

2. ‖x‖2 =
√∑n

j=1|xj |2, (the two-norm, l2-norm, or Euclidian norm)

3. ‖x‖∞ = max
1≤j≤n

|xj |, (the infinity-norm, l∞-norm, or max norm)

Some remarks are in order.

1. That the Euclidian norm is a vector norm follows from Theorem 0.23. In
Section 7.3, we show that the p-norms are vector norms for 1 ≤ p ≤ ∞.

2. The triangle inequality ‖x + y‖p ≤ ‖x‖p + ‖y‖p is called Minkowski’s
inequality.
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3. To prove it one first establishes Hölder’s inequality

n∑
j=1

|xjyj | ≤ ‖x‖p‖y‖q,
1

p
+

1

q
= 1, x,y ∈ Cn. (12)

The relation 1
p + 1

q = 1 means that if p = 1 then q = ∞ and if p = 2 then
q = 2 and Hölder’s inequality is the same as the Cauchy-Schwarz inequality
(cf. Theorem 0.22) for the Euclidian norm.

4. The infinity norm is related to the other p-norms by

lim
p→∞

‖x‖p = ‖x‖∞ for all x ∈ Cn. (13)

5. The equation (13) clearly holds for x = 0. For x 6= 0 we write

‖x‖p := ‖x‖∞
( n∑
j=1

( |xj |
‖x‖∞

)p)1/p

.

Now each term in the sum is not greater than one and at least one term is
equal to one, and we obtain

‖x‖∞ ≤ ‖x‖p ≤ n1/p‖x‖∞, p ≥ 1. (14)

Since limp→∞ n1/p = 1 for any n ∈ N we see that (13) follows.

We return now to the general case.

Definition 0.18 (Equivalent norms)
We say that two norms ‖·‖ and ‖·‖′ on V are equivalent if there are positive
constants m and M such that for all vectors x ∈ V we have

m‖x‖′ ≤ ‖x‖ ≤M‖x‖′. (15)

By (14) the p- and ∞-norms are equivalent for any p ≥ 1. This result is
generalized in the following theorem.

Theorem 0.19 (Basic properties of vector norms)
The following holds for a normed vector space (V,C, ‖·‖).

1. ‖x− y‖ ≥ | ‖x‖ − ‖y‖ |, for all x,y ∈ Cn (inverse triangle inequality).

2. The vector norm is a continuous function V → R.

3. All vector norms on V are equivalent provided V is finite dimensional.
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Proof.

1. Since ‖x‖ = ‖x− y + y‖ ≤ ‖x− y‖+ ‖y‖ we obtain ‖x− y‖ ≥ ‖x‖ − ‖y‖.
By symmetry ‖x − y‖ = ‖y − x‖ ≥ ‖y‖ − ‖x‖ and we obtain the inverse
triangle inequality.

2. This follows from the inverse triangle inequality.

3. The following proof can be skipped by those who do not have the necessary
background in advanced calculus. Define the ‖·‖′ unit sphere

S := {y ∈ V : ‖y‖′ = 1}.

The set S is a closed and bounded set and the function f : S → R given by
f(y) = ‖y‖ is continuous by what we just showed. Therefore f attains its
minimum and maximum value on S. Thus, there are positive constants m
and M such that

m ≤ ‖y‖ ≤M, y ∈ S. (16)

For any x ∈ V one has y := x/‖x‖′ ∈ S, and (15) follows if we apply (16)
to these y.

0.4 Inner Products
An inner product or scalar product in a vector space is a function mapping
pairs of vectors into a scalar.

0.4.1 Real and complex inner products

We consider first the real case.

Definition 0.20 (Real inner product)
An inner product in a real vector space V is a function 〈·, ·〉 : V × V → R
satisfying for all x,y, z ∈ V and all a, b ∈ R the following conditions:

1. 〈x,x〉 ≥ 0 with equality if and only if x = 0. (positivity)

2. 〈x,y〉 = 〈y,x〉 (symmetry)

3. 〈ax+ by, z〉 = a〈x, z〉+ b〈y, z〉. (linearity)

The pair (V, 〈·, ·〉) is called a real inner product space. The function

‖·‖ : V −→ R, x 7−→ ‖x‖ :=
√
〈x,x〉 (17)

is called the inner product norm.
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The standard inner product in V = Rn is given by 〈x,y〉 := xTy = yTx.
It is clearly an inner product in Rn. The corresponding inner product norm is the
Euclidian norm ‖x‖ =

√
xTx = ‖x‖2.

Consider next inner products in a complex vector space. Property 2. in the
definition of a real inner product is altered from symmetry to skew symmetry.

Definition 0.21 (Complex inner product)
An inner product in a complex vector space V is a function V×V → C satisfying
for all x,y, z ∈ V and all a, b ∈ C the following conditions:

1. 〈x,x〉 ≥ 0 with equality if and only if x = 0. (positivity)

2. 〈x,y〉 = 〈y,x〉 (skew symmetry)

3. 〈ax+ by, z〉 = a〈x, z〉+ b〈y, z〉. (linearity)

The pair (V, 〈·, ·〉) is called a complex inner product space The function

‖·‖ : V → R, x 7−→ ‖x‖ :=
√
〈x,x〉 (18)

is called the inner product norm.

Note the complex conjugate in 2. We find

〈x, ay + bz〉 = a〈x,y〉+ b〈x, z〉, 〈ax, ay〉 = |a|2〈x,y〉. (19)

The standard inner product in Cn is given by

〈x,y〉 := y∗x = xTy =

n∑
j=1

xjyj .

It is clearly an inner product in Cn. The corresponding inner product norm is the
Euclidian norm ‖x‖ = ‖x‖2 =

√
x∗x.

Viktor Yakovlevich Bunyakovsky, 1804-1889 (left), Augustin-Louis Cauchy, 1789-
1857 (center), Karl Hermann Amandus Schwarz,1843-1921 (right). The name Bun-
yakovsky is also associated with the Cauchy-Schwarz inequality.

The following inequality holds for any inner product.
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Theorem 0.22 (Cauchy-Schwarz inequality)
For any x,y in a real or complex inner product space

|〈x,y〉| ≤ ‖x‖‖y‖, (20)

with equality if and only if x and y are linearly dependent.

Proof. If y = 0 then 〈x,y〉 = 〈x, 0y〉 = 0〈x,y〉 = 0 and ‖y‖ = 0. Thus the
inequality holds with equality, and x and y are linearly dependent. So assume
y 6= 0. Define

z := x− ay, a :=
〈x,y〉
〈y,y〉

.

Then 〈z,y〉 = 〈x,y〉 − a〈y,y〉 = 0 so that by 2. and (19)

〈ay, z〉+ 〈z, ay〉 = a〈z,y〉+ a〈z,y〉 = 0. (21)

But then

‖x‖2 = 〈x,x〉 = 〈z + ay, z + ay〉
(21)
= 〈z, z〉+ 〈ay, ay〉 (19)

= ‖z‖2 + |a|2‖y‖2

≥ |a|2‖y‖2 =
|〈x,y〉|2

‖y‖2
.

Multiplying by ‖y‖2 gives (20). We have equality if and only if z = 0, which
means that x and y are linearly dependent.

Theorem 0.23 (Inner product norm)
The inner product norm is a vector norm.

Proof. For all x,y in an inner product space and all a in C we need to show

1. ‖x‖ ≥ 0 with equality if and only if x = 0. (positivity)

2. ‖ax‖ = |a| ‖x‖. (homogeneity)

3. ‖x+ y‖ ≤ ‖x‖+ ‖y‖. (subadditivity)

The first statement is an immediate consequence of positivity, while the second
one follows from (19). Expanding ‖x + ay‖2 = 〈x + ay,x + ay〉 using (19) we
obtain

‖x+ ay‖2 = ‖x‖2 + a〈y,x〉+ a〈x,y〉+ |a|2‖y‖2, a ∈ C, x,y ∈ V. (22)
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Now (22) with a = 1 and the Cauchy-Schwarz inequality implies

‖x+ y‖2 ≤ ‖x‖2 + 2‖x‖‖y‖+ ‖y‖2 = (‖x‖+ ‖y‖)2.

Taking square roots completes the proof.

In the real case the Cauchy-Schwarz inequality implies that −1 ≤ 〈x,y〉
‖x‖‖y‖ ≤ 1

for nonzero x and y, so there is a unique angle θ in [0, π] such that

cos θ =
〈x,y〉
‖x‖‖y‖

. (23)

This defines the angle between vectors in a real inner product space.

Exercise 0.24 (The ATA inner product)
Suppose A ∈ Rm×n has linearly independent columns. Show that 〈x,y〉 :=
xTATAy defines an inner product on Rn.

Exercise 0.25 (Angle between vectors in complex case)
Show that in the complex case there is a unique angle θ in [0, π/2] such that

cos θ =
|〈x,y〉|
‖x‖‖y‖

. (24)

0.4.2 Orthogonality

Definition 0.26 (Orthogonality)
Two vectors x,y in a real or complex inner product space are orthogonal or
perpendicular, denoted as x ⊥ y, if 〈x,y〉 = 0. The vectors are orthonormal
if in addition ‖x‖ = ‖y‖ = 1.

From the definitions (23), (24) of angle θ between two vectors in Rn or Cn
it follows that x ⊥ y if and only if θ = π/2.

Theorem 0.27 (Pythagoras)
For a real or complex inner product space

‖x+ y‖2 = ‖x‖2 + ‖y‖2, if x ⊥ y. (25)

Proof. We set a = 1 in (22) and use the orthogonality.
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Pythagoras of Samos, BC 570-BC 495 (left), Jørgen Pedersen Gram, 1850-1916 (cen-
ter), Erhard Schmidt,1876-1959 (right).

Definition 0.28 (Orthogonal- and orthonormal bases)
A set of nonzero vectors {v1, . . . ,vk} in a subspace S of a real or complex inner

product space is an orthogonal basis for S if it is a basis for S and 〈vi,vj〉 = 0
for i 6= j. It is an orthonormal basis for S if it is a basis for S and 〈vi,vj〉 = δij
for all i, j.

A basis for a subspace of an inner product space can be turned into an
orthogonal- or orthonormal basis for the subspace by the following construction.

Theorem 0.29 (Gram-Schmidt)
Let {s1, . . . , sk} be a basis for a real or complex inner product space (S, 〈·, ·〉).
Define

v1 := s1, vj := sj −
j−1∑
i=1

〈sj ,vi〉
〈vi,vi〉

vi, j = 2, . . . , k. (26)

Then {v1, . . . ,vk} is an orthogonal basis for S and the normalized vectors

{u1, . . . ,uk} :=

{
v1

‖v1‖
, . . . ,

vk
‖vk‖

}
form an orthonormal basis for S.

Proof. To show that {v1, . . . ,vk} is an orthogonal basis for S we use induction
on k. Define subspaces Sj := span{s1, . . . , sj} for j = 1, . . . , k. Clearly v1 = s1

is an orthogonal basis for S1. Suppose for some j ≥ 2 that v1, . . . ,vj−1 is an
orthogonal basis for Sj−1 and let vj be given by (26) as a linear combination of
sj and v1, . . . ,vj−1. Now each of these vi is a linear combination of s1, . . . , si,

and we obtain vj =
∑j
i=1 aisi for some a0, . . . , aj with aj = 1. Since s1, . . . , sj
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Figure 1. The construction of v1 and v2 in Gram-Schmidt. The constant
c is given by c := 〈s2,v1〉/〈v1,v1〉.

are linearly independent and aj 6= 0 we deduce that vj 6= 0. By the induction
hypothesis

〈vj ,vl〉 = 〈sj ,vl〉 −
j−1∑
i=1

〈sj ,vi〉
〈vi,vi〉

〈vi,vl〉 = 〈sj ,vl〉 −
〈sj ,vl〉
〈vl,vl〉

〈vl,vl〉 = 0

for l = 1, . . . , j − 1. Thus v1, . . . ,vj is an orthogonal basis for Sj .
If {v1, . . . ,vk} is an orthogonal basis for S then clearly {u1, . . . ,uk} is an

orthonormal basis for S.

Sometimes we want to extend an orthogonal basis for a subspace to an
orthogonal basis for a larger space.

Theorem 0.30 (Orthogonal Extension of basis)
Suppose S ⊂ T are finite dimensional subspaces of a vector space V. An orthogonal
basis for S can always be extended to an orthogonal basis for T .

Proof. Suppose dimS := k < dim T = n. Using Theorem 0.10 we first extend
an orthogonal basis s1, . . . , sk for S to a basis s1, . . . , sk, sk+1, . . . , sn for T , and
then apply the Gram-Schmidt process to this basis obtaining an orthogonal basis
v1, . . . ,vn for T . This is an extension of the basis for S since vi = si for i =
1, . . . , k. We show this by induction. Clearly v1 = s1. Suppose for some 2 ≤ r < k
that vj = sj for j = 1, . . . , r − 1. Consider (26) for j = r. Since 〈sr,vi〉 =
〈sr, si〉 = 0 for i < r we obtain vr = sr.

Letting S = span(s1, . . . , sk) and T be Rn or Cn we obtain
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Corollary 0.31 (Extending orthogonal vectors to a basis)
For 1 ≤ k < n a set {s1, . . . , sk} of nonzero orthogonal vectors in Rn or Cn can
be extended to an orthogonal basis for the whole space.

0.5 Linear Systems
Consider a linear system

a11x1 + a12x2 + · · · + a1nxn = b1
a21x1 + a22x2 + · · · + a2nxn = b2

...
...

...
...

am1x1 + am2x2 + · · · + amnxn = bm

of m equations in n unknowns. Here for all i, j, the coefficients aij , the unknowns
xj , and the components of the right hand sides bi, are real or complex numbers.
The system can be written as a vector equation

x1a1 + x2a2 + · · ·+ xnan = b,

where aj =
[
a1j , . . . ,amj

]T ∈ Cm for j = 1, . . . , n and b =
[
b1, . . . , bm

]T ∈ Cm.
It can also be written as a matrix equation

Ax =


a11 a12 · · · a1n

a21 a22 · · · a2n

...
...

. . .
...

am1 am2 · · · amn



x1

x2

...
xn

 =


b1
b2
...
bm

 = b.

The system is homogeneous if b = 0 and it is said to be underdetermined,
square, or overdetermined if m < n, m = n, or m > n, respectively.

0.5.1 Basic properties

A linear system has a unique solution, infinitely many solutions, or no solution. To
discuss this we first consider the real case, and a homogeneous underdetermined
system.

Lemma 0.32 (Underdetermined system)
Suppose A ∈ Rm×n with m < n. Then there is a nonzero x ∈ Rn such that
Ax = 0.

Proof. Suppose A ∈ Rm×n with m < n. The n columns of A span a subspace of
Rm. Since Rm has dimension m the dimension of this subspace is at most m. By
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Lemma 0.5 the columns of A must be linearly dependent. It follows that there is
a nonzero x ∈ Rn such that Ax = 0.

A square matrix is either nonsingular or singular.

Definition 0.33 (Real nonsingular or singular matrix)
A square matrix A ∈ Rn×n is said to be nonsingular if the only real solution of
the homogeneous system Ax = 0 is x = 0. The matrix is singular if there is a
nonzero x ∈ Rn such that Ax = 0.

Theorem 0.34 (Linear systems; existence and uniqueness)
Suppose A ∈ Rn×n. The linear system Ax = b has a unique solution x ∈ Rn for
any b ∈ Rn if and only if the matrix A is nonsingular.

Proof. Suppose A is nonsingular. We define B =
[
A b

]
∈ Rn×(n+1) by adding a

column to A. By Lemma 0.32 there is a nonzero z ∈ Rn+1 such that Bz = 0. If

we write z =

[
z̃

zn+1

]
where z̃ =

[
z1, . . . , zn

]T ∈ Rn and zn+1 ∈ R, then

Bz = [A b]

[
z̃

zn+1

]
= Az̃ + zn+1b = 0.

We cannot have zn+1 = 0 for then Az̃ = 0 for a nonzero z̃, contradicting the
nonsingularity of A. Define x := −z̃/zn+1. Then

Ax = −A
(

z̃

zn+1

)
= − 1

zn+1
Az̃ = − 1

zn+1

(
− zn+1b

)
= b,

so x is a solution.
Suppose Ax = b and Ay = b for x,y ∈ Rn. Then A(x− y) = 0 and since

A is nonsingular we conclude that x − y = 0 or x = y. Thus the solution is
unique.

Conversely, if Ax = b has a unique solution for any b ∈ Rn then Ax = 0
has a unique solution which must be x = 0. Thus A is nonsingular.

For the complex case we have

Lemma 0.35 (Complex underdetermined system)
Suppose A ∈ Cm×n with m < n. Then there is a nonzero x ∈ Cn such that
Ax = 0.

Definition 0.36 (Complex nonsingular matrix)
A square matrix A ∈ Cn×n is said to be nonsingular if the only complex solution
of the homogeneous system Ax = 0 is x = 0. The matrix is singular if it is not
nonsingular.
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Theorem 0.37 (Complex linear system; existence and uniqueness)
Suppose A ∈ Cn×n. The linear system Ax = b has a unique solution x ∈ Cn for
any b ∈ Cn if and only if the matrix A is nonsingular.

James Joseph Sylvester, 1814-1897. The word matrix to denote a rectangular array of num-
bers, was first used by Sylvester in 1850.

0.5.2 The inverse matrix

Suppose A ∈ Cn×n is a square matrix. A matrix B ∈ Cn×n is called a right
inverse of A if AB = I. A matrix C ∈ Cn×n is said to be a left inverse of A
if CA = I. We say that A is invertible if it has both a left- and a right inverse.
If A has a right inverse B and a left inverse C then

C = CI = C(AB) = (CA)B = IB = B

and this common inverse is called the inverse of A and denoted by A−1. Thus
the inverse satisfies A−1A = AA−1 = I.

We want to characterize the class of invertible matrices and start with a
lemma.

Theorem 0.38 (Product of nonsingular matrices)
If A,B,C ∈ Cn×n with AB = C then C is nonsingular if and only if both A and
B are nonsingular. In particular, if AB = I or BA = I then A is nonsingular
and A−1 = B.

Proof. Suppose both A and B are nonsingular and let Cx = 0. Then ABx = 0
and since A is nonsingular we see that Bx = 0. Since B is nonsingular we have
x = 0. We conclude that C is nonsingular.

For the converse suppose first that B is singular and let x ∈ Cn be a nonzero
vector so that Bx = 0. But then Cx = (AB)x = A(Bx) = A0 = 0 so C is
singular. Finally suppose B is nonsingular, but A is singular. Let x̃ be a nonzero
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vector such that Ax̃ = 0. By Theorem 0.37 there is a vector x such that Bx = x̃
and x is nonzero since x̃ is nonzero. But then Cx = (AB)x = A(Bx) = Ax̃ = 0
for a nonzero vector x and C is singular.

Theorem 0.39 (When is a square matrix invertible?)
A square matrix is invertible if and only if it is nonsingular.

Proof. Suppose first A is a nonsingular matrix. By Theorem 0.37 each of the
linear systems Abi = ei has a unique solution bi for i = 1, . . . , n. Let B =[
b1, . . . , bn

]
. Then AB =

[
Ab1, . . . ,Abn

]
=
[
e1, . . . , en

]
= I so that A has a

right inverse B. By Theorem 0.38 B is nonsingular since I is nonsingular and
AB = I. SinceB is nonsingular we can use what we have shown forA to conclude
that B has a right inverse C, i.e. BC = I. But then AB = BC = I so B has
both a right inverse and a left inverse which must be equal so A = C. Since
BC = I we have BA = I, so B is also a left inverse of A and A is invertible.

Conversely, if A is invertible then it has a right inverse B. Since AB = I
and I is nonsingular, we again use Theorem 0.38 to conclude thatA is nonsingular.

To verify that some matrix B is an inverse of another matrix A it is enough
to show that B is either a left inverse or a right inverse of A. This calculation
also proves that A is nonsingular. We use this observation to give simple proofs
of the following results.

Corollary 0.40 (Basic properties of the inverse matrix)
Suppose A,B ∈ Cn×n are nonsingular and c is a nonzero constant.

1. A−1 is nonsingular and (A−1)−1 = A.

2. C = AB is nonsingular and C−1 = B−1A−1.

3. AT is nonsingular and (AT )−1 = (A−1)T =: A−T .

4. A∗ is nonsingular and (A∗)−1 = (A−1)∗ =: A−∗.

5. cA is nonsingular and (cA)−1 = 1
cA
−1.

Proof.

1. Since A−1A = I the matrix A is a right inverse of A−1. Thus A−1 is
nonsingular and (A−1)−1 = A.

2. We note that (B−1A−1)(AB) = B−1(A−1A)B = B−1B = I. Thus AB
is invertible with the indicated inverse since it has a left inverse.

3. Now I = IT = (A−1A)T = AT (A−1)T showing that (A−1)T is a right
inverse of AT . The proof of part 4 is similar.
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4. The matrix 1
cA
−1 is a one sided inverse of cA.

Exercise 0.41 (The inverse of a general 2× 2 matrix)
Show that [

a b
c d

]−1

= α

[
d −b
−c a

]
, α =

1

ad− bc
,

for any a, b, c, d such that ad− bc 6= 0.

Exercise 0.42 (The inverse of a special 2× 2 matrix)
Find the inverse of

A =

[
cos θ − sin θ
sin θ cos θ

]
.

Exercise 0.43 (Sherman-Morrison formula)
Suppose A ∈ Cn×n, and B,C ∈ Rn×m for some n,m ∈ N. If (I +CTA−1B)−1

exists then

(A+BCT )−1 = A−1 −A−1B(I +CTA−1B)−1CTA−1.

0.6 Determinants
Determinants, denoted by det(·) or | · |,are useful for studying eigenvalues. Recall
that if A,B are square matrices of order n with real or complex elements, then
(see Appendix A for proofs)

1. det(AB) = det(A) det(B).

2. If A is triangular then det(A) = a11a22 · · · ann. In particular, det(I) = 1.

3. det(AT ) = det(A), and det(A∗) = det(A), (complex conjugate).

4. det(aA) = an det(A), for a ∈ C.

5. A is singular if and only if det(A) = 0.

6. IfA =

[
C D
0 E

]
for some square matricesC,E then det(A) = det(C) det(E).
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7. Cramer’s rule Suppose A ∈ Cn×n is nonsingular and b ∈ Cn. Let x =
[x1, x2, . . . , xn]T be the unique solution of Ax = b. Then

xj =
det(Aj(b))

det(A)
, j = 1, 2, . . . , n,

whereAj(b) denote the matrix obtained fromA by replacing the jth column
of A by b.

8. Adjoint. Let Ai,j denote the submatrix of A obtained by deleting the ith
row and jth column of A. For A ∈ Cn×n and 1 ≤ i, j ≤ n the determinant
det(Aij) is called the cofactor of aij . The matrix adj(A) ∈ Cn×n with
elements adj(A)i,j = (−1)i+j det(Aj,i) is called the adjoint of A.

9. Adjoint formula for the inverse. If A ∈ Cn×n is nonsingular then

A−1 =
1

det(A)
adj(A).

10. Cofactor expansion. For any A ∈ Cn×n we have

det(A) =

n∑
j=1

(−1)i+jaij det(Aij) for i = 1, . . . , n, (27)

det(A) =

n∑
i=1

(−1)i+jaij det(Aij) for j = 1, . . . , n. (28)

Arthur Cayley, 1821-1895 (left), Gabriel Cramer 1704-1752 (center), Alexandre-
Thophile Vandermonde,1735-1796 (right). The notation | | for determinants is due
to Cayley 1841.

To compute the value of a determinant it is often convenient to use row- or
column operations to introduce zeros in a row or column of A and then use one
of the cofactor expansions.
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Exercise 0.44 (Cramer’s rule; special case)
Solve the following system by Cramers rule:[

1 2
2 1

] [
x1

x2

]
=

[
3
6

]

Exercise 0.45 (Adjoint matrix; special case)
Show that if

A =

 2 −6 3
3 −2 −6
6 3 2

 ,
then

adj(A) =

 14 21 42
−42 −14 21
21 −42 14

 .
Moreover,

adj(A)A =

 343 0 0
0 343 0
0 0 343

 = det(A)I.

Example 0.46 (Determinant equation for a straight line)
The equation for a straight line through two points (x1, y1) and (x2, y2) in the
plane can be written as the equation

det(A) :=

∣∣∣∣∣∣
1 x y
1 x1 y1

1 x2 y2

∣∣∣∣∣∣ = 0

involving a determinant of order 3. We can compute this determinant using row
operations of type 3. Subtracting row 2 from row 3 and then row 1 from row 2
we obtain∣∣∣∣∣∣

1 x y
1 x1 y1

1 x2 y2

∣∣∣∣∣∣ =

∣∣∣∣∣∣
1 x y
0 x1 − x y1 − y
0 x2 − x1 y2 − y1

∣∣∣∣∣∣ = (x1 − x)(y2 − y1)− (y1 − y)(x2 − x1).

Rearranging the equation det(A) = 0 we obtain

y − y1 =
y2 − y1

x2 − x1
(x− x1)

which is the slope form of the equation of a straight line.
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A B C

P
1

P
2

P
3

Figure 2. The triangle T defined by the three points P1, P2 and P3.

Exercise 0.47 (Determinant equation for a plane)
Show that ∣∣∣∣∣∣∣∣

x y z 1
x1 y1 z1 1
x2 y2 z2 1
x3 y3 z3 1

∣∣∣∣∣∣∣∣ = 0.

is the equation for a plane through three points (x1, y1, z1), (x2, y2, z2) and (x3, y3, z3)
in space.

Exercise 0.48 (Signed area of a triangle)
Let Pi = (xi, yi), i = 1, 2, 3, be three points in the plane defining a triangle T .
Show that the area of T is1

A(T ) =
1

2

∣∣∣∣∣∣
1 1 1
x1 x2 x3

y1 y2 y3

∣∣∣∣∣∣ .
The area is positive if we traverse the vertices in counterclockwise order.

Exercise 0.49 (Vandermonde matrix)
Show that ∣∣∣∣∣∣∣∣∣

1 x1 x2
1 · · · xn−1

1

1 x2 x2
2 · · · xn−1

2
...

...
...

...
1 xn x2

n · · · xn−1
n

∣∣∣∣∣∣∣∣∣ =
∏
i>j

(xi − xj),

1Hint: A(T ) = A(ABP3P1) +A(P3BCP2)−A(P1ACP2), c.f. Figure 2
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where
∏
i>j(xi − xj) =

∏n
i=2(xi − x1)(xi − x2) · · · (xi − xi−1). This determinant

is called the Vandermonde determinant. 2

Exercise 0.50 (Cauchy determinant (1842))
Let α = [α1, . . . , αn]T , β = [β1, . . . , βn]T be in Rn.

a) Consider the matrix A ∈ Rn×n with elements ai,j = 1/(αi + βj), i, j =
1, 2, . . . , n. Show that

det(A) = Pg(α)g(β)

where P =
∏n
i=1

∏n
j=1 aij, and for γ = [γ1, . . . , γn]T

g(γ) =

n∏
i=2

(γi − γ1)(γi − γ2) · · · (γi − γi−1)

Hint: Multiply the ith row of A by
∏n
j=1(αi+βj) for i = 1, 2, . . . , n. Call the

resulting matrix C. Each element of C is a product of n−1 factors αr +βs.
Hence det(C) is a sum of terms where each term contain precisely n(n−1)
factors αr + βs. Thus det(C) = q(α, β) where q is a polynomial of degree
at most n(n−1) in αi and βj. Since det(A) and therefore det(C) vanishes
if αi = αj for some i 6= j or βr = βs for some r 6= s, we have that q(α,β)
must be divisible by each factor in g(α) and g(β). Since g(α) and g(β) is a
polynomial of degree n(n−1), we have

q(α,β) = kg(α)g(β)

for some constant k independent of α and β. Show that k = 1 by choosing
βi + αi = 0, i = 1, 2, . . . , n.

b) Notice that the cofactor of any element in the above matrix A is the determi-
nant of a matrix of similar form. Use the cofactor and determinant of A to
represent the elements of A−1 = (bj,k). Answer:

bj,k = (αk + βj)Ak(−βj)Bj(−αk),

where

Ak(x) =
∏
s6=k

(
αs − x
αs − αk

)
, Bk(x) =

∏
s6=k

(
βs − x
βs − βk

)
.

2Hint: subtract xkn times column k from column k+1 for k = n−1, n−2, . . . , 1.
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Exercise 0.51 (Inverse of the Hilbert matrix)
Let Hn = (hi,j) be the n × n matrix with elements hi,j = 1/(i+ j−1). Use
Exercise 0.50 to show that the elements tni,j in T n = H−1

n are given by

tni,j =
f(i)f(j)

i+ j − 1
,

where

f(i+1) =

(
i2 − n2

i2

)
f(i), i = 1, 2, . . . , f(1) = −n.

0.7 Eigenpairs
Suppose A ∈ Cn×n is a square matrix, λ ∈ C and x ∈ Cn. We say that (λ,x)
is an eigenpair for A if Ax = λx and x is nonzero. The scalar λ is called an
eigenvalue and x is said to be an eigenvector.3 The set of eigenvalues is called
the spectrum of A and is denoted by σ(A). For example, σ(I) = {1, . . . , 1} =
{1}.

Lemma 0.52 (Characteristic equation)
For any A ∈ Cn×n we have λ ∈ σ(A)⇐⇒ det(A− λI) = 0.

Proof. Suppose (λ,x) is an eigenpair for A. The equation Ax = λx can be
written (A − λI)x = 0. Since x is nonzero the matrix A − λI must be singular
with a zero determinant. Conversely, if det(A− λI) = 0 then A− λI is singular
and (A − λI)x = 0 for some nonzero x ∈ Cn. Thus Ax = λx and (λ,x) is an
eigenpair for A.

The expression det(A − λI) is a polynomial of exact degree n in λ. For
n = 3 we have

det(A− λI) =

∣∣∣∣∣∣
a11 − λ a12 a13

a21 a22 − λ a23

a31 a32 a33 − λ

∣∣∣∣∣∣ .
Expanding this determinant by the first column we find

det(A− λI) = (a11 − λ)

∣∣∣∣ a22 − λ a23

a32 a33 − λ

∣∣∣∣− a21

∣∣∣∣ a12 a13

a32 a33 − λ

∣∣∣∣
+ a31

∣∣∣∣ a12 a13

a22 − λ a23

∣∣∣∣ = (a11 − λ)(a22 − λ)(a33 − λ) + r(λ)

3The word “eigen” is derived from German and means “own”
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for some polynomial r of degree at most one. In general

det(A− λI) = (a11 − λ)(a22 − λ) · · · (ann − λ) + r(λ), (29)

where each term in r(λ) has at most n − 2 factors containing λ. It follows that
r is a polynomial of degree at most n − 2, πA is a polynomial of exact degree n,
and the eigenvalues are the roots of this polynomial.

We observe that det(A − λI) = (−1)n det(λI −A) so det(A − λI) = 0 if
and only if det(λI −A) = 0.

Definition 0.53 (Characteristic polynomial of a matrix)
The function πA : C→ C given by πA(λ) = det(A−λI) is called the characteris-
tic polynomial of A. The equation det(A−λI) = 0 is called the characteristic
equation of A.

By the fundamental theorem of algebra an n×n matrix has, counting multi-
plicities, precisely n eigenvalues λ1, . . . , λn some of which might be complex even
if A is real. The complex eigenpairs of a real matrix occur in complex conju-
gate pairs. Indeed, taking the complex conjugate on both sides of the equation
Ax = λx with A real gives Ax = λx.

Using Property 6. of determinants we have an additional characterization of
a singular matrix.

Theorem 0.54 (Zero eigenvalue)
The matrix A ∈ Cn×n is singular if and only if zero is an eigenvalue.

Proof. Zero is an eigenvalue if and only if πA(0) = det(A) = 0 which happens if
and only if A is singular.

In general it is not easy to find all eigenvalues of a matrix. One notable
exception is a triangular matrix. By Property 2. of determinants we obtain

Theorem 0.55 (Eigenvalues of a triangular matrix)
The eigenvalues of a triangular matrix are given by its diagonal elements.

0.8 Algorithms and Numerical Stability
In this text we consider mathematical problems (i. e., linear algebra problems)
and many detailed numerical algorithms to solve them. Complexity is discussed
briefly in Section 2.2.2. As for programming issues we often vectorize the al-
gorithms leading to shorter and more efficient programs. Stability is important
both for the mathematical problems and for the numerical algorithms. Stability
can be studied in terms of perturbation theory leading to condition numbers, see
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Chapters 7, 11, 12. We will often use phrases like “the algorithm is numerically
stable” or “the algorithm is not numerically stable” without saying precisely what
we mean by this. Loosely speaking, an algorithm is numerically stable if the so-
lution, computed in floating point arithmetic, is the exact solution of a slightly
perturbed problem. To determine upper bounds for these perturbations is the
topic of backward error analysis. We give a rather limited introduction to
floating point arithmetic and backward error analysis in Appendix B, but in the
text we will not discuss this. This does not mean that numerical stability is not
an important issue. In fact, numerical stability is crucial for a good algorithm.
For thorough treatments of numerical stability issues we refer to the books [12]
and [26, 27].

A list of freely available software for solving linear algebra problems can be
found at

http://www.netlib.org/utk/people/JackDongarra/la-sw.html
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Chapter 1

A Special Linear System

Consider a system of n linear equations in n unknowns. In component form the
system can be written

a11x1 + a12x2+ · · · + a1nxn = b1,
a21x1 + a22x2+ · · · + a2nxn = b2,

...
...

...
...

an1x1 + an2x2+ · · · + annxn = bn,

and in matrix form

Ax =


a11 a12 · · · a1n

a21 a22 · · · a2n

...
...

...
an1 an2 · · · ann



x1

x2

...
xn

 =


b1
b2
...
bn

 = b.

The elements of A and b can be either real or complex numbers.
We recall (see Theorem 0.34) that the square system Ax = b has a unique

solution for all right hand sides b if and only if A is nonsingular, i. e., the ho-
mogeneous system Ax = 0 only has the solution x = 0. We also recall (cf.
Theorem 0.39) that a square matrix has an inverse if and only if A is nonsingular,
and the solution of Ax = b can be written x = A−1b, where A−1 is the inverse
of A.

35
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Carl Friedrich Gauss, 1777-1855 (left), Myrick Hascall Doolittle, 1830-1911 (right).

Gaussian elimination with row interchanges is the classical method for solv-
ing n linear equations in n unknowns4. After a introductory and elementary
discussion of Gaussian elimination we consider a problem leading to a linear sys-
tem where the coefficient matrix is tridiagonal. This special matrix will occur
repeatedly throughout this text. We then give an introduction to block multipli-
cation which is an indispensable tool in matrix analysis. We end the chapter with
some basic properties of triangular matrices.

1.1 Gaussian Elimination Example
We illustrate how Gaussian elimination works on a 3 × 3 system. For a general
discussion see Section 2.9.

Example 1.1 (Gaussian elimination on a 3× 3 system)
Consider a nonsingular system of three equations in three unknowns:

a1
11x1 + a1

12x2 + a1
13x3 = b11, I

a1
21x1 + a1

22x2 + a1
23x3 = b12, II

a1
31x1 + a1

32x2 + a1
33x3 = b13. III.

To solve this system by Gaussian elimination suppose a1
11 6= 0. We subtract m21 :=

a1
21/a

1
11 times equation I from equation II and m31 := a1

31/a
1
11 times equation I

4The method was known long before Gauss used it in 1809. It was further developed by
Doolittle in 1881, see [6].
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from equation III. The result is

a1
11x1 + a1

12x2 + a1
13x3 = b11, I

a2
22x2 + a2

23x3 = b22, II′

a2
32x2 + a2

33x3 = b23, III′,

where b2i = b1i −mi1b
1
i for i = 2, 3 and a2

ij = a1
ij−mi,1a

1
1j for i, j = 2, 3. If a1

11 = 0

and a1
21 6= 0 we first interchange equation I and equation II. If a1

11 = a1
21 = 0 we

interchange equation I and III. Since the system is nonsingular the first column
cannot be zero and an interchange is always possible.

If a2
22 6= 0 we subtract m32 := a2

32/a
2
22 times equation II’ from equation III’

to obtain

a1
11x1 + a1

12x2 + a1
13x3 = b11, I

a2
22x2 + a2

23x3 = b22, II′

a3
33x3 = b33, III′′,

where b33 = b23 − m32b
2
2 and a3

33 = a2
33 − m32a

2
23. If a2

22 = 0 then a2
32 6= 0 (cf.

Theorem 2.59) and we first interchange equation II’ and equation III’. The reduced
system is easy to solve since it is upper triangular. Starting from the bottom and
moving upwards we find

x3 = b33/a
3
33

x2 = (b22 − a2
23x3)/a2

22

x1 = (b11 − a1
12x2 − a1

13x3)/a1
11.

This is known as back substituion.

Exercise 1.2 (Gaussian elimination example)

Solve the linear system Ax :=

 1 1 −1
−1 1 3
2 8 3

x1

x2

x3

 =

1
1
1

 using Gaussian elimi-

nation.

Gaussian elimination with row interchanges can in principle be used to solve
any nonsingular linear system (cf. Theorem 2.59). However, for many systems
occuring in applications this method in its general form is not necessarily the
method of choice. Some of the issues are:

1. Computing time. Solving a dense system of order n by Gaussian elimina-
tion requires O(n3) arithmetic operations and solving large linear systems
can require more time than we are willing to spend. For example, if n = 106

and one arithmetic operation takes 10−12 seconds then the computing time
could be a staggering 10−12n3 ≈ 278 hours.
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2. Row interchanges is another issue in Gaussian elimination. For exam-
ple, if we interchange two rows in a tridiagonal matrix then the tridiagonal
structure is lost in general.

3. Stability. For a well conditioned problem5 Gaussian elimination using float-
ing point arithmetic will in most cases give an accurate solution. However
there is no guarantee for this, see the book [12] for a thorough discussion.

In this chapter we present a problem leading to a n×n tridiagonal linear system.
We show that row interchanges are not necessary for the two problems we consider
and derive stable algorithms that only requires O(n) arithmetic operations.

1.2 The Tridiagonal Second Derivative Matrix
Consider the simple two point boundary value problem

−u′′(x) = f(x), x ∈ [0, 1], u(0) = 0, u(1) = 0, (1.1)

where f is a given continuous function on [0, 1]. This problem is also known as the
one-dimensional (1D) Poisson problem. In principle it is easy to solve (1.1)
exactly. We just integrate f twice and determine the two integration constants
so that the homogeneous boundary conditions u(0) = u(1) = 0 are satisfied. For
example, if f(x) = 1 then u(x) = x(x− 1)/2 is the solution.

Suppose f cannot be integrated exactly. Problem (1.1) can then be solved
approximately using the finite difference method. We need a difference ap-
proximation to the second derivative. If g is a function differentiable at x then

g′(x) = lim
h→0

g(x+ h
2 )− g(x− h

2 )

h

and applying this to a function u that is twice differentiable at x

u′′(x) = lim
h→0

u′(x+ h
2 )− u′(x− h

2 )

h
= lim
h→0

u(x+h)−u(x)
h − u(x)−u(x−h)

h

h

= lim
h→0

u(x+ h)− 2u(x) + u(x− h)

h2
.

To define the points where this difference approximation is used we choose a
positive integer m, let h := 1/(m+1) be the discretization parameter, and replace
the interval [0, 1] by grid points xj := jh for j = 0, 1, . . . ,m+ 1. We then obtain
approximations vj to the exact solution u(xj) for j = 1, . . . ,m by replacing the
differential equation by the difference equation

−vj−1 + 2vj − vj+1

h2
= f(jh), j = 1, . . . ,m, v0 = vm+1 = 0.

5see Chapter 7 for an introduction to condition numbers.
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Moving the h2 factor to the right hand side this can be written as an m×m linear
system

Tv =



2 −1 0
−1 2 −1

0
. . .

. . .
. . .

0
−1 2 −1

0 −1 2




v1

v2

...
vm−1

vm

 = h2


f(h)
f(2h)

...
f
(
(m− 1)h

)
f(mh)

 =: b.

(1.2)
The matrix T is called the second derivative matrix and will occur frequently
in this book. It is our first example of a tridiagonal matrix, T = tridiag(ai, di, ci) ∈
Rm×m, where in this case ai = ci = −1 and di = 2 for all i.

1.3 LU Factorization of a Tridiagonal System
Consider solving the linear system Ax = b where A = tridiag(ai, di, ci) ∈ Cn×n
is tridiagonal. Instead of using Gaussian elimination we can try to construct
triangular matrices L and U such that the product A = LU has the form
d1 c1
a1 d2 c2

. . .
. . .

. . .

an−2 dn−1 cn−1

an−1 dn

 =


1
l1 1

. . .
. . .

ln−1 1



u1 c1

. . .
. . .

un−1 cn−1

un

 .
(1.3)

If L and U can be determined we can find x by solving two simpler systems
Ly = b and Ux = y.

1.3.1 Algorithms

For n = 3 equation (1.3) takes the formd1 c1 0
a1 d2 c2
0 a2 d3

 =

1 0 0
l1 1 0
0 l2 1

u1 c1 0
0 u2 c2
0 0 u3

 =

 u1 c1 0
l1u1 l1c1 + u2 c2

0 l2u2 l2c2 + u3

 ,
and if

u1 = d1, l1 = a1/u1, l2 = a2/u2, u2 = d2 − l1c1, u3 = d3 − l2c2,

then A = LU . For general n, if

u1 = d1, lk = ak/uk, uk+1 = dk+1 − lkck, k = 1, 2, . . . , n− 1, (1.4)
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then A = LU , and if u1, u2, . . . , un−1 are nonzero then (1.4) is well defined. If in
addition un 6= 0 then we can solve Ly = b and Ux = y for y and x.

y1 = b1, yk = bk − lk−1yk−1, k = 2, 3, . . . , n,

xn = yn/un, xk = (yk − ckxk+1)/uk, k = n− 1, . . . , 2, 1.
(1.5)

We formulate this as two algorithms. Since division by zero can occur, the al-
gorithms will not work in general. We give sufficient conditions for success in
Theorem 1.7 below.

Algorithm 1.3 (trifactor)
Vectors l ∈ Cn−1, u ∈ Cn are computed from a, c ∈ Cn−1, d ∈ Cn. This

implements the LU factorization of a tridiagonal matrix.

1 function [ l , u]= t r i f a c t o r ( a , d , c )
2 % [ l , u]= t r i f a c t o r (a , d , c )
3 u=d ; l=a ;
4 for k =1: length ( a )
5 l ( k )=a ( k ) /u( k ) ;
6 u( k+1)=d( k+1)− l ( k ) ∗c ( k ) ;
7 end

Algorithm 1.4 (trisolve)
The solution x of the tridiagonal system LUx = b is found from (1.5). Here
l, c ∈ Cn−1, u ∈ Cn and b ∈ Cn,r for some r ∈ N. Thus we can solve a system
with several righthand sides. The vectors l,u can be output from trifactor.

1 function x = t r i s o l v e ( l , u , c , b )
2 % x = t r i s o l v e ( l , u , c , b )
3 x=b ;
4 n= s ize (b , 1 ) ;
5 for k =2:n
6 x (k , : )=b(k , : )− l ( k−1)∗x (k−1 , : ) ;
7 end
8 x (n , : )=x (n , : ) /u(n) ;
9 for k=n−1:−1:1

10 x (k , : ) =(x (k , : )−c ( k ) ∗x ( k +1 , : ) ) /u( k ) ;
11 end

The number of arithmetic operations to compute the LU factorization of a
tridiagonal matrix using Algorithm 1.3 is 3n− 3, while the number of arithmetic
operations for Algorithm 1.4 is 5n− 4. This means that the complexity to solve a
tridiagonal system is O(n), or more precisely 8n− 7, and this number only grows
linearly with n, while Gaussian elimination on a full n × n system is an O(n3)
process.
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1.3.2 Diagonal dominance

We show that Algorithms 1.3, 1.4 are well defined for a class of tridiagonal linear
systems. Moreover, these linear systems have unique solutions.

Definition 1.5 (Diagonal dominance)
The matrix A = [aij ] ∈ Cn×n is weakly diagonally dominant if

|aii| ≥
∑
j 6=i

|aij |, i = 1, . . . , n. (1.6)

It is strictly diagonally dominant if strict inequality holds for i = 1, . . . , n.

The following holds for strictly diagonally dominant matrices.

Theorem 1.6 (Strict diagonal dominance)
A strictly diagonally dominant matrix is nonsingular. Moreover, the solution x
of Ax = b is bounded as follows:

max
1≤i≤n

|xi| ≤ max
1≤i≤n

( |bi|
σi

)
, where σi := |aii| −

∑
j 6=i

|aij |. (1.7)

Proof. We first show that the bound (1.7) holds for any solution x. Choose k so
that |xk| = maxi|xi|. Then

|bk| = |akkxk +
∑
j 6=k

akjxj | ≥ |akk||xk| −
∑
j 6=k

|akj ||xj | ≥ |xk|
(
|akk| −

∑
j 6=k

|akj |
)
,

and this implies max1≤i≤n|xi| = |xk| ≤ |bk|σk ≤ max1≤i≤n
( |bi|
σi

)
. For nonsingular-

ity, if Ax = 0, then max1≤i≤n|xi| ≤ 0 by (1.7), and so x = 0.

The zero matrix is weakly diagonally dominant and we need additional con-
dition to guarantee nonsingularity. Consider the 3 matrices

A1 =

1 1 0
1 2 1
0 1 1

 , A2 =

1 0 0
0 0 0
0 0 1

 , A3 =

 2 −1 0
−1 2 −1

0 −1 2

 .
They are all weakly diagonally dominant, but A1 and A2 are singular, while A3

is nonsingular. Indeed, for A1 column two is the sum of columns one and three,
A2 has a zero row, and det(A3) = 4 6= 0.

In the literature diagonal dominance is therefore most often defined by in-
cluding some additional sufficient conditions. We also need conditions guarantee-
ing that the LU factorization (1.3) of a tridiagonal matrix is well defined.
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Theorem 1.7 (Weak diagonal dominance)
Suppose A = tridiag(ai, di, ci) ∈ Cn×n is tridiagonal and weakly diagonally dom-
inant. If |d1| > |c1| and ai 6= 0 for i = 1, . . . , n − 2, then A has a unique LU
factorization (1.3). If in addition dn 6= 0, then A is nonsingular.

Proof. The matrix A has an LU factorization if the uk’s in (1.4) are nonzero for
k = 1, . . . , n− 1. For this it is sufficient to show by induction that |uk| > |ck| for
k = 1, . . . , n − 1. By assumption |u1| = |d1| > |c1|. Suppose |uk| > |ck| for some
1 ≤ k ≤ n− 2. Then |ck|/|uk| < 1 and by (1.4) and since ak 6= 0

|uk+1| = |dk+1 − lkck| = |dk+1 −
akck
uk
| ≥ |dk+1| −

|ak||ck|
|uk|

> |dk+1| − |ak|. (1.8)

This also holds for k = n − 1 if an−1 6= 0. By (1.8) and weak diagonal dom-
inance |uk+1| > |dk+1| − |ak| ≥ |ck+1| and it follows by induction that an LU
factorization exists. It is unique since any LU factorization must satisfy (1.4). For
nonsingularity we need to show that un 6= 0. For then by Lemma 1.22, both L
and U are nonsingular, and this is equivalent to A = LU being nonsingular. If
an−1 6= 0 then by (1.4) |un| > |dn| − |an−1| ≥ 0 by weak diagonal dominance,
while if an−1 = 0 then again by (1.8) |un| ≥ |dn| > 0.

Exercise 1.8 (Strict diagonal dominance)
Show that a strictly diagonally dominant and tridiagonal matrix A ∈ Cn×n has a
unique LU factorization6.

Consider now the special system Tv = b given by (1.2). The matrix T is
weakly diagonally dominant and satisfies the additional conditions in Theorem 1.7.
Thus it is nonsingular and we can solve the system in O(n) arithmetic operations
using Algorithms 1.3,1.4.

We could use the explicit inverse of T , given in Exercise 1.10, to compute
the solution of Tv = b as v = T−1b. However this is not a good idea. In
fact, all elements in T−1 are nonzero and the calculation of T−1b requires O(n2)
operations.

Exercise 1.9 (LU factorization of 2. derivative matrix)

6Hint, argue as in (1.8)
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Show that T = LU , where

L =



1 0 · · · · · · 0

− 1
2 1

. . .
...

0 − 2
3 1

. . .
...

...
. . .

. . .
. . . 0

0 · · · 0 −m−1
m 1


,U =



2 −1 0 · · · 0

0 3
2 −1

. . .
...

...
. . .

. . .
. . . 0

...
. . . m

m−1 −1

0 · · · · · · 0 m+1
m


(1.9)

is the LU factorization of T .

Exercise 1.10 (Inverse of 2. derivative matrix)
Let S ∈ Rm×m have elements sij given by

si,j = sj,i =
1

m+ 1
j
(
m+ 1− i

)
, 1 ≤ j ≤ i ≤ m. (1.10)

Show that ST = I and conclude that T−1 = S.

Exercise 1.11 (Central difference approximation of 2. derivative)
Consider

δ2f(x) :=
f(x+ h)− 2f(x) + f(x− h)

h2
, h > 0, f : [x− h, x+ h]→ R.

1. Show using Taylor expansion that if f ∈ C2[x− h, x+ h] then for some η2

δ2f(x) = f
′′
(η2), x− h < η2 < x+ h.

2. If f ∈ C4[x− h, x+ h] then for some η4

δ2f(x) = f
′′
(x) +

h2

12
f (4)(η4), x− h < η4 < x+ h.

δ2f(x) is known as the central difference approximation to the second deriva-
tive at x.

Exercise 1.12 (Two point boundary value problem)
We consider a finite difference method for the two point boundary value problem

−u′′(x) + r(x)u′(x) + q(x)u(x) = f(x), for x ∈ [a, b],

u(a) = g0, u(b) = g1.
(1.11)
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We assume that the given functions f, q and r are continuous on [a, b] and that
q(x) ≥ 0 for x ∈ [a, b]. It can then be shown that (1.11) has a unique solution u.

To solve (1.11) numerically we choose m ∈ N, h = (b−a)/(m+1), xj = a+jh
for j = 0, 1, . . . ,m+ 1 and solve the difference equation

−vj−1 + 2vj − vj+1

h2
+r(xj)

vj+1 − vj−1

2h
+q(xj)vj = f(xj), j = 1, . . . ,m, (1.12)

with v0 = g0 and vm+1 = g1.

(a) Show that (1.12) leads to a tridiagonal linear system Av = b, where A =
tridiag(aj , dj .cj) ∈ Rm×m has elements

aj = −1− h

2
r(xj), cj = −1 +

h

2
r(xj), dj = 2 + h2q(xj),

and

bj =


h2f(x1)− a1g0, if j = 1,

h2f(xj), if 2 ≤ j ≤ m− 1,

h2f(xm)− cmg1, if j = m.

(b) Show that the linear system satisfies the conditions in Theorem 1.7 if the
spacing h is so small that h

2 |r(x)| < 1 for all x ∈ [a, b].

(c) Propose a method to find v1, . . . , vm.

Exercise 1.13 (Two point boundary value problem; computation)

(a) Consider the problem (1.11) with r = 0, f = q = 1 and boundary condi-
tions u(0) = 1, u(1) = 0. The exact solution is u(x) = 1 − sinhx/ sinh 1.
Write a computer program to solve (1.12) for h = 0.1, 0.05, 0.025, 0.0125,
and compute the ”error” max1≤j≤m|u(xj)− vj | for each h.

(b) Make a combined plot of the solution u and the computed points vj, j =
0, . . . ,m+ 1 for h = 0.1.

(c) One can show that the error is proportional to hp for some integer p. Estimate
p based on the error for h = 0.1, 0.05, 0.025, 0.0125.

1.4 Block Multiplication
Block multiplication is a powerful and essentiasl tool for dealing with matrices. It
will be used extensively in this book.
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A rectangular matrix A can be partitioned into submatrices by drawing
horizontal lines between selected rows and vertical lines between selected columns.
For example, the matrix

A =

1 2 3
4 5 6
7 8 9


can be partitioned as

(i)

[
A11 A12

A21 A22

]
=

 1 2 3
4 5 6
7 8 9

 , (ii)
[
a:1,a:2,a:3

]
=

 1 2 3
4 5 6
7 8 9

 ,
(iii)

aT1:

aT2:

aT3:

 =

 1 2 3
4 5 6
7 8 9

 , (iv)
[
A11,A12

]
=

 1 2 3
4 5 6
7 8 9

 .
In (i) the matrix A is divided into four submatrices

A11 =
[
1
]
, A12 =

[
2, 3
]
, A21 =

[
4
7

]
, and A22 =

[
5 6
8 9

]
,

while in (ii) and (iii) A has been partitioned into columns and rows, respectively.
The submatrices in a partition are often referred to as blocks and a partitioned
matrix is sometimes called a block matrix.

In the following we assume that A ∈ Cm×p and B ∈ Cp×n. Here are some
rules and observations for block multiplication.

1. If B =
[
b:1, . . . , b:n

]
is partitioned into columns then the partition of the

product AB into columns is

AB =
[
Ab:1,Ab:2, . . . ,Ab:n

]
.

In particular, if I is the identity matrix of order p then

A = AI = A
[
e1, e2, . . . , ep

]
=
[
Ae1,Ae2, . . . ,Aep

]
and we see that column j of A can be written Aej for j = 1, . . . , p.

2. Similarly, if A is partitioned into rows then

AB =


aT1:

aT2:
...
aTm:

B =


aT1:B
aT2:B

...
aTm:B

 ,
and taking A = I it follows that row i of B can be written eTi B for i =
1, . . . ,m.
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3. It is often useful to write the matrix-vector product Ax as a linear combi-
nation of the columns of A

Ax = x1a:1 + x2a:2 + · · ·+ xpa:p.

4. If B =
[
B1,B2

]
, where B1 ∈ Cp×r and B2 ∈ Cp×(n−r) then

A
[
B1,B2

]
=
[
AB1,AB2

]
.

This follows from Rule 1. by an appropriate grouping of columns.

5. If A =

[
A1

A2

]
, where A1 ∈ Ck×p and A2 ∈ C(m−k)×p then

[
A1

A2

]
B =

[
A1B
A2B

]
.

This follows from Rule 2. by a grouping of rows.

6. If A =
[
A1,A2

]
and B =

[
B1

B2

]
, where A1 ∈ Cm×s, A2 ∈ Cm×(p−s),

B1 ∈ Cs×n and B2 ∈ C(p−s)×n then[
A1,A2

] [B1

B2

]
=
[
A1B1 +A2B2

]
.

Indeed, (AB)ij =
∑p
k=1 aikbkj =

∑s
k=1 aikbkj+

∑p
k=s+1 aikbkj = (A1B1)ij+

(A2B2)ij = (A1B1 +A2B2)ij .

7. If A =

[
A11 A12

A21 A22

]
and B =

[
B11 B12

B21 B22

]
then

[
A11 A12

A21 A22

] [
B11 B12

B21 B22

]
=

[
A11B11 +A12B21 A11B12 +A12B22

A21B11 +A22B21 A21B12 +A22B22

]
,

provided the vertical partition in A matches the horizontal one in B, i.e. the
number of columns in A11 and A21 equals the number of rows in B11 and
B12 and the number of columns in A equals the number of rows in B. To
show this we use Rule 4. to obtain

AB =

[[
A11 A12

A21 A22

] [
B11

B21

]
,

[
A11 A12

A21 A22

] [
B12

B22

]]
.

We complete the proof using Rules 5. and 6.

8. Consider finally the general case. If all the matrix products AikBkj in

Cij =

s∑
k=1

AikBkj , i = 1, . . . , p, j = 1, . . . , q
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are well defined thenA11 · · · A1s

...
...

Ap1 · · · Aps


B11 · · · B1q

...
...

Bs1 · · · Bsq

 =

C11 · · · C1q

...
...

Cp1 · · · Cpq

 .
The requirements are that

• the number of columns in A is equal to the number of rows in B.

• the position of the vertical partition lines in A has to mach the position
of the horizontal partition lines in B. The horizontal lines in A and
the vertical lines in B can be anywhere.

Exercise 1.14 (Matrix element as a quadratic form)
For any matrix A show that aij = eTi Aej for all i, j.

Exercise 1.15 (Outer product expansion of a matrix)
For any matrix A ∈ Cm×n show that A =

∑m
i=1

∑n
j=1 aijeie

T
j .

Exercise 1.16 (The product ATA)
Let B = ATA. Explain why this product is defined for any matrix A. Show that
bij = aT:ia:j for all i, j.

Exercise 1.17 (Outer product expansion)
For A ∈ Rm×n and B ∈ Rp×n show that

ABT = a:1b
T
:1 + a:2b

T
:2 + · · ·+ a:nb

T
:n.

This is called the outer product expansion of the columns of A and B.

Exercise 1.18 (System with many right hand sides; compact form)
Suppose A ∈ Rm×n, B ∈ Rm×p, and X ∈ Rn×p. Show that

AX = B ⇐⇒ Ax:j = b:j , j = 1, . . . , p.

Exercise 1.19 (Block multiplication example)

Suppose A =
[
A1,A2

]
and B =

[
B1

0

]
. When is AB = A1B1?
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Exercise 1.20 (Another block multiplication example)
Suppose A,B,C ∈ Rn×n are given in block form by

A :=

[
λ aT

0 A1

]
, B :=

[
1 0T

0 B1

]
, C :=

[
1 0T

0 C1

]
,

where A1,B1,C1 ∈ R(n−1)×(n−1). Show that

CAB =

[
λ aTB1

0 C1A1B1

]
.

1.5 Triangular Matrices; Basic facts
We need some basic facts about triangular matrices and we start with

Lemma 1.21 (Inverse of a block triangular matrix)
Suppose

A =

[
A11 A12

0 A22

]
where A,A11 and A22 are square matrices. Then A is nonsingular if and only if
both A11 and A22 are nonsingular. In that case

A−1 =

[
A−1

11 C

0 A−1
22

]
, (1.13)

for some matrix C.

Proof. Suppose A is nonsingular. We partition B := A−1 conformally with A
and have

BA =

[
B11 B12

B21 B22

] [
A11 A12

0 A22

]
=

[
I 0
0 I

]
= I

Using block-multiplication we find

B11A11 = I, B21A11 = 0, B21A12 +B22A22 = I, B11A12 +B12A22 = 0.

The first equation implies that A11 is nonsingular, this in turn implies that B21 =
0A−1

11 = 0 in the second equation, and then the third equation simplifies to
B22A22 = I. We conclude that also A22 is nonsingular. From the fourth equation
we find

B12 = C = −A−1
11 A12A

−1
22 .

Conversely, if A11 and A22 are nonsingular then[
A−1

11 −A−1
11 A12A

−1
22

0 A−1
22

] [
A11 A12

0 A22

]
=

[
I 0
0 I

]
= I
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and A is nonsingular with the indicated inverse.

Consider now a triangular matrix.

Lemma 1.22 (Inverse of a triangular matrix)
An upper (lower) triangular matrix A = [aij ] ∈ Cn×n is nonsingular if and only
if the diagonal elements aii, i = 1, . . . , n are nonzero. In that case the inverse is
upper (lower) triangular with diagonal elements a−1

ii , i = 1, . . . , n.

Proof. We use induction on n. The result holds for n = 1. The 1-by-1 matrix
A = [a11] is nonsingular if and only if a11 6= 0 and in that case A−1 = [a−1

11 ].
Suppose the result holds for n = k and let A ∈ C(k+1)×(k+1) be upper triangular.
We partition A in the form

A =

[
Ak ak
0 ak+1,k+1

]
and note that Ak ∈ Ck×k is upper triangular. By Lemma 1.21 A is nonsingular
if and only if Ak and (ak+1,k+1) are nonsingular and in that case

A−1 =

[
A−1
k c
0 a−1

k+1,k+1

]
,

for some c ∈ Cn. By the induction hypothesis Ak is nonsingular if and only if the
diagonal elements a11, . . . , akk of Ak are nonzero and in that case A−1

k is upper
triangular with diagonal elements a−1

ii , i = 1, . . . , k. The result for A follows.

Lemma 1.23 (Product of triangular matrices)
The product C = AB = (cij) of two upper (lower) triangular matrices A = (aij)
and B = (bij) is upper (lower) triangular with diagonal elements cii = aiibii for
all i.

Proof. Exercise.

A matrix is unit triangular if it is triangular with 1’s on the diagonal.

Lemma 1.24 (Unit triangular matrices)
For a unit upper (lower) triangular matrix A ∈ Cn×n:

1. A is nonsingular and the inverse is unit upper(lower) triangular.

2. The product of two unit upper (lower) triangular matrices is unit upper
(lower) triangular.
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Proof. 1. follows from Lemma 1.22, while Lemma 1.23 implies 2.

1.6 Review Questions
1.6.1 Define the second derivative matrix T . Why is it nonsingular?

1.6.2 Is a weakly diagonally dominant matrix nonsingular?

1.6.3 Why do we not use the explicit inverse of T to solve the linear system
Tx = b

1.6.4 Show that a strictly diagonally dominant matrix is nonsingular.

1.6.5 Does a tridiagonal matrix always have an LU factorization?
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LU Factorizations

Numerical methods for solving systems of linear equations are often based on
writing a matrix as a product of simpler matrices. Such a factorization is useful
if the corresponding matrix problem for each of the factors is simple to solve, and
extra numerical stability issues are not introduced. Examples of factorizations
were encountered in Chapter 1 and we saw how an LU factorization can be used to
solve certain tridiagonal systems efficiently. Other factorizations based on unitary
matrices will be considered later in this book.

In this chapter we consider the general theory of LU factorizations. We con-
sider some related factorizations called symmetric LU or LDLT, and Cholesky.
The latter can be used for symmetric positive matrices, and we give an introduc-
tion to positive definite and positive semindefinite matrices. We consider a matrix
formulation of Gaussian elimination using Gauss transformations and permutation
matrices leading to the PLU factorization of a matrix.

2.1 Algorithms for triangular systems
Recall that a matrix U is upper triangular if uij = 0 for i > j, and a matrix L

is lower triangular if lij = 0 for i < j. If U is upper triangular then UT is lower
triangular.

A nonsingular triangular linear systemAx = b is easy to solve. By Lemma 1.22
A has nonzero diagonal elements. Consider first the lower triangular case. For
n = 3 the system is a11 0 0

a21 a22 0
a31 a32 a33

x1

x2

x3

 =

b1b2
b3

 .
51
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
a11 0 0 0 0
a21 a22 0 0 0
0 a32 a33 0 0
0 0 a43 a44 0
0 0 0 a54 a55

 ,

a11 0 0 0 0
a21 a22 0 0 0
a31 a32 a33 0 0
0 a42 a43 a44 0
0 0 a53 a54 a55


Figure 2.1. Lower triangular 5×5 band matrices: d = 1 (left) and d = 2

(right).

From the first equation we find x1 = b1/a11. Solving the second equation for x2

we obtain x2 = (b2 − a21x1)/a22. Finally the third equation gives x3 = (b3 −
a31x1 − a32x2)/a33. This process is known as forward substitution. In general

xk =
(
bk −

k−1∑
j=1

ak,jxj
)
/akk, k = 1, 2, . . . , n. (2.1)

When A is a lower triangular band matrix the number of arithmetic operations
necessary to find x can be reduced. Suppose A is a lower triangular d-banded,
so that ak,j = 0 for j /∈ {lk, lk + 1, . . . , k} for k = 1, 2, . . . , n, and where lk :=
max(1, k−d), see Figure 2.1. For a lower triangular d-band matrix the calculation
in (2.1) can be simplified as follows

xk =
(
bk −

k−1∑
j=lk

ak,jxj
)
/akk, k = 1, 2, . . . , n. (2.2)

Note that (2.2) reduces to (2.1) if d = n. Letting A(k, lk : k − 1) ∗ x(lk : k − 1)

denote the sum
∑k−1
j=lk

akjxj we arrive at the following algorithm.

Algorithm 2.1 (forwardsolve (row oriented))
Given a nonsingular lower triangular d-banded matrix A ∈ Cn×n and b ∈ Cn.
An x ∈ Cn is computed so that Ax = b.

1 function x=r fo rwardso lv e (A, b , d)
2 n=length (b) ; x=b ;
3 x (1)=b (1) /A(1 , 1 ) ;
4 for k=2:n
5 l k=max(1 , k−d) ;
6 x ( k )=(b( k )−A(k , l k : k−1)∗x ( lk : k−1) ) /A(k , k ) ;
7 end

A system Ax = b, where A is upper triangular must be solved by back
substitution or ’bottom-up’. We first find xn from the last equation and then
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move upwards for the remaining unknowns. For an upper triangular d-banded
matrix this leads to the following algorithm.

Algorithm 2.2 (backsolve (row oriented))
Given a nonsingular upper triangular d-banded matrix A ∈ Cn×n and b ∈ Cn.
An x ∈ Cn is computed so that Ax = b.

1 function x=rbackso lve (A, b , d)
2 n=length (b) ; x=b ;
3 x (n)=b(n) /A(n , n) ;
4 for k=n−1:−1:1
5 uk=min(n , k+d) ;
6 x ( k )=(b( k )−A(k , k+1:uk ) ∗x ( k+1:uk ) ) /A(k , k ) ;
7 end

Exercise 2.3 ( Column oriented forward- and backsolve)
The intial ”r” in the names of Algorithms 2.1,2.2 signals that these algorithms
are row oriented. For each k we take the inner product of a part of a row with
the already computed unknowns. In this exercise we develop column oriented
vectorized versions of forward and backward substitution. Consider the system
Ax = b, where A ∈ Cn×n is lower triangular. Suppose after k − 1 steps of the
algorithm we have a reduced system in the form

ak,k 0 · · · 0
ak+1,k ak+1,k+1 · · · 0

...
. . .

...
an,k · · · an×n



xk
xk+1

...
xn

 =


bk
bk+1

...
bn

 .
This system is of order n− k + 1. The unknowns are xk, . . . , xn.

a) We see that xk = bk/ak,k and eliminating xk from the remaining equations
we obtain a system of order n− k with unknowns xk+1, . . . , xn

ak+1,k+1 0 · · · 0
ak+2,k+1 ak+2,k+2 · · · 0

...
. . .

...
an,k+1 · · · an×n


xk+1

...
xn

 =

bk+1

...
bn

− xk
ak+1,k

...
an,k

 .
Thus at the kth step, k = 1, 2, . . . n we set xk = bk/A(k, k) and update b as follows:

b(k + 1 : n) = b(k + 1 : n)− x(k) ∗A(k + 1 : n, k).

This leads to the following algorithm.
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Algorithm 2.4 (Forward solve (column oriented))
Given a nonsingular lower triangular d-banded matrix A ∈ Cn×n and b ∈ Cn.
An x ∈ Cn is computed so that Ax = b.

1 function x=c fo rwardso lve (A, b , d)
2 x=b ; n=length (b) ;
3 for k=1:n−1
4 x ( k )=b( k ) /A(k , k ) ; uk=min(n , k+d) ;
5 b( k+1:uk )=b( k+1:uk )−A( k+1:uk , k ) ∗x ( k ) ;
6 end
7 x (n)=b(n) /A(n , n) ;
8 end

b) Suppose now A ∈ Cn×n is nonsingular, upper triangular, d-banded, and
b ∈ Cn. Justify the following column oriented vectorized algorithms for solving
Ax = b.
Algorithm 2.5 (Backsolve (column oriented))
Given a nonsingular upper triangular d-banded matrix A ∈ Cn×n and b ∈ Cn.
An x ∈ Cn is computed so that Ax = b.

1 function x=cbackso lve (A, b , d)
2 x=b ; n=length (b) ;
3 for k=n:−1:2
4 x ( k )=b( k ) /A(k , k ) ; l k=max(1 , k−d) ;
5 b( lk : k−1)=b( lk : k−1)−A( lk : k−1,k ) ∗x ( k ) ;
6 end
7 x (1)=b (1) /A(1 , 1 ) ;
8 end

Exercise 2.6 (Computing the inverse of a triangular matrix)
SupposeA ∈ Cn×n is a nonsingular triangular matrix with inverseB = [b1, . . . , bn].
The kth column bk of B is the solution of the linear systems Abk = ek. Write
this system as a 2× 2 triangular block system and explain why we can find bk by
solving the linear systems

A(k :n, k :n)bk(k :n) = I(k :n, k), k = 1, . . . , n lower triangular, (2.3)

A(1:k, 1:k)bk(1:k) = I(1:k, k), k = n, n− 1, . . . , 1, upper triangular (2.4)

Is it possible to store the interesting part of bk in A as soon as it is computed?

2.2 The LU Factorization
We say that A = LU is an LU factorization of A ∈ Cn×n if L ∈ Cn×n is
lower triangular (left triangular) and U ∈ Cn×n is upper triangular (right
triangular).
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2.2.1 The LU theorem

Consider finding L and U . Equating the i, j element in A and the product LU ,
and noting that li,j = 0 for j > i and ui,j = 0 for i > j, we obtain an equation

aij =

min(i,j)∑
k=1

likukj , , i, j = 1, 2, . . . , n (2.5)

involving the unknown elements in L and U . This is an underdetermined system
of n2 equations in n2 +n unknowns. One way to reduce the number of unknowns
is to require that one of the triangular matrices should be unit triangular, i. e.,
have ones on the diagonal. Other scalings of the diagonals are also possible, see
Section 2.6. Choosing U to be unit triangular is sometimes known as a Crout
factorization.

Henry Jensen, 1915-1974 (left), Prescott Durand Crout, 1907-1984. Jensen worked
on LU factorizations. His name is also associated with a very useful inequality (cf.
Theorem 7.37).

For our discussion we will assume that L is unit triangular. Three things can
happen. An LU factorization exists and is unique, it exists, but it is not unique,
or it does not exist. The following 2× 2 example illustrates this.

Example 2.7 (LU of 2× 2 matrix)
Let a, b, c, d ∈ C. An LU factorization of A =

[
a b
c d

]
must satisfy the equations[

a b
c d

]
=

[
1 0
l1 1

] [
u1 u3

0 u2

]
=

[
u1 u3

l1u1 l1u3 + u2

]
for the unknowns l1 in L and u1, u2, u3 in U . The equations are

u1 = a. u3 = b, l1a = c, u2 = d− l1b.
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These equations do not always have a solution. Indeed, the main problem is the
nonlinear equation l1a = c. There are three cases

1. a 6= 0: The matrix has a unique LU factorization with l1 = c/a.

2. a = 0, c 6= 0: No LU factorization exists.

3. a = c = 0: The LU factorization exists, but it is not unique. Any value for
l1 can be used.

Of the four matrices

A1 :=

[
2 −1
−1 2

]
, A2 :=

[
0 1
1 1

]
, A3 :=

[
1 1
1 1

]
, A4 :=

[
0 1
0 2

]
.

A1 has a unique LU factorization, A2 has no LU factorization, A3 has a unique
LU factorization even if it is singular, and A4 has an LU factorization, but it is
not unique.

Example 2.8 (LU of 3× 3 matrices)
The matrix

A :=

1 1 1
1 1 2
1 1 3


has an LU factorization A = LU , with

L =

1 0 0
1 1 0
1 y 1

 , U =

1 1 1
0 0 1
0 0 2− y

 .
It is not unique since A = LU for any y ∈ C.

To characterize matrices with a unique LU factorization we first give a defi-
nition.

Definition 2.9 (Principal submatrix)
For k = 1, . . . , n the matrices A[k] ∈ Ck×k given by

A[k] := A(1 : k, 1 : k) =

a11 · · · ak1

...
...

ak1 · · · akk


are called the leading principal submatrices of A ∈ Cn×n. More generally, a
matrix B ∈ Ck×k is called a principal submatrix of A if B = A(r, r), where
r = [r1, . . . , rk] for some 1 ≤ r1 < · · · < rk ≤ n. Thus,

bi,j = ari,rj , i, j = 1, . . . , k.
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The determinant of a (leading) principal submatrix is called a (leading) princi-
pal minor.

A principal submatrix is leading if rj = j for j = 1, . . . , k. Also a principal
submatrix is special in that it uses the same rows and columns of A. For k = 1
The only principal submatrices of order k = 1 are the diagonal elements of A.

Example 2.10 (Principal submatrices)

The principal submatrices of A =
[

1 2 3
4 5 6
7 8 9

]
are

[1], [5], [9], [ 1 2
4 5 ] , [ 1 3

7 9 ] , [ 5 6
8 9 ] , A.

The leading principal submatrices are

[1], [ 1 2
4 5 ] , A.

In preparation for the main theorem about LU factorization we prove a
simple lemma.

Lemma 2.11 (LU of leading principal sub matrices)
Suppose A = LU is an LU factorization of A ∈ Cn×n. For k = 1, . . . , n let
A[k],L[k],U [k] be the leading principal submatrices of A,L,U , respectively. Then
A[k] = L[k]U [k] is an LU factorization of A[k] for k = 1, . . . , n.

Proof. For k = 1, . . . , n− 1 we partition A = LU as follows:

A =

[
A[k] Bk

Ck F k

]
=

[
L[k] 0
Mk Nk

] [
U [k] Sk

0 T k

]
= LU , (2.6)

where F k,Nk,T k ∈ C(n−k)×(n−k). Using block multiplication we find A[k] =
L[k]U [k]. Since L[k] is unit lower triangular and U [k] is upper triangular this is
an LU factorization of A[k].

The following theorem give a necessary and sufficient condition for existence
of a unique LU factorization.

Theorem 2.12 (LU theorem)
A square matrix A ∈ Cn×n has a unique LU factorization if and only if the leading
principal submatrices A[k] of A are nonsingular for k = 1, . . . , n− 1.

Proof. Suppose A[k] is nonsingular for k = 1, . . . , n − 1. We use induction on
n to show that A has a unique LU factorization. The result is clearly true for
n = 1, since the unique LU factorization of a 1-by-1 matrix is [a11] = [1][a11].
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Suppose that A[n−1] has a unique LU factorization A[n−1] = Ln−1Un−1, and
that A[1], . . . ,A[n−1] are nonsingular. By block multiplication

A =

[
A[n−1] b
cT ann

]
=

[
Ln−1 0
mT 1

] [
Un−1 s

0 t

]
= LU , (2.7)

if and only if m, s ∈ Cn−1 and t ∈ C satisfy b = Ln−1s, c
T = mTUn−1, and

ann = mTs + t. Since A[n−1] is nonsingular it follows that Ln−1 and Un−1

are nonsingular and therefore m, s, and t are uniquely given. Thus (2.7) gives a
unique LU factorization of A.

Conversely, suppose A has a unique LU factorization A = LU . By Lemma
2.11 A[k] = L[k]U [k] is an LU factorization of A[k] for k = 1, . . . , n− 1. Suppose
A[k] is singular for some k ≤ n−1. We will show that this leads to a contradiction.
Let k be the smallest integer so that A[k] is singular. Since A[j] is nonsingular for
j ≤ k − 1 it follows from what we have already shown that A[k] = L[k]U [k] is the
unique LU factorization of A[k]. The matrix U [k] is singular since A[k] is singular
and L[k] is nonsingular. By block multiplication in (2.6) we have Ck = MkU [k]

or UT
[k]M

T
k = CT

k . This can be written as n − k linear systems for the columns

of MT
k . By assumption MT

k exists, but since UT
[k] is singular Mk is not unique,

a contradiction.

A matrix A ∈ Cn×n can have an LU factorization even if A[k] is singular for
some k < n. By Theorem 2.12 such an LU factorization cannot be unique.

Remark 2.13 (LU of upper triangular matrix)
An LU factorization of an upper triangular matrix A is A = IA so it always
exists even if A has zeros somewhere on the diagonal. By Lemma 1.22, if some
akk is zero then A[k] is singular and the LU factorization cannot be unique. In
particular, for the zero matrix any unit lower triangular matrix can be used as L
in an LU factorization.

Remark 2.14 (PLU factorization)
We have shown that a matrix A ∈ Cn×n has a unique LU factorization if and
only if the leading principle submatrices A[k] are nonsingular for k = 1, . . . , n−1.
This condition seems fairly restrictive. However, for a nonsingular matrix A
there always is a permutation of the rows so that the permuted matrix has an LU
factorization. We obtain a factorization of the form P TA = LU or equivalently
A = PLU , where P is a permutation matrix, L is unit lower triangular, and U is
upper triangular. We call this a PLU factorization of A. (Cf. Theorem 2.60).

Exercise 2.15 (Row interchange)
Show that A =

[
1 1
0 1

]
has a unique LU factorization. Note that we have only

interchanged rows in Example 2.7.
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Exercise 2.16 (LU of singular matrix)
Find an LU factorization of the singular matrix [ 1 1

1 1 ]. Is it unique?

Exercise 2.17 (LU and determinant)
Suppose A has an LU factorization A = LU . Show that det(A[k]) = u11u22 · · ·ukk
for k = 1, . . . , n.

Exercise 2.18 (Diagonal elements in U)
Suppose A ∈ Cn×n and A[k] is nonsingular for k = 1, . . . , n−1. Use Exercise 2.17
to show that the diagonal elements ukk in the LU factorization are

u11 = a11, ukk =
det(A[k])

det(A[k−1])
, for k = 2, . . . , n. (2.8)

2.2.2 Operation count

It is useful to have a number which indicates the amount of work an algorithm re-
quires. In this book we measure this by estimating the total number of arithmetic
operations. We count both additions, subtractions, multiplications and divisions,
but not work on indices. As an example it is shown below that the calculation to
find the LU factorization of a full matrix of order n is exactly

NLU :=
2

3
n3 − 1

2
n2 − 1

6
n. (2.9)

We are only interested in this number when n is large and for such n the term 2
3n

3

dominates. We therefore regularly ignore lower order terms and use number of
arithmetic operations both for the exact count and for the highest order term.
We also say more loosely that the the number of operations is O(n3). We will
use the number of operations counted in one of these ways as a measure of the
complexity of an algorithm and say that the complexity of LU factorization
of a full matrix is O(n3) or more precisely 2

3n
3 .

We will compare the number of arithmetic operations of many algorithms
with the number of arithmetic operations of LU factorization and define for n ∈ N
the number Gn

7 as follows:

Definition 2.19 (Gn := 2
3n

3)
We define Gn := 2

3n
3.

The complexity of solving a system Ax = b, where A ∈ Rn×n is a full
upper or lower triangular matrix is easily shown to be exactly n2. This number
is reduced to n2 − n if A has ones on the diagonal.

7It can be shown that the complexity of Gaussian elimination is also equal to Gn.



60 Chapter 2. LU Factorizations

Consider now finding the total number of arithmetic operations, NLU for
LU factorization. Suppose in (2.7) that k := n − 1 and Lk and Uk are already
computed. To find L and U we have to solve the triangular systems Lks = b,
UT
km = c, and then t = ak+1,k+1 −mTs. Since Lk is unit lower triangular and

UT
k is lower triangular of order k this requires k(k− 1), k2, and 2k operations for

s, m, and t, respecively, a total of k(2k + 1) operations. Taking also Lk and Uk

into consideration we obtain

NLU =

n−1∑
k=1

k(2k + 1) = 2

n−1∑
k=1

k2 +

n−1∑
k=1

k =
2

3
n(n− 1)(n− 1

2
) +

1

2
n(n− 1)

which equals the number in (2.9).
There is a quick way to arrive at the estimate 2n3/3. We only consider the

arithmetic operations contributing to the leading term (the inner loops). Then we
replace sums by integrals letting the summation indices be continuous variables
and adjust limits of integration in an insightful way to simplify the calculation.
We find

NLU =

n−1∑
k=1

k(2k + 1) ≈
n−1∑
k=1

2k2 ≈
∫ n−1

1

2k2dk ≈
∫ n

0

2k2dk = Gn.

We see that LU factorization is an O(n3) process while solving a trian-
gular system requires O(n2) arithmetic operations. Thus, if n = 106 and one
arithmetic operation requires c = 10−12 seconds of computing time then cn3 =
106 seconds ≈ 278 hours and cn2 = 1 second, giving dramatic differences in
computing time.

Exercise 2.20 (Finite sums of integers)
Use induction on m, or some other method, to show that

1 + 2 + · · ·+m =
1

2
m(m+ 1), (2.10)

12 + 22 + · · ·+m2 =
1

3
m(m+

1

2
)(m+ 1), (2.11)

1 + 3 + 5 + · · ·+ 2m− 1 = m2, (2.12)

1 ∗ 2 + 2 ∗ 3 + 3 ∗ 4 + · · ·+ (m− 1)m =
1

3
(m− 1)m(m+ 1). (2.13)

Exercise 2.21 (Operations)
To solve an upper triangular linear system by back substitution takes n2 arithmetic
operations. Show that the number of arithmetic operations in (2.4) is 1

3n(n+ 1
2 )(n+

1) ≈ 1
2Gn.
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Exercise 2.22 (Multiplying triangular matrices)
Show that the matrix multiplication AB can be done in 1

3n(2n2 + 1) ≈ Gn arith-
metic operations when A ∈ Rn×n is lower triangular and B ∈ Rn×n is upper
triangular. What about BA?

2.3 The Symmetric LU Factorization
We consider next LU factorization of a real symmetric matrix.

Definition 2.23 (Symmetric LU)
Suppose A ∈ Rn×n. A factorization A = LDLT , where L is unit lower trian-
gular and D is diagonal is called a symmetric LU factorization or an LDLT
factorization of A.

A matrix which has a symmetric LU factorization must be symmetric since
AT = (LDLT )T = LDLT = A.

Example 2.24 (2× 2 symmetric LU)
Let a, b, c ∈ R. A symmetric LU factorization of A :=

[
a b
b c

]
must satisfy the

equations [
a b
b c

]
=

[
1 0
l1 1

] [
d1 0
0 d2

] [
1 l1
0 1

]
=

[
d1 d1l1
l1d1 l21d1 + d2

]
for the unknowns l1 in L and d1, d2 in D. The equations are

d1 = a. l1a = b, d2 = c− al21.

As in the nonsymmetric case the main problem is the nonlinear equation. Again
there are three cases

1. a 6= 0: The matrix has a unique symmetric LU factorization with l1 = b/a.

2. a = 0, b 6= 0: No symmetric LU factorization exists.

3. a = b = 0: The LU factorization exists, but it is not unique. Any value for
l1 can be used.

Consider the four matrices

A1 :=

[
2 −1
−1 2

]
, A2 :=

[
0 1
1 1

]
, A3 :=

[
1 1
1 1

]
, A4 :=

[
0 0
0 2

]
.

Then the symmetric LU factorization is unique for A1 and A3, is not unique for
A4 and does not exist for A2.
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In view of this example it might come as no surprise that Theorem 2.12
carries over to the symmetric case. Again we start with an lemma.

Lemma 2.25 (Symmetric LU of leading principal sub matrices)
Suppose A = LDLT is a symmetric LU factorization of A ∈ Rn×n. For k =
1, . . . , n let A[k],L[k],D[k] be the leading principal submatrices of A,L,D, re-

spectively. Then A[k] = L[k]D[k]L
T
[k] is a symmetric LU factorization of A[k] for

k = 1, . . . , n.

Proof. For k = 1, . . . , n− 1 we partition A = LDLT as follows:

A =

[
A[k] Bk

Ck F k

]
=

[
L[k] 0
Mk Nk

] [
D[k] 0

0 Ek

] [
LT[k] MT

k

0 NT
k

]
= LDLT , (2.14)

where F k,Nk,Ek ∈ Rn−k,n−k. Block multiplication gives A[k] = L[k]D[k]L
T
[k].

Since L[k] is unit lower triangular and D[k] is diagonal this is a symmetric LU
factorization of A[k].

Theorem 2.26 (Symmetric LU theorem)
The matrix A ∈ Rn×n has a unique symmetric LU factorization if and only if
A = AT and A[k] is nonsingular for k = 1, . . . , n− 1.

Proof. If A is nonsingular then D is nonsingular and it can be shown that the
theorem is a simple corollary of the LU theorem. To prove the general case we
repeat the proof of Theorem 2.12 incorporating the necessary changes. Suppose
AT = A and that A[k] is nonsingular for k = 1, . . . , n− 1. Note that AT

[k] = A[k]

for k = 1, . . . , n. We use induction on n to show that A has a unique symmetric
LU factorization. The result is clearly true for n = 1, since the unique symmetric
LU factorization of a 1-by-1 matrix is [a11] = [1][a11][1]. Suppose that A[n−1]

has a unique symmetric LU factorization A[n−1] = Ln−1Dn−1L
T
n−1, and that

A[1], . . . ,A[n−1] are nonsingular. By block multiplication

A =

[
A[n−1] b

bT ann

]
=

[
Ln−1 0
xT 1

] [
Dn−1 0

0 dnn

] [
LTn−1 x
0T 1

]
, (2.15)

if and only if b = Ln−1Dn−1x and ann = dnn + xTDn−1x. Thus we obtain
a symmetric LU factorization of A that is unique since Ln−1 and Dn−1 are
nonsingular.

For the converse we use Lemma 2.25 in the same way as Lemma 2.11 was
used to prove Theorem 2.12.

The number of arithmetic operations for the symmetric LU fartorization is
approximately 1

2Gn, half the number of operations needed for the LU factorization.
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For in the LU factorization we needed to solve two triangular systems to find the
vectors s and m, while only one such system is needed to find x in the symmetric
case (2.15). The work to find dnn is O(n) and does not contribute to the highest
order term.

2.4 Block LU factorization
Suppose A ∈ Cn×n is a block matrix of the form

A :=

A11 · · · A1m

...
...

Am1 · · · Amm

 , (2.16)

where each diagonal block Aii is square. We call the factorization

A = LU =


I
L21 I

...
. . .

Lm1 · · · Lm,m−1 I



U11 · · · U1m

U21 · · · U2m

. . .
...

Umm

 (2.17)

a block LU factorization of A. Here the ith diagonal blocks I and U ii in L
and U have the same size as Aii, the ith diagonal block in A.

The results for elementwise LU factorization carry over to block LU factor-
ization as follows.

Theorem 2.27 (Block LU theorem)
Suppose A ∈ Cn×n is a block matrix of the form (2.16). Then A has a unique block
LU factorization (2.17) if and only if the leading principal block submatrices

A{k} :=

A11 · · · A1k

...
...

Ak1 · · · Akk


are nonsingular for k = 1, . . . ,m− 1.

Proof. Suppose A{k} is nonsingular for k = 1, . . . ,m − 1. Following the proof
in Theorem 2.12 suppose A{m−1} has a unique block LU factorization A{m−1} =
L{m−1}U{m−1}, and that A{1}, . . . ,A{m−1} are nonsingular. Then L{m−1} and
U{m−1} are nonsingular and

A =

[
A{m−1} B

CT Amm

]
=

[
L{m−1} 0

CTU−1
{m−1} I

] [
U{m−1} L−1

{m−1}B

0 Amm −CTU−1
{m−1}L

−1
{m−1}B

]
,

(2.18)
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is a block LU factorization of A. It is unique by derivation. Conversely, suppose
A has a unique block LU factorization A = LU . Then as in Lemma 2.11 it is
easily seen that A{k} = L{k}U{k} is the unique block LU factorization of A[k] for
k = 1, . . . ,m. The rest of the proof is similar to the proof of Theorem 2.12.

Remark 2.28 (Comparing LU and block LU)
The number of arithmetic operations for the block LU factorization is the same
as for the ordinary LU factorization. An advantage of the block method is that it
combines many of the operations into matrix operations.

Remark 2.29 (A block LU is not an LU)
Note that (2.17) is not an LU factorization of A since the U ii’s are not upper
triangular in general. To relate the block LU factorization to the usual LU fac-
torization we assume that each U ii has an LU factorization U ii = L̃iiŨ ii. Then

A = L̂Û , where L̂ := Ldiag(L̃ii) and Û := diag(L̃
−1

ii )U , and this is an ordinary
LU factorization of A.

Exercise 2.30 (Making block LU into LU)

Show that L̂ is unit lower triangular and Û is upper triangular.

2.5 Positive Definite and Semidefinite Matrices
Symmetric positive definite matrices occur often in scientific computing. In this
section we study some properties of positive definite matrices. We study only real
matrices, but consider both the symmetric and nonsymmetric case.

2.5.1 Definitions and examples

Suppose A ∈ Rn×n is a square matrix. The function f : Rn → R given by

f(x) = xTAx =

n∑
i=1

n∑
j=1

aijxixj

is called a quadratic form. We say that A is

(i) positive definite if xTAx > 0 for all nonzero x ∈ Rn.

(ii) positive semidefinite if xTAx ≥ 0 for all x ∈ Rn.

(iii) negative (semi)definite if −A is positive (semi)definite.
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(iv) symmetric positive (semi)definite if A is symmetric in addition to being
positive (semi)definite.

(v) symmetric negative (semi)definite if A is symmetric in addition to being
negative (semi)definite.

We observe the following.

• A matrix is positive definite if it is positive semidefinite and in addition

xTAx = 0⇒ x = 0. (2.19)

• A positive definite matrix must be nonsingular. Indeed, if Ax = 0 for some
x ∈ Rn then xTAx = 0 which by (2.19) implies that x = 0.

The zero-matrix is symmetric positive semidefinite, while the unit matrix is
symmetric positive definite.

We considered only real valued vectors x above. For symmetric matrices we
have:

Lemma 2.31 (Quadratic form with x ∈ Cn)
If A ∈ Rn×n is symmetric positive definite then x∗Ax > 0 for all nonzero x ∈ Cn.

Proof. Suppose x := y+ iz is nonzero with x,y ∈ Rn and i :=
√
−1. Since A is

symmetric we find x∗Ax = (y− iz)TA(y+ iz) = yTAy+zTAz. This is positive
since A is positive definite and at least one of the vectors y, z is nonzero.

Example 2.32 (2× 2 positive definite)
The family of matrices

A[a] :=

[
2 2− a
a 1

]
, a ∈ R

is positive definite for any a ∈ R. Indeed for any nonzero x = [x1, x2]T ∈ R2

xTAx = 2x2
1 + (2− a)x1x2 + ax2x1 + x2

2 = x2
1 + (x1 + x2)2 > 0.

Lemma 2.33 (T is symmetric positive definite)
The second derivative matrix T = tridiag(−1, 2,−1) ∈ Rn×n is symmetric positive
definite.
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Proof. Clearly T is symmetric. For any x ∈ Rn

xTTx = 2

n∑
i=1

x2
i −

n−1∑
i=1

xixi+1 −
n∑
i=2

xi−1xi

=

n−1∑
i=1

x2
i − 2

n−1∑
i=1

xixi+1 +

n−1∑
i=1

x2
i+1 + x2

1 + x2
n

= x2
1 + x2

n +

n−1∑
i=1

(xi+1 − xi)2.

Thus xTTx ≥ 0 and if xTTx = 0 then x1 = xn = 0 and xi = xi+1 for i =
1, . . . , n− 1 which implies that x = 0. Hence T is positive definite.

Symmetric positive definite matrices is important in nonlinear optimization.

Example 2.34 (Gradient and hessian)
Consider (cf. (C.1)) the gradient ∇f and hessian Hf of a function f : Ω ⊂ Rn →
R

∇f(x) =


∂f(x)
∂x1

...
∂f(x)
∂xn

 ∈ Rn, Hf(x) =


∂2f(x)
∂x1∂x1

. . . ∂2f(x)
∂x1∂xn

...
...

∂2f(x)
∂xn∂x1

. . . ∂2f(x)
∂xn∂xn

 ∈ Rn×n.

We assume that f has continuous first and second partial derivatives on Ω.
Under suitable conditions on the domain Ω it is shown in advanced calculus

texts that if ∇f(x) = 0 and Hf(x) is symmetric positive definite then x is a
local minimum for f . This can be shown using the second-order Taylor expansion
(C.2). Moreover, x is a local maximum if ∇f(x) = 0 and Hf(x) is negative
definite.

Theorem 2.35 (A general criterium)
Let m,n be positive integers. If A ∈ Rn×n is (symmetric) positive semidefi-
nite then B := XTAX ∈ Rm×m is (symmetric) positive semidefinite for any
X ∈ Rn×m. If in addition A is (symmetric) positive definite and X has linearly
independent columns then B is (symmetric) positive definite.

Proof. Let y ∈ Rm and set x := Xy ∈ Rn. Then yTBy = yTXTAXy =
xTAx. This is nonnegative if A is positive semidefinite and positive if A is
positive definite and X has linearly independent columns. For then x is nonzero
if y is nonzero. If A is symmetric then B is symmetric and the statements about
symmetry follows.
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Corollary 2.36 (ATA is symmetric positive semidefinite)
Let m,n be positive integers. If A ∈ Rm,n then ATA is symmetric positive
semidefinite. It is symmetric positive definite if and only if A has linearly in-
dependent columns.

Proof. If ATA is symmetric positive definite then xATAx = ‖Ax‖22 > 0 for all
nonzero x andA has linearly independent columns. TakingA := I andX := A in
Theorem 2.35 gives B = AT IA = ATA, and we obtain the remaining statements
of the corollary.

2.5.2 The nonsymmetric case

A positive definite matrix has the following properties:

Theorem 2.37 (The nonsymmetric case)
Suppose A ∈ Rn,n is a positive definite matrix and let B be a principal submatrix.
Then

1. B is positive definite,

2. A has a unique LU factorization,

3. the real eigenvalues of B are positive,

4. det(B) > 0,

5. aiiajj > aijaji, for i 6= j.

Proof.

1. Suppose the submatrix B = A(r, r) is defined by the rows and columns
r = [r1, . . . , rk]T of A. Let X = [er1 , . . . , erk ] ∈ Rn×k. Then B := XTAX,
and B is positive definite by Theorem 2.35.

2. Since all leading submatrices are nonsingular this follows from the LU The-
orem 2.12.

3. Suppose (λ,x) is an eigenpair of A and that λ is real. Since A is real we
can choose x to be real. Multiplying Ax = λx by xT and solving for λ we

find λ = xTAx
xTx

> 0.

4. The determinant of B equals the product of its eigenvalues. The eigenvalues
are either real and positive or occur in complex conjugate pairs. The product
of two nonzero complex conjugate numbers is positive.
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5. The principal submatrix
[ aii aij
aji ajj

]
has a positive determinant.

We note that:

1. Part 5 of Theorem 2.37 implies that all diagonal elements of a positive
definite matrix are positive. Moreover, the greatest element in absolute
value is a diagonal element. This can be used to decide by inspection that
a given matrix cannot be positive definite.

2. A nonsymmetric positive definite matrix can have complex eigenvalues. For
example, the eigenvalues of A[a] in Example 2.32 are positive for a ∈ [1 −√

5
2 , 1 +

√
5

2 ] and complex for other values of A.

2.5.3 The symmetric case

Theorem 2.37 can be strengthened considerably when A is symmetric positive
definite.

Theorem 2.38 (Symmetric positive definite characterization)
The following statements are equivalent for a symmetric matrix A ∈ Rn×n.

1. A is symmetric positive definite.

2. A has only positive eigenvalues.

3. All leading principal submatrices have a positive determinant.

4. A = BBT for a nonsingular B ∈ Rn×n.

Proof. 1⇔ 2 is shown in Lemma 2.41 below. We show that 1⇒ 3⇒ 4⇒ 1.
1 ⇒ 3: This follows from Theorem 2.37
3 ⇒ 4: By Lemma 2.42 below A has a unique symmetric LU factorization A =
LDLT with positive diagonal elements in D. But then A = BBT , where B :=

LD1/2, with D1/2 := diag(d
1/2
1,1 , . . . , d

1/2
n×n).

4 ⇒ 1: This follows from Corollary 2.36.

Exercise 2.39 (Positive definite characterizations)
Show directly that all 4 characterizations in Theorem 2.38 hold for the matrix[

2 −1
−1 2

]
.

Consider the eigenvalues of a real symmetric positive definite matrix. Note
that such a matrix is Hermitian.
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Lemma 2.40 (Eigenvalues of a Hermitian matrix)
All eigenvalues of a Hermitian matrix are real.

Proof. Suppose A∗ = A and Ax = λx with x 6= 0. We multiply both sides of
Ax = λx from the left by x∗ and divide by x∗x to obtain λ = x∗Ax

x∗x . Taking

complex conjugates we find λ = λ∗ = (x∗Ax)∗

(x∗x)∗ = x∗A∗x
x∗x = x∗Ax

x∗x = λ, and λ is

real.

Lemma 2.41 (Symmetry and positive eigenvalues)
A matrix A ∈ Rn×n is symmetric positive definite if and only if it is symmetric
and all eigenvalues are positive.

Proof. By Lemma 2.40 all eigenvalues of A are real, and by Theorem 2.37 all
eigenvalues are positive. Suppose conversely that A ∈ Rn×n is symmetric with
positive eigenvalues λ1, . . . , λn. By the spectral theorem (cf. Corollary 5.23)
we have UTAU = D, where UTU = UUT = I and D = diag(λ1, . . . , λn).
Let x ∈ Rn be nonzero and define c := UTx = [c1, . . . , cn]T . Then cT c =
xTUUTx = xTx so c is nonzero. Since x = Uc we find

xTAx = (Uc)TAUc = cTUTAUc = cTDc =

n∑
j=1

λjc
2
j > 0

and it follows that A is positive definite.

Lemma 2.42 (Symmetric positve definite and symmetric LU)
A matrix A ∈ Rn×n is symmetric positive definite if and only if it has a symmetric
LU factorization A = LDLT with positive diagonal elements in D.

Proof. Suppose A is symmetric positive definite. By Theorem 2.37 the leading
principal submatrices A[k] ∈ Rk×k are nonsingular for k = 1, . . . , n − 1, and A

has a unique symmetric LU factorization A = LDLT by Theorem 2.26. The
ith diagonal element in D is positive, since dii = eTi Dei = eTi L

−1AL−Tei =
xTi Axi > 0. Indeed, xi := L−Tei is nonzero since L−T is nonsingular.

Conversely, suppose A has a symmetric LU factorization A = LDLT with
positive diagonal elements in D. Then A is symmetric, and for any nonzero
y ∈ Rn we have xTAx = xTLDLTx = yTDy > 0, since y := LTx 6= 0.
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2.6 The Cholesky Factorization

André-Louis Cholesky, 1875-1918 (left), John von Neumann, 1903-1957 (right).

Lemma 2.42 implies that A is symmetric positive definite if and only if it has
a symmetric LU factorization, and from the proof of 3. implies 4 in that theorem
we can write this in the form A = BBT where B is lower triangular matrix with
positive diagonal elements. Such a factorization has a special name.

Definition 2.43 (Cholesky)
A factorization A = LLT where L is lower triangular with positive diagonal
elements is called a Cholesky factorization of A. The matrix L is called a
Cholesky factor.

From the discussion before the definition we have

Theorem 2.44 (Cholesky)
A matrix A ∈ Rn×n has a Cholesky factorization if and only if it is symmetric
positive definite. Moreover, the Cholesky factorization is unique.

Proof. We still need to show uniqueness. Suppose LLT = SST are two Cholesky
factorizations of the symmetric positive definite matrix A. Since A is nonsingular
both L and S are nonsingular. Then S−1L = STL−T , where by Lemma 1.22
S−1L is lower triangular and STL−T is upper triangular, with diagonal elements
`ii/sii and sii/`ii, respectively. But then both matrices must be equal to the
same diagonal matrix and `2ii = s2

ii. By positivity `ii = sii and we conclude that
S−1L = I = STL−T which means that L = S.

A Cholesky factorization can also be written in the equivalent form A =
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RTR, where R = LT is upper triangular with positive diagonal elements. The
matrix A must be symmetric since LLT is symmetric.

Example 2.45 (2× 2)

The matrix A =

[
2 −1
−1 2

]
has a symmetric LU- and a Cholesky-factorization

given by[
2 −1
−1 2

]
=

[
1 0
− 1

2 1

] [
2 0
0 3

2

] [
1 − 1

2
0 1

]
=

[ √
2 0

−1/
√

2
√

3/2

] [√
2 −1/

√
2

0
√

3/2

]
.

Consider computing the Cholesky factorization directly. The equation A =
LLT implies that

aik =

n∑
j=1

`ij`kj =

min(i,k)∑
j=1

`ij`kj , i, k = 1, . . . , n. (2.20)

The unknown elements in L can be computed row by row or column by column.
Consider the column case. Suppose we have computed the k − 1 first columns of
L. The kth column can then be computed from (2.20). Indeed, letting i = k and
solving for `kk we find

`kk =
(
akk −

k−1∑
j=1

`2kj
)1/2

, (2.21)

and similarly for i > k

`ik =
(
aik −

k−1∑
j=1

`ij`kj
)
/`kk i = k + 1, . . . , n. (2.22)

Since A is symmetric positive definite the Cholesky factor L exists, is unique, and
real, and therefore the term under the square root in (2.21) must be positive. We
note however that we can encounter problems in floating point computation if the
term is very small.

It is easily seen that the Cholesky-factorization of an n-by-n matrix based
on (2.21) and (2.22) requires 1

2Gn = n3/3 arithmetic operations. This is essen-
tially the same as for the symmetric LU factorization. The halving of the count
compared to LU factorization is due to the symmetry of A.

If A is d-banded then the same is true for the Cholesky factor.

Lemma 2.46 (Banded Cholesky factor)
Suppose A is symmetric positive definite with Cholesky-factor L. If aik = 0 for
i > k + d, then `ik = 0 for i > k + d.
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Proof. We show that if L has bandwidth d in its first k−1 columns then column k
also has bandwidth d. The proof then follows by induction on k. Now, if i > k+d,
then aik = 0, and if L has bandwidth d in its first k − 1 columns then `ij = 0 for
j = 1, . . . , k − 1. By (2.22) `ik = 0.

We obtain formulas for the Cholesky factorization of a symmetric posi-
tive definite band matrix by simply replacing the lower bound j = 1 by j =
max(1, k− d) in (2.21) and (2.22) and letting i run from k+ 1 to min(n, k+ d) in
(2.22). The lower triangular matrix L is computed in sparse form. Only the lower
triangular part of A is used. This leads to the following algorithm. For a different
algorithm based on outer products, which can also be used for symmetric positive
semidefinite matrices, see Algorithm 2.53.

Algorithm 2.47 (bandcholesky)

1 function L=bandcholesky (A, d)
2 %L=bandcho lesky (A, d )
3 n=length (A) ;
4 L=sparse ( zeros (n , n) ) ;
5 for k=1:n
6 km=max(1 , k−d) ; kp=min(n , k+d) ; s=L(k ,km: k−1) ;
7 L(k , k )=sqrt (A(k , k )−s ∗ s ’ ) ;
8 L( k+1:kp , k )=(A( k+1:kp , k ) − . . .
9 L( k+1:kp ,km: k−1)∗ s ’ ) /L(k , k ) ;

10 end

The leading term in an operation count for a band matrix is O(d2n) . When
d is small this is a considerable saving compared to the count 1

2Gn = n3/3 for a
full matrix.

There is also a banded version of the symmetric LU factorization which re-
quires approximately the same number of arithmetic operations as the Cholesky
factorization. The choice between using a symmetric LU factorization or an LLT

factorization depends on several factors. Usually an LU or a symmetric LU fac-
torization is preferred for matrices with small bandwidth (tridiagonal, pentadi-
agonal), while the LLT factorization is restricted to symmetric positive definite
matrices and is often used when the bandwidth is larger.

2.7 The Symmetric Positive Semidefinite Case
We start with the following necessary conditions for a matrix to be symmetric
positive semidefinite. It shows that if a diagonal element aii is zero then all
elements in row i and column i are zero.
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Lemma 2.48 (Criteria symmetric semidefinite)
If A is symmetric positive semidefinite then for all i, j

1. |aij | ≤ (aii + ajj)/2,

2. |aij | ≤
√
aiiajj,

3. maxi,j |aij | = maxi aii,

4. aii = 0 =⇒ aij = aji = 0, fixed i, all j.

Proof. Part 3 follows from part 1 and part 4 from part 2. Now

0 ≤ (αei+βej)
TA(αei+βej) = α2aii+β

2ajj+2αβaij , all i, j, α, β ∈ R, (2.23)

since A is symmetric positive semidefinite. Taking α = 1, β = ±1 we obtain
aii + ajj ± 2aij ≥ 0 and this implies part 1. Part 2 follows trivially from part 1 if
aii = ajj = 0. Suppose one of them, say aii is nonzero. Note that aii = eTi Aei >
0. Taking α = −aij , β = aii in (2.23) we find

0 ≤ a2
ijaii + a2

iiajj − 2a2
ijaii = aii(aiiajj − a2

ij).

But then aiiajj − a2
ij ≥ 0 and part 2 follows.

As an illustration consider the matrices

A1 =

[
0 1
1 1

]
, A2 =

[
1 2
2 2

]
, A3 =

[
−2 1

1 2

]
.

None of them is positive semidefinite, since neither part 1 nor part 2 hold.

Theorem 2.49 (Positive symmetric semidefinite characterization)
The following is equivalent for a symmetric matrix A ∈ Rn×n.

1. A is positive semidefinite.

2. A has only nonnegative eigenvalues.

3. A = BBT for some B ∈ Rn×n.

4. All principal submatrices have a nonnegative determinant.

Proof. The proof of 1 ⇔ 2 follows as in the proof of Theorem 2.38. 1. ⇔ 3.
follows from Theorem 2.51 while 1. ⇒ 4. is a consequence of Theorem 2.37. To
prove 4. ⇒ 1. one first shows that εI + A is symmetric positive definite for all
ε > 0 (Cf. page 567 of [24]). But then xTAx = limε→0 x

T (εI +A)x ≥ 0 for all
x ∈ Rn.
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In part 4 of Theorem 2.49 we require nonnegativity of all principal minors,
while only positivity of leading principal minors was required for positive definite
matrices (cf. Theorem 2.38). To see that nonnegativity of the leading principal
minors is not enough consider the matrix A :=

[
0 0
0 −1

]
. The leading principal

minors are nonnegative, but A is not positive semidefinite.

2.8 Semi-Cholesky factorization of a banded matrix
A symmetric positive semidefinite matrix has a factorization that is similar to the
Cholesky factorization.

Definition 2.50 (Semi-Cholesky factorization)
A factorization A = LLT where L is lower triangular with nonnegative diagonal
elements is called a semi-Cholesky factorization.

Note that a semi-Cholesky factorization of a symmetric positive definite
matrix is necessarily a Cholesky factorization. For if A is positive definite then it
is nonsingular and then L must be nonsingular. Thus the diagonal elements of L
cannot be zero.

Theorem 2.51 (Characterization, semi-Cholesky factorization)
A matrix A ∈ Rn×n has a semi-Cholesky factorization A = LLT if and only if it
is symmetric positive semidefinite.

Proof. If A = LLT is a semi-Cholesky factorization then A is symmetric pos-
itive semidefinite by Corollary 2.36. For the converse we use induction on n. A
positive semidefinite matrix of order one has a semi-Cholesky factorization since
the one and only element in A is nonnegative. Suppose any symmetric positive
semidefinite matrix of order n− 1 has a semi-Cholesky factorization and suppose
A ∈ Rn×n is symmetric positive semidefinite. We partition A as follows

A =

[
α vT

v B

]
, α ∈ R, v ∈ Rn−1, B ∈ R(n−1)×(n−1). (2.24)

There are two cases. Suppose first α = eT1Ae1 > 0. We claim that C :=
B−vvT /α is symmetric positive semidefinite. C is symmetric. To show that C is
positive semidefinite we consider any y ∈ Rn−1 and define xT := [−vTy/α,yT ] ∈
Rn. Then

0 ≤ xTAx = [−vTy/α,yT ]

[
α vT

v B

] [
−vTy/α

y

]
= [0,−(vTy)vT /α+ yTB]

[
−vTy/α

y

]
= −(vTy)(vTy)/α+ yTBy = yTCy,

(2.25)
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since (vTy)vTy = (vTy)TvTy = yTvvTy. So C ∈ R(n−1)×(n−1) is symmet-
ric positive semidefinite and by the induction hypothesis it has a semi-Cholesky
factorization C = L1L

T
1 . The matrix

LT :=

[
β vT /β

0 LT1

]
, β :=

√
α, (2.26)

is upper triangular with nonnegtive diagonal elements and

LLT =

[
β 0
v/β L1

] [
β vT /β

0 LT1

]
=

[
α vT

v B

]
= A

is a semi-Cholesky factorization of A.
If α = 0 then it follows from 4. in Lemma 2.48 that v = 0. Moreover,

B ∈ R(n−1)×(n−1) in (2.24) is positive semidefinite and therefore has a semi-

Cholesky factorization B = L1L
T
1 . But then LLT , where L =

[
0 0T

0 L1

]
is a

semi-Cholesky factorization of A. Indeed, L is lower triangular and

LLT =

[
0 0T

0 L1

] [
0 0T

0 LT1

]
=

[
0 0T

0 B

]
= A.

Recall that a matrix A is d-banded if aij = 0 for |i − j| > d. A (semi-
)Cholesky factorization preserves bandwidth.

Theorem 2.52 (Bandwidth semi-Cholesy factor)
The semi-Cholesky factor L given by (2.26) has the same bandwidth as A.

Proof. Suppose A ∈ Rn×n is d-banded. Then vT = [uT ,0T ] in (2.24), where
u ∈ Rd, and therefore C := B−vvT /α differs from B only in the upper left d×d
corner. It follows that C has the same bandwidth as B and A. By induction on
n, C = L1L

T
1 , where LT1 has the same bandwidth as C. But then L in (2.26) has

the same bandwidth as A.
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Algorithm 2.53 (bandsemi-cholesky)
Suppose A is symmetric positive semidefinite. A lower triangular matrix L is
computed so that A = LLT . This is the Cholesky factorization of A if A is
symmetric positive definite and a semi-Cholesky factorization of A otherwise.
The algorithm uses the Matlab command tril.

1 function L=bandsemicholeskyL (A, d)
2 %L=bandsemicholeskyL (A, d)
3 n=length (A) ;
4 for k=1:n
5 i f A(k , k )>0
6 kp=min(n , k+d) ;
7 A(k , k )=sqrt (A(k , k ) ) ;
8 A( k+1:kp , k )=A( k+1:kp , k ) /A(k , k ) ;
9 for j=k+1:kp

10 A( j : kp , j )=A( j : kp , j )−A( j , k ) ∗A( j : kp , k ) ;
11 end
12 else
13 A( k : kp , k )=zeros (kp−k+1 ,1) ;
14 end
15 end
16 L=t r i l (A) ;

Consider now implementing an algorithm based on the previous discussion.
Since A is symmetric we only need to use the lower part of A. The first column
of L is [β,vT /β]T if α > 0. If α = 0 then by 4 in Lemma 2.48 the first column of
A is zero and this is also the first column of L. We obtain

if A(1, 1) > 0

A(1, 1) =
√
A(1, 1)

A(2 : n, 1) = A(2 : n, 1)/A(1, 1)

for j = 2 : n

A(j : n, j) = A(j : n, j)−A(j, 1) ∗A(j : n, 1)

(2.27)

Here we store the first column of L in the first column of A and the lower
part of C = B − vvT /α in the lower part of A(2 : n, 2 : n).

The code can be made more efficient when A is a d-banded matrix. We
simply replace all occurrences of n by min(i+ d, n). Continuing the reduction we
arrive at Algorithm 2.53.

In the algorithm we overwrite the lower triangle of A with the elements of
L. Column k of L is zero for those k where `kk = 0. We reduce round-off noise
by forcing those rows to be zero. In the semidefinite case no update is necessary
and we “do nothing”.
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1
1

k-1

k-1
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k

n

n

A2
A1 Ak An

Figure 2.2. Gaussian elimination

There are many versions of Cholesky factorizations, see [5]. Algorithm 2.47
is based on outer products vvT . An advantage of this formulation is that it can
be extended to symmetric positive semidefinite matrices. However deciding when
a diagonal element is zero is a problem in floating point arithmetic.

2.9 Gaussian Elimination
In this section we take a closer look at Gaussian elimination. We show that if
the conditions of the LU theorem is satisfied then Gaussian elimination without
row interchanges is just a way of computing the LU factorization of the coeffi-
cient matrix. If row interchanges are incorporated then we need to introduce a
matrix permutation matrix P , and obtain a factorization of the form A = PLU .
We obtain this PLU factorization by using a matrix formulation of Gaussian
elimination.

2.9.1 Reduction to upper triangular form

Consider the general n× n case (see Example 1.1 for the 3 by 3 case.). We start
with a nonsingular linear system Ax = b and generate a sequence of equivalent
systems Akx = bk for k = 1, . . . , n, where A1 := A, b1 := b, and Ak has zeros
under the diagonal in its first k−1 columns. Thus An is upper triangular and the
system Anx = bn can be solved using one of Algorithms 2.2 or 2.5. The process
is illustrated in Figure 2.2.
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The matrix Ak has the form

Ak =



a1
1,1 · · · a1

1,k−1 a1
1,k · · · a1

1,j · · · a1
1,n

. . .
...

...
...

...

ak−1
k−1,k−1 ak−1

k−1,k · · · ak−1
k−1,j · · · ak−1

k−1,n

akk,k · · · akk,j · · · akk,n
...

...
...

aki,k · · · aki,j · · · aki,n
...

...
...

akn,k · · · akn,j · · · akn×n


. (2.28)

The process transforming Ak into Ak+1 for k = 1, . . . , n−1 can be described
as follows:

for k = 1 : n− 1

Find rk ≥ k such that ark,k 6= 0;

Interchange row k and rk of Ak;

for i = k + 1 : n

mik = akik/a
k
kk

for j = k : n

ak+1
ij = akij −mika

k
kj

(2.29)

Since ak+1
ik = akik −mika

k
kk = 0 for i = k + 1, . . . , n it follows that Ak+1 will

have zeros under the diagonal in its first k columns and the elimination is carried
one step further. The numbersmik in (2.29) are called multipliers. Interchanging
two rows (and/or two columns) during Gaussian elimination is known as pivoting.
The element which is moved to the diagonal position (k, k) is called the pivot
element or pivot for short, and the row containing the pivot is called the pivot
row.

2.9.2 Pivot strategies

The most common pivoting strategy used in the Gaussian elimination process
(2.29) is

|akrk,k| := max{|aki,k| : k ≤ i ≤ n}

with rk the smallest such index in case of a tie. This is known as partial pivoting.
The following example illustrating that small pivots should be avoided.
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Example 2.54 (Row pivoting)
Applying Gaussian elimination without row interchanges to the linear system

10−4x1 + 2x2 = 4

x1 + x2 = 3

we obtain the upper triangular system

10−4x1 + 2x2 = 4

(1− 2× 104)x2 = 3− 4× 104

The exact solution is

x2 =
−39997

−19999
≈ 2, x1 =

4− 2x2

10−4
=

20000

19999
≈ 1.

Suppose we round the result of each arithmetic operation to three digits. The
solutions fl(x1) and fl(x2) computed in this way is

fl(x2) = 2, fl(x1) = 0.

The computed value 0 of x1 is completely wrong. Suppose instead we apply
Gaussian elimination to the same system, but where we have interchanged the
equations. The system is

x1 + x2 = 3

10−4x1 + 2x2 = 4

and we obtain the upper triangular system

x1 + x2 = 3

(2− 10−4)x2 = 4− 3× 10−4

Now the solution is computed as follows

x2 =
3.9997

1.9999
≈ 2, x1 = 3− x2 ≈ 1.

In this case rounding each calculation to three digits produces fl(x1) = 1 and
fl(x2) = 2 which is quite satisfactory since it is the exact solution rounded to
three digits.

Related to partial pivoting is scaled partial pivoting. Here rk is the
smallest index such that

|akrk,k|
sk

:= max{
|aki,k|
sk

: k ≤ i ≤ n}, sk := max
1≤j≤n

|akj |.
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This can sometimes give more accurate results if the coefficient matrix have co-
efficients of wildly different sizes. Note that the scaling factors sk are computed
using the initial matrix.

It also is possible to interchange both rows and columns. The choice

akrk,sk := max{|aki,j | : k ≤ i, j ≤ n}

with rk, sk the smallest such indices in case of a tie, is known as complete piv-
oting. Complete pivoting is known to be more numerically stable than partial
pivoting, but requires a lot of search and is seldom used in practice.

2.9.3 Permutation matrices

Pivoting can be described in terms of permutation matrices.

Definition 2.55 Let the components of p = [k1, . . . , kn]T be a permutation of the
components of [1, 2, . . . , n]T . We call P := I(:,p) = [ek1 , ek2 , . . . , ekn ] ∈ Rn×n a
permutation matrix. When discussing Gaussian elimination a permutation p
is sometimes called a pivot vector.

Since P T = I(p, :) it follows that (P TP )i,j = eTkiekj = δij . Thus P TP = I, the

inverse of P is equal to its transpose, and PP T = I as well. If p and P are as in
Definition 2.55 and A ∈ Cn×n then

AP = A(:,p), P TA = A(p, :), P TAP = A(p,p). (2.30)

Thus, post-multiplying a matrix A by a permutation matrix results in a permu-
tation of the columns, pre-multiplying by the transpose of a permutation matrix
gives a permutation of the rows, while the transformation P TAP permutes both
the rows and columns using the same permutation p. In particular, the diagonal
of P TAP is a permutation of the diagonal of A:

diag(P TAP ) = diag
(
A
)
(p). (2.31)

We will use a particularly simple permutation matrix.

Definition 2.56 (Interchange matrix)
We define a (j,k)-Interchange Matrix Ijk by interchanging column j and k of
the identity matrix.

Since Ijk = Ikj , and we obtain the identity by applying Ijk twice, we see
that I2

jk = I and an interchange matrix is symmetric and equal to its own inverse.
Pre-multiplying a matrix by an interchange matrix interchanges two rows of the
matrix, post-multiplication interchanges two columns. By (2.31) the diagonal
of Ij,kAIj,k is almost conserved; only the diagonal elements aj,j and ak,k are
interchanged.
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2.9.4 Gauss transformations

The elimination process in (2.29) can be interpreted in matrix terms using inter-
change matrices and Gauss transformations.

Definition 2.57 (Gauss transformation)
Suppose for some 1 ≤ k < n that gk = [0, . . . , 0, gk+1,k, . . . , gn,k]T ∈ Rn has its
first k components equal to zero and let ek be the k’th unit vector in Rn. The
matrix

Gk := I − gkeTk
is called a Gauss transformation. The name elementary lower triangular
matrix is also used.

In the 3 by 3 case the Gauss transforms takes the form

G1 =

 1 0 0
−g2,1 1 0
−g3,1 0 1

 , G2 =

1 0 0
0 1 0
0 −g3,2 1

 ,
where g1 =

[
0 g21 g31

]T
and g3 =

[
0 0 g32

]T
.

For general n and 1 ≤ k < n a Gauss transformation can be used to zero out
column k under the diagonal in the matrix Ak. Column k in Ak is transformed
into column k of Ak+1 using a matrix M−

k as follows:

1 · · · 0 0 0 · · · 0
...

. . .
...

...
...

...
0 · · · 1 0 0 · · · 0
0 · · · 0 1 0 · · · 0
0 · · · 0 −mk+1,k 1 · · · 0
...

...
...

...
. . .

...
0 · · · 0 −mn,k 0 · · · 1





a1
1,k−1

...

akk,k
akk+1,k

...
akn,k


=



a1
1,k−1

...

akk,k
0
...
0


. (2.32)

The transformation matrix M−
k in (2.32) is a Gauss transformation:

M−
k := I −mke

T
k , mk = [0, . . . , 0,mk+1,k, . . . ,mn,k]T . (2.33)

We collect some properties of Gauss transformations that we will need.

Lemma 2.58 (Gausstransformations)
For 1 ≤ k < n let gk = [0, . . . , 0, gk+1,k, . . . , gn,k]T ∈ Rn. Then

1. (I − gkeTk )−1 = I + gke
T
k ,

2. (I − g1e
T
1 ) · · · (I − gkeTk ) = I −

∑k
j=1 gje

T
j ,
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3. Ii,j(I − gkeTk )Ii,j = I − (Ii,jgk)eTk , for k < i, j ≤ n.

Proof. We note that
eTj gk = 0 for j = 1, 2, . . . , k. (2.34)

1. By direct multiplication using (2.34)

(I − gkeTk )(I + gke
T
k ) = I − gkeTk + gke

T
k − gk(eTk gk)eTk = I.

2. Part 2. clearly holds for k = 1. Assuming by induction the result for k − 1
we obtain by (2.34)

(I − g1e
T
j ) · · · (I − gkeTk ) = (I −

k−1∑
j=1

gje
T
j )(I − gkeTk )

= I −
k−1∑
j=1

gje
T
j − gkeTk +

k−1∑
j=1

gj(e
T
j gk)eTk = I −

k∑
j=1

gje
T
j .

3. We find Ii,j(I − gkeTk )Ii,j = I2
i,j − (Ii,jgk)(eTk Ii,j). Now I2

i,j = I and

eTk Ii,j = eTk in view of i, j > k. Thus Part 3 follows.

It should be noted that the order of the factors in the product in Part 2 of
Lemma 2.58 is important. For example for n = 3

(I + g1e
T
1 )(I + g2e

T
2 ) =

 1 0 0
g21 1 0
g31 0 1

1 0 0
0 1 0
0 g32 1

 =

 1 0 0
g21 1 0
g31 g3,2 1

 .
In general,

(I + g1e
T
1 ) · · · (I + gn−1e

T
n−1) =


1 0 0 · · · 0
g2,1 1 0 · · · 0
g3,1 g3,2 1 · · · 0

...
. . .

. . .
...

gn,1 gn,2 · · · gn,n−1 1

 . (2.35)

Multiplying the factors in any other order does not give such a nice result.

2.9.5 PLU factorization

We can reformulate the Gaussian elimination process (2.29) in matrix terms. This
leads to a factorization of the coefficient matrix A = PLU , where P is a
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permutation matrix, L is a lower triangular, and U is upper triangular. Without
interchanges the matrix P is the identity and we obtain an LU factorization
A = LU .

The transformation Ak → Ak+1 in (2.29) can be written in terms of an
interchange matrix and a Gauss transformation as follows:

Ak+1 = M−
k JkAk, Jk := Ik,rk ,

where we first interchanged row k and rk ≥ k in Ak and then introduced zeros
under the diagonal in column k using

M−
k := I −mke

T
k , mk = [0, . . . , 0,mk+1,k, . . . ,mn,k]T , mik := akik/a

k
kk.

Applying this repeatedly we obtain

Ak = M−
k−1Jk−1 · · ·M−

2 J2M
−
1 J1A, k = 2, . . . , n. (2.36)

Since J−1
k = Jk and (M−

k )−1 = M+
k , we find the factorizations

A = J1M
+
1 J2M

+
2 · · ·Jk−1M

+
k−1Ak, k = 2, . . . , n. (2.37)

Gaussian elimination with row pivoting is mathematically well defined on a
nonsingular matrix.

Theorem 2.59 (Gaussian elimination is well defined)
Suppose A ∈ Cn,n is nonsingular. Then for k = 1, 2, . . . , n − 1 we can in (2.29)
find rk ≥ k such that ark,k 6= 0.

Proof. The result holds for k = 1 since A is nonsingular and therefore cannot
have a zero column. Thus A2 is well defined. Suppose for some k ≥ 2 that aii,i 6= 0
for i = 1, 2, . . . , k − 1. We partition Ak given by (2.28) in upper block triangular
form

Ak =

[
Bk Ck

0 Ek

]
.

The matrix Bk is upper triangular of order k − 1 with diagonal elements a1
1,1 · · ·

ak−1
k−1,k−1. Therefore Bk is nonsingular, and Ak is nonsingular, since by (2.36)

it is a product of nonsingular matrices. By Lemma 1.21 Ek is nonsingular and
cannot have a zero first column. Thus Ak+1 is well defined and the result follows
by induction.

Theorem 2.60 (PLU theorem)
Gaussian elimination on a nonsingular matrix A ∈ Cn×n, with row pivoting as
described in (2.29), leads to a factorization A = PLU , where P is a permutation
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matrix, L is lower triangular with ones on the diagonal, and U is upper triangular.
More explicitly,

P = J1J2 · · ·Jn−1, Jk := Irk,k,

L = L1L2 · · ·Ln−1,

Lk = I + m̃ke
T
k , m̃k := Jn−1 · · ·Jk+1mk, k = 1, 2, . . . , n− 1,

U = An.

(2.38)

Proof. By repeated use of Part 3 of Lemma 2.58 we have

Lk = Jn−1 · · ·Jk+1M
+
k Jk+1 · · ·Jn−1, k = 1, . . . , n− 1.

Using J2
k = I repeatedly gives for n = 4

PLU = (J1J2J3)(L1L2L3)A4

= (J1J2J3)(J3J2M
+
1 J2J3)(J3M

+
2 J3)(M+

3 )A4

= J1M
+
1 J2M

+
2 J3M

+
3 A4.

But then PLU = A by (2.37). Using the same cancellation effect for general n
proves the theorem.

Using Part 2 of Lemma 2.58 we see that the matrix L in Theorem 2.60 has
the form (2.35) with gk = m̃k, k = 1, . . . , n.

Once we have a PLU factorization of A the system Ax = b is solved easily
in three steps. Since PLUx = b we have Pz = b, Ly = z, and Ux = y. With
P = I(:,p) the solution x can be found from Algorithms 2.1 and 2.2 in two steps.

1. y=rforwardsolve(L,b(p),n);

2. x=rbacksolve(U,y,n);

Exercise 2.61 (Using PLU of A to solve ATx = b)
Suppose we know the PLU factors P ,L,U in a PLU factorization A = PLU of
A ∈ Cn×n. Explain how we can solve the system ATx = b economically.

Exercise 2.62 (Using PLU to compute the determinant)
Suppose we know the PLU factors P ,L,U in a PLU factorization A = PLU of
A ∈ Cn×n. Explain how we can use this to compute the determinant of A.

Exercise 2.63 (Using PLU to compute the inverse)
Suppose the factors P ,L,U in a PLU factorization of A ∈ Rn×n are known. Use
Exercises 2.21,2.22 to show that it takes approximately 2Gn arithmetic operations
to compute A−1 = U−1L−1P T . Here we have not counted the final multiplication
with P T which amounts to n row interchanges.
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2.9.6 The LU factorization

Consider now the lucky situation where no row interchanges is necessary in Gaus-
sian elimination. In this case (2.29) simplifies to

for k = 1 : n− 1

for i = k + 1 : n

mik = akik/a
k
kk

for j = k : n

ak+1
ij = akij −mika

k
kj

(2.39)

Gaussian elimination without row interchanges is sometimes refered to as
naive Gaussian elimination, and we then have P = I in the PLU factorization.
The PLU theorem then gives:

Theorem 2.64 (LU factorization)
If Gaussian elimination without row interchanges is well defined then we obtain
in (2.39) the LU factorization

A =


1 0 0 · · · 0

m2,1 1 0 · · · 0
m3,1 m3,2 1 · · · 0

...
. . .

. . .
...

mn,1 mn,2 · · · mn,n−1 1




a1

1,1 a1
1,2 a1

1,3 · · · a1
1,n

0 a2
2,2 a2

2,3 · · · a2
2,n

0 0 a3
3,3 · · · a3

3,n
...

. . .
. . .

...
0 0 · · · 0 ann,n

 = LU .

(2.40)

Since we get division by zero in (2.39) if akkk = 0 for some k ≤ n − 1 it is
important to know when this can happen. We first show:

Theorem 2.65 (Nonzero pivots)
Let A ∈ Cn,n and let mi,k and aki,j be defined by (2.39).

1. If arr,r 6= 0, r = 1, 2, . . . , k−1, then∣∣∣∣∣∣∣
a11 · · · ak1

...
...

ak1 · · · akk

∣∣∣∣∣∣∣ = a1
1,1a

2
2,2 · · · akk,k, k = 1, 2, . . . , n.

2. Let 1 ≤ k ≤ n. Then arr,r 6= 0, r = 1, 2, . . . , k, if and only if the leading
principal submatrix A[r] is nonsingular for r = 1, 2, . . . , k.

Proof.
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1. Since arr,r 6= 0, r = 1, 2, . . . , k−1 and Jr = I in (2.36) we obtain Ak = MA,

where M := M−
k−1 · · ·M

−
1 . By (2.28) we have

Ak =

[
F k Gk

0 Hk

]
, F k =

 a1
1,1 · · · a1

1,k

. . .
...

akk,k

 ∈ Ck,k.

Since Ak = MA and M is lower triangular we obtain F k = M [k]A[k] and
since M [k] has ones on the diagonal

a1
1,1a

2
2,2 · · · akk,k = det(F k) = det(M [k]) det(A[k]) = det(A[k].

2. Suppose arr,r 6= 0, r = 1, 2, . . . , k. By Part 1 det(A[r]) = a1
1,1 · · · arr,r, r =

1, 2, . . . , k, so thatA[r] is nonsingular for r = 1, 2, . . . , k. Conversely, suppose
aii,i = 0 for some i ≤ k. Let i be the smallest integer such that aii,i = 0. We
can then do Gaussian elimination without row interchanges on A to obtain
Ai. By Part 1 det(A[i]) = a1

1,1 · · · aii,i = 0 so that (A)[i] is singular. �

The theorem implies:

Corollary 2.66 (When is naive Gaussian elimination possible?)
In (2.39) we have akkk 6= 0 for k = 1, . . . , n− 1 if and only if the leading principal
submatrices

A[k] :=

a11 . . . a1k

...
...

ak1 . . . akk


of A are nonsingular for k = 1, . . . , n− 1.

We note that

1. The PLU factorization can alternatively be written P TA = LU . Thus,
if A is nonsingular then there exists a permutation of the rows of A so
that the matrix with the rows permuted has an LU factorization. This
means that if we knew the row pivots in advance then we can carry out
Gaussian elimination without row pivoting on the matrix P TA, where P T =
Irn−1,n−1 · · · Ir1,1.

2. If the leading principal submatrices A[k] are nonsingular for k = 1, . . . , n−1
then the LU factorization is unique and Gaussian elimination is just one
particular way of computing the LU factorization.
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3. The calculation in (2.39) reqires
∑n−1
k=1(n − k)2 multiplications, the same

number of subtaractions, and
∑n−1
k=1 k divisions. So the complexity of Gauss-

sian elimintiation is 2
3n

3 − 1
2n

2 − 1
6n. This is exactly the complexity of LU

factorization (cf. (2.9)).

4. Corolary 2.66 holds even if A is singular. Since L is nonsingular the matrix
U is then singular, and since akkk 6= 0 for k = 1, . . . , n − 1 we must have
annn = 0 when A is singular.

5. To verify the nonsingularity of the leading principal submatrices can be
difficult in practice. We have show that this condition holds for a class of
diagonally dominant matrices and for positive definite matrices.

Exercise 2.67 (Direct proof of Theorem 2.64)
Equation (2.39) implies that mik = (akij − a

k+1
ij )/akkj for k ≤ min(i − 1, j − 1).

Use this to give a proof of Theorem 2.64 by directly showing that (LU)ij =∑n
k=1 likukj = aij. Consider separately the two cases i ≤ j and i > j.

2.10 Review Questions
2.9.1 When is a triangular matrix nonsingular?

2.9.2 Approximately how many arithmetic operatios are needed for

• the multiplication of two square matrices?

• The LU factorization of a matrix?

• the solution of Ax = b, when A is triangular?

2.9.3 What is the content of

• the LU theorem?

• the symmetric LU theorem?

2.9.4 Is ATA symmetric positive definite?

2.9.5 • What class of matrices has a Cholesky factorization?

• What is the bandwidth of the Cholesky factor of a band matrix?

2.9.6 For a symmetric matrix give 3 conditions that are equivalent to positive
definiteness.

2.9.7 What class of matrices has a semi-Cholesky factorization?
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2.9.8 What is the general condition for Gaussian elimination without row inter-
changes to be well defined?

2.9.9 What is a PLU factorization? When does it existt?

2.9.10 What is complete pivoting?



Chapter 3

The Kronecker Product

Leopold Kronecker, 1823-1891 (left), Siméon Denis Poisson, 1781-1840 (right).

Matrices arising from 2D and 3D problems sometimes have a Kronecker
product structure. Identifying a Kronecker structure can be very rewarding since
it simplifies the study of such matrices.

3.1 Test Matrices
In this section we introduce some matrices which we will use to compare various
algorithms in later chapters.

89
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3.1.1 The 2D Poisson problem

Let Ω := (0, 1)2 = {(x, y) : 0 < x, y < 1} be the open unit square with boundary
∂Ω. Consider the problem

−∆u := −∂
2u

∂x2
− ∂2u

∂y2
= f on Ω, (3.1)

u := 0 on ∂Ω.

Here the function f is given and continuous on Ω, and we seek a function u =
u(x, y) such that (3.1) holds and which is zero on ∂Ω.

Let m be a positive integer. We solve the problem numerically by finding
approximations vj,k ≈ u(jh, kh) on a grid of points given by

Ωh := {(jh, kh) : j, k = 0, 1, . . . ,m+ 1}, where h = 1/(m+ 1).

The points Ωh := {(jh, kh) : j, k = 1, . . . ,m} are the interior points, while Ωh\Ωh
are the boundary points. The solution is zero at the boundary points. Using the
difference approximation from Chapter 1 for the second derivative we obtain the
following approximations for the partial derivatives

∂2u(jh, kh)

∂x2
≈ vj−1,k − 2vj,k + vj+1,k

h2
,

∂2u(jh, kh)

∂y2
≈ vj,k−1 − 2vj,k + vj,k+1

h2
.

Inserting this in (3.1) we get the following discrete analog of (3.1)

−∆hvj,k = fj,k, (jh, kh) ∈ Ωh,

vj,k = 0, (jh, kh) ∈ ∂Ωh,
(3.2)

where fj,k := f(jh, kh) and

−∆hvj,k :=
−vj−1,k + 2vj,k − vj+1,k

h2
+
−vj,k−1 + 2vj,k − vj,k+1

h2
. (3.3)

Multiplying both sides of (3.2) by h2 we obtain

4vj,k − vj−1,k − vj+1,k − vj,k−1 − vj,k+1 = h2fjk, (jh, kh) ∈ Ωh,

v0,k = vm+1,k = vj,0 = vj,m+1 = 0, j, k = 0, 1, . . . ,m+ 1.
(3.4)

The equations in (3.4) define a set of linear equations for the unknowns V :=
[vjk] ∈ Rm×m.

Observe that (3.4) can be written as a matrix equation in the form

TV + V T = h2F with h = 1/(m+ 1), (3.5)
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v   in grid
j,k

v    in  V - matrixj,k

1,1

1,2

1,3

2,1

2,2

2,3

3,1

3,2

3,3

3,1

2,1

1,1

3,2

2,2

1,2

3,3

2,3

1,3

1

4

7

2

5

8

3

6

9

x    in gridi

Figure 3.1. Numbering of grid points

where T = tridiag(−1, 2,−1) ∈ Rm×m is the second derivative matrix given by
(1.2) and F = (fjk) = (f(jh, kh)) ∈ Rm×m. Indeed, the (j, k) element in TV +
V T is given by

m∑
i=1

T j,ivi,k +

m∑
i=1

vj,iT i,k,

and this is precisely the left hand side of (3.4).
To write (3.4) in standard form Ax = b we need to order the unknowns

vj,k in some way. The following operation of vectorization of a matrix gives one
possible ordering.

Definition 3.1 (vec operation)
For any B ∈ Rm×n we define the vector

vec(B) := [b11, . . . , bm1, b12, . . . , bm2, . . . , b1n, . . . , bmn]T ∈ Rmn

by stacking the columns of B on top of each other.

Let n = m2 and x := vec(V ) ∈ Rn. Note that forming x by stacking the
columns of V on top of each other means an ordering of the grid points which
for m = 3 is illustrated in Figure 3.1. We call this the natural ordering. The
elements in (3.4) form a 5-point stencil, as shown in Figure 3.2.

To find the matrix A we note that for values of j, k where the 5-point stencil
does not touch the boundary, (3.4) takes the form

4xi − xi−1 − xi+1 − xi−m − xi+m = bi,

where xi = vjk and bi = h2fjk. This must be modified close to the boundary. We
obtain the linear system

Ax = b, A ∈ Rn×n, b ∈ Rn, n = m2, (3.6)
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j,k 4j+1,k

-1
    j,k+1

  j-1,k

  j,k-1 -1

-1   i i+1

    i+m

   i-1

i-m

-1xx

 x

x

xv

v v v

v

Figure 3.2. The 5-point stencil

where x = vec(V ), b = h2vec(F ) with F = (fjk) ∈ Rm×m, and A is the Poisson
matrix given by

aii = 4, i = 1, . . . , n,
ai+1,i = ai,i+1 = −1, i = 1, . . . , n− 1, i 6= m, 2m, . . . , (m− 1)m,
ai+m,i = ai,i+m = −1, i = 1, . . . , n−m,

aij = 0, otherwise.

(3.7)

For m = 3 we have the following matrix

A =



4 −1 0 −1 0 0 0 0 0
−1 4 −1 0 −1 0 0 0 0

0 −1 4 0 0 −1 0 0 0
−1 0 0 4 −1 0 −1 0 0

0 −1 0 −1 4 −1 0 −1 0
0 0 −1 0 −1 4 0 0 −1
0 0 0 −1 0 0 4 −1 0
0 0 0 0 −1 0 −1 4 −1
0 0 0 0 0 −1 0 −1 4


.

Exercise 3.2 (4× 4 Poisson matrix)
Write down the Poisson matrix for m = 2 and show that it is strictly diagonally
dominant.

3.1.2 The test matrices

The second derivative matrix T = tridiag(−1, 2,−1) is a special case of the tridi-
agonal matrix

T 1 := tridiag(a, d, a) (3.8)
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Figure 3.3. Band structure of the 2D test matrix, n = 9, n = 25, n = 100

where a, d ∈ R. We call this the 1D test matrix. It is symmetric and strictly
diagonally dominant if |d| > 2|a|.

The (2-dimensional) Poisson matrix is a special case of the matrix T 2 =
[aij ] ∈ Rn×n with elements

aii = 2d, i = 1, . . . , n,
ai,i+1 = ai+1,i = a, i = 1, . . . , n− 1, i 6= m, 2m, . . . , (m− 1)m,
ai,i+m = ai+m,i = a, i = 1, . . . , n−m,

aij = 0, otherwise,

(3.9)

and where a, d are real numbers. We will refer to this matrix as simply the 2D
test matrix. For m = 3 the 2D test matrix looks as follows

T 2 =



2d a 0 a 0 0 0 0 0
a 2d a 0 a 0 0 0 0
0 a 2d 0 0 a 0 0 0
a 0 0 2d a 0 a 0 0
0 a 0 a 2d a 0 a 0
0 0 a 0 a 2d 0 0 a
0 0 0 a 0 0 2d a 0
0 0 0 0 a 0 a 2d a
0 0 0 0 0 a 0 a 2d


. (3.10)

The partition into 3× 3 sub matrices shows that T 2 is block tridiagonal.
Properties of T 2 can be derived from properties of T 1 by using properties

of the Kronecker product.
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3.2 The Kronecker Product
Definition 3.3 (Kronecker product)
For any positive integers p, q, r, s we define the Kronecker product of two ma-
trices A ∈ Rp×q and B ∈ Rr×s as a matrix C ∈ Rpr×qs given in block form
as

C =


Ab1,1 Ab1,2 · · · Ab1,s
Ab2,1 Ab2,2 · · · Ab2,s

...
...

. . .
...

Abr,1 Abr,2 · · · Abr,s

 .
We denote the Kronecker product of A and B by C = A⊗B.

This definition of the Kronecker product is known more precisely as the left
Kronecker product. In the literature one often finds the right Kronecker
product which in our notation is given by B ⊗A.

The Kronecker product u ⊗ v =
[
uT v1, . . . ,u

T vr
]T

of two column vectors
u ∈ Rp and v ∈ Rr is a column vector of length p× r.

As examples of Kronecker products which are relevant for our discussion, if

T 1 =

 d a 0
a d a
0 a d

 and I =

 1 0 0
0 1 0
0 0 1


then

T 1 ⊗ I + I ⊗ T 1 =

 T 1 0 0
0 T 1 0
0 0 T 1

+

 dI aI 0
aI dI aI
0 aI dI

 = T 2

given by (3.10). The same equation holds for any integer m ≥ 2

T 1 ⊗ I + I ⊗ T 1 = T 2, T 1, I ∈ Rm×m, T 2 ∈ R(m2)×(m2). (3.11)

The sum of two Kronecker products involving the identity matrix is worthy
of a special name.

Definition 3.4 (Kronecker sum)
For positive integers r, s, k, let A ∈ Rr×r, B ∈ Rs×s, and Ik be the identity matrix
of order k. The sum A⊗ Is + Ir⊗B is known as the Kronecker sum of A and
B.

In other words, the 2D test matrix T 2 is the Kronecker sum involving the
1D test matrix T 1.
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The following simple arithmetic rules hold for Kronecker products. For
scalars λ, µ and matrices A,A1,A2,B,B1,B2,C of dimensions such that the
operations are defined, we have(

λA
)
⊗
(
µB
)

= λµ
(
A⊗B

)
,(

A1 +A2

)
⊗B = A1 ⊗B +A2 ⊗B,

A⊗
(
B1 +B2

)
= A⊗B1 +A⊗B2,

(A⊗B)⊗C = A⊗ (B ⊗C).

(3.12)

Note however that in general we have A⊗B 6= B ⊗A, but it can be shown that
there are permutation matrices P ,Q such that B ⊗A = P (A⊗B)Q, see [14].

Exercise 3.5 (Properties of Kronecker products)
Prove (3.12).

The following mixed product rule is an essential tool for dealing with
Kronecker products and sums.

Lemma 3.6 (Mixed product rule)
Suppose A,B,C,D are rectangular matrices with dimensions so that the products
AC and BD are defined. Then the product (A⊗B)(C ⊗D) is defined and

(A⊗B)(C ⊗D) = (AC)⊗ (BD). (3.13)

Proof. If B ∈ Rr,t and D ∈ Rt,s for some integers r, s, t, then

(A⊗B)(C ⊗D) =

 Ab1,1 · · · Ab1,t
...

...
Abr,1 · · · Abr,t


 Cd1,1 · · · Cd1,s

...
...

Cdt,1 · · · Cdt,s

 .
Thus for all i, j

((A⊗B)(C ⊗D))i,j = AC

t∑
k=1

bi,kdk,j = (AC)(BD)i,j = ((AC)⊗ (BD))i,j .

Using the mixed product rule we obtain the following properties of Kronecker
products and sums.

Theorem 3.7 (Properties of Kronecker products)
Suppose for r, s ∈ N that A ∈ Rr,r and B ∈ Rs,s are square matrices with eigen-
pairs (λi,ui) i = 1, . . . , r and (µj ,vj), j = 1, . . . , s. Moreover, let F ,V ∈ Rr×s.
Then



96 Chapter 3. The Kronecker Product

1. (A⊗B)T = AT ⊗BT , (this also holds for rectangular matrices).

2. If A and B are nonsingular then A⊗B is nonsingular. with (A⊗B)−1 =
A−1 ⊗B−1.

3. If A and B are symmetric then A⊗B and A⊗ I + I ⊗B are symmetric.

4. (A⊗B)(ui ⊗ vj) = λiµj(ui ⊗ vj), i = 1, . . . , r, j = 1, . . . , s,

5. (A⊗Is+Ir⊗B)(ui⊗vj) = (λi+µj)(ui⊗vj), i = 1, . . . , r, j = 1, . . . , s.,

6. If one of A, B is symmetric positive definite and the other is symmetric
positive semidefinite then A⊗ I + I ⊗B is symmetric positive definite.

7. AV BT = F ⇔ (A⊗B) vec(V ) = vec(F ),

8. AV + V BT = F ⇔ (A⊗ Is + Ir ⊗B) vec(V ) = vec(F ).

Before giving the simple proofs of this theorem we present some comments.

1. The transpose (or the inverse) of an ordinary matrix product equals the
transpose (or the inverse) of the matrices in reverse order. For Kronecker
products the order is kept.

2. The eigenvalues of the Kronecker product (or sum) are the producet (or
sum) of the eigenvalues of the factors. The eigenvectors are the Kronecker
products of the eigenvectors of the factors. In particular, the eigenvalues
of the test matrix T 2 are sums of eigenvalues of T 1. We will find these
eigenvalues in the next section.

3. Since we already know that T = tridiag(−1, 2,−1) is positive definite the
2D Poisson matrix A = T ⊗ I + I ⊗ T is also positive definite.

4. The system AV BT = F in part 7 can be solved by first finding W from
AW = F , and then finding V from BV T = W T . This is preferable to
solving the much larger linear system (A⊗B) vec(V ) = vec(F ).

5. A fast way to solve the 2D Poisson problem in the form TV +V T = F will
be considered in the next chapter.

Proof.

1. Exercise.

2. By the mixed product rule
(
A⊗B

)(
A−1 ⊗B−1

)
=
(
AA−1

)
⊗
(
BB−1

)
=

Ir ⊗ Is = Irs.Thus
(
A⊗B

)
is nonsingular with the indicated inverse.
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3. By 1, (A ⊗B)T = AT ⊗BT = A ⊗B. Moreover, since then A ⊗ I and
I ⊗B are symmetric, their sum is symmetric.

4. (A ⊗B)(ui ⊗ vj) = (Aui) ⊗ (Bvj) = (λiui) ⊗ (µjvj) = (λiµj)(ui ⊗ vj),
for all i, j, where we used the mixed product rule.

5. (A⊗Is)(ui⊗vj) = λi(ui⊗vj), and (Ir⊗B)(ui⊗vj) = µj(ui⊗vj).The
result now follows by summing these relations.

6. By 1, A ⊗ I + I ⊗B is symmetric. Moreover, the eigenvalues λi + µj are
positive since for all i, j, both λi and µj are nonnegative and one of them is
positive. It follows that A⊗ I + I ⊗B is symmetric positive definite.

7. We partition V , F , andBT by columns as V = [v1, . . . ,vs], F = [f1, . . . ,fs]
and BT = [b1, . . . , bs]. Then we have

(A⊗B) vec(V ) = vec(F )

⇔

 Ab11 · · · Ab1s
...

...
Abs1 · · · Abss


v1

...
vs

 =

f1
...
fs


⇔ A

[∑
j

b1jvj , . . . ,
∑
j

bsjvj

]
= [f1, . . . ,fs]

⇔ A[V b1, . . . ,V bs] = F ⇔ AV BT = F .

8. This follows immediately from (7) as follows

(A⊗ Is + Ir ⊗B) vec(V ) = vec(F )

⇔ (AV ITs + IrV B
T ) = F ⇔ AV + V BT = F .

For more on Kronecker products see [14].

3.3 Properties of the 1D and 2D Test Matrices
Using Theorem 3.7 we can derive properties of the 2D test matrix T 2 from those
of T 1. We need to determine the eigenpairs of T 1. We show that the eigenvectors
are the columns of the sine matrix defined by

S =

[
sin

jkπ

m+ 1

]m
j,k=1

∈ Rm×m. (3.14)
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For m = 3,

S = [s1, s2, s3] =

 sin π
4 sin 2π

4 sin 3π
4

sin 2π
4 sin 4π

4 sin 6π
4

sin 3π
4 sin 6π

4 sin 9π
4

 =

t 1 t
1 0 −1
t −1 t

 , t :=
1√
2
.

Lemma 3.8 (Eigenpairs of 1D test matrix)
Suppose T 1 = (tkj)k,j = tridiag(a, d, a) ∈ Rm×m with m ≥ 2, a, d ∈ R, and let
h = 1/(m+ 1).

1. We have T 1sj = λjsj for j = 1, . . . ,m, where

sj = [sin(jπh), sin(2jπh), . . . , sin(mjπh)]T , (3.15)

λj = d+ 2a cos(jπh). (3.16)

2. The eigenvalues are distinct and the eigenvectors are orthogonal

sTj sk =
m+ 1

2
δj,k =

1

2h
δj,k, j, k = 1, . . . ,m. (3.17)

Proof. We find for 1 < k < m

(T 1sj)k =

m∑
l=1

tk,l sin(ljπh) = a
[

sin
(
(k − 1)jπh

)
+ sin

(
(k + 1)jπh

)]
+ d sin(kjπh)

= 2a cos(jπh) sin(kjπh) + d sin(kjπh) = λjsk,j .

This also holds for k = 1,m, and part 1 follows. Since jπh = jπ/(m+ 1) ∈ (0, π)
for j = 1, . . . ,m and the cosine function is strictly monotone decreasing on (0, π)
the eigenvalues are distinct, and since T 1 is symmetric it follows from Lemma 3.9
below that the eigenvectors sj are orthogonal. To finish the proof of (3.17) we
compute the square of the Euclidian norm of each sj as follows:

sTj sj =

m∑
k=1

sin2(kjπh) =

m∑
k=0

sin2(kjπh) =
1

2

m∑
k=0

(
1− cos(2kjπh)

)
=
m+ 1

2
− 1

2

m∑
k=0

cos(2kjπh) =
m+ 1

2
,

since the last cosine sum is zero. We show this by summing a geometric series of
complex exponentials. With i =

√
−1 we find

m∑
k=0

cos(2kjπh) + i

m∑
k=0

sin(2kjπh) =

m∑
k=0

e2ikjπh =
e2i(m+1)jπh − 1

e2ijπh − 1
= 0,

and (3.17) follows.
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Lemma 3.9 (Eigenpairs of a Hermitian matrix)
The eigenvalues of a Hermitian matrix are real. Moreover, eigenvectors corre-
sponding to distinct eigenvalues are orthogonal.

Proof. The first part was shown in Lemma 2.40. Suppose that (λ,x) and (µ,y)
are two eigenpairs for A with µ 6= λ. Multiplying Ax = λx by y∗ gives

λy∗x = y∗Ax = (x∗A∗y)∗ = (x∗Ay)∗ = (µx∗y)∗ = µy∗x,

using that µ is real. Since λ 6= µ it follows that y∗x = 0, which means that x and
y are orthogonal.

It is now easy to find the eigenpairs of the 2D test matrix and determine
when it is positive definite.

Theorem 3.10 (Eigenpairs of 2D test matrix)
For fixed m ≥ 2 let T 2 be the matrix given by (3.9) and let h = 1/(m+ 1).

1. We have T 2xj,k = λj,kxj,k for j, k = 1, . . . ,m, where

xj,k = sj ⊗ sk, (3.18)

sj = [sin(jπh), sin(2jπh), . . . , sin(mjπh)]T , (3.19)

λj,k = 2d+ 2a cos(jπh) + 2a cos(kπh). (3.20)

2. The eigenvectors are orthogonal

xTj,kxp,q =
1

4h2
δj,pδk,q, j, k, p, q = 1, . . . ,m. (3.21)

3. T 2 is symmetric positive definite if d > 0 and d ≥ 2|a|.

Proof. By Theorem 3.7 the eigenvalues of T 2 = T 1 ⊗ I + I ⊗ T 1 are sums of
eigenvalues of T 1 and the eigenvectors are Kronecker producets of the eigenvectors
of T 1. Part 1 now follows from Lemma 3.8. Using the transpose rule, the mixed
product rule and (3.17) we find for j, k, p, q = 1, . . . ,m(
sj ⊗ sk

)T (
sp ⊗ sq

)
=
(
sTj ⊗ sTk

)(
sp ⊗ sq

)
=
(
sTj sp

)
⊗
(
sTk sq

)
=

1

4h2
δj,pδk,q

and part 2 follows. Since T 2 is symmetric, part 3 will follow if the eigenvalues are
positive. But this is true if d > 0 and d ≥ 2|a|. Thus T 2 is positive definite.

Exercise 3.11 (2. derivative matrix is positive definite)
Write down the eigenvalues of T = tridiag(−1, 2,−1) using Lemma 3.8 and con-
clude that T is symmetric positive definite.
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Exercise 3.12 (1D test matrix is positive definite?)
Use Lemma 3.8 to show that the matrix T 1 := tridiag(a, d, a) ∈ Rn×n is symmetric
positive definite if d > 0 and d ≥ 2|a|.

Exercise 3.13 (Eigenvalues for 2D test matrix of order 4)
For m = 2 the matrix (3.9) is given by

A =


2d a a 0
a 2d 0 a
a 0 2d a
0 a a 2d

 .
Show that λ = 2a + 2d is an eigenvalue corresponding to the eigenvector x =
[1, 1, 1, 1]T . Verify that apart from a scaling of the eigenvector this agrees with
(3.20) and (3.19) for j = k = 1 and m = 2.

Exercise 3.14 (Nine point scheme for Poisson problem)
Consider the following 9 point difference approximation to the Poisson problem
−∆u = f , u = 0 on the boundary of the unit square (cf. (3.1))

(a) −(�hv)j,k = (µf)j,k j, k = 1, . . . ,m
(b) 0 = v0,k = vm+1,k = vj,0 = vj,m+1, j, k = 0, 1, . . . ,m+ 1,
(c) −(�hv)j,k = [20vj,k − 4vj−1,k − 4vj,k−1 − 4vj+1,k − 4vj,k+1

− vj−1,k−1 − vj+1,k−1 − vj−1,k+1 − vj+1,k+1]/(6h
2),

(d) (µf)j,k = [8fj,k + fj−1,k + fj,k−1 + fj+1,k + fj,k+1]/12.

(3.22)

a) Write down the 4-by-4 system we obtain for m = 2.

b) Find vj,k for j, k = 1, 2, if f(x, y) = 2π2 sin (πx) sin (πy) and m = 2. Answer:
vj,k = 5π2/66.

It can be shown that (3.22) defines an O(h4) approximation to (3.1).

Exercise 3.15 (Matrix equation for nine point scheme)
Consider the nine point difference approximation to (3.1) given by (3.22) in Prob-
lem 3.14.

a) Show that (3.22) is equivalent to the matrix equation

TV + V T − 1

6
TV T = h2µF . (3.23)

Here µF has elements (µf)j,k given by (3.22d).
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b) Show that the standard form of the matrix equation (3.23) is Ax = b, where
A = T ⊗ I + I ⊗ T − 1

6T ⊗ T , x = vec(V ), and b = h2vec(µF ).

Exercise 3.16 (Biharmonic equation)
Consider the biharmonic equation

∆2u(s, t) := ∆
(
∆u(s, t)

)
= f(s, t) (s, t) ∈ Ω,

u(s, t) = 0, ∆u(s, t) = 0 (s, t) ∈ ∂Ω.
(3.24)

Here Ω is the open unit square. The condition ∆u = 0 is called the Navier bound-
ary condition. Moreover, ∆2u = uxxxx + 2uxxyy + uyyyy.

a) Let v = −∆u. Show that (3.24) can be written as a system

−∆v(s, t) = f(s, t) (s, t) ∈ Ω
−∆u(s, t) = v(s, t) (s, t) ∈ Ω

u(s, t) = v(s, t) = 0 (s, t) ∈ ∂Ω.
(3.25)

b) Discretizing, using (3.3), with T = tridiag(−1, 2,−1) ∈ Rm×m, h = 1/(m+1),
and F =

(
f(jh, kh)

)m
j,k=1

we get two matrix equations

TV + V T = h2F , TU +UT = h2V .

Show that

(T ⊗ I + I ⊗ T )vec(V ) = h2vec(F ), (T ⊗ I + I ⊗ T )vec(U) = h2vec(V ).

and hence A = (T ⊗ I + I ⊗ T )2 is the matrix for the standard form of the
discrete biharmonic equation.

c) Show that with n = m2 the vector form and standard form of the systems in
b) can be written

T 2U + 2TUT +UT 2 = h4F and Ax = b, (3.26)

where A = T 2⊗I+2T⊗T+I⊗T 2 ∈ Rn×n, x = vec(U), and b = h4 vec(F ).

d) Determine the eigenvalues and eigenvectors of the matrix A in c) and show
that it is symmetric positive definite. Also determine the bandwidth of A.

e) Suppose we want to solve the standard form equation Ax = b. We have two
representations for the matrix A, the product one in b) and the one in c).
Which one would you prefer for the basis of an algorithm? Why?
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3.4 Review Questions
3.4.1 Consider the Poisson matrix.

• Write this matrix as a Kronecker sum,

• how are its eigenvalues and eigenvectors related to the second derivative
matrix?

• is it symmetric? positive definite?

3.4.2 What are the eigenpairs of T 1 := tridiagonal(a, d, a)?

3.4.3 What are the inverse and transpose of a Kronecker product?

3.4.4 • give an economical general way to solve the linear system (A⊗B) vec(V ) =
vec(F )?

• Same for (A⊗ Is + Ir ⊗B) vec(V ) = vec(F ).



Chapter 4

Fast Direct Solution of a
Large Linear System

4.1 Algorithms for a Banded Positive Definite
System

In this chapter we present a fast method for solving Ax = b, where A is the
Poisson matrix (3.7). Thus, for n = 9

A =



4 −1 0 −1 0 0 0 0 0
−1 4 −1 0 −1 0 0 0 0

0 −1 4 0 0 −1 0 0 0
−1 0 0 4 −1 0 −1 0 0

0 −1 0 −1 4 −1 0 −1 0
0 0 −1 0 −1 4 0 0 −1
0 0 0 −1 0 0 4 −1 0
0 0 0 0 −1 0 −1 4 −1
0 0 0 0 0 −1 0 −1 4


=

 T + 2I −I 0
−I T + 2I −I

0 −I T + 2I

 ,
where T = tridiag(−1, 2,−1). For the matrix A we know by now that

1. It is symmetric positive definite.

2. It is banded.

3. It is block-tridiagonal.

103
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Figure 4.1. Fill-inn in the Cholesky factor of the Poisson matrix (n = 100).

4. We know the eigenvalues and eigenvectors of A.

5. The eigenvectors are orthogonal.

4.1.1 Cholesky factorization

Since A is symmetric positive definite we can use the Cholesky factorization A =
LLT , withL lower triangular, to solveAx = b. SinceA is banded with bandwidth
d =
√
n the matrix L has bandwidth d =

√
n (cf. Lemma 2.46) and the complexity

of this factorization is O(nd2) = O(n2). We need to store A, and this can be done
in sparse form.

The nonzero elements in L are shown in Figure 4.1 for n = 100. Note that
most of the zeros between the diagonals in A have become nonzero in L. This is
known as fill-inn.

4.1.2 Block LU factorization of a block tridiagonal matrix

The Poisson matrix has a block tridiagonal structure. Consider finding the block
LU factorization of a block tridiagonal matrix. We are looking for a factorization
of the form

D1 C1

A1 D2 C2

. . .
. . .

. . .
Am−2 Dm−1 Cm−1

Am−1 Dm

 =

 I
L1 I

. . .
. . .

Lm−1 I

U1 C1

. . .
. . .

Um−1 Cm−1

Um

 . (4.1)
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Here D1, . . . ,Dm and U1, . . . ,Um are square matrices while A1, . . . ,Am−1,L1,
. . .,Lm−1 and C1, . . . ,Cm−1 can be rectangular.

Using block multiplication the formulas (1.4) generalize to

U1 = D1, Lk = AkU
−1
k , Uk+1 = Dk+1−LkCk, k = 1, 2, . . . ,m−1. (4.2)

To solve the system Ax = b we partition b conformaly with A in the form
bT = [bT1 , . . . , b

T
m]. The formulas for solving Ly = b and Ux = y are as follows:

y1 = b1, yk = bk −Lk−1yk−1, k = 2, 3, . . . ,m,

xm = U−1
m ym, xk = U−1

k (yk −Ckxk+1), k = m− 1, . . . , 2, 1.
(4.3)

The solution is then xT = [xT1 , . . . ,x
T
m]. To find Lk in (4.2) we solve the linear

systems LkUk = Ak. Similarly we need to solve a linear system to find xk in
(4.3).

The number of arithmetic operations using block factorizations is O(n2),
asymptotically the same as for Cholesky factorization. However we only need to
store the m×m blocks and using matrix operations can be an advantage.

4.1.3 Other methods

Other methods include

• Iterative methods, (we study this in Chapters 8 and 9),

• multigrid. See [8],

• fast solvers based on diagonalization and the fast Fourier transform. See
Sections 4.2, 4.3.

4.2 A Fast Poisson Solver based on Diagonalization
The algorithm we now derive will only require O(n3/2) arithmetic operations and
we only need to work with matrices of order m. Using the fast Fourier transform
the number of arithmetic operations can be reduced further to O(n log n).

To start we recall that Ax = b can be written as a matrix equation in the
form (cf. (3.5))

TV + V T = h2F with h = 1/(m+ 1),

where T = tridiag(−1, 2,−1) ∈ Rm×m is the second derivative matrix, V =
(vjk) ∈ Rm×m are the unknowns, and F = (fjk) = (f(jh, kh)) ∈ Rm×m contains
function values.
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Recall that the eigenpairs of T are given by

Tsj = λjsj , j = 1, . . . ,m,

sj = [sin (jπh), sin (2jπh), . . . , sin (mjπh)]T ,

λj = 2− 2 cos(jπh) = 4 sin2 (jπh/2), h = 1/(m+ 1),

sTj sk = δjk/(2h) for all j, k.

Let

S := [s1, . . . , sm] =
[

sin (jkπh)
]m
j,k=1

∈ Rm×m, D = diag(λ1, . . . , λm). (4.4)

Then

TS = [Ts1, . . . ,Tsm] = [λ1s1, . . . , λmsm] = SD, S2 = STS =
1

2h
I.

Define X ∈ Rm×m by V = SXS, where V is the solution of TV + V T = h2F .
Then

TV + V T = h2F

V =SXS⇐⇒ TSXS + SXST = h2F

S( )S⇐⇒ STSXS2 + S2XSTS = h2SFS = h2G

TS=SD⇐⇒ S2DXS2 + S2XS2D = h2G

S2=I/(2h)⇐⇒ DX +XD = 4h4G.

Since D is diagonal, the equaltion DX +XD = 4h4G, is easy to solve. For the
j, k element we find

(DX +XD)j,k =

m∑
`=1

dj,`x`,k +

m∑
`=1

xj,`d`,k = λjxj,k + λkxj,k

so that for all j, k

xjk = 4h4gjk/(λj + λk) = h4gjk/(σj + σk), σj := λj/4 = sin2 (jπh/2).

Thus to find V we compute

1. G = SFS,

2. xj,k = h4gj,k/(σj + σk), j, k = 1, . . . ,m,

3. V = SXS.
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We can compute mX,S and the σ’s without using loops. Using outer products,
element by element division, and raising a matrix element by element to a power
we find

X = h4G/M , where M :=

[
σ1

...
σm

]
[ 1, ..., 1 ] +

[
1
...
1

]
[ σ1. ... .σm ] ,

S = sin
(
πh

[ 1
2
...
m

]
[ 1 2 ... m ]

)
, σ = sin

(πh
2

[ 1
2
...
m

] )
∧ 2.

We now get the following algorithm to solve numerically the Poisson problem
−∆u = f on Ω = (0, 1)2 and u = 0 on ∂Ω using the 5-point scheme, i. e., let m ∈
N, h = 1/(m+1), and F = (f(jh, kh)) ∈ Rm×m. We compute V ∈ R(m+2)×(m+2)

using diagonalization of T = tridiag(−1, 2,−1) ∈ Rm×m.

Algorithm 4.1 (Fast Poisson solver)

1 function V=f a s t p o i s s o n (F)
2 %func t ion V=fa s t p o i s s on (F)
3 m=length (F) ; h=1/(m+1) ; hv=pi∗h ∗ ( 1 :m) ’ ;
4 sigma=sin ( hv /2) . ˆ 2 ;
5 S=sin ( hv ∗ ( 1 :m) ) ;
6 G=S∗F∗S ;
7 X=hˆ4∗G. / ( sigma∗ ones (1 ,m)+ ones (m, 1 ) ∗ sigma ’ ) ;
8 V=zeros (m+2,m+2) ;
9 V( 2 :m+1 ,2:m+1)=S∗X∗S ;

The formulas are fully vectorized. Since the 6th line in Algorithm 4.1 only
requires O(m2) arithmetic operations the complexity of this algorithm is for large
m determined by the 4 m-by-m matrix multiplications and is given by O(4 ×
2m3) = O(8n3/2). 8 The method is very fast and will be used as a preconditioner
for a more complicated problem in Chapter 9. In 2012 it took about 0.2 seconds
on a laptop to find the 106 unknowns vj,k on a 1000× 1000 grid.

4.3 A Fast Poisson Solver based on the discrete
sine and Fourier transforms

In Algorithm 4.1 we need to compute the product of the sine matrix S ∈ Rm×m
given by (4.4) and a matrix A ∈ Rm×m. Since the matrices are m-by-m this will
normally require O(m3) operations. In this section we show that it is possible to
calculate the products SA and AS in O(m2 log2m) operations.

8It is possible to compute V using only two matrix multiplications and hence reduce the
complexity to O(4n3/2). This is detailed in Problem 4.8.
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We need to discuss certain transforms known as the discrete sine trans-
form, the discrete Fourier transform and the fast Fourier transform. In
addition we have the discrete cosine transform which will not be discussed
here. These transforms are of independent interest. They have applications to
signal processing and image analysis, and are often used when one is dealing with
discrete samples of data on a computer.

4.3.1 The discrete sine transform (DST)

Given v = [v1, . . . , vm]T ∈ Rm we say that the vector w = [w1, . . . , wm]T given by

wj =

m∑
k=1

sin
( jkπ

m+ 1

)
vk, j = 1, . . . ,m

is the discrete sine transform (DST) of v. In matrix form we can write the
DST as the matrix times vector w = Sv, where S is the sine matrix given by
(4.4). We can then identify the matrix B = SA as the DST of A ∈ Rm,n, i.e. as
the DST of the columns of A. The product B = AS can also be interpreted as
a DST. Indeed, since S is symmetric we have B = (SAT )T which means that
B is the transpose of the DST of the rows of A. It follows that we can compute
the unknowns V in Algorithm 4.1 by carrying out discrete sine transforms on 4
m-by-m matrices in addition to the computation of X.

4.3.2 The discrete Fourier transform (DFT)

Jean Baptiste Joseph Fourier, 1768 - 1830.

The fast computation of the DST is based on its relation to the discrete
Fourier transform (DFT) and the fact that the DFT can be computed by a tech-
nique known as the fast Fourier transform (FFT). To define the DFT let for N ∈ N

ωN = exp−2πi/N = cos(2π/N)− i sin(2π/N), (4.5)

where i =
√
−1 is the imaginary unit. Given y = [y1, . . . , yN ]T ∈ RN we say that
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z = [z1, . . . , zN ]T given by

z = FNy, zj+1 =

N−1∑
k=0

ωjkN yk+1, j = 0, . . . , N − 1

is the discrete Fourier transform (DFT) of y. We can write this as a matrix
times vector product z = FNy, where the Fourier matrix FN ∈ CN×N has
elements ωjkN , j, k = 0, 1, . . . , N − 1. For a matrix we say that B = FNA is the
DFT of A.

As an example, since

ω4 = exp−2πi/4 = cos(π/2)− i sin(π/2) = −i

we find ω2
4 = (−i)2 = −1, ω3

4 = (−i)(−1) = i, ω4
4 = (−1)2 = 1, ω6

4 = i2 = −1,
ω9

4 = i3 = −i, and so

F 4 =


1 1 1 1
1 ω4 ω2

4 ω3
4

1 ω2
4 ω4

4 ω6
4

1 ω3
4 ω6

4 ω9
4

 =


1 1 1 1
1 −i −1 i
1 −1 1 −1
1 i −1 −i

 . (4.6)

The following lemma shows how the discrete sine transform of order m can be
computed from the discrete Fourier transform of order 2m+ 2. We recall that for
any complex number w

sinw =
eiw − e−iw

2i
.

Lemma 4.2 (Sine transform as Fourier transform)
Given a positive integer m and a vector x ∈ Rm. Component k of Sx is equal to
i/2 times component k + 1 of F 2m+2z where

zT = [0,xT , 0,−xTB ] ∈ R2m+2, xTB := [xm, . . . , x2, x1].

In symbols

(Sx)k =
i

2
(F 2m+2z)k+1 , k = 1, . . . ,m.

Proof. Let ω = ω2m+2 = e−2πi/(2m+2) = e−πi/(m+1). We note that

ωjk = e−πijk/(m+1), ω(2m+2−j)k = e−2πieπijk/(m+1) = eπijk/(m+1).
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Component k + 1 of F 2m+2z is then given by

(F 2m+2z)k+1 =

2m−1∑
j=0

ωjkzj+1 =

m∑
j=1

xjω
jk −

m∑
j=1

xjω
(2m+2−j)k

=

m∑
j=1

xj
(
e−πijk/(m+1) − eπijk/(m+1)

)
= −2i

m∑
j=1

xj sin

(
jkπ

m+ 1

)
= −2i(Smx)k.

Dividing both sides by −2i and noting −1/(2i) = −i/(2i2) = i/2, proves the
lemma.

It follows that we can compute the DST of length m by extracting m com-
ponents from the DFT of length N = 2m+ 2.

4.3.3 The fast Fourier transform (FFT)

From a linear algebra viewpoint the fast Fourier transform is a quick way to
compute the matrix- vector product FNy. Suppose N is even. The key to the
FFT is a connection between FN and FN/2 which makes it possible to compute
the FFT of order N as two FFT’s of order N/2. By repeating this process we
can reduce the number of arithmetic operations to compute a DFT from O(N2)
to O(N log2N).

Suppose N is even. The connection between FN and FN/2 involves a per-
mutation matrix PN ∈ RN×N given by

PN = [e1, e3, . . . , eN−1, e2, e4, . . . , eN ],

where the ek = (δj,k) are unit vectors. IfA is a matrix withN columns [a1, . . . ,aN ]
then

APN = [a1,a3, . . . ,aN−1,a2,a4, . . . ,aN ],

i.e. post multiplying A by PN permutes the columns of A so that all the odd-
indexed columns are followed by all the even-indexed columns. For example we
have from (4.6)

P 4 = [e1 e3 e2 e4] =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 F 4P 4 =


1 1 1 1
1 −1 −i i
1 1 −1 −1
1 −1 i −i

 ,
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where we have indicated a certain block structure of F 4P 4. These blocks can be
related to the 2-by-2 matrix F 2. We define the diagonal scaling matrix D2 by

D2 = diag(1, ω4) =

[
1 0
0 −i

]
.

Since ω2 = exp−2πi/2 = −1 we find

F 2 =

[
1 1
1 −1

]
, D2F 2 =

[
1 1
−i i

]
,

and we see that

F 4P 4 =

[
F 2 D2F 2

F 2 −D2F 2

]
.

This result holds in general.

Theorem 4.3 (Fast Fourier transform)
If N = 2m is even then

F 2mP 2m =

[
Fm DmFm
Fm −DmFm

]
, (4.7)

where
Dm = diag(1, ωN , ω

2
N , . . . , ω

m−1
N ). (4.8)

Proof. Fix integers p, q with 1 ≤ p, q ≤ m and set j := p − 1 and k := q − 1.
Since

ωmm = 1, ω2k
2m = ωkm, ωm2m = −1, (Fm)p,q = ωjkm , (DmFm)p,q = ωj2mω

jk
m ,

we find by considering elements in the four sub-blocks in turn

(F 2mP 2m)p,q = ω
j(2k)
2m = ωjkm ,

(F 2mP 2m)p+m,q = ω
(j+m)(2k)
2m = ω

(j+m)k
m = ωjkm ,

(F 2mP 2m)p,q+m = ω
j(2k+1)
2m = ωj2mω

jk
m ,

(F 2mP 2m)p+m,q+m = ω
(j+m)(2k+1)
2m = ωj+m2m ω

(j+m)k
m = −ωj2mωjkm .

It follows that the four m-by-m blocks of F 2mP 2m have the required structure.

Using Theorem 4.3 we can carry out the DFT as a block multiplication. Let
y ∈ R2m and set w = P T

2my = [wT
1 ,w

T
2 ]T , where

wT
1 = [y1, y3, . . . , y2m−1], wT

2 = [y2, y4, . . . , y2m].
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Then

F 2my = F 2mP 2mP
T
2my = F 2mP 2mw

=

[
Fm DmFm
Fm −DmFm

] [
w1

w2

]
=

[
q1 + q2

q1 − q2

]
,

where

q1 = Fmw1, and q2 = Dm(Fmw2).

In order to compute F 2my we need to compute Fmw1 and Fmw2. Thus, by
combining two FFT’s of order m we obtain an FFT of order 2m. If n = 2k then
this process can be applied recursively as in the following Matlab function:

Algorithm 4.4 (Recursive FFT)

1 function z=f f t r e c ( y )
2 %func t ion z=f f t r e c ( y )
3 y=y ( : ) ;
4 n=length ( y ) ;
5 i f n==1
6 z=y ;
7 else
8 q1=f f t r e c ( y ( 1 : 2 : n−1) )
9 q2=exp(−2∗pi∗ i /n) . ˆ ( 0 : n/2−1) ’ .∗ f f t r e c ( y ( 2 : 2 : n ) )

10 z=[q1+q2 ; q1−q2 ] ;
11 end

Statement 3 is included so that the input y ∈ Rn can be either a row or
column vector, while the output z is a column vector.

Such a recursive version of FFT is useful for testing purposes, but is much
too slow for large problems. A challenge for FFT code writers is to develop
nonrecursive versions and also to handle efficiently the case where N is not a
power of two. We refer to [32] for further details.

The complexity of the FFT is given by γN log2N for some constant γ in-
dependent of N . To show this for the special case when N is a power of two
let xk be the complexity (the number of arithmetic operations) when N = 2k.
Since we need two FFT’s of order N/2 = 2k−1 and a multiplication with the
diagonal matrix DN/2, it is reasonable to assume that xk = 2xk−1 + γ2k for
some constant γ independent of k. Since x0 = 0 we obtain by induction on k
that xk = γk2k. Indeed, this holds for k = 0 and if xk−1 = γ(k − 1)2k−1 then
xk = 2xk−1 + γ2k = 2γ(k− 1)2k−1 + γ2k = γk2k. Reasonable implementations of
FFT typically have γ ≈ 5, see [32].

The efficiency improvement using the FFT to compute the DFT is spec-
tacular for large N . The direct multiplication FNy requires O(8n2) arithmetic
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operations since complex arithmetic is involved. Assuming that the FFT uses
5N log2N arithmetic operations we find for N = 220 ≈ 106 the ratio

8N2

5N log2N
≈ 84000.

Thus if the FFT takes one second of computing time and the computing time is
proportional to the number of arithmetic operations then the direct multiplication
would take something like 84000 seconds or 23 hours.

4.3.4 A poisson solver based on the FFT

We now have all the ingredients to compute the matrix products SA and AS
using FFT’s of order 2m+ 2 where m is the order of S and A. This can then be
used for quick computation of the exact solution V of the discrete Poisson problem
in Algorithm 4.1. We first compute H = SF using Lemma 4.2 and m FFT’s,
one for each of the m columns of F . We then compute G = HS by m FFT’s,
one for each of the rows of H. After X is determined we compute Z = SX and
V = ZS by another 2m FFT’s. In total the work amounts to 4m FFT’s of order
2m+ 2. Since one FFT requires O(γ(2m+ 2) log2(2m+ 2)) arithmetic operations
the 4m FFT’s amount to

8γm(m+ 1) log2(2m+ 2) ≈ 8γm2 log2m = 4γn log2 n,

where n = m2 is the size of the linear system Ax = b we would be solving
if Cholesky factorization was used. This should be compared to the O(8n3/2)
arithmetic operations used in Algorithm 4.1 requiring 4 straightforward matrix
multiplications with S. What is faster will depend heavily on the programming
of the FFT and the size of the problem. We refer to [32] for other efficient ways
to implement the DST.

Exercise 4.5 (Fourier matrix)
Show that the Fourier matrix F 4 is symmetric, but not Hermitian.

Exercise 4.6 (Sine transform as Fourier transform)
Verify Lemma 4.2 directly when m = 1.

Exercise 4.7 (Explicit solution of the discrete Poisson equation)
Show that the exact solution of the discrete Poisson equation (3.4) can be written
V = (vi,j)

m
i,j=1, where

vij =
1

(m+ 1)4

m∑
p=1

m∑
r=1

m∑
k=1

m∑
l=1

sin
(
ipπ
m+1

)
sin
(
jrπ
m+1

)
sin
(
kpπ
m+1

)
sin
(
lrπ
m+1

)[
sin
(

pπ
2(m+1)

)]2
+
[
sin
(

rπ
2(m+1)

)]2 fp,r.
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Exercise 4.8 (Improved version of Algorithm 4.1)
Algorithm 4.1 involves multiplying a matrix by S four times. In this problem we
show that it is enough to multiply by S two times. We achieve this by diagonalizing
only the second T in TV + V T = h2F . Let D = diag(λ1, . . . , λm), where λj =
4 sin2 (jπh/2), j = 1, . . . ,m.

(a) Show that

TX +XD = C, where X = V S, and C = h2FS.

(b) Show that
(T + λjI)xj = cj j = 1, . . . ,m, (4.9)

where X = [x1, . . . ,xm] and C = [c1, . . . , cm]. Thus we can find X by solving m
linear systems, one for each of the columns of X. Recall that a tridiagonal m×m
system can be solved by (1.4) and (1.5) in 8m− 7 arithmetic operations. Give an
algorithm to find X which only requires O(δm2) arithmetic operations for some
constant δ independent of m.

(c) Describe a method to compute V which only requires O(4m3) = O(4n3/2)
arithmetic operations.

(d) Describe a method based on the fast Fourier transform which requires
O(2γn log2 n) where γ is the same constant as mentioned at the end of the last
section.

Exercise 4.9 (Fast solution of 9 point scheme)
Consider the equation

TV + V T − 1

6
TV T = h2µF ,

that was derived in Exercise 3.15 for the 9-point scheme. Define the matrix X by
V = SXS = (xj,k) where V is the solution of (3.23). Show that

DX +XD − 1

6
DXD = 4h4G, where G = SµFS,

and that

xj,k =
h4gj,k

σj + σk − 2
3σjσk

, where σj = sin2
(
(jπh)/2

)
for j, k = 1, 2, . . . ,m.

Show that σj + σk − 2
3σjσk > 0 for j, k = 1, 2, . . . ,m. Conclude that the

matrix A in Exercise 3.15 b) is symmetric positive definite and that (3.22) always
has a solution V .
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Exercise 4.10 (Algorithm for fast solution of 9 point scheme)
Derive an algorithm for solving (3.22) which for large m requires essentially the
same number of operations as in Algorithm 4.1. (We assume that µF already has
been formed).

Exercise 4.11 (Fast solution of biharmonic equation)
For the biharmonic problem we derived in Exercise 3.16 the equation

T 2U + 2TUT +UT 2 = h4F .

Define the matrix X = (xj,k) by U = SXS where U is the solution of (3.26).
Show that

D2X + 2DXD +XD2 = 4h6G, where G = SFS,

and that

xj,k =
h6gj,k

4(σj + σk)2
, where σj = sin2 ((jπh)/2) for j, k = 1, 2, . . . ,m.

Exercise 4.12 (Algorithm for fast solution of biharmonic equation)
Use Exercise 4.11 to derive an algorithm

function U=simplefastbiharmonic(F)

which requires only O(δn3/2) operations to find U in Problem 3.16. Here δ is
some constant independent of n.

Exercise 4.13 (Check algorithm for fast solution of biharmonic equation)
In Exercise 4.12 compute the solution U corresponding to F = ones(m,m). For
some small m’s check that you get the same solution obtained by solving the stan-
dard form Ax = b in (3.26). You can use x = A\b for solving Ax = b. Use

F(:) to vectorize a matrix and reshape(x,m,m) to turn a vector x ∈ Rm2

into
an m × m matrix. Use the Matlab command surf(U) for plotting U for, say,
m = 50. Compare the result with Exercise 4.12 by plotting the difference between
both matrices.

Exercise 4.14 (Fast solution of biharmonic equation using 9 point rule)
Repeat Exercises 3.16, 4.12 and 4.13 using the nine point rule (3.22) to solve the
system (3.25).
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4.4 Review Questions
4.4.1 Consider the Poisson matrix.

• What is the bandwidth of its Cholesky factor?

• approximately how many arithmetic operations does it take to find the
Cholesky factor?

• same question for block LU,

• same question for the fast Poisson solver with and without FFT.

4.4.2 What is the discrete sine transform and discrete Fourier transform of a
vector?
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Chapter 5

Matrix Reduction by
Similarity Transformations

A basic problem in numerical linear algebra is to compute eigenvalues and eigen-
vectors of a matrix A. Before attempting to find eigenvalues and eigenvectors of
A (exceptions are made for certain sparse matrices), it should be reduced by sim-
ilarity transformations to a simpler form. The contents of this chapter is mainly
theoretical, but the results are useful in numerical analysis.

5.1 Some Properties of Eigenpairs
We recall (cf. Section 0.7) that (λ,x) is an eigenpair for A if Ax = λx and x is
nonzero. The scalar λ is called an eigenvalue and x is said to be an eigenvector.
The set of eigenvalues is called the spectrum of A and is denoted by σ(A).
For example, σ(I) = {1, . . . , 1} = {1}. The eigenvalues are the roots of the
characteristic polynomial given by πA(λ) := det(A− λI) for λ ∈ C.

5.1.1 Transformations of eigenpairs and trace

The following results will be useful.

Theorem 5.1 (Transformations of eigenpairs)
Suppose (λ,x) is an eigenpair for A ∈ Cn×n. Then

1. If A is nonsingular then (λ−1,x) is an eigenpair for A−1.

2. (λk,x) is an eigenpair for Ak for k ∈ N.

3. If p is a polynomial given by p(t) = a0 +a1t+a2t
2 + · · ·+akt

k then (p(λ),x)
is an eigenpair for the matrix p(A) := a0I + a1A+ a2A

2 + · · ·+ akA
k.

4. λ is an eigenvalue for AT , in fact πAT = πA.

119
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5. λ is an eigenvalue for A∗, in fact πA∗(λ) = πA(λ) for all λ ∈ C.

6. If A = [ B C
0 D ] is block triangular then πA = πB · πD.

Proof.

1. Ax = λx =⇒ A−1x = λ−1x.

2. We use induction on k. The case k = 1 is trivial, and if Ak−1x = λk−1x
then Akx = AAk−1x = λk−1Ax = λkx.

3. p(A)x =
∑k
j=0 ajA

jx
2.
=
∑k
j=0 ajλ

jx = p(λ)x.

4. Using Property 3. of determinants we find for any λ ∈ C

πAT (λ) = det(AT − λI) = det
(
(A− λI)T

)
= det(A− λI) = πA(λ).

Thus AT and A have the same characteristic polynomial and hence the
same eigenvalues.

5. We have πA∗(λ)
4.
= πA(λ) = det(A − λI) = det(A− λI) = πA(λ). Thus

πA(λ) = 0⇔ πA∗(λ) = 0 and the result follows.

6. By Property 6. of determinants

πA(λ) =

∣∣∣∣B − λI C
0 D − λI

∣∣∣∣ = det(B − λI) det(D − λI) = πB(λ) · πD(λ).

There are two important relations between the elements of a matrix A ∈
Cn×n and its eigenvalues λ1, . . . , λn.

Theorem 5.2 (Sums and products of eigenvalues; trace)
For any A ∈ Cn×n

trace(A) = λ1 + λ2 + · · ·+ λn, det(A) = λ1λ2 · · ·λn, (5.1)

where the trace of A ∈ Cn×n is the sum of its diagonal elements

trace(A) := a11 + a22 + · · ·+ ann. (5.2)

Proof. We compare two different expansion of πA. On the one hand from (29)
we find

πA(λ) = (−1)nλn + cn−1λ
n−1 + · · ·+ c0,
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where cn−1 = (−1)n−1 trace(A) and c0 = πA(0) = det(A). On the other hand

πA(λ) = (λ1 − λ) · · · (λn − λ) = (−1)nλn + dn−1λ
n−1 + · · ·+ d0,

where dn−1 = (−1)n−1(λ1 + · · · + λn) and d0 = λ1 · · ·λn. Since cj = dj for all j
we obtain (5.1).

For a 2× 2 matrix the characteristic equation takes the convenient form

λ2 − trace(A)λ+ det(A) = 0. (5.3)

Thus, if A = [ 2 1
1 2 ] then trace(A) = 4, det(A) = 3 so that πA(λ) = λ2 − 4λ+ 3.

Exercise 5.3 (Eigenvalues of an idempotent matrix)
Let λ ∈ σ(A) where A2 = A ∈ Cn×n. Show that λ = 0 or λ = 1. (A matrix is
called idempotent if A2 = A).

Exercise 5.4 (Eigenvalues of an nilpotent matrix)
Let λ ∈ σ(A) where Ak = 0 for some k ∈ N. Show that λ = 0. (A matrix
A ∈ Cn×n such that Ak = 0 for some k ∈ N is called nilpotent).

Exercise 5.5 (Eigenvalues of a unitary matrix)
Let λ ∈ σ(A), where A∗A = I. Show that |λ| = 1.

Exercise 5.6 (Nonsigular approximation of a singular matrix)
Suppose A ∈ Cn×n is singular. Then we can find ε0 > 0 such that A + εI is
nonsingular for all ε ∈ C with |ε| < ε0. Hint: det(A) = λ1λ2 · · ·λn, where λi are
the eigenvalues of A.

Exercise 5.7 (Companion matrix)
For q0, . . . , qn−1 ∈ C let p(λ) = λn+ qn−1λ

n−1 + · · ·+ q0 be a polynomial of degree
n in λ. We derive two matrices that have (−1)np as its characteristic polynomial.

a) Show that p = (−1)nπA where

A =


−qn−1 −qn−2 · · · −q1 −q0

1 0 · · · 0 0
0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0

 .

A is called the companion matrix of f .
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b) Show that p = (−1)nπB where

B =


0 0 · · · 0 −q0

1 0 · · · 0 −q1

0 1 · · · 0 −q2

...
...

. . .
...

...
0 0 · · · 1 −qn−1

 .
Thus B can also be regarded as a companion matrix for p.

5.1.2 Similarity transformations

Row operations are used in Gaussian elimination to reduce a matrix to triangular
form, but row operations change the eigenvalues of a matrix. We need a transfor-
mation which can be used to simplify a matrix without changing the eigenvalues.

Definition 5.8 (Similar matrices)
Two matrices A,B ∈ Cn×n are said to be similar if there is a nonsingular matrix
S ∈ Cn×n such that B = S−1AS. The transformation A → B is called a
similarity transformation. It is called a unitary similarity transformation
if S∗S = I and an orthonormal similarity transformation if S ∈ Rn×n and
STS = I.

Theorem 5.9 (Eigenpairs of similar matrices)
Let B = S−1AS, where S ∈ Cn×n is nonsingular with columns s1, . . . , sn. Then
B and A have the same characteristic polynomial. Moreover, (λ,v) is an eigenpair
for B if and only if (λ,Sv) is an eigenpair for A.

Proof. By properties of determinants

πB(λ) = det(S−1AS − λI) = det
(
S−1(A− λI)S

)
= det(S−1) det(A− λI) det(S) = det(S−1S) det(A− λI) = πA(λ).

But thenA andB have the same characteristic polynomial. Moreover, (S−1AS)v =
λv if and only if A(Sv) = λ(Sv).

As a corollary we have the following useful result.

Corollary 5.10 (Spectra of AB and BA)
For any A ∈ Cm×n and B ∈ Cn×m the matrices AB and BA have the same
spectrum apart from some extra zero eigenvalues. More precisely,

λnπAB(λ) = λmπBA(λ), λ ∈ C.

If m = n then πAB = πBA.
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Proof. Define block matrices of order n+m by

E =

[
AB 0
B 0

]
, F =

[
0 0
B BA

]
, S =

[
I A
0 I

]
.

The matrix S is nonsingular with S−1 =

[
I −A
0 I

]
. Moreover, ES = SF so E

and F are similar and have the same characteristic polynomial by Theorem 5.9. By
Property 6. of Theorem 5.1 we have πE(λ) = λnπAB(λ) = πF (λ) = λmπBA(λ).
If m = n we can cancel the λ factors.

5.2 Unitary Similarity Transformations
In this section we consider the reduction of a matrix to triangular, or almost
triangular form using unitary similarity transformations, and characterize matrices
with orthonormal eigenvectors.

We start by reviewing some basic facts about matrices with orthonormal
columns.

5.2.1 Unitary and orthonormal and matrices

labelsec:orthmat

Definition 5.11 (Unitary matrix)
A matrix U ∈ Cn×n is said to be unitary if U∗U = I. A real unitary matrix is
called orthonormal.

Warning: An orthonormal matrix is often called an “orthogonal matrix”
in the literature.

In the following we consider only the complex case. The real case follows
by replacing conjugate transpose ”*” by transpose ”T” and C by R. We use the
standard inner product in Cn given by 〈x,y〉 := y∗x. In the real case we have
〈x,y〉 = xTy = yTx. Orthogonality and orthonormality is with respect to the
standard inner product.

Since U∗U = I the matrix U is nonsingular, U−1 = U∗ and UU∗ = I
as well. Moreover, both the columns and rows of a unitary matrix of order n
form orthonormal bases for Cn. We also note that the product of two unitary
matrices is unitary. Indeed if U∗1U1 = I and U∗2U2 = I then (U1U2)∗(U1U2) =
U∗2U

∗
1U1U2 = I.

Theorem 5.12 (Unitary matrix)
The matrix U ∈ Cn×n is unitary if and only if 〈Ux,Uy〉 = 〈x,y〉 for all x,y ∈
Cn. In particular, if U is unitary then ‖Ux‖2 = ‖x‖2 for all x ∈ Cn.
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Proof. If U∗U = I and x,y ∈ Cn then

〈Ux,Uy〉 = (Uy)∗(Ux) = y∗U∗Ux = y∗x = 〈x,y〉.

Conversely, if 〈Ux,Uy〉 = 〈x,y〉 for all x,y ∈ Cn then U∗U = I since for
i, j = 1, . . . , n

(U∗U)i,j = eTi U
∗Uej = (Uei)

∗(Uej) = 〈Uej ,Uei〉 = 〈ej , ei〉 = e∗i ej = δi,j .

The last part of the theorem follows immediately by taking y = x:

Issai Schur, 1875-1941 (left),John William Strutt (Lord Rayleigh), 1842-1919 (right).

5.2.2 The Schur decomposition

Although not every matrix can be diagonalized it can be brought into triangular
form by a unitary similarity transformation.

Theorem 5.13 (Schur decomposition)
For each A ∈ Cn×n there exists a unitary matrix U ∈ Cn×n such that R :=
U∗AU is upper triangular.

The matrices U andR in the Schur decomposition are called Schur factors.

Proof. We use induction on n. For n = 1 the matrix U is the 1 × 1 identity
matrix. Assume that the theorem is true for matrices of order k and suppose
A ∈ Cn×n, where n := k + 1. Let (λ1,v1) be an eigenpair for A with ‖v1‖2 = 1.
By Theorem 0.30 we can extend v1 to an orthonormal basis {v1,v2, . . . ,vn} for
Cn. The matrix V := [v1, . . . ,vn] ∈ Cn×n is unitary, and for the first column of
the product V ∗AV we find

V ∗AV e1 = V ∗Av1 = λ1V
∗v1 = λ1e1.
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It follows that

V ∗AV =

[
λ1 x∗

0 M

]
, for some M ∈ Ck×k and x ∈ Ck. (5.4)

By the induction hypothesis there is a unitary matrix W 1 ∈ Ck×k such that
W ∗

1MW 1 is upper triangular. Define

W =

[
1 0∗

0 W 1

]
and U = VW .

Then W and U are unitary and

U∗AU = W ∗(V ∗AV )W =

[
1 0∗

0 W ∗
1

] [
λ1 x∗

0 M

] [
1 0∗

0 W 1

]
=

[
λ1 x∗W 1

0 W ∗
1MW 1

]
is upper triangular.

If A has complex eigenvalues then U will be complex even if A is real. The
following is a real version of Theorem 5.13.

Theorem 5.14 (Schur form, real eigenvalues)
For each A ∈ Rn×n with real eigenvalues there exists a matrix U ∈ Rn×n with
UTU = I, such that UTAU is upper triangular.

Proof. Consider the proof of Theorem 5.13. Since A and λ1 are real the eigen-
vector v1 is real and the matrix W is real and W TW = I. By the induction hy-
pothesis V is real and V TV = I. But then also U = VW is real and UTU = I.

By using the unitary transformation V on the n× n matrix A, we obtain a
matrix M of order n − 1. M has the same eigenvalues as A except λ. Thus we
can find another eigenvalue of A by working with a smaller matrix M . This is an
example of a deflation technique which is very useful in numerical work.

Example 5.15 (Deflation example)

The matrix T :=
[

2 −1 0
−1 2 −1
0 −1 2

]
has an eigenpair (2,x1), where x1 = [−1, 0, 1]T .

We can extend x1 to a basis {x1,x2,x3} for R3 by defining x2 = [0, 1, 0]T ,
x3 = [1, 0, 1]T . This is already an orthogonal basis and normalizing we obtain
the orthonormal matrix

V =

 − 1√
2

0 1√
2

0 1 0
1√
2

0 1√
2

 .
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We obtain (5.4) with λ = 2 and

M =

[
2 −

√
2

−
√

2 2

]
.

We can now find the remaining eigenvalues of A from the 2× 2 matrix M .

Exercise 5.16 (Schur decomposition example)
Show that a Schur decomposition of A = [ 1 2

3 2 ] is UTAU =
[−1 −1

0 4

]
, where U =

1√
2

[
1 1
−1 1

]
.

How far can we reduce a real matrix A with some complex eigenvalues by
a real unitary similarity transformation? To study this we note that the complex
eigenvalues of a real matrix occur in conjugate pairs, λ = µ + iν, λ = µ − iν,
where µ, ν are real. The real 2× 2 matrix

M =

[
µ ν
−ν µ

]
(5.5)

has eigenvalues λ = µ+ iν and λ = µ− iν.

Definition 5.17 (Quasi-triangular matrix)
We say that a matrix is quasi-triangular if it is block triangular with only 1× 1
and 2 × 2 blocks on the diagonal. Moreover, no 2 × 2 block should have real
eigenvalues.

As an example consider

R =


2 1 3 4 5
−1 2 4 3 2
0 0 1 2 3
0 0 0 3 2
0 0 0 −1 1

 .
R has three diagonal blocks:

D1 =

[
2 1
−1 2

]
, D2 =

[
1
]
, D3 =

[
3 2
−1 1

]
.

By Theorem 5.1 the eigenvalues of R are the union of the eigenvalues of D1, D2

andD3. The eigenvalues ofD1 are 2+i and 2−i, whileD2 has eigenvalue 1, andD3

has the same eigenvalues asD1. ThusR has one real eigenvalue 1 corresponding to
the 1×1 block and complex eigenvalues 2+i, 2−i with multiplicity 2 corresponding
to the two 2× 2 blocks.

Any A ∈ Rn×n can be reduced to quasi-triangular form by a real orthonor-
mal similarity transformation. A proof is given in Section 5.7.
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5.2.3 Normal matrices

It is possible to characterize matrices that have a diagonal Schur factorization.

Definition 5.18 (Normal matrix)
A matrix A ∈ Cn×n is said to be normal if AA∗ = A∗A.

Examples of normal matrices are

1. A∗ = A, (Hermitian)

2. A∗ = −A, (Skew-Hermitian)

3. A∗ = A−1, (Unitary)

4. A = D. (Diagonal)

The 2. derivative matrix T in (1.2) and the discrete Poisson matrix (cf.
Lemma 3.10) are examples of normal matrices.

Exercise 5.19 (Skew-Hermitian matrix)
Suppose C = A + iB, where A,B ∈ Rn×n. Show that C is skew-Hermitian if
and only if AT = −A and BT = B.

Exercise 5.20 (Eigenvalues of a skew-Hermitian matrix)
Show that any eigenvalue of a skew-Hermitian matrix is purely imaginary.

The following theorem says that a matrix has orthonormal eigenpairs if and
only if it is normal.

Theorem 5.21 (Orthonormal eigenpairs characterization)
A matrix A ∈ Cn×n is unitary similar with a diagonal matrix if and only if it is
normal.

Proof. If B = U∗AU , with B diagonal, and U∗U = I, then

AA∗ = (UBU∗)(UB∗U∗) = UBB∗U∗ and

A∗A = (UB∗U∗)(UBU∗) = UB∗BU∗.

Now BB∗ = B∗B since B is diagonal, and A is normal.
Suppose A∗A = AA∗. By Theorem 5.13 we can find U with U∗U = I such

that B := U∗AU is upper triangular. Since A is normal B is normal. Indeed,

BB∗ = U∗AUU∗A∗U = U∗AA∗U = U∗A∗AU = B∗B.
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The proof is complete if we can show that an upper triangular normal matrix B
must be diagonal. The diagonal elements in E := B∗B and F := BB∗ are given
by

eii =

n∑
k=1

bkibki =

i∑
k=1

|bki|2 and fii =

n∑
k=1

bikbik =

n∑
k=i

|bik|2.

The result now follows by equating eii and fii for i = 1, 2, . . . , n. In particular for
i = 1 we have |b11|2 = |b11|2 + |b12|2 + · · · + |b1n|2, so b1k = 0 for k = 2, 3, . . . , n.
Suppose bjk = 0 for j = 1, . . . , i−1, k = j+1, . . . , n. Then

eii =

i∑
k=1

|bki|2 = |bii|2 =

n∑
k=i

|bik|2 = fii

so bik = 0, k = i+1, . . . , n. By induction on the rows we see that B is diagonal.

The special cases where A is Hermitian, or real and symmetric, occur often
in applicationals and deserve special attention.

Corollary 5.22 (Spectral theorem, complex form)
Suppose A ∈ Cn×n is Hermitian. Then A has real eigenvalues λ1, . . . , λn. More-
over, there is a unitary matrix U ∈ Cn×n such that U∗AU = diag(λ1, . . . , λn).
For any such U the columns {u1, . . . ,un} of U are orthonormal eigenvectors of
A and Auj = λjuj for j = 1, . . . , n.

Proof. That the eigenvalues are real was shown in Lemma 3.9. The rest follows
from Theorem 5.21.

There is also a real version.

Corollary 5.23 (Spectral theorem (real form))
Suppose A ∈ Rn×n and AT = A. Then A has real eigenvalues λ1, . . . , λn. More-
over, there is an orthonormal matrix U ∈ Rn×n such that UTAU = diag(λ1, . . . , λn).
For any such U the columns {u1, . . . ,un} of U are orthonormal eigenvectors of
A and Auj = λjuj for j = 1, . . . , n.

Proof. Since a real symmetric matrix has real eigenvalues and eigenvectors this
follows from Theorem 5.22.

Example 5.24 The orthonormal diagonalization of A =
[

2 −1
−1 2

]
is UTAU =

diag(1, 3), where U = 1√
2

[
1 1
1 −1

]
.
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5.3 Minmax theorems for Hermitian Matrices
There are some useful characterizations of the eigenvalues of a Hermitian matrix.
They are based on the Rayleigh quotient that is a useful tool when studying
eigenpairs.

5.3.1 The Rayleigh quotient

Definition 5.25 (Rayleigh quotient)
For A ∈ Cn×n and a nonzero x ∈ Cn the number

R(x) = RA(x) :=
x∗Ax

x∗x

is called a Rayleigh quotient.

If (λ,x) is an eigenpair for A then R(x) = x∗Ax
x∗x = λ.

Equation (5.6) in the following lemma shows that the Rayleigh quotient of
a normal matrix is a convex combination of its eigenvalues.

Lemma 5.26 (Convex combination of the eigenvalues)
Suppose A ∈ Cn×n is normal with orthonormal eigenpairs (λj ,uj), j = 1, 2, . . . , n
and let x ∈ Cn. Then

RA(x) =

n∑
j=1

bjλj , bj ≥ 0,

n∑
j=1

bj = 1, (5.6)

where bj = |cj |2/
∑n
i=1|ci|2, j = 1, . . . , n, and x =

∑n
j=1 cjuj is the eigenvector

expansion of x.

Proof. By orthonormality of the eigenvectors x∗x =
∑n
i=1

∑n
j=1 ciuicjuj =∑n

j=1|cj |2. Similarly, x∗Ax =
∑n
i=1

∑n
j=1 ciuicjλjuj =

∑n
j=1 λj |cj |2. and (5.6)

follows with bj = |cj |2/
∑n
i=1|ci|2, j = 1, . . . , n. This is clearly a combination of

nonnegative quantities and a convex combination since
∑n
j=1|cj |2/

∑n
i=1|ci|2 = 1.

5.3.2 Minmax and maxmin

First we show

Theorem 5.27 (Minmax)
Suppose A ∈ Cn×n is Hermitian with eigenvalues λ1, . . . , λn, ordered so that
λ1 ≥ · · · ≥ λn. Let 1 ≤ k ≤ n. For any subspace S of Cn of dimension n− k + 1

λk ≤ max
x∈S
x 6=0

R(x), (5.7)
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with equality for S = S̃ := span(uk, . . . ,un) and x = uk. Here (λj ,uj), 1 ≤ j ≤ n
are orthonormal eigenpairs for A.

Proof. Let S be any subspace of Cn of dimension n − k + 1 and define S ′ :=
span(u1, . . . ,uk). We need to find y ∈ S so that R(y) ≥ λk. Now S + S ′ :=
{s+ s′ : s ∈ S, s′ ∈ S ′} is a subspace of Cn and by (7)

dim(S ∩ S ′) = dim(S) + dim(S ′)− dim(S + S ′) ≥ (n− k + 1) + k − n = 1.

It follows that S∩S ′ is nonempty. Let y ∈ S∩S ′ =
∑k
j=1 cjuj with

∑k
j=1|cj |2 = 1.

Defining cj = 0 for k + 1 ≤ j ≤ n, we obtain by Lemma 5.26

max
x∈S
x6=0

R(x) ≥ R(y) =

n∑
j=1

λj |cj |2 =

k∑
j=1

λj |cj |2 ≥
k∑
j=1

λk|cj |2 = λk,

and (5.7) follows. If y ∈ S̃, say y =
∑n
j=k djuj with

∑n
j=k|dj |2 = 1 then again

by Lemma 5.26 R(y) =
∑n
j=k λj |dj |2 ≤ λk, and since y ∈ S̃ is arbitray we have

maxx∈S̃
x6=0

R(x) ≤ λk and equality in (5.7) follows for S = S̃. Moreover, R(uk) = λk.

There is also a maxmin version of this result.

Theorem 5.28 (Maxmin)
Suppose A ∈ Cn×n is Hermitian with eigenvalues λ1, . . . , λn, ordered so that
λ1 ≥ · · · ≥ λn. Let 1 ≤ k ≤ n. For any subspace S of Cn of dimension k

λk ≥ min
x∈S
x6=0

R(x), (5.8)

with equality for S = S̃ := span(u1, . . . ,uk) and x = uk. Here (λj ,uj), 1 ≤ j ≤ n
are orthonormal eigenpairs for A.

Proof. The proof is very similar to the proof of Theorem 5.27. We define S ′ :=
span(uk, . . . ,un) and show that R(y) ≤ λk for some y ∈ S ∩ S ′. It is easy to see
that R(y) ≥ λk for any y ∈ S̃.



5.3. Minmax theorems for Hermitian Matrices 131

Richard Courant, 1888-1972 (left), Ernst Sigismund Fischer, 1875-1954 (right).

These theorems immediately lead to classical minmax and maxmin charac-
terizations.

Corollary 5.29 (The Courant-Fischer theorem )
Suppose A ∈ Cn×n is Hermitian with eigenvalues λ1, . . . , λn, ordered so that
λ1 ≥ · · · ≥ λn. Then

λk = min
dim(S)=n−k+1

max
x∈S
x 6=0

R(x) = max
dim(S)=k

min
x∈S
x6=0

R(x), k = 1, . . . , n. (5.9)

Using the maxmin Theorem 5.27 we can prove inequalities of eigenvalues
without knowing the eigenvectors and we can get both upper and lower bounds.

Theorem 5.30 (Eigenvalue perturbation for Hermitian matrices)
Let A,B ∈ Cn×n be Hermitian with eigenvalues α1 ≥ α2 ≥ · · · ≥ αn and β1 ≥
β2 ≥ · · · ≥ βn. Then

αk + εn ≤ βk ≤ αk + ε1, for k = 1, . . . , n, (5.10)

where ε1 ≥ ε2 ≥ · · · ≥ εn are the eigenvalues of E := B −A.

Proof. Since E is a sum of Hermitian matrices it is Hermitian and the eigenvalues
are real. Let (αj ,uj), j = 1, . . . , n be orthonormal eigenpairs for A and let
S := span{uk, . . . ,un}. By Theorem 5.27 we obtain

βk ≤ max
x∈S
x6=0

RB(x) ≤ max
x∈S
x6=0

RA(x)+max
x∈S
x6=0

RE(x) ≤ max
x∈S
x 6=0

RA(x)+max
x∈Cn
x6=0

RE(x) = αk+ε1,

and this proves the upper inequality. For the lower one we define D := −E and
observe that −εn is the largest eigenvalue of D. Since A = B+D it follows from
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the result just proved that αk ≤ βk−εn, which is the same as the lower inequality.

In many applications of this result the eigenvalues of the matrix E will be
small and then the theorem states that the eigenvalues of B are close to those of
A. Moreover, it associates a unique eigenvalue of A with each eigenvalue of B.

Exercise 5.31 (Eigenvalue perturbation for Hermitian matrices)
Show that in Theorem 5.30, if E is symmetric positive semidefinite then βi ≥ αi.

Alan Jerome Hoffman, 1924- (left), Helmut Wielandt, 1910-2001 (right).

5.3.3 The Hoffman-Wielandt theorem

We can also give a bound involving all eigenvalues. The following theorem shows
that the eigenvalue problem for a normal matrix is well conditioned.

Theorem 5.32 (Hoffman-Wielandt theorem )
Suppose A,B ∈ Cn×n are both normal matrices with eigenvalues λ1, . . . , λn and
µ1, . . . , µn, respectively. Then there is a permutation i1, . . . , in of 1, 2, . . . , n such
that

n∑
j=1

|µij − λj |2 ≤
n∑
i=1

n∑
j=1

|aij − bij |2. (5.11)

For a proof of this theorem see [[28], p. 190]. For a Hermitian matrix we can
use the identity permutation if we order both set of eigenvalues in nonincreasing
or nondecreasing order.

Exercise 5.33 (Hoffman-Wielandt)
Show that (5.11) does not hold for the matrices A := [ 0 0

0 4 ] and B :=
[−1 −1

1 1

]
.

Why does this not contradict the Hoffman-Wielandt theorem?
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5.4 The Jordan Form
For any A ∈ Cn×n there is a unitary matrix U such that U∗AU = R is upper
triangular. Moreover R is diagonal if A is normal. The following question arises.
How close to a diagonal matrix can we reduce a general matrix by a similarity
transformation? The main result is the Jordan form in Theorem 5.44. For a proof,
see for example [13].

5.4.1 Diagonalizable matrices and linear independence of
eigenvectors

We start by giving a characterization of matrices that are similar to a diagonal
matrix.

Definition 5.34 (Diagonalizable matrix)
A matrix of order n is diagonalizable if it is similar to a diagonal matrix, and
defective if this is not the case.

We have S−1AS = diag(λ1, . . . , λn) if and only if S∗A∗S−∗ = diag(λ1, . . . , λn),
where S−∗ := (S∗)−1 = (S−1)∗. Thus A is is diagonalizable if and only if A∗ is
diagonalizable.

Theorem 5.35 (Eigenvectors of diagonalizable matrices)
A matrix of order n is diagonalizable if and only if its eigenvectors form a basis
for Cn.

Proof. Let S ∈ Cn×n be nonsingular with columns s1, . . . , sn. Then

S−1AS = diag(λ1, . . . , λn)⇔ AS = S diag(λ1, . . . , λn)

⇔ Asi = λisi, i = 1, . . . , n.

Since S is nonsingular the n columns of are linearly independent and therefore
constitute a basis for Cn.

If the eigenvectors v1, . . . ,vn of a matrix of order n are linearly independent
then any x ∈ Cn can be written x =

∑n
j=1 cjvj for some scalars c1, . . . , cn. We

call this an eigenvector expansion of x.
For distinct eigenvalues we have the following result.

Theorem 5.36 (Distinct eigenvalues)
Eigenvectors corresponding to distinct eigenvalues are linearly independent.

Proof. Suppose (λk,xk), k = 1, . . . ,m are eigenpairs ofA and that λ1, . . . , λm are
distinct, but x1, . . . ,xm are linearly dependent. With m the smallest such positive
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integer we will obtain a contradiction. For some nonzero vector c := [c1, . . . , cm]
we have

m∑
j=1

cjxj = 0. (5.12)

Clearly m ≥ 2 since the eigenvectors and c are nonzero. Applying A to (5.12)
we obtain by linearity

∑m
j=1 cjλjxj = 0. From this relation we subtract λm

times (5.12) and find
∑m−1
j=1 cj(λj − λm)xj = 0. But since λj − λm 6= 0 for

j = 1, . . . ,m− 1 and at least one cj 6= 0 for j < m we see that {x1, . . . ,xm−1} is
linearly dependent, contradicting the minimality of m.

Corollary 5.37 (Diagonalizable matrix)
A matrix with distinct eigenvalues is diagonalizable.

Proof. By the previous theorem the eigenvectors are linearly independent.

5.4.2 Algebraic and geometric multiplicity of eigenvalues

A defective matrix must necessarily have one or more multiple eigenvalues, but as
the following example shows this is not sufficient.

Example 5.38 (Two upper triangular matrices)
Consider the 2 matrices of order 3

A1 :=

1 0 0
0 1 0
0 0 1

 , A2 :=

1 1 0
0 1 1
0 0 1

 .
Both matrices are upper triangular and have an eigenvalue λ = 1 of multiplicity
3.

1. The eigenvectors of A1 are the linearly independent unit vectors xi = ei,
i = 1, 2, 3. Thus A1 is diagonalizable.

2. An eigenvector x = [x1, x2, x3]T of A2 must be a solution of the homogenous
triangular linear system

(A− I)x = 0 or

0 1 0
0 0 1
0 0 0

x1

x2

x3

 =

0
0
0

 .
But then x2 = x3 = 0 and any eigenvector must be a multiple of e1. We
conclude that A2 is defective.
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Linear independence of eigenvectors depends on the multiplicity of the eigen-
values in a nontrivial way. For multiple eigenvalues we need to distinguish between
two kinds of multiplicities.

Suppose A ∈ Cn×n and

πA(λ) := det(A− λI) = (µ1 − λ)a1 · · · (µr − λ)ar , µi 6= µj , i 6= j,

r∑
i=1

ai = n.

(5.13)
The positive integer ai = a(µi) = aA(µi) is called the multiplicity, or more
precisely the algebraic multiplicity of the eigenvalue µi. The multiplicity of an
eigenvalue is simple (double, triple) if ai is equal to one (two, three).

To define a second kind of multiplicity we consider for each λ ∈ σ(A) the
nullspace

ker(A− λI) := {x ∈ Cn : (A− λI)x = 0} (5.14)

of A − λI. The nullspace is a subspace of Cn consisting of all eigenvectors of
A corresponding to the eigenvalue λ. The dimension of the subspace must be at
least one since A− λI is singular.

Definition 5.39 (Geometric multiplicity)
The geometric multiplicity g = g(λ) = gA(λ) of an eigenvalue λ of A is the
dimension of the nullspace ker(A− λI).

Example 5.40 (Geometric multiplicity)
The n×n identity matrix I has the eigenvalue λ = 1 with πI(λ) = (1−λ)n. Since
I − λI is the zero matrix when λ = 1, the nullspace of I − λI is all of n-space
and it follows that a = g = n. On the other hand we saw in Example 5.38 that

the 3 × 3 matrix A =
[

1 1 0
0 1 1
0 0 1

]
has the eigenvalue λ = 1 with a = 3 and only one

eigenvector. Thus g = 1.

Theorem 5.41 (Geometric multiplicity of similar matrices)
Similar matrices have the same eigenvalues with the same algebraic and geometric
multiplicities.

Proof. Similar matrices have the same characteristic polynomials and only the
invariance of geometric multiplicity needs to be shown. Suppose λ ∈ σ(A),
dim ker(S−1AS − λI) = k, and dim ker(A − λI) = `. We need to show that
k = `. Suppose v1, . . . ,vk is a basis for ker(S−1AS−λI). Then S−1ASvi = λvi
or ASvi = λSvi, i = 1, . . . , k. But then {Sv1, . . . ,Svk} ⊂ ker(A − λI), which
implies that k ≤ `. Simiarly, if w1, . . . ,w` is a basis for ker(A − λI) then
{S−1w1, . . . ,S

−1w`} ⊂ ker(S−1AS − λI). which implies that k ≥ `. We con-
clude that k = `.
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Exercise 5.42 (Find eigenpair example)

Find eigenvalues and eigenvectors of A =

 1 2 3
0 2 3
0 0 2

.

5.4.3 The Jordan form

Marie Ennemond Camille Jordan, 1838-1922 (left), William Rowan Hamilton, 1805-
1865 (right).

Definition 5.43 (Jordan block)
A Jordan block of order m, denoted Jm(λ) is an m×m matrix of the form

Jm(λ) :=


λ 1 0 ··· 0 0
0 λ 1 ··· 0 0
0 0 λ ··· 0 0
...

...
0 0 0 ··· λ 1
0 0 0 ··· 0 λ

 .
A 3 × 3 Jordan block has the form J3(λ) =

[
λ 1 0
0 λ 1
0 0 λ

]
. Since a Jordan block

is upper triangular λ is an eigenvalue of Jm(λ) and any eigenvector must be a
multiple of e1. Indeed, if Jm(λ)v = λv for some v = [v1, . . . , vm] then v2 =
· · · = vm = 0. Thus, the eigenvectors of Jm(λ) have algebraic multiplicity m and
geometric multiplicity one.

The Jordan form is a decomposition of a matrix into Jordan blocks.

Theorem 5.44 (The Jordan form of a matrix)
Suppose A ∈ Cn×n has k distinct eigenvalues λ1, . . . , λk of algebraic multiplicities
a1, . . . , ak and geometric multiplicities g1, . . . , gk. There is a nonsingular matrix
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S ∈ Cn×n such that

J := S−1AS = diag(U1, . . . ,Uk), with U i ∈ Cai×ai , (5.15)

where each U i is block diagonal having gi Jordan blocks along the diagonal

U i = diag(Jmi,1(λi), . . . ,Jmi,gi (λi)). (5.16)

Here mi,1, . . . ,mi,gi are unique integers ordered so that mi,1 ≥ mi,2 ≥ · · · ≥ mi,gi

and ai =
∑gi
j=1mi,j for all i.

The matrices S and J in (5.15) are called Jordan factors. We also call J
the Jordan form of A. As an example consider the Jordan form

J := diag(U1,U2) =


2 1 0
0 2 1
0 0 2

2 1
0 2

2
3 1
0 3

 ∈ R8,8. (5.17)

The eigenvalues together with their algebraic and geometric multiplicities can be
read off directly from the Jordan form.

• U1 = diag(J3(2),J2(2),J1(2)) and U2 = J2(3).

• 2 is an eigenvalue of algebraic multiplicity 6 and geometric multiplicity 3.

• 3 is an eigenvalue of algebraic multiplicity 2 and geometric multiplicity 1.

Each U i is upper triangular with the eigenvalue λi on the diagonal and
consists of gi Jordan blocks. These Jordan blocks can be taken in any order and
it is customary to refer to any such block diagonal matrix as the Jordan form of
A. Thus in the example the matrix

J :=


3 1
0 3

2 1
0 2

2
2 1 0
0 2 1
0 0 2


is also a Jordan form of A. In any Jordan form of this A the sizes of the 4 Jordan
blocks J3(2),J2(2),J1(2),J2(3) are uniquely given.

The columns of S are called principal vectors. They satisfy the matrix
equation AS = SJ . As an example, in (5.17) we have S = [s1, . . . , s8] and we
find

As1 = 2s1, As2 = 2s2 + s1, As3 = 2s3 + s2,

As4 = 2s4, As5 = 2s5 + s4,

As6 = 2s6,

As7 = 3s7, As8 = 3s8 + s7,
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We see that the first principal vector in each Jordan block is an eigenvector of A.
The remaining principal vectors are not eigenvectors.

Exercise 5.45 (Jordan example)

For the Jordan form of the matrix A =
[

3 0 1
−4 1 −2
−4 0 −1

]
we have J =

[
1 1 0
0 1 0
0 0 1

]
. Find S.

Exercise 5.46 (Big Jordan example)
Find the Jordan form of the matrix

A =
1

9


10 16 −8 −5 6 1 −3 4
−7 32 −7 −10 12 2 −6 8
−6 12 12 −15 18 3 −9 12
−5 10 −5 −2 24 4 −12 16
−4 8 −4 −16 30 14 −15 20
−3 6 −3 −12 9 24 −9 24
−2 4 −2 −8 6 −2 15 28
−1 2 −1 −4 3 −1 −6 41

 . (5.18)

The Jordan form implies

Corollary 5.47 (Geometric multiplicity)
We have

1. The geometric multiplicity of an eigenvalue is always bounded above by the
algebraic multiplicity of the eigenvalue.

2. The number of linearly independent eigenvectors of a matrix equals the sum
of the geometric multiplicities of the eigenvalues.

3. A matrix A ∈ Cn×n has n linearly independent eigenvectors if and only if
the algebraic and geometric multiplicity of all eigenvalues are the same.

Proof.

1. The algebraic multiplicity ai of an eigenvalue λi is equal to the size of the
correspondingU i. Moreover eachU i contains gi Jordan blocks of sizemi,j ≥
1. Thus gi ≤ ai.

2. Since A and J are similar the geometric multiplicities of the eigenvalues of
these matrices are the same, and it is enough to prove statement 2 for the
Jordan factor J . We show this only for the matrix J given by (5.17). The
general case should then be clear. There are only 4 eigenvectors of J , namly
e1, e4, e6, e7 corresponding to the 4 Jordan blocks. These 4 vectors are
clearly linearly independent. Moreover there are k = 2 distinct eigenvalues
and g1 + g2 = 3 + 1 = 4.

3. Since gi ≤ ai for all i and
∑
i ai = n we have

∑
i gi = n if and only if ai = gi

for i = 1, . . . , k.
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The following lemma and the following exercise is useful when studying pow-
ers of matrices.

Lemma 5.48 (A nilpotent matrix)
We have (

Jm(λ)− λI
)m

= 0, λ ∈ C; m ∈ N.

Proof. Let Em := Jm(λ)− λI. For m = 4 we find

E4 =


0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0

 , E2
4 =


0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0

 , E3
4 =


0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0

 ,E4
4 = 0.

In general, Er
m =

[
0 Im−r
0 0

]
for 1 ≤ r ≤ m− 1, and it follows that Em

m = 0.

Exercise 5.49 (Properties of the Jordan form)
Let J be the Jordan form of a matrix A ∈ Cn×n as given in Theorem 5.44. Then
for r = 0, 1, 2, . . ., m = 2, 3, . . ., and any λ ∈ C

1. Ar = SJrS−1,

2. Jr = diag(U r
1, . . . ,U

r
k),

3. U r
i = diag(Jmi,1(λi)

r, . . . ,Jmi,gi (λi)
r),

4. Jm(λ)r = (Em + λIm)r =
∑min{r,m−1}
k=0

(
r
k

)
λr−kEk

m.

Exercise 5.50 (Powers of a Jordan block)
Find J100 and A100 for the matrix in Exercise 5.45.

5.5 The Minimal Polynomial
Let J be the Jordan form of A given in Theorem 5.44. Since A and J are similar
they have the same characteristic polynomial, and since the Jordan form of A is
upper triangular with the eigenvalues of A on the diagonal we have

πA(λ) = πJ (λ) =

k∏
i=1

gi∏
j=1

(λi − λ)mi,j .

The polynomials pij(λ) := (λi−λ)mi,j are called the elementary divisors of A.
They divide the characteristic polynomial.
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Definition 5.51 (Minimal polynomial of a matrix)
Suppose A = SJS−1 is the Jordan canonical form of A. The polynomial

µ(λ) :=

k∏
i=1

(λi − λ)mi where mi := max
1≤j≤gi

mi,j ,

is called the minimal polynomial of A.

Since each factor in µ(z) is also a factor in πA(z), we have the factorization
πA(z) = µ(z)ν(z) for some polynomial ν(z).

Exercise 5.52 (Minimal polynomial example)
What is the characteristic polynomial and the minimal polynomial of the matrix
J in (5.17)?

To see in what way the minimal polynomial is minimal, we consider two
matrices defined from the characteristic polynomial πA and the minimal polyno-
mial. We substitute a matrix for the independent variable in these polynomials
and define

πA(A) :=

k∏
i=1

gi∏
j=1

(λiI −A)mi,j , µ(A) :=

k∏
i=1

(λiI −A)mi . (5.19)

By induction it is easy to see that µ(A) and πA(A) are polynomials in the matrix

A. Moreover, µ(A) =
∏k
i=1(λiI − SJS−1)mi = Sµ(J)S−1, so that µ(A) = 0 if

and only if µ(J) = 0. Since J and U1, . . . ,Uk are block diagonal we find

µ(J) =

k∏
i=1

(λiI − J)mi =

k∏
i=1

diag
(
(λiI −U1)mi , . . . , (λiI −Uk)mi

)
= diag

( k∏
i=1

(λiI −U1)mi , . . . ,

k∏
i=1

(λiI −Uk)mi
)

= 0,

since by Lemma 5.48 and the maximality of mr

(λrI −U r)
mr = diag

(
(λrI − Jmr,1)mr , . . . , (λrI − Jmr,gr )mr

)
= 0, r = 1, . . . , k.

We have shown that a matrix satisfies its minimal polynomial equation
µ(A) = 0. Moreover, the degree of any polynomial p such that p(A) = 0 is

at least as large as the degree d =
∑k
i=1mi of the minimal polynomial µ. This

follows from the proof since any such polynomial must contain the elementary
divisors (λi − λ)mi for i = 1, . . . , k. Since the minimal polynomial divides the
characteristic polynomial we obtain as a corollary the Cayley-Hamilton Theo-
rem which says that a matrix satisfies its characteristic equation πA(A) = 0.
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Exercise 5.53 (Similar matrix polynomials)
Show that p(B) = S−1p(A)S for any polynomial p and any similar matrices
B = S−1AS.

Exercise 5.54 (Minimal polynomial of a diagonalizable matrix)
What is the minimal polynomial of the unit matrix and more generally of a diag-
onalizable matrix?

5.6 Left Eigenvectors
Definition 5.55 (Left eigenpair)
Suppose A ∈ Cn×n is a square matrix, λ ∈ C and y ∈ Cn. We say that (λ,y) is
a left eigenpair for A if y∗A = λy∗ and y is nonzero.

Since A∗y = λy Theorem 5.1 implies that λ is an eigenvalue of A, while
a left eigenvector is an eigenvector of A∗. Thus left and right eigenvalues are
identical, but left and right eigenvectors are in general different. For an Hermitian
matrix the right and left eigenpairs are the same

Left- and right eigenvectors corresponding to distinct eigenvalues are orthog-
onal.

Theorem 5.56 (Biorthogonality)
Suppose (µ,y) and (λ,x) are left and right eigenpairs of A ∈ Cn×n. If λ 6= µ
then y∗x = 0.

Proof. Using the eigenpair relation in two ways we obtain y∗Ax = λy∗x = µy∗x
and we conclude that y∗x = 0.

Right and left eigenvectors corresponding to the same eigenvalue are some-
times orthogonal, sometimes not.

Theorem 5.57 (Simple eigenvalue)
Suppose (λ,x) and (λ,y) are right and left eigenpairs of A ∈ Cn×n. If λ has
algebraic multiplicity one then y∗x 6= 0.

Proof. Assume that ‖x‖2 = 1. We have (cf. (5.4))

V ∗AV =

[
λ z∗

0 M

]
,

where V is unitary and V e1 = x. We show that if y∗x = 0 then λ is also an
eigenvalue of M contradicting the multiplicity assumption of λ. Let u := V ∗y.
Then

(V ∗A∗V )u = V ∗A∗y = λV ∗y = λu,
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so (λ,u) is an eigenpair of V ∗A∗V . But then y∗x = u∗V ∗V e1. Suppose that
u∗e1 = 0, i. e., u = [ 0

v ] for some nonzero v ∈ Cn−1. Then

V ∗A∗V u =

[
λ 0∗

z M∗

] [
0
v

]
=

[
0

M∗v

]
= λ

[
0
v

]
and by Theorem 5.1 it follows that λ is an eigenvalue of M .

The case with multiple eigenvalues is more complicated. For example, the
matrix A := [ 1 1

0 1 ] has one eigenvalue λ = 1 of algebraic multiplicity two, one right
eigenvector x = e1 and one left eigenvector y = e2. Thus x and y are orthogonal.

Theorem 5.58 (Biorthogonal eigenvector expansion)
If A ∈ Cn×n has linearly independent right eigenvectors {x1, . . . ,xn} then there
exists a set of left eigenvectors {y1, . . ., yn} with y∗ixj = δi,j. Conversely, if
A ∈ Cn×n has linearly independent left eigenvectors {y1, . . . ,yn} then there exists
a set of right eigenvectors {x1, . . . ,xn} with y∗ixj = δi,j. For any scaling of these
sets we have the eigenvector expansions

v =

n∑
j=1

y∗jv

y∗jxj
xj =

n∑
k=1

x∗kv

y∗kxk
yk. (5.20)

Proof. For any right eigenpairs (λ1,x1), . . . , (λn,xn) and left eigenpairs (λ1,y1), . . .,
(λn,yn) of A we have AX = XD, Y ∗A = DY ∗, where

X := [x1, . . . ,xn], Y := [y1, . . . ,yn], D := diag(λ1, . . . , λn).

If X is nonsingular then X−1A = DX−1 and it follows that Y ∗ := X−1 contains
a collection of left eigenvectors such that Y ∗X = I. Thus the columns of Y
are linearly independent and y∗ixj = δi,j . Similarly, if Y is nonsingular then
AY −∗ = Y −∗D and it follows that X := Y −∗ contains a collection of linearly
independent right eigenvectors such that Y ∗X = I. If v =

∑n
j=1 cjxj then

y∗i v =
∑n
j=1 cjy

∗
ixj = ciy

∗
ixi, so ci = y∗i v/y

∗
ixi for i = 1, . . . , n and the first

expansion in (5.20) follows. The second expansion follows similarly.

For an Hermitian matrix the right eigenvectors {x1, . . . ,xn} are also left
eigenvectors and (5.20) takes the form

v =

n∑
j=1

x∗jv

x∗jxj
xj . (5.21)

Exercise 5.59 (Biorthogonal expansion)
Determine right and left eigenpairs for the matrix A := [ 3 1

2 2 ] and the two expan-
sions in (5.20) for any v ∈ R2.
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Exercise 5.60 (Generalized Rayleigh quotient)
For A ∈ Cn×n and any y,x ∈ Cn with y∗x 6= 0 the quantity R(y,x) = RA(y,x) :=
y∗Ax
y∗x is called a generalized Rayleigh quotient for A. Show that if (λ,x) is

a right eigenpair for A then R(y,x) = λ for any y with y∗x 6= 0. Also show that
if (λ,y) is a left eigenpair for A then R(y,x) = λ for any x with y∗x 6= 0.

5.7 Proof of the Real Schur Form
In this section we prove the following theorem.

Theorem 5.61 (The real Schur form)
Suppose A ∈ Rn×n. Then we can find U ∈ Rn×n with UTU = I such that
UTAU is quasi-triangular.

Proof. If A has only real eigenvalues, Theorem 5.14 gives the result. Suppose
λ = µ+ iν, µ, ν ∈ R, is an eigenvalue of A with ν 6= 0. Let z = x+ iy, x,y ∈ Rn,
be an eigenvector of A corresponding to λ. Since

Az = A(x+ iy) = (µ+ iν)(x+ iy) = µx− νy + i(νx+ µy),

we find by comparing real and imaginary parts

Ax = µx− νy, Ay = νx+ µy. (5.22)

We claim that x and y are linearly independent. First we note that ν 6= 0 implies
x 6= 0, y 6= 0. For if x = 0 then (5.22) implies that 0 = −νy, and hence y = 0 as
well, contradicting the nonzeroness of the eigenvector. Similarly, if y = 0 then 0 =
νx, again resulting in a zero eigenvector. Suppose y = αx for some α. Replacing
y by αx in (5.22), we find Ax = (µ− αν)x and Ax = Ay/α = (µ+ ν/α)x. But
then µ− αν = µ+ ν/α or α2 = −1. Since x and y are real, we cannot have both
y = αx and α2 = −1. We conclude that x and y are linearly independent.

(5.22) can be written in matrix form as

AX1 = X1M , X1 = [x,y] ∈ Rn,2, M =
[ µ ν
−ν µ

]
. (5.23)

By Theorem 10.12 we can find an orthonormal matrix Q ∈ Rn×n such that

QX1 =

[
R
0

]
where R ∈ R2,2 is upper triangular. Since X1 has linearly independent columns,
R is nonsingular. Let Q = [q1, q2, . . . , qn] and define

X = [X1,X2] = [x,y, q3, . . . , qn].
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We find

QX = [QX1,Qq3, . . . ,Qqn] =

[
R 0
0 In−2

]
.

Since R is nonsingular, QX and X are nonsingular. Moreover, using (5.23)

X−1AX = [X−1AX1,X
−1AX2] = [X−1X1M ,X−1AX2] =

[
M B
0 C

]
for some matrices B ∈ R2,n−2, C ∈ Rn−2,n−2. Now

QAQT = (QX)X−1AX(QX)−1 =

[
R 0
0 In−2

] [
M B
0 C

] [
R−1 0

0 In−2

]
,

or

QAQT =

[
RMR−1 RB

0 C

]
. (5.24)

By Theorem 5.9 the 2× 2 matrix RMR−1 has the same eigenvalues λ and λ as
M . The remaining n−2 eigenvalues of A are the eigenvalues of C.

To complete the proof we use induction on n. The theorem is trivially true
for n = 1 and n = 2. Suppose n ≥ 3 and it holds for matrices of order ≤ n−1.
Let

V =

[
I2 0

0 V̂

]
where V̂ ∈ Rn−2,n−2, V̂

T
V̂ = In−2 and V̂

T
CV̂ is quasi-triangular. Let U =

QV . Then U ∈ Rn×n, UTU = I and UTAU is quasi-triangular.

5.8 Conclusions
Consider the eigenpair problem for some classes of matrices A ∈ Cn×n.

Diagonal Matrices. The eigenpairs are easily determined. Since Aei = aiiei
the eigenpairs are (λi, ei), where λi = aii for i = 1, . . . , n. Moreover, a(λi) =
g(λi) for all i, since the eigenvectors of A are linearly independent.

Triangular Matrices Suppose A is upper or lower triangular. Since det(A −
λI) =

∏n
i=1(aii − λ) the eigenvalues are λi = aii for i = 1, . . . , n, the

diagonal elements of A. To determine the eigenvectors can be challenging
as Example 5.40 indicates.

Block Diagonal Matrices Suppose

A = diag(A1,A2, . . . ,Ar), Ai ∈ Cmi×mi .
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Here the eigenpair problem reduces to r smaller problems. Let AiXi =
XiDi define the eigenpairs ofAi for i = 1, . . . , r and letX := diag(X1, . . . ,Xr),
D := diag(D1, . . . ,Dr). Then the eigenpairs for A are given by

AD = diag(A1, . . . ,Ar) diag(X1, . . . ,Xr) = diag(A1X1, . . . ,ArXr)

= diag(X1D1, . . . ,XrDr) = XD.

Block Triangular matrices Matrices Let A11,A22, . . . ,Arr be the diagonal
blocks of A. By Property 8. of determinants

det(A− λI) =

r∏
i=1

det(Aii − λI)

and the eigenvalues are found from the eigenvalues of the diagonal blocks.

5.9 Review Questions
5.9.1 Does A and AT , A and A∗ have the same eigenvalues? What about A∗A

and AA∗?

5.9.2 Can the geometric multiplicity of an eigenvalue be bigger than the algebraic
multiplicity?

5.9.3 What are the eigenvalues of a diagonal matrix?

5.9.4 What are the Schur factors of a matrix?

5.9.5 What is a quasi-triangular matrix?

5.9.6 Give some classes of normal matrices. Why are normal matrices important?.

5.9.7 State the Courant-Fischer theorem.

5.9.8 State the Hoffman-Wieland theorem for Hermtian matrices.

5.9.9 What is a left eigenvector of a matrix.
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Chapter 6

The Singular Value
Decomposition

The singular value decomposition is useful both for theory and practice. Some of
its applications include solving over-determined equations, principal component
analysis in statistics, numerical determination of the rank of a matrix, algorithms
used in search engines, and the theory of matrices.

We know from Theorem 5.21 that a square matrix A can be diagonalized
by a unitary similarity transformation if and only if it is normal, that is A∗A =
AA∗. In particular, if A ∈ Cn×n is normal then it has a set of orthonormal
eigenpairs (λ1,u1), . . . , (λn,un). Letting U := [u1, . . . ,un] ∈ Cn×n and D :=
diag(λ1, . . . , λn) we have the spectral decomposition

A = UDU∗, where U∗U = I. (6.1)

6.1 SVD and SVF
The singular value decomposition (SVD) is a generalization of the spectral de-
composition, to any matrix, even a rectangular one. For any m,n ∈ N we say
that D ∈ Cm×n is a diagonal matrix if di,j = 0 for all i 6= j. A diagonal matrix
is a nonnegative (positive) diagonal matrix if all the diagonal elements di,i,
i = 1, . . . ,min(m,n) are nonnegative (positive).

6.1.1 Definition and examples

Definition 6.1 (SVD)
A decomposition of A ∈ Cm×n of the form A = UΣV ∗, where U ∈ Cm×m and
V ∈ Cn×n are unitary, and Σ ∈ Rm×n is a nonnegative diagonal matrix, is called
a singular value decomposition (SVD) of A. If A is real, then U and V

147
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are real and orthogonal and an SVD takes the form A = UΣV T . The diagonal
elements of Σ are denoted σ1, . . . , σmin(m,n), and are called singular values. The
columns u1, . . . ,um of U and v1, . . . ,vn of V are called left singular vectors
and right singular vectors, respectively. The SVD is ordered if σ1 ≥ σ2 ≥
· · · ≥ σmin(m,n). For a fixed A ∈ Cm×n we define σj := 0 for all integers j >
min(m,n).

Example 6.2 (SVD1)
The decomposition

A :=

[
1 1
1 1

]
=

1√
2

[
1 1
1 −1

] [
2 0
0 0

]
1√
2

[
1 1
1 −1

]
= UDUT (6.2)

is both a spectral decomposition and a singular value decomposition. Indeed, A
has eigenpairs (2, [1, 1]T ) and (0, [1,−1]T ) and normalizing the eigenvectors we
obtain a spectral decomposition. Since the elements of the diagonal matrix are
nonnegative this is also a singular value decomposition A = UΣV T with Σ = D
and V = U .

Example 6.3 (SVD2)

The matrix A =

[
1 −1
1 −1

]
is not normal and therefore does not have a spectral

decomposition. Since it has an eigenvalue zero of algebraic multiplicity 2, but only
one eigenvector [1, 1]T it is defective and cannot be diagonalized by any similarity
transformtation. But

A :=

[
1 −1
1 −1

]
=

1√
2

[
1 1
1 −1

] [
2 0
0 0

]
1√
2

[
1 −1
1 1

]
=: UΣV T (6.3)

is a singular value decomposition.

Example 6.4 (SVD3)

The matrix A := 1
25

[
11 48
48 39

]
is symmetric with the eigenpairs (3, [3, 4]T ) and

(−1, [−4, 3]T ). Normalizing the eigenvectors we obtain the spectral decomposition

A =
1

25

[
11 48
48 39

]
=

1

5

[
3 −4
4 3

] [
3 0
0 −1

]
1

5

[
3 4
−4 3

]
= UDUT .

This is not a singular value decomposition since one of the elements of the diagonal
matrix is negative. A singular value decomposition is given by

A =
1

25

[
11 48
48 39

]
=

1

5

[
3 −4
4 3

] [
3 0
0 1

]
1

5

[
3 4
4 −3

]
= UΣV T . (6.4)
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6.1.2 Existence

Every matrix has a singular value decomposition. To show this we first consider
the matrices A∗A and AA∗.

Theorem 6.5 (The matrices A∗A, AA∗)
Suppose m,n ∈ N and A ∈ Cm×n. Then

1. The matrices A∗A ∈ Cn×n and AA∗ ∈ Cm×m are Hermitian with nonneg-
ative eigenvalues.

2. The characteristic polynomials of these matrices are closely related:

λmπA∗A(λ) = λnπAA∗(λ), λ ∈ C.

3. Let (λj ,vj) be orthonormal eigenpairs for A∗A. If λj > 0, j = 1, . . . , r and
λj = 0, j = r+ 1, . . . , n then {Av1, . . . ,Avr} is an orthogonal basis for the
column space span(A) := {Ay ∈ Cm : y ∈ Cn} and {vr+1, . . . ,vn} is an
orthonormal basis for the nullspace ker(A) := {y ∈ Cn : Ay = 0}.

4. Let (λj ,uj) be orthonormal eigenpairs for AA∗. If λj > 0, j = 1, . . . , r and
λj = 0, j = r + 1, . . . ,m then {A∗u1, . . . ,A

∗ur} is an orthogonal basis for
the column space span(A∗) and {ur+1, . . . ,um} is an orthonormal basis for
the nullspace ker(A∗).

5. The rank of A equals the number of positive eigenvalues of A∗A and AA∗.

Proof.

1. Clearly B1 := A∗A and B2 := AA∗ are Hermitian. If A∗Av = λv with
v 6= 0, then

λ =
v∗A∗Av

v∗v
=
‖Av‖22
‖v‖22

≥ 0 (6.5)

and the eigenvalues of B1 are nonnegative. Similarly, B2 has nonnegative
eigenvalues.

2. This follows from Corollary 5.10.

3. By orthonormality of v1, . . . ,vn we have (Avj)
∗Avk = v∗jA

∗Avk = λkv
∗
jvk

= 0, j 6= k, showing that Av1, . . . ,Avn are orthogonal vectors. Moreover,
(6.5) implies that Av1, . . . ,Avr are nonzero and Avj = 0 for j = r +
1, . . . , n. In particular, the elements of {Av1, . . . ,Avr} and {vr+1, . . . ,vn}
are linearly independent vectors in span(A) and ker(A), respectively. The
proof will be complete once it is shown that span(A) ⊂ span(Av1, . . . ,Avr)
and ker(A) ⊂ span(vr+1, . . . ,vn). Suppose x ∈ span(A). Then x = Ay
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for some y ∈ Cn, Let y =
∑n
j=1 cjvj be an eigenvector expansion of y.

Since Avj = 0 for j = r + 1, . . . , n we obtain x = Ay =
∑n
j=1 cjAvj =∑r

j=1 cjAvj ∈ span(Av1, . . . ,Avr). Finally, if y =
∑n
j=1 cjvj ∈ ker(A),

then we have Ay =
∑r
j=1 cjAvj = 0, and c1 = · · · = cr = 0 since

Av1, . . . ,Avr are linearly independent. But then y =
∑n
j=r+1 cjvj ∈

span(vr+1, . . . ,vn).

4. Since AA∗ = B∗B with B := A∗ this follows from part 3 with A = B.

5. By part 1 and 2 A∗A and AA∗ have the same number r of positive eigen-
values and by part 3 and 4 r is the rank of A.

Theorem 6.6 (The matrices A∗A, AA∗ and SVD)
If A = UΣV is a singular value decomposition of A ∈ Cm×n and σj := 0 for
j > min(m,n) then

1. A∗A = V diag(σ2
1 , . . . , σ

2
n)V ∗ is a spectral decomposition of A∗A.

2. AA∗ = U diag(σ2
1 , . . . , σ

2
m)U∗ is a spectral decomposition of AA∗.

3. The columns of U are orthonormal eigenvectors of AA∗.

4. The columns of V are orthonormal eigenvectors of A∗A.

5. The rank of A is equal to the number of positive singular values.

Proof. We assume m ≥ n. The case m < n is similar. If A = UΣV ∗ =
[u1, . . . ,um]Σ[v1, . . . ,vn]∗ is a singular value factorization of A then A∗A =
(UΣV ∗)∗(UΣV ∗) = V ΣTU∗UΣV ∗ = V ΣTΣV ∗ and part 1 follows. Part 2
is similar. Since these are spectral decompositions part 3 and 4 follow. Part 5
follows from part 5 of Theorem 6.5.

Theorem 6.7 (Existence of SVD)
Suppose for m,n, r ∈ N that A ∈ Cm×n has rank r, and that (λj ,vj) are or-
thonormal eigenpairs for A∗A with λ1 ≥ · · ·λr > 0 = λr+1 = · · · = λn. Define

1. V := [v1, . . . ,vn] ∈ Cn×n,

2. Σ ∈ Rm×n is a diagonal matrix with diagonal elements σj :=
√
λj for

j = 1, . . . ,min(m,n),
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3. U := [u1, . . . ,um] ∈ Cm×m, where uj = σ−1
j Avj for j = 1, . . . , r and

ur+1, . . . ,um is an extension of u1, . . . ,ur to an orthonormal basis u1, . . . ,um
for Cm.

Then A = UΣV ∗ is an ordered singular value decomposition of A.

Proof. Let Σ,U ,V be as in the theorem. The vectors u1, . . . ,ur are orthonormal
since Av1, . . . ,Avr are orthogonal and σj = ‖Avj‖2 > 0, j = 1, . . . , r by (6.5).
But then U and V are unitary and Σ is a nonnegative diagonal matrix. Moreover,

UΣ = U [σ1e1, . . . , σrer, 0, . . . , 0] = [σ1u1, . . . , σrur, 0, . . . , 0] = [Av1, . . . ,Avn].

Thus UΣ = AV and since V is unitary we find UΣV ∗ = AV V ∗ = A and we
have an ordered SVD of A.

6.1.3 The singular value factorization

Suppose A = UΣV ∗ is an ordered singular value decomposition of A of rank r.
The matrix Σ can be partitioned in the form

Σ =

[
Σ1 0r,n−r

0m−r,r 0m−r,n−r

]
∈ Rm×n, where Σ1 := diag(σ1, . . . , σr), (6.6)

Thus Σ1 contains the r ordered positive singular values on the diagonal. Here, for
k, l ≥ 0 the symbol 0k,l = [ ] denotes the empty matrix if k = 0 or l = 0, and the
zero matrix with k rows and l columns otherwise.

Using the block partitions

U = [U1,U2] ∈ Cm×m, U1 := [u1, . . . ,ur], U2 := [ur+1, . . . ,um],

V = [V 1,V 2] ∈ Cn×n, V 1 := [v1, . . . ,vr], V 2 := [vr+1, . . . ,vn],
(6.7)

we obtain by block multiplication

A = UΣV ∗ = U1Σ1V
∗
1. (6.8)

As an example:[
1 −1
1 −1

]
=

1√
2

[
1 1
1 −1

] [
2 0
0 0

]
1√
2

[
1 −1
1 1

]
=

1√
2

[
1
1

] [
2
] 1√

2

[
1 −1

]
.

Definition 6.8 (SVF)
Let m,n, r ∈ N with 1 ≤ r ≤ min(m,n). A singular value factorization (SVF)
is a factorization of A ∈ Cm×n of the form A = U1Σ1V

∗
1, where U1 ∈ Cm×r

and V 1 ∈ Cn×r have orthonormal columns, and Σ1 ∈ Rr×r is a diagonal matrix
with positive diagonal elements. We say that the SVF is ordered if the diagonal
elements of Σ1 are ordered.



152 Chapter 6. The Singular Value Decomposition

An SVD and an SVF of a matrix A are closely related.

1. Let A have rank r and let A = UΣV ∗ be an ordered SVD of A. Then
A = U1Σ1V

∗
1 is an ordered SVF of A. Moreover, U1, V 1 contain the first

r columns of U , V and Σ1 is a diagonal matrix with the positive singular
values on the diagonal.

2. Conversely, supposeA = U1Σ1V
∗
1 is a singular value factorization ofA with

Σ1 ∈ Rr×r. Extend U1 and V 1 in any way to unitary matrices U ∈ Cm×m
and V ∈ Cn×n, and let Σ be given by (6.6). Then A = UΣV ∗ is an SVD
of A. Moreover, r is uniquely given as the rank of A.

3. If A = [u1, . . . ,ur] diag(σ1, . . . , σr)[v1, . . . ,vr]
∗ is a singular value factoriza-

tion of A then

A =

r∑
j=1

σjujv
∗
j . (6.9)

This is known as the outer product form of the SVF.

4. We note that a nonsingular square matrix has full rank and only positive
singular values. Thus the SVD and SVF are the same for a nonsingular
matrix.

Theorem 6.9 (Singular values of a normal matrix)
The singular values of a symmetric positive semidefinite matrix are its eigenvalues.
The singular values of a normal matrix are the absolute values of its eigenvalues.

Proof. If A is normal then by Theorem 5.21, A = UDU∗, where U∗U = I and
D = diag(λ1, . . . , λn) contains the eigenvalues of A. Now A∗A = UD∗DU∗,
and D∗D = diag(|λ1|2, . . . , |λn|2) and by Theorem 6.6 σj =

√
|λj |2 = |λj | for

j = 1, . . . , n. If A is symmetric positive semidefinite then the eigenvalues are
nonnegative.

6.1.4 Examples

We use Theorem 6.7 to derive some singular value factorizations and decomposi-
tions.

Example 6.10 (Nonsingular matrix)
Derive the SVF and SVD of the matrix in (6.4). Discussion: Eigenpairs of B :=
ATA = [ 97 96

96 153 ] /25 are given by

B

[
3
4

]
= 9

[
3
4

]
, B

[
4
−3

]
=

[
4
−3

]
.
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Taking square roots and normalizing we find σ1 = 3, σ2 = 1, v1 = [ 3
4 ] /5, and

v2 =
[

4
−3

]
/5. Thus u1 := Av1/σ1 = [ 3

4 ] /5, u2 := Av2/σ2 =
[−4

3

]
/5, and (6.4)

follows. Since A is nonsingular this is both an SVF and an SVD of A.

Example 6.11 (Full column rank)
Find the SVF and SVD of

A =
1

15

14 2
4 22
16 13

 ∈ R3,2.

Discussion: Eigenpairs of

B := ATA =
1

25

[
52 36
36 73

]
are found from

B

[
3
4

]
= 4

[
3
4

]
, B

[
4
−3

]
= 1

[
4
−3

]
.

Thus σ1 = 2, σ2 = 1, and V = 1
5

[
3 4
4 −3

]
. Now u1 = Au/σ1 = [1, 2, 2]T /3,

u2 = Av2/σ2 = [2,−2, 1]T /3 giving the singular value factorization

A =
1

3

 1 2
2 −2
2 1

[2 0
0 1

]
1

5

[
3 4
4 −3

]
.

For an SVD we also need u3 which should be orthogonal to u1 and u2. u3 =
[2, 1,−2]T is such a vector and normalizing u3 we obtain the singular value de-
composition

A =
1

3

 1 2 2
2 −2 1
2 1 −2

2 0
0 1
0 0

 1

5

[
3 4
4 −3

]
. (6.10)

Example 6.12 (Full row rank)
Find the SVF and SVD of

A1 :=
1

15

[
14 4 16
2 22 13

]
∈ R2×3.

Discussion: Since A1 = AT , where A is the matrix in Example 6.11 we can find
an SVF and SVD of A1 by simply transposing the corresponding factorization of
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A. Thus

A1 = (UΣV T )T = V ΣTUT =
1

5

[
3 4
4 −3

] [
2 0 0
0 1 0

]
1

3

 1 2 2
2 −2 1
2 1 −2


= (U1Σ1V

T
1 )T = V 1Σ

T
1U

T
1 =

1

5

[
3 4
4 −3

] [
2 0
0 1

]
1

3

[
1 2 2
2 −2 1

]
.

(6.11)

Example 6.13 (r < n < m)
Find the SVD of

A =

1 1
1 1
0 0

 .
Discussion: Eigenpairs of

B := ATA =

[
2 2
2 2

]
are derived from

B

[
1
1

]
= 4

[
1
1

]
, B

[
1
−1

]
= 0

[
1
−1

]
and we find σ1 = 2, σ2 = 0, Thus r = 1, m = 3, n = 2 and

Σ =

Σ1 0
0 0
0 0

 , Σ1 = [2], V =
1√
2

[
1 1
1 −1

]
.

We find u1 = Av1/σ1 = s1/
√

2, where s1 = [1, 1, 0]T , and the SVF of A is given
by

A =
1√
2

1
1
0

 [2]
1√
2

[
1 1

]
.

To find an SVD we need to extend u1 to an orthonormal basis for R3. We first
extend s1 to a basis {s1, s2, s3} for R3, apply the Gram-Schmidt orthogonalization
process to {s1, s2, s3}, and then normalize. Choosing the basis

s1 =
[

1
1
0

]
, s2 =

[
0
1
0

]
, s3 =

[
0
0
1

]
,

we find from (26)

w1 = s1, w2 = s2−
sT2w1

wT
1w1

w1 =

[
−1/2
1/2
0

]
, w3 = s3−

sT3w1

wT
1w1

w1−
sT3w2

wT
2w2

w2 =
[

0
0
1

]
.
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Normalizing the wi’s we obtain u1 = w1/‖w1‖2 = [1/
√

2, 1/
√

2, 0]T , u2 =
w2/‖w2‖2 = [−1/

√
2, 1/
√

2, 0]T , and u3 = s3/‖s3‖2 = [0, 0, 1]T . Therefore,
A = UΣV T , where

U :=

[
1/
√

2 −1/
√

2 0

1/
√

2 1/
√

2 0
0 0 1

]
∈ R3,3, Σ :=

[
2 0
0 0
0 0

]
∈ R3,2, V :=

1√
2

[
1 −1
1 −1

]
∈ R2,2.

The method we used to find the singular value decomposition in the previous
examples and exercises can be suitable for hand calculation with small matrices,
but it is not appropriate as a basis for a general purpose numerical method. In
particular, the Gram-Schmidt orthogonalization process is not numerically stable,
and formingA∗A can lead to extra errors in the computation. Standard computer
implementations of the singular value decomposition ([29] ) first reduces A to
bidiagonal form and then use an adapted version of the QR algorithm where the
matrix A∗A is not formed. The QR algorithm is discussed in Chapter 13.

Exercise 6.14 (SVD examples)
Find the singular value decomposition of the following matrices

(a) A =

[
3
4

]
.

(b) A =

 1 1
2 2
2 2

.

Exercise 6.15 (More SVD examples)
Find the singular value decomposition of the following matrices

(a) A = e1 the first unit vector in Rm.

(b) A = eTn the last unit vector in Rn.

(c) A =
[ −1 0

0 3

]
.

6.2 SVD and the Four Fundamental Subspaces
The singular vectors form orthonormal bases for the four fundamental subspaces
span(A), ker(A), span(A∗), and ker(A∗).

Theorem 6.16 (Singular vectors and orthonormal bases)
For positive integers m,n let A ∈ Cm×n have rank r and a singular value decom-
position A = |u1, . . . ,um]Σ|v1, . . . ,vn]∗ = UΣV ∗. Then the singular vectors
satisfy

Avi = σiui, i = 1, . . . , r, Avi = 0, i = r + 1, . . . , n,

A∗ui = σivi, i = 1, . . . , r, A∗ui = 0, i = r + 1, . . . ,m.
(6.12)
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Moreover,

1. {u1, . . . ,ur} is an orthonormal basis for span(A),

2. {ur+1, . . . ,um} is an orthonormal basis for ker(A∗),

3. {v1, . . . ,vr} is an orthonormal basis for span(A∗),

4. {vr+1, . . . ,vn} is an orthonormal basis for ker(A).

(6.13)

Proof. If A = UΣV ∗ then AV = UΣ, or in terms of the block partition
(6.7) A[V 1,V 2] = [U1,U2]

[
Σ1 0
0 0

]
. But then AV 1 = U1Σ1, AV 2 = 0, and this

implies the first part of (6.12). Taking conjugate transpose of A = UΣV ∗ gives
A∗ = V ΣTU∗ or A∗U = V ΣT . Using the block partition as before we obtain
the last part of (6.12).

It follows from Theorem 6.5 that {Av1, . . . ,Avr} is an orthogonal basis
for span(A) and {vr+1, . . . ,vm} is an orthonormal basis for ker(A). Applying
this theorem to AA∗ it also follows that {A∗u1, . . . ,A

∗ur} is an orthogonal
basis for span(A∗) and {ur+1, . . . ,um} is an orthonormal basis for ker(A∗). By
(6.12) {u1, . . . ,ur} is an orthonormal basis for span(A) and {v1, . . . ,vr} is an
orthonormal basis for span(A∗).

Exercise 6.17 (Counting dimensions of fundamental subspaces)
Suppose A ∈ Cm×n. Show using SVD that

1. rank(A) = rank(A∗).

2. rank(A) + null(A) = n,

3. rank(A) + null(A∗) = m,

where null(A) is defined as the dimension of ker(A).

Exercise 6.18 (Rank and nullity relations)
Use Theorem 6.5 to show that for any A ∈ Cm×n

1. rankA = rank(A∗A) = rank(AA∗),

2. null(A∗A) = nullA, and null(AA∗) = null(A∗).

Exercise 6.19 (Orthonormal bases example)
Let A and B be as in Example 6.11. Give orthonormal bases for span(B) and
ker(B).

Exercise 6.20 (Some spanning sets)
Show for any A ∈ Cm×n that span(A∗A) = span(V 1) = span(A∗)
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Exercise 6.21 (Singular values and eigenpair of composite matrix)
Let A ∈ Cm×n with m ≥ n have singular values σ1, . . . , σn, left singular vectors
u1, . . . ,um ∈ Cm, and right singular vectors v1, . . . ,vn ∈ Cn. Show that the
matrix

C :=

[
0 A
A∗ 0

]
has the n+m eigenpairs

{(σ1,p1), . . . , (σn,pn), (−σ1, q1), . . . , (−σn, qn), (0, rn+1), . . . , (0, rm)},

where

pi =

[
ui
vi

]
, qi =

[
ui
−vi

]
, rj =

[
uj
0

]
, for i = 1, . . . , n and j = n+ 1, . . . ,m.

6.3 A Geometric Interpretation
The singular value decomposition and factorization give insight into the geometry
of a linear transformation. Consider the linear transformation T : Rn → Rm
given by Tz := Az where A ∈ Rm×n. Assume that rank(A) = n. The function
T maps the unit sphere S := {z ∈ Rn : ‖z‖2 = 1} onto an ellipsoid E := AS =
{Az : z ∈ S} in Rm.

Theorem 6.22 (SVF ellipse)
Suppose A ∈ Rm,n has rank r = n, and let A = U1Σ1V

T
1 be a singular value

factorization of A. Then

E = U1Ẽ where Ẽ := {y = [y1, . . . , yn]T ∈ Rn :
y2

1

σ2
1

+ · · ·+ y2
n

σ2
n

= 1}.

Proof. Supose z ∈ S. Now Az = U1Σ1V
T
1 z = U1y, where y := Σ1V

T
1 z. Since

rank(A) = n it follows that V 1 = V is square so that V 1V
T
1 = I. But then

V 1Σ
−1
1 y = z and we obtain

1 = ‖z‖22 = ‖V 1Σ
−1
1 y‖22 = ‖Σ−1

1 y‖22 =
y2

1

σ2
1

+ · · ·+ y2
n

σ2
n

.

This implies that y ∈ Ẽ . Finally, x = Az = U1Σ1V
T
1 z = U1y, where y ∈ Ẽ

implies that E = U1Ẽ .

The equation 1 =
y21
σ2
1

+ · · · + y2n
σ2
n

describes an ellipsoid in Rn with semiaxes

of length σj along the unit vectors ej for j = 1, . . . , n. Since the orthonormal
transformationU1y → x preserves length, the image E = AS is a rotated ellipsoid
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Figure 6.1. The ellipse y2
1/9 + y2

2 = 1 (left) and the rotated ellipse AS (right).

with semiaxes along the left singular vectors uj = Uej , of length σj , j = 1, . . . , n.
Since Avj = σjuj , for j = 1, . . . , n the right singular vectors defines points in S
that are mapped onto the semiaxes of E .

Example 6.23 (Ellipse)
Consider the transformation A : R2 → R2 given by the matrix

A :=
1

25

[
11 48
48 39

]
in Example 6.10. Recall that σ1 = 3, σ2 = 1, u1 = [3, 4]T /5 and u2 = [−4, 3]T /5.
The ellipses y2

1/σ
2
1 + y2

2/σ
2
2 = 1 and E = AS = U1Ẽ are shown in Figure 6.1.

Since y = UT
1 x = [3/5x1 + 4/5x2,−4/5x1 + 3/5x2]T , the equation for the ellipse

on the right is
( 3

5x1 + 4
5x2)2

9
+

(− 4
5x1 + 3

5x2)2

1
= 1,

6.4 Determining the Rank of a Matrix Numerically
In many elementary linear algebra courses a version of Gaussian elimination, called
Gauss-Jordan elimination, is used to determine the rank of a matrix. To carry this
out by hand for a large matrix can be a Herculean task and using a computer and
floating point arithmetic the result will not be reliable. Entries, which in the final
result should have been zero, will have nonzero values because of round-off errors.
As an alternative we can use the singular value decomposition to determine rank.
Although success is not at all guaranteed, the result will be more reliable than if
Gauss-Jordan elimination is used.
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By Theorem 6.7 the rank of a matrix is equal to the number of nonzero
singular values and if we have computed the singular values, then all we have to
do is to count the nonzero ones. The problem however is the same as for Gaussian
elimination. Due to round-off errors none of the computed singular values are
likely to be zero.

6.4.1 The Frobenius norm

This commonly occuring matrix norm will be used here in a discussion of how
many of the computed singular values can possibly be considered to be zero. The
Frobenius norm, of a matrix A ∈ Cm×n is defined by

‖A‖F :=
( m∑
i=1

n∑
j=1

|aij |2
)1/2

. (6.14)

There is a relation between the Frobenius norm of a matrix and its singular
values. First we derive some elementary properties of this norm. A systematic
study of matrix norms is given in the next chapter.

Lemma 6.24 (Frobenius norm properties)
For any m,n ∈ N and any matrix A ∈ Cm×n

1. ‖A∗‖F = ‖A‖F ,

2. ‖A‖2F =
∑n
j=1‖a:j‖22,

3. ‖UA‖F = ‖AV ‖F = ‖A‖F for any unitary matrices U ∈ Cm×m and
V ∈ Cn×n,

4. ‖AB‖F ≤ ‖A‖F ‖B‖F for any B ∈ Cn,k, k ∈ N,

5. ‖Ax‖2 ≤ ‖A‖F ‖x‖2, for all x ∈ Cn.

Proof.

1. ‖A∗‖2F =
∑n
j=1

∑m
i=1|aij |2 =

∑m
i=1

∑n
j=1|aij |2 = ‖A‖2F .

2. This follows since the Frobenius norm is the Euclidian norm of a vector,
‖A‖F := ‖vec(A)‖2, where vec(A) ∈ Cmn is the vector obtained by stacking
the columns of A on top of each other.

3. Recall that if U∗U = I then ‖Ux‖2 = ‖x‖2 for all x ∈ Cn. Applying this

to each column a:j of A we find ‖UA‖2F
2.
=
∑n
j=1‖Ua:j‖22 =

∑n
j=1‖a:j‖22

2.
=

‖A‖2F . Similarly, since V V ∗ = I we find ‖AV ‖F
1.
= ‖V ∗A∗‖F = ‖A∗‖F

1.
=

‖A‖F .



160 Chapter 6. The Singular Value Decomposition

4. Using the Cauchy-Schwarz inequality and 2. we obtain

‖AB‖2F =

m∑
i=1

k∑
j=1

|aTi:b:j |2 ≤
m∑
i=1

k∑
j=1

‖ai:‖22‖b:j‖22 = ‖A‖2F ‖B‖2F .

5. Since ‖v‖F = ‖v‖2 for a vector this follows by taking k = 1 and B = x in
4.

Theorem 6.25 (Frobenius norm and singular values)
We have ‖A‖F =

√
σ2

1 + · · ·+ σ2
n, where σ1, . . . , σn are the singular values of A.

Proof. Using Lemma 6.24 we find ‖A‖F
3.
= ‖U∗AV ‖F = ‖Σ‖F =

√
σ2

1 + · · ·+ σ2
n.

6.4.2 Low rank approximation

Suppose m ≥ n ≥ 1 and A ∈ Cm×n has an ordered singular value decomposition
A = U [ D0 ]V ∗, where D = diag(σ1, . . . , σn). We choose ε > 0 and let 1 ≤ r ≤ n
be the smallest integer such that σ2

r+1 + · · ·+ σ2
n < ε2. Define A′ := U

[
D′

0

]
V ∗,

where D′ := diag(σ1, . . . , σr, 0, . . . , 0) ∈ Rn×n. By Lemma 6.24

‖A−A′‖F = ‖U
[
D−D′

0

]
V ∗‖F = ‖

[
D−D′

0

]
‖F =

√
σ2
r+1 + · · ·+ σ2

n < ε.

Thus, if ε is small then A is near a matrix A′ of rank r. This can be used

to determine rank numerically. We choose an r such that
√
σ2
r+1 + · · ·+ σ2

n is

“small”. Then we postulate that rank(A) = r since A is close to a matrix of rank
r.

The following theorem shows that of all m × n matrices of rank r, A′ is
closest to A measured in the Frobenius norm.

Theorem 6.26 (Best low rank approximation)
Suppose A ∈ Rm×n has singular values σ1 ≥ · · · ≥ σn ≥ 0. For any r ≤ rank(A)
we have

‖A−A′‖F = min
B∈Rm×n

rank(B)=r

‖A−B‖F =
√
σ2
r+1 + · · ·+ σ2

n.

For the proof of this theorem we refer to p. 322 of [29].
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Exercise 6.27 (Rank example)
Consider the singular value decomposition

A :=


0 3 3
4 1 −1
4 1 −1
0 3 3

 =


1
2 − 1

2 − 1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2 − 1

2 − 1
2

1
2 − 1

2
1
2 − 1

2




6 0 0
0 6 0
0 0 0
0 0 0


 2

3
2
3

1
3

2
3 − 1

3 − 2
3

1
3 − 2

3
2
3


(a) Give orthonormal bases for span(A), span(AT ), ker(A), ker(AT ) and span(A)⊥.

(b) Explain why for all matrices B ∈ R4,3 of rank one we have ‖A−B‖F ≥ 6.

(c) Give a matrix A1 of rank one such that ‖A−A1‖F = 6.

Exercise 6.28 (Another rank example)
Let A be the n× n matrix that for n = 4 takes the form

A =

[
1 −1 −1 −1
0 1 −1 −1
0 0 1 −1
0 0 0 1

]
.

Thus A is upper triangular with diagonal elements one and all elements above the
diagonal equal to −1. Let B be the matrix obtained from A by changing the (n, 1)
element from zero to −22−n.

(a) Show that Bx = 0, where x := [2n−2, 2n−3, . . . , 20, 1]T . Conclude that B is
singular, det(A) = 1, and ‖A −B‖F = 22−n. Thus even if det(A) is not
small the Frobenius norm of A−B is small for large n, and the matrix A
is very close to being singular for large n.

(b) Use Theorem 6.26 to show that the smallest singular vale σn of A is bounded
above by 22−n.

6.5 The Minmax Theorem for Singular Values and
the Hoffman-Wielandt Theorem

We have a minmax and maxmin characterization for singular values.

Theorem 6.29 (The Courant-Fischer theorem for singular values)
Suppose A ∈ Cm×n has singular values σ1, σ2, . . . , σn ordered so that σ1 ≥ · · · ≥
σn. Then for k = 1, . . . , n

σk = min
dim(S)=n−k+1

max
x∈S
x6=0

‖Ax‖2
‖x‖2

= max
dim(S)=k

min
x∈S
x6=0

‖Ax‖2
‖x‖2

. (6.15)
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Proof. Since
‖Ax‖22
‖x‖22

=
(Ax)∗(Ax)

x∗x
=
x∗(A∗A)x

x∗x

is the Rayleigh quotient RA∗A(x) of A∗A, and since the singular values of A are
the nonnegative square roots of the eigenvalues of A∗A, the results follow from
the Courant-Fischer Theorem for eigenvalues, see Theorem 5.29.

By taking k = 1 and k = n in (6.15) we obtain for any A ∈ Cm×n

σ1 = max
x∈Cn
x6=0

‖Ax‖2
‖x‖2

, σn = min
x∈Cn
x6=0

‖Ax‖2
‖x‖2

. (6.16)

This follows since the only subspace of Cn of dimension n is Cn itself.
The Hoffman-Wielandt Theorem, see Theorem 5.32, for eigenvalues of Her-

mitian matrices can be written
n∑
j=1

|µj − λj |2 ≤ ‖A−B‖2F :=

n∑
i=1

n∑
j=1

|aij − bij |2, (6.17)

where A,B ∈ Cn×n are both Hermitian matrices with eigenvalues λ1 ≥ · · · ≥ λn
and µ1 ≥ · · · ≥ µn, respectively.

For singular values we have a similar result, see also Section 11.6.

Theorem 6.30 (Hoffman-Wielandt theorem for singular values)
For any m,n ∈ N and A,B ∈ Cm×n we have

n∑
j=1

|βj − αj |2 ≤ ‖A−B‖2F . (6.18)

where α1 ≥ · · · ≥ αn and β1 ≥ · · · ≥ βn are the singular values of A and B,
respectively.

6.6 Proof of the Hoffman-Wielandt Theorem for
Singular Values

We apply the Hoffman-Wielandt Theorem for eigenvalues to the Hermitian ma-
trices

C :=

[
0 A
A∗ 0

]
and D :=

[
0 B
B∗ 0

]
∈ Cm+n×m+n.

If C and D has eigenvalues λ1 ≥ · · · ≥ λm+n and µ1 ≥ · · · ≥ µm+n, respectively
then

m+n∑
j=1

|λj − µj |2 ≤ ‖C −D‖2F . (6.19)
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Suppose A has rank r and singular value decomposition UΣV ∗. We use (6.12)
and determine the eigenpairs of C as follows.[

0 A
A∗ 0

] [
ui
vi

]
=

[
Avi
A∗ui

]
=

[
αiui
αivi

]
= αi

[
ui
vi

]
, i = 1, . . . , r,[

0 A
A∗ 0

] [
ui
−vi

]
=

[
−Avi
A∗ui

]
=

[
−αiui
αivi

]
= −αi

[
ui
−vi

]
, i = 1, . . . , r,[

0 A
A∗ 0

] [
ui
0

]
=

[
0

A∗ui

]
=

[
0
0

]
= 0

[
ui
0

]
, i = r + 1, . . . ,m,[

0 A
A∗ 0

] [
0
vi

]
=

[
Avi
0

]
=

[
0
0

]
= 0

[
0
vi

]
, i = r + 1, . . . , n.

Thus C has the 2r eigenvalues α1,−α1, . . . , αr,−αr and m + n − 2r additional
zero eigenvalues. Similarly, if B has rank s then D has the 2s eigenvalues
β1,−β1, . . . , βs,−βs and m+ n− 2s additional zero eigenvalues. Let

t := max(r, s).

Then

λ1 ≥ · · · ≥ λm+n = α1 ≥ · · · ≥ αt ≥ 0 = · · · = 0 ≥ −αt ≥ · · · ≥ −α1,

µ1 ≥ · · · ≥ µm+n = β1 ≥ · · · ≥ βt ≥ 0 = · · · = 0 ≥ −βt ≥ · · · ≥ −β1.

We find
∑m+n
j=1 |λj − µj |2 = 2

∑t
i=1|αi − βi|2 and

‖C−D‖2F = ‖
[

0 A−B
A∗ −B∗ 0

]
‖2F = ‖B−A‖2F +‖(B−A)∗‖2F = 2‖B−A‖2F .

But then (6.19) implies
∑t
i=1|αi−βi|2 ≤ ‖B−A‖2F . Since t ≤ n and αi = βi = 0

for i = t+ 1, . . . , n we obtain (6.18).

6.7 Review Questions
6.7.1 Consider an SVD and an SVF of a matrix A.

• What are the singular values of A?

• how is the SVD defined?

• how can we find an SVF if we know an SVD?

• how can we find an SVD if we know an SVF?

• what are the relations between the singular vectors?

• which singular vectors form bases for span(A) and ker(A∗)?
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6.7.2 How are the Frobenius norm and singular values related?

6.7.3 State the Courant-Fischer theorem for singular values.

6.7.4 State the Hoffman-Wieland theorem for singular values.



Chapter 7

Matrix Norms

To measure the size of a matrix we can use a matrix norm. In this chapter we
initiate a systematic study of matrix norms.

7.1 Matrix Norms
For simplicity we consider only matrix norms on the vector space (Cm×n,C). All
results also holds for (Rm×n,R).

Definition 7.1 (Matrix norms)
Suppose m,n are positive integers. A function ‖·‖ : Cm×n → R is called a matrix
norm on Cm×n if for all A,B ∈ Cm×n and all c ∈ C

1. ‖A‖ ≥ 0 with equality if and only if A = 0. (positivity)

2. ‖cA‖ = |c| ‖A‖. (homogeneity)

3. ‖A+B‖ ≤ ‖A‖+ ‖B‖. (subadditivity)

A matrix norm is simply a vector norm on the finite dimensional vector space
(Cm×n,C) of m× n matrices. Adapting Theorem 0.19 to this situation gives

Theorem 7.2 (Matrix norm equivalence)
All matrix norms are equivalent. Thus, if ‖·‖ and ‖·‖′ are two matrix norms on
Cm×n then there are positive constants µ and M such that

µ‖A‖ ≤ ‖A‖′ ≤M‖A‖

holds for all A ∈ Cm×n. Moreover, a matrix norm is a continuous function.

165
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Any vector norm ‖·‖V on Cmn defines a matrix norm on Cm×n given by
‖A‖ := ‖vec(A)‖V , where vec(A) ∈ Cmn is the vector obtained by stacking the
columns of A on top of each other. In particular, to the p vector norms for
p = 1, 2,∞, we have the corresponding sum norm, Frobenius norm, and max
norm defined by

‖A‖S :=

m∑
i=1

n∑
j=1

|aij |, ‖A‖F :=
( m∑
i=1

n∑
j=1

|aij |2
)1/2

, ‖A‖M := max
i,j
|aij |. (7.1)

Ferdinand Georg Frobenius, (1849-1917).

Of these norms the Frobenius norm is the most useful. Some of its properties
were derived in Lemma 6.24 and Theorem 6.25.

7.1.1 Consistent and subordinate matrix norms

Since matrices can be multiplied it is useful to have an analogue of subadditivity
for matrix multiplication. For square matrices the product AB is defined in a
fixed space Cn×n, while in the rectangular case matrix multiplication combines
matrices in different spaces. The following definition captures this distinction.

Definition 7.3 (Consistent matrix norms)
A matrix norm is called consistent on Cn×n if

4. ‖AB‖ ≤ ‖A‖ ‖B‖ (submultiplicativity)

holds for all A,B ∈ Cn×n. A matrix norm is consistent if it is defined on Cm×n
for all m,n ∈ N, and 4. holds for all matrices A,B for which the product AB is
defined.

Clearly the three norms in (7.1) are defined for allm,n ∈ N. From Lemma 6.24
it follows that the Frobenius norm is consistent.
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Exercise 7.4 (Consitency of sum norm?)
Show that the sum norm is consistent.

Exercise 7.5 (Consitency of max norm?)
Show that the max norm is not consistent by considering [ 1 1

1 1 ].

Exercise 7.6 (Consitency of modified max norm)

(a) Show that the norm

‖A‖ :=
√
mn‖A‖M , A ∈ Cm×n

is a consistent matrix norm.

(b) Show that the constant
√
mn can be replaced by m and by n.

For a consistent matrix norm on Cn×n we have the inequality

‖Ak‖ ≤ ‖A‖k for k ∈ N. (7.2)

When working with norms one often has to bound the vector norm of a
matrix times a vector by the norm of the matrix times the norm of the vector.
This leads to the following definition.

Definition 7.7 (Subordinate matrix norms)
Suppose m,n ∈ N are given, let ‖ ‖ on Cm and ‖ ‖β on Cn be vector norms, and let
‖ ‖ be a matrix norm on Cm×n. We say that the matrix norm ‖ ‖ is subordinate
to the vector norms ‖ ‖ and ‖ ‖β if ‖Ax‖ ≤ ‖A‖ ‖Ax‖ for all A ∈ Cm×n and all
x ∈ Cn. If ‖ ‖ = ‖ ‖β then we say that ‖ ‖ is subordinate to ‖ ‖.

By Lemma 6.24 we have ‖Ax‖2 ≤ ‖A‖F ‖x‖2, for all x ∈ Cn. Thus the
Frobenius norm is subordinate to the Euclidian vector norm.

Exercise 7.8 (What is the sum norm subordinate to?)
Show that the sum norm is subordinate to the l1-norm.

Exercise 7.9 (What is the max norm subordinate to?)

(a) Show that the max norm is subordinate to the∞ and 1 norm, i. e., ‖Ax‖∞ ≤
‖A‖M‖x‖1 holds for all A ∈ Cm×n and all x ∈ Cn.

(b) Show that if ‖A‖M = |akl|, then ‖Ael‖∞ = ‖A‖M‖el‖1.

(c) Show that ‖A‖M = maxx 6=0
‖Ax‖∞
‖x‖1 .
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7.1.2 Operator norms

Corresponding to vector norms on Cn and Cm there is an induced matrix norm
on Cm×n which we call the operator norm. It is possible to consider one vector
norm on Cm and another vector norm on Cn, but we treat only the case of one
vector norm defined on Cn for all n ∈ N9.

Definition 7.10 (Operator norm)
Let ‖ ‖ be a vector norm defined on Cn for all n ∈ N. For given m,n ∈ N and
A ∈ Cm×n we define

‖A‖ := max
x 6=0

‖Ax‖
‖x‖

. (7.3)

We call this the operator norm corresponding to the vector norm ‖ ‖.

With a risk of confusion we use the same symbol for the operator norm
and the corresponding vector norm. Before we show that the operator norm is a
matrix norm we make some observations.

1. It is enough to take the max over subsets of Cn. For example

‖A‖ = max
‖x‖=1

‖Ax‖. (7.4)

The set
S := {x ∈ Cn : ‖x‖ = 1} (7.5)

is the unit sphere in Cn with respect to the vector norm ‖ ‖. It is enough to
take the max over this unit sphere since

max
x6=0

‖Ax‖
‖x‖

= max
x 6=0

∥∥∥A( x‖x‖)∥∥∥ = max
‖y‖=1

‖Ay‖.

2. The operator norm is subordinate to the corresponding vector norm. Thus,

‖Ax‖ ≤ ‖A‖‖x‖ for all A ∈ Cm×n and x ∈ Cn. (7.6)

3. We can use max instead of sup in (7.3). This follows by the following com-
pactness argument. The unit sphere S given by (7.5) is bounded. It is also
finite dimensional and closed, and hence compact. Moreover, since the vec-
tor norm ‖ ‖ : S → R is a continuous function, it follows that the function
f : S → R given by f(x) = ‖Ax‖ is continuous. But then f attains its max
and min and we have

‖A‖ = ‖Ax∗‖ for some x∗ ∈ S. (7.7)

9In the case of one vector norm ‖ ‖ on Cm and another vector norm ‖ ‖β on Cn we would

define ‖A‖ := maxx6=0
‖Ax‖
‖x‖β .
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Lemma 7.11 (The operator norm is a matrix norm)
For any vector norm the operator norm given by (7.3) is a consistent matrix norm.
Moreover, ‖I‖ = 1.

Proof. We use (7.4). In 2. and 3. below we take the max over the unit sphere S
given by (7.5).

1. Nonnegativity is obvious. If ‖A‖ = 0 then ‖Ay‖ = 0 for each y ∈ Cn. In
particular, each column Aej in A is zero. Hence A = 0.

2. ‖cA‖ = maxx‖cAx‖ = maxx|c| ‖Ax‖ = |c| ‖A‖.
3. ‖A+B‖ = maxx‖(A+B)x‖ ≤ maxx‖Ax‖+ maxx‖Bx‖ = ‖A‖+ ‖B‖.
4. ‖AB‖ = maxx 6=0

‖ABx‖
‖x‖ = maxBx6=0

‖ABx‖
‖x‖ = maxBx6=0

‖ABx‖
‖Bx‖

‖Bx‖
‖x‖

≤ maxy 6=0
‖Ay‖
‖y‖ maxx 6=0

‖Bx‖
‖x‖ = ‖A‖ ‖B‖.

That ‖I‖ = 1 for any operator norm follows immediately from the definition.

Since ‖I‖F =
√
n, we see that the Frobenius norm is not an operator norm

for n > 1.

7.1.3 The operator p-norms

Recall that the p or `p vector norms (10) are given by

‖x‖p :=
( n∑
j=1

|xj |p
)1/p

, p ≥ 1, ‖x‖∞ := max
1≤j≤n

|xj |.

The operator norms ‖ ‖p defined from these p-vector norms are used quite fre-
quently for p = 1, 2,∞. We define for any 1 ≤ p ≤ ∞

‖A‖p := max
x 6=0

‖Ax‖p
‖x‖p

= max
‖y‖p=1

‖Ay‖p. (7.8)

For p = 1, 2,∞ we have explicit expressions for these norms.

Theorem 7.12 (onetwoinfnorms)
For A ∈ Cm×n we have

‖A‖1 := max
1≤j≤n

‖Aej‖1 = max
1≤j≤n

m∑
k=1

|ak,j |, (max column sum)

‖A‖2 := σ1, (largest singular value of A)

‖A‖∞ = max
1≤k≤m

‖eTkA‖1 = max
1≤k≤m

n∑
j=1

|ak,j |. (max row sum)

(7.9)
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The two-norm ‖A‖2 is also called the spectral norm of A.

Proof. The result for p = 2 follows from the minmax theorem for singular values.

Indeed, by (6.16) we have σ1 = maxx 6=0
‖Ax‖2
‖x‖2 . For p = 1,∞ we proceed as follows:

(a) We derive a constant Kp such that ‖Ax‖p ≤ Kp for any x ∈ Cn with ‖x‖p =
1.

(b) We give an extremal vector y∗ ∈ Cn with ‖y∗‖p = 1 so that ‖Ay∗‖p = Kp.

It then follows from (7.8) that ‖A‖p = ‖Ay∗‖p = Kp.

1-norm: Define K1, c and y∗ by K1 := ‖Aec‖1 = max1≤j≤n‖Aej‖1 and y∗ :=
ec, a unit vector. Then ‖y∗‖1 = 1 and we obtain

(a)

‖Ax‖1 =

m∑
k=1

∣∣ n∑
j=1

akjxj
∣∣ ≤ m∑

k=1

n∑
j=1

|akj ||xj | =
n∑
j=1

( m∑
k=1

|akj |
)
|xj | ≤ K1.

(b) ‖Ay∗‖1 = K1.

∞-norm: Define K∞, r and y∗ by K∞ := ‖eTrA‖1 = max1≤k≤m‖eTkA‖1 and
y∗ := [e−iθ1 , . . . , e−iθn ]T , where arj = |arj |eiθj for j = 1, . . . , n.

(a) ‖Ax‖∞ = max1≤k≤m
∣∣∑n

j=1 akjxj
∣∣ ≤ max1≤k≤m

∑n
j=1|akj ||xj | ≤ K∞.

(b) ‖Ay∗‖∞ = max1≤k≤m
∣∣∑n

j=1 akje
−iθj

∣∣ = K∞.

The last equality is correct because
∣∣∑n

j=1 akje
−iθj

∣∣ ≤ ∑n
j=1|akj | ≤ K∞

with equality for k = r.

Example 7.13 (Compare onetwoinfnorms)
The largest singular value of the matrix A := 1

15 [ 14 4 16
2 22 13 ], is σ1 = 2 (cf. Exam-

ple 6.12 ). We find

‖A‖1 =
29

15
, ‖A‖2 = 2, ‖A‖∞ =

37

15
, ‖A‖F =

√
5.

We observe that the values of these norms do not differ by much.

In some cases the spectral norm is equal to an eigenvalue of the matrix.
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Theorem 7.14 (Spectral norm)
Suppose A ∈ Cn×n has singular values σ1 ≥ σ2 ≥ · · · ≥ σn and eigenvalues
|λ1| ≥ |λ2| ≥ · · · ≥ |λn|. Then

‖A‖2 = σ1 and ‖A−1‖2 =
1

σn
, (7.10)

‖A‖2 = λ1 and ‖A−1‖2 =
1

λn
, if A is symmetric positive definite, (7.11)

‖A‖2 = |λ1| and ‖A−1‖2 =
1

|λn|
, if A is normal. (7.12)

For the norms of A−1 we assume of course that A is nonsingular.

Proof. Since 1/σn is the largest singular value ofA−1, (7.10) follows. By Theorem
6.9 the singular values of a symmetric positive definite matrix (normal matrix) are
equal to the eigenvalues (absolute value of the eigenvalues). This implies (7.11)
and (7.12).

The following result is sometimes useful.

Theorem 7.15 (Spectral norm bound)
For any A ∈ Cm×n we have ‖A‖22 ≤ ‖A‖1‖A‖∞.

Proof. Let (σ2,v) be an eigenpair for A∗A corresponding to the largest singular
value σ of A. Then

‖A‖22‖v‖1 = σ2‖v‖1 = ‖σ2v‖1 = ‖A∗Av‖1 ≤ ‖A∗‖1‖A‖1‖v‖1.

Observing that ‖A∗‖1 = ‖A‖∞ by Theorem 7.12 and canceling ‖v‖1 proves the
result.

Exercise 7.16 (Spectral norm)
Let m,n ∈ N and A ∈ Cm×n. Show that

‖A‖2 = max
‖x‖2=‖y‖2=1

|y∗Ax|.

Exercise 7.17 (Spectral norm of the inverse)
Suppose A ∈ Cn×n is nonsingular. Use (7.10) and (6.16) to show that

‖A−1‖2 = max
x 6=0

‖x‖2
‖Ax‖2

.
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Exercise 7.18 (p-norm example)
Let

A =

[
2 −1
−1 2

]
.

Compute ‖A‖p and ‖A−1‖p for p = 1, 2,∞.

7.1.4 Unitary invariant matrix norms

Definition 7.19 (Unitary invariant norm)
A matrix norm ‖ ‖ on Cm×n is called unitary invariant if ‖UAV ‖ = ‖A‖ for
any A ∈ Cm×n and any unitary matrices U ∈ Cm×m and V ∈ Cn×n.

When an unitary invariant matrix norm is used, the size of a perturbation
is not increased by a unitary transformation. Thus if U and V are unitary then
U(A+E)V = UAV + F , where ‖F ‖ = ‖E‖.

It follows from Lemma 6.24 that the Frobenius norm is unitary invariant.
We show here that this also holds for the spectral norm. It can be shown that the
spectral norm is the only unitary invariant operator norm, see [13] p. 308.

Theorem 7.20 (Unitary invariant norms)
The Frobenius norm and the spectral norm are unitary invariant. Moreover ‖A∗‖F =
‖A‖F and ‖A∗‖2 = ‖A‖2.

Proof. The results for the Frobenius norm follow from Lemma 6.24. Suppose
A ∈ Cm×n and let U ∈ Cm×m and V ∈ Cn×n be unitary. Since the 2-vector
norm is unitary invariant we obtain

‖UA‖2 = max
‖x‖2=1

‖UAx‖2 = max
‖x‖2=1

‖Ax‖2 = ‖A‖2.

Now A and A∗ have the same nonzero singular values, and it follows from The-
orem 7.12 that ‖A∗‖2 = ‖A‖2. Moreover V ∗ is unitary. Using these facts we
find

‖AV ‖2 = ‖(AV )∗‖2 = ‖V ∗A∗‖2 = ‖A∗‖2 = ‖A‖2.

Exercise 7.21 (Unitary invariance of the spectral norm)
Show that ‖V A‖2 = ‖A‖2 holds even for a rectangular V as long as V ∗V = I.

Exercise 7.22 (‖AU‖2 rectangular A)
Find A ∈ R2×2 and U ∈ R2×1 with UTU = I such that ‖AU‖2 < ‖A‖2. Thus,
in general, ‖AU‖2 = ‖A‖2 does not hold for a rectangular U even if U∗U = I.
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Exercise 7.23 (p-norm of diagonal matrix)
Show that ‖A‖p = ρ(A) := max |λi| (the largest eigenvalue of A), 1 ≤ p ≤ ∞,
when A is a diagonal matrix.

Exercise 7.24 (spectral norm of a column vector)
A vector a ∈ Cm can also be considered as a matrix A ∈ Cm,1.

(a) Show that the spectral matrix norm (2-norm) of A equals the Euclidean vector
norm of a.

(b) Show that ‖A‖p = ‖a‖p for 1 ≤ p ≤ ∞.

7.1.5 Absolute and monotone norms

A vector norm on Cn is an absolute norm if ‖x‖ = ‖ |x| ‖ for all x ∈ Cn. Here
|x| := [|x1|, . . . , |xn|]T , the absolute values of the components of x. Clearly the
vector p norms are absolute norms. We state without proof (see Theorem 5.5.10 of
[13]) that a vector norm on Cn is an absolute norm if and only if it is a monotone
norm, i. e.,

|xi| ≤ |yi|, i = 1, . . . , n =⇒ ‖x‖ ≤ ‖y‖, for all x,y ∈ Cn.

Absolute and monotone matrix norms are defined as for vector norms.

Exercise 7.25 (Norm of absolute value matrix)
If A ∈ Cm×n has elements aij, let |A| ∈ Rm×n be the matrix with elements |aij |.

(a) Compute |A| if A =

[
1+i −2

1 1−i

]
, i =

√
−1.

(b) Show that for any A ∈ Cm×n ‖A‖F = ‖ |A| ‖F , ‖A‖p = ‖ |A| ‖p for p = 1,∞.

(c) Show that for any A ∈ Cm×n ‖A‖2 ≤ ‖ |A| ‖2.

(d) Find a real symmetric 2× 2 matrix A such that ‖A‖2 < ‖ |A| ‖2.

The study of matrix norms will be continued in Chapter 8.

7.2 The Condition Number with Respect to
Inversion

Consider the system of two linear equations

x1 + x2 = 20
x1 + (1− 10−16)x2 = 20− 10−15
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whose exact solution is x1 = x2 = 10. If we replace the second equation by

x1 + (1 + 10−16)x2 = 20− 10−15,

the exact solution changes to x1 = 30, x2 = −10. Here a small change in one of
the coefficients, from 1−10−16 to 1+10−16, changed the exact solution by a large
amount.

A mathematical problem in which the solution is very sensitive to changes
in the data is called ill-conditioned. Such problems can be difficult to solve on
a computer.

In this section we consider what effect a small change (perturbation) in the
data A,b has on the solution x of a linear system Ax = b. Suppose y solves
(A+E)y = b+e where E is a (small) n× n matrix and e a (small) vector. How
large can y−x be? To measure this we use vector and matrix norms. In this
section ‖ ‖ will denote a vector norm on Cn and also a matrix norm on Cn×n
which for any A,B ∈ Cn×n and any x ∈ Cn satisfy

‖AB‖ ≤ ‖A‖ ‖B‖ and ‖Ax‖ ≤ ‖A‖ ‖x‖.

This holds if the matrix norm is the operator norm corresponding to the given
vector norm, but is also satisfied for the Frobenius matrix norm and the Euclidian
vector norm. This follows from Lemma 6.24.

Suppose x and y are vectors in Cn that we want to compare. The difference
‖y − x‖ measures the absolute error in y as an approximation to x, while
‖y − x‖/‖x‖ and ‖y − x‖/‖y‖ are measures for the relative error.

We consider first a perturbation in the right-hand side b.

Theorem 7.26 (Perturbation in the right-hand side)
Suppose A ∈ Cn×n is nonsingular, b, e ∈ Cn, b 6= 0 and Ax = b, Ay = b+e.
Then

1

K(A)

‖e‖
‖b‖
≤ ‖y − x‖

‖x‖
≤ K(A)

‖e‖
‖b‖

, K(A) = ‖A‖ ‖A−1‖. (7.13)

Proof. Subtracting Ax = b from Ay = b+e we have A(y − x) = e or y−x =
A−1e. Combining ‖y − x‖ = ‖A−1e‖ ≤ ‖A−1‖ ‖e‖ and ‖b‖ = ‖Ax‖ ≤ ‖A‖ ‖x‖
we obtain the upper bound in (7.13). Combining ‖e‖ ≤ ‖A‖ ‖y − x‖ and ‖x‖ ≤
‖A−1‖ ‖b‖ we obtain the lower bound.

Consider (7.13). ‖e‖/‖b‖ is a measure of the size of the perturbation e
relative to the size of b. The upper bound says that ‖y − x‖/‖x‖ in the worst
case can be K(A) = ‖A‖ ‖A−1‖ times as large as ‖e‖/‖b‖. K(A) is called
the condition number with respect to inversion of a matrix, or just the
condition number, if it is clear from the context that we are talking about solving
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linear systems or inverting a matrix. The condition number depends on the matrix
A and on the norm used. If K(A) is large, A is called ill-conditioned (with
respect to inversion). If K(A) is small, A is called well-conditioned (with
respect to inversion). We always have K(A) ≥ 1. For since ‖x‖ = ‖Ix‖ ≤ ‖I‖‖x‖
for any x we have ‖I‖ ≥ 1 and therefore ‖A‖ ‖A−1‖ ≥ ‖AA−1‖ = ‖I‖ ≥ 1.

Since all matrix norms are equivalent, the dependence of K(A) on the norm
chosen is less important than the dependence on A. Sometimes one chooses the
spectral norm when discussing properties of the condition number, and the `1,
`∞, or Frobenius norm when one wishes to compute it or estimate it.

The following explicit expressions for the 2-norm condition number follow
from Theorem 7.14.

Theorem 7.27 (Spectral condition number)
Suppose A ∈ Cn×n is nonsingular with singular values σ1 ≥ σ2 ≥ · · · ≥ σn > 0
and eigenvalues |λ1| ≥ |λ2| ≥ · · · ≥ |λn| > 0. Then K2(A) := ‖A‖2‖A−1‖2 =
σ1/σn. Moreover,

K2(A) =

{
λ1/λn, if A is symmetric positive definite,

|λ1|/|λn|, if A is normal.
(7.14)

It follows that A is ill-conditioned with respect to inversion if and only if
σ1/σn is large, or λ1/λn is large when A is symmetric positive definite.

Suppose we have computed an approximate solution y to Ax = b. The
vector r(y) := Ay−b is called the residual vector, or just the residual. We can
bound x−y in term of r.

Theorem 7.28 (Perturbation and residual)
Suppose A ∈ Cn×n, b ∈ Cn, A is nonsingular and b 6= 0. Let r(y) = Ay − b for
any y ∈ Cn. If Ax = b then

1

K(A)

‖r(y)‖
‖b‖

≤ ‖y − x‖
‖x‖

≤ K(A)
‖r(y)‖
‖b‖

. (7.15)

Proof. We simply take e = r(y) in Theorem 7.26.

If A is well-conditioned, (7.15) says that ‖y − x‖/‖x‖ ≈ ‖r(y)‖/‖b‖. In
other words, the accuracy in y is about the same order of magnitude as the
residual as long as ‖b‖ ≈ 1. If A is ill-conditioned, anything can happen. We can
for example have an accurate solution even if the residual is large.

Consider next the effect of a perturbation in the coefficient matrix. Suppose
A,E ∈ Cn×n with A nonsingular. We like to compare the solution x and y of
the systems Ax = b and (A + E)y = b. We expect A + E to be nonsingular
if the elements of E are sufficiently small and we need to address this question.
Consider first the case where A = I.
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Theorem 7.29 (Nonsingularity of perturbation of identity)
Suppose B ∈ Cn×n and ‖B‖ < 1 for some consistent matrix norm on Cn×n.
Then I −B is nonsingular and

1

1 + ‖B‖
≤ ‖(I −B)−1‖ ≤ 1

1− ‖B‖
. (7.16)

Proof. Suppose I −B is singular. Then (I −B)x = 0 for some nonzero x ∈ Cn,
and x = Bx so that ‖x‖ = ‖Bx‖ ≤ ‖B‖‖x‖. But then ‖B‖ ≥ 1. It follows that
I −B is nonsingular if ‖B‖ < 1. Next, since

‖I‖ = ‖(I −B)(I −B)−1‖ ≤ ‖I −B‖‖(I −B)−1‖
≤
(
‖I‖+ ‖B‖

)
‖(I −B)−1‖,

and since ‖I‖ ≥ 1, we obtain the lower bound in (7.16):

1

1 + ‖B‖
≤ ‖I‖
‖I‖+ ‖B‖

≤ ‖(I −B)−1‖. (7.17)

Taking norms and using the inverse triangle inequality in

I = (I −B)(I −B)−1 = (I −B)−1 −B(I −B)−1

implies

‖I‖ ≥ ‖(I −B)−1‖ − ‖B(I −B)−1‖ ≥
(
1− ‖B‖

)
‖(I −B)−1‖.

If the matrix norm is an operator norm then ‖I‖ = 1 and the upper bound follows.
We show in Section 8.4 that the upper bound also holds for the Frobenius norm,
and more generally for any consistent matrix norm on Cn×n.

Theorem 7.30 (Nonsingularity of perturbation)
Suppose A,E ∈ Cn×n, b ∈ Cn with A invertible and b 6= 0. If r := ‖A−1E‖ < 1
for some matrix norm consistent on Cn×n then A+E is nonsingular. If Ax = b
and (A+E)y = b then

‖y − x‖
‖y‖

≤ ‖A−1E‖ ≤ K(A)
‖E‖
‖A‖

, (7.18)

‖y − x‖
‖x‖

≤ 2K(A)
‖E‖
‖A‖

. (7.19)

In (7.19) we have assumed that r ≤ 1/2.
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Proof. Since r < 1 Theorem 7.29 implies that the matrix I −B := I +A−1E
is nonsingular and then A + E = A

(
I + A−1E

)
is nonsingular. Subtracting

(A +E)y = b from Ax = b gives A(x − y) = Ey or x − y = A−1Ey. Taking
norms and dividing by ‖y‖ proves (7.18). Solving x−y = A−1Ey for y we obtain
y = (I +A−1E)−1x. By (7.16)

‖y‖ ≤ ‖(I +A−1E)−1‖‖x‖ ≤ ‖x‖
1− ‖A−1E‖

≤ 2‖x‖.

But then (7.19) follows from (7.18).

In Theorem 7.30 we gave bounds for the relative error in x as an approx-
imation to y and the relative error in y as an approximation to x. ‖E‖/‖A‖
is a measure for the size of the perturbation E in A relative to the size of A.
The condition number again plays a crucial role. ‖y − x‖/‖y‖ can be as large
as K(A) times ‖E‖/‖A‖. It can be shown that the upper bound can be at-
tained for any A and any b. In deriving the upper bound we used the inequality
‖A−1Ey‖ ≤ ‖A−1‖ ‖E‖ ‖y‖. For a more or less random perturbation E this
is not a severe overestimate for ‖A−1Ey‖. In the situation where E is due to
round-off errors (7.18) can give a fairly realistic estimate for ‖y − x‖/‖y‖.

We end this section with a perturbation result for the inverse matrix. Again
the condition number plays an important role.

Theorem 7.31 (Perturbation of inverse matrix)
Suppose A ∈ Cn×n is nonsingular and let ‖·‖ be a consistent matrix norm on
Cn×n. If E ∈ Cn×n is so small that r := ‖A−1E‖ < 1 then A+E is nonsingular
and

‖(A+E)−1‖ ≤ ‖A
−1‖

1− r
. (7.20)

If r < 1/2 then

‖(A+E)−1 −A−1‖
‖A−1‖

≤ 2K(A)
‖E‖
‖A‖

. (7.21)

Proof. We showed in Theorem 7.30 that A + E is nonsingular and since (A +
E)−1 = (I +A−1E)−1A−1 we obtain

‖(A+E)−1‖ ≤ ‖(I +A−1E)−1‖‖A−1‖ ≤ ‖A−1‖
1− ‖A−1E‖

and (7.20) follows. Since

(A+E)−1 −A−1 =
(
I −A−1(A+E)

)
(A+E)−1 = −A−1E(A+E)−1
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we obtain by (7.20)

‖(A+E)−1 −A−1‖ ≤ ‖A−1‖‖E‖‖(A+E)−1‖ ≤ K(A)
‖E‖
‖A‖

‖A−1‖
1− r

.

Dividing by ‖A−1‖ and setting r = 1/2 proves (7.21).

Exercise 7.32 (Sharpness of perturbation bounds)
The upper and lower bounds for ‖y − x‖/‖x‖ given by (7.13) can be attained for
any matrix A, but only for special choices of b. Suppose yA and yA−1 are vectors
with ‖yA‖ = ‖yA−1‖ = 1 and ‖A‖ = ‖AyA‖ and ‖A−1‖ = ‖A−1yA−1‖.
(a) Show that the upper bound in (7.13) is attained if b = AyA and e = yA−1 .

(b) Show that the lower bound is attained if b = yA−1 and e = AyA.

Exercise 7.33 (Condition number of 2. derivative matrix)
In this exercise we will show that for m ≥ 1

4

π2
(m+ 1)2 − 2/3 < condp(T ) ≤ 1

2
(m+ 1)2, p = 1, 2,∞, (7.22)

where T := tridiag(−1, 2,−1) ∈ Rm×m and condp(T ) := ‖T ‖p‖T−1‖p is the p-
norm condition number of T . The p matrix norm is given by (7.8). You will need
the explicit inverse of T given by (1.10) and the eigenvalues given in Lemma 3.8.
As usual we define h := 1/(m+ 1).

a) Show that for m ≥ 3

cond1(T ) = cond∞(T ) =
1

2

{
h−2, m odd,
h−2 − 1, m even.

(7.23)

and that cond1(T ) = cond∞(T ) = 3 for m = 2.

b) Show that for p = 2 and m ≥ 1 we have

cond2(T ) = cot2
(πh

2

)
= 1/ tan2

(πh
2

)
.

c) Show the bounds

4

π2
h−2 − 2

3
< cond2(T ) <

4

π2
h−2. (7.24)

Hint: For the upper bound use the inequality tanx > x valid for 0 < x < π/2.
For the lower bound we use the inequality cot2 x > 1

x2 − 2
3 for x > 0. This

can be derived for 0 < x < π by first showing that the second derivative of
cot2 x is positive and then use Taylor’s theorem.

d) Show (7.22).
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7.3 Proof that the p-Norms are Norms
We want to show

Theorem 7.34 (The p vector norms are norms)
Let for 1 ≤ p ≤ ∞ and x ∈ Cn

‖x‖p :=
( n∑
j=1

|xj |p
)1/p

, ‖x‖∞ := max
1≤j≤n

|xj |.

Then for all 1 ≤ p ≤ ∞, x,y ∈ Cn and all a ∈ C

1. ‖x‖p ≥ 0 with equality if and only if x = 0. (positivity)

2. ‖ax‖p = |a| ‖x‖p. (homogeneity)

3. ‖x+ y‖p ≤ ‖x‖p + ‖y‖p. (subadditivity)

Positivity and homogeneity follows immediately. To show the subadditivity
we need some elementary properties of convex functions.

Definition 7.35 (Convex function)
Let I ⊂ R be an interval. A function f : I → R is convex if

f
(
(1− λ)x1 + λx2

)
≤ (1− λ)f(x1) + λf(x2) (7.25)

for all x1, x2 ∈ I with x1 < x2 and all λ ∈ [0, 1]. The sum
∑n
j=1 λjxj is called a

convex combination of x1, . . . , xn if λj ≥ 0 for j = 1, . . . , n and
∑n
j=1 λj = 1.

The convexity condition is illustrated in Figure 7.1.

Lemma 7.36 (A sufficient condition for convexity)
If f ∈ C2[a, b] and f ′′(x) ≥ 0 for x ∈ [a, b] then f is convex.

Proof. We recall the formula for linear interpolation with remainder, (cf a book
on numerical methods) For any a ≤ x1 ≤ x ≤ x2 ≤ b there is a c ∈ [x1, x2] such
that

f(x) =
x2 − x
x2 − x1

f(x1) +
x− x1

x2 − x1
f(x2) + (x− x1)(x− x2)f ′′(c)/2

= (1− λ)f(x1) + λf(x2) + (x2 − x1)2λ(λ− 1)f ′′(c)/2, λ :=
x− x1

x2 − x1
.

Since λ ∈ [0, 1] the remainder term is not positive. Moreover,

x =
x2 − x
x2 − x1

x1 +
x− x1

x2 − x1
x2 = (1− λ)x1 + λx2
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f(x)

x1 x = (1− λ)x1 + λx2

(1− λ)f(x1) + λf(x2)

x2

Figure 7.1. A convex function.

so that (7.25) holds, and f is convex.

The following inequality is elementary, but can be used to prove many non-
trivial inequalities.

Theorem 7.37 (Jensen’s inequality)
Suppose I ∈ R is an interval and f : I → R is convex. Then for all n ∈ N, all
λ1, . . . , λn with λj ≥ 0 for j = 1, . . . , n and

∑n
j=1 λj = 1, and all z1, . . . , zn ∈ I

f(

n∑
j=1

λjzj) ≤
n∑
j=1

λjf(zj).

Proof. We use induction on n. The result is trivial for n = 1. Let n ≥ 2, assume
the inequality holds for n − 1, and let λj , zj for j = 1, . . . , n be given as in the
theorem. Since n ≥ 2 we have λi < 1 for at least one i so assume without loss
of generality that λ1 < 1, and define u :=

∑n
j=2

λj
1−λ1

zj . Since
∑n
j=2 λj = 1− λ1

this is a convex combination of n− 1 terms and the induction hypothesis implies
that f(u) ≤

∑n
j=2

λj
1−λ1

f(zj). But then by the convexity of f

f(

n∑
j=1

λjzj) = f(λ1z1 + (1− λ1)u) ≤ λ1f(z1) + (1− λ1)f(u) ≤
n∑
j=1

λjf(zj)

and the inequality holds for n.
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Corollary 7.38 (Weighted geometric/arithmetic mean inequality)
Suppose

∑n
j=1 λjaj is a convex combination of nonnegative numbers a1, . . . , an.

Then

aλ1
1 aλ2

2 · · · aλnn ≤
n∑
j=1

λjaj , (7.26)

where 00 := 0.

Proof. The result is trivial if one or more of the aj ’s are zero so assume aj > 0
for all j. Consider the function f : (0,∞) given by f(x) = − log x. Since f ′′(x) =
1/x2 > 0 for x ∈ (0,∞), this function is convex. By Jensen’s inequality

− log
( n∑
j=1

λjaj
)
≤ −

n∑
j=1

λj log(aj) = − log
(
aλ1

1 · · · aλnn
)

or log
(
aλ1

1 · · · aλnn
)
≤ log

(∑n
j=1 λjaj

)
. The inequality follows since exp(log x) = x

for x > 0 and the exponential function is monotone increasing.

Taking λj = 1
n for all j in (7.26) we obtain the classical geometric/arith-

metic mean inequality

(a1a2 · · · an)
1
n ≤ 1

n

n∑
j=1

aj . (7.27)

Corollary 7.39 (Hölder’s inequality)
For x,y ∈ Cn and 1 ≤ p ≤ ∞

n∑
j=1

|xjyj | ≤ ‖x‖p‖y‖q, where
1

p
+

1

q
= 1.

Proof. We leave the proof for p = 1 and p = ∞ as an exercise so assume
1 < p < ∞. For any a, b ≥ 0 the weighted arithmetic/geometric mean inequality
implies that

a
1
p b

1
q ≤ 1

p
a+

1

q
b, where

1

p
+

1

q
= 1. (7.28)

If x = 0 or y = 0 there is nothing to prove so assume that both x and y are
nonzero. Using 7.28 on each term we obtain

1

‖x‖p‖y‖q

n∑
j=1

|xjyj | =
n∑
j=1

(
|xj |p

‖x‖pp

) 1
p
(
|yj |q

‖y‖qq

) 1
q

≤
n∑
j=1

(
1

p

|xj |p

‖x‖pp
+

1

q

|yj |q

‖y‖qq

)
= 1
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and the proof of the inequality is complete.

Corollary 7.40 (Minkowski’s inequality)
For x,y ∈ Cn and 1 ≤ p ≤ ∞

‖x+ y‖p ≤ ‖x‖p + ‖y‖p.

Proof. We leave the proof for p = 1 and p = ∞ as an exercise so assume
1 < p <∞. We write

‖x+ y‖pp =

n∑
j=1

|xj + yj |p ≤
n∑
j=1

|xj ||xj + yj |p−1 +

n∑
j=1

|yj ||xj + yj |p−1.

We apply Hölder’s inequality with exponent p and q to each sum. In view of the
relation (p− 1)q = p the result is

‖x+ y‖pp ≤ ‖x‖p‖x+ y‖p/qp + ‖y‖p‖x+ y‖p/qp = (‖x‖p + ‖y‖p)‖x+ y‖p−1
p ,

and canceling the common factor, the inequality follows.

It is possible to characterize the p-noms that are derived from an inner
product. We start with the following identity.

Theorem 7.41 (Parallelogram identity)
For all x,y in a real or complex inner product space

‖x+ y‖2 + ‖x− y‖2 = 2‖x‖2 + 2‖y‖2. (7.29)

Proof. We set a = ±1 in (22) and add the two equations.

Theorem 7.42 (When is a norm an inner product norm?)
To a given norm on a real or complex vector space V there exists an inner product
on V such that 〈x,x〉 = ‖x‖2 if and only if the parallelogram identity (7.29) holds
for all x,y ∈ V.

Proof. If 〈x,x〉 = ‖x‖2 then Theorem 7.41 shows that the parallelogram identity
holds. For the converse we prove the real case and leave the complex case as an
exercise. Suppose (7.29) holds for all x,y in the real vector space V. We show
that

〈x,y〉 :=
1

4

(
‖x+ y‖2 − ‖x− y‖2

)
, x,y ∈ V (7.30)



7.3. Proof that the p-Norms are Norms 183

defines an inner product on V. Clearly 1. and 2. in Definition 0.20 hold. The
hard part is to show 3. We need to show that

〈x, z〉+ 〈y, z〉 = 〈x+ y, z〉, x,y, z ∈ V, (7.31)

〈ax,y〉 = a〈x,y〉, a ∈ R, x,y ∈ V. (7.32)

Now

4〈x, z〉+ 4〈y, z〉 (7.30)
= ‖x+ z‖2 − ‖x− z‖2 + ‖y + z‖2 − ‖y − z‖2

= ‖
(
z +

x+ y

2

)
+
x− y

2
‖2 − ‖

(
z − x+ y

2

)
+
y − x

2
‖2

+ ‖
(
z +

x+ y

2

)
− x− y

2
‖2 − ‖

(
z − x+ y

2

)
− y − x

2
‖2

(7.29)
= 2‖z +

x+ y

2
‖2 + 2‖x− y

2
‖2 − 2‖z − x+ y

2
‖2 − 2‖y − x

2
‖2

(7.30)
= 8〈x+ y

2
, z〉,

or

〈x, z〉+ 〈y, z〉 = 2〈x+ y

2
, z〉, x,y, z ∈ V.

In particular, since y = 0 implies 〈y, z〉 = 0 we obtain 〈x, z〉 = 2〈x2 , z〉 for all

x, z ∈ V. This means that 2〈x+y
2 , z〉 = 〈x + y, z〉 for all x,y, z ∈ V and (7.31)

follows.
We first show (7.32) when a = n is a positive integer. By induction

〈nx,y〉 = 〈(n− 1)x+ x,y〉 (7.31)
= 〈(n− 1)x,y〉+ 〈x,y〉 = n〈x,y〉. (7.33)

If m,n ∈ N then

m2〈 n
m
x,y〉 (7.33)

= m〈nx,y〉 (7.33)
= mn〈x,y〉,

implying that (7.32) holds for positive rational numbers

〈 n
m
x,y〉 =

n

m
〈x,y〉.

Nov if a > 0 there is a sequence {an} of positive rational numbers converging to
a. For each n

an〈x,y〉 = 〈anx,y〉
(7.30)

=
1

4

(
‖anx+ y‖2 − ‖anx− y‖2

)
.

Taking limits and using continuity of norms we obtain a〈x,y〉 = 〈ax,y〉. This
also holds for a = 0. Finally, if a < 0 then (−a) > 0 and from what we just
showed

(−a)〈x,y〉 = 〈(−a)x,y〉 (7.30)
=

1

4

(
‖−ax+ y‖2 − ‖−ax− y‖2

)
= −〈ax,y〉,
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so (7.32) also holds for negative a.

Corollary 7.43 (Are the p-norms inner product norms?)
For the p vector norms on V = Rn or V = Cn, 1 ≤ p ≤ ∞, n ≥ 2, there is an
inner product on V such that 〈x,x〉 = ‖x‖2p for all x ∈ V if and only if p = 2.

Proof. For p = 2 the p-norm is the Euclidian norm which corresponds to the
standard inner product. If p 6= 2 then the parallelogram identity (7.29) does not
hold for say x := e1 and y := e2.

Exercise 7.44 (When is a complex norm an inner product norm?)
Given a vector norm in a complex vector space V, and suppose (7.29) holds for
all x,y Show that

〈x,y〉 :=
1

4

(
‖x+ y‖2 − ‖x− y‖2 + i‖x+ iy‖2 − i‖x− iy‖2

)
, (7.34)

defines an inner product on V, where i =
√
−1. The identity (7.34) is called the

polarization identity.10

Exercise 7.45 (p norm for p = 1 and p =∞)
Show that ‖·‖p is a vector norm in Rn for p = 1, p =∞.

Exercise 7.46 (The p- norm unit sphere)
The set

Sp = {x ∈ Rn : ‖x‖p = 1}
is called the unit sphere in Rn with respect to p. Draw Sp for p = 1, 2,∞ for
n = 2.

Exercise 7.47 (Sharpness of p-norm inequalitiy)
For p ≥ 1, and any x ∈ Cn we have ‖x‖∞ ≤ ‖x‖p ≤ n1/p‖x‖∞ (cf. (14)).

Produce a vector xl such that ‖xl‖∞ = ‖xl‖p and another vector xu such
that ‖xu‖p = n1/p‖xu‖p∞. Thus, these inequalities are sharp.

Exercise 7.48 (p-norm inequalitiies for arbitrary p)
If 1 ≤ q ≤ p ≤ ∞ then

‖x‖p ≤ ‖x‖q ≤ n1/q−1/p‖x‖p, x ∈ Cn.

Hint: For the rightmost inequality use Jensen’s inequality Cf. Theorem 7.37 with
f(z) = zp/q and zi = |xi|q. For the left inequality consider first yi = xi/‖x‖∞,
i = 1, 2, . . . , n.

10Hint: We have 〈x,y〉 = s(x,y) + is(x, iy), where s(x,y) := 1
4

(
‖x + y‖2 − ‖x− y‖2

)
.
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7.4 Review Questions
7.4.1]

• What is a consistent matrix norm?

• what is a subordinate matrix norm?

• is an operator norm consistent?

• why is the Frobenius norm not an operator norm?

• what is the spectral norm of a matrix?

• how do we compute ‖A‖∞?

• what is the spectral condition number of a symmetric positive definte
matrix?

7.4.2 Why is ‖A‖2 ≤ ‖A‖F for any matrix A?

7.4.3 What is the spectral norm of the inverse of a normal matrix?
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Chapter 8

The Classical Iterative
Methods

Gaussian elimination and Cholesky factorization are direct methods. In absence
of rounding errors they find the exact solution using a finite number of arithmetic
operations. In an iterative method we start with an approximation x0 to the
exact solution x and then compute a sequence {xk} such that hopefully xk → x.
Iterative methods are mainly used for large sparse systems, i. e., where many of
the elements in the coefficient matrix are zero. The main advantages of iterative
methods are reduced storage requirements and ease of implementation. In an
iterative method the main work in each iteration is a matrix times vector multi-
plication, an operation which often does not need storing the matrix, not even in
sparse form.

In this chapter we consider the classical iterative methods of Richardson,
Jacobi, Gauss-Seidel and an accelerated version of Gauss-Seidel’s method called
successive overrelaxation (SOR). David Young developed in his thesis a beautiful
theory describing the convergence rate of SOR, see [35].

We give the main points of this theory specialized to the discrete Poisson
matrix. With a careful choice of an acceleration parameter the amount of work
using SOR on the discrete Poisson problem is the same as for the fast Poisson
solver without FFT (cf. Algorithm 4.1). Moreover, SOR is not restricted to
constant coefficient methods on a rectangle. However, to obtain fast convergence
using SOR it is necessary to have a good estimate for an acceleration parameter.

For convergence we study convergence of powers of matrices.
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8.1 Classical Iterative Methods; Component Form
We start with an example showing how a linear system can be solved using an
iterative method.

Example 8.1 (Iterative methods on a special 2× 2 matrix)
Solving for the diagonal elements the linear system

[
2 −1
−1 2

]
[ yz ] = [ 1

1 ] can be writ-
ten in component form as y = (z + 1)/2 and z = (y + 1)/2. Starting with
y0, z0 we generate two sequences {yk} and {zk} using the difference equations
yk+1 = (zk + 1)/2 and zk+1 = (yk + 1)/2. This is known as Jacobi’s method. If
y0 = z0 = 0 then we find y1 = z1 = 1/2 and in general yk = zk = 1 − 2−k for
k = 0, 1, 2, 3, . . .. The iteration converges to the exact solution [1, 1]T , and the
error is halved in each iteration.

We can improve the convergence rate by using the most current approxima-
tion in each iteration. This leads to Gauss-Seidel’s method: yk+1 = (zk+1)/2 and
zk+1 = (yk+1 + 1)/2. If y0 = z0 = 0 then we find y1 = 1/2, z1 = 3/4, y2 = 7/8,
z2 = 15/16, and in general yk = 1 − 2 · 4−k and zk = 1 − 4−k for k = 1, 2, 3, . . ..
The error is now reduced by a factor 4 in each iteration.

Consider the general case. SupposeA ∈ Cn×n is nonsingular and b ∈ Cn. Suppose
we know an approximation xk = [xk(1), . . . ,xk(n)]T to the exact solution x of
Ax = b.

Lewis Fry Richardson, 1881-1953 (left),Carl Gustav Jacob Jacobi, 1804-1851 (right).
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Philipp Ludwig von Seidel, 1821-1896 (left), David M. Young Jr., 1923-2008 (right)

In Richardson’s method (R method) we pick a positive parameter α
and compute a new approximation by adding a multiple of the residual vector
rk := b−Axk:

xk+1(i) = xk(i) + αrk(i), rk(i) := bi −
n∑
j=1

aijxk(j), for i = 1, 2, . . . , n. (8.1)

Richardson considered the simplest case α = 1. The parameter α is added to get
faster convergence.

For the other methods we need to assume that A has nonzero diagonal
elements. Solving the ith equation of Ax = b for x(i), we obtain a fixed-point
form of Ax = b

x(i) =
(
−

i−1∑
j=1

aijx(j)−
n∑

j=i+1

aijx(j) + bi
)
/aii, i = 1, 2, . . . , n. (8.2)

1. In Jacobi’s method (J method) we substitute xk into the right hand side
of (8.2) and compute a new approximation by

xk+1(i) =
(
−

i−1∑
j=1

aijxk(j)−
n∑

j=i+1

aijxk(j) + bi
)
/aii, for i = 1, 2, . . . , n.

(8.3)

2. Gauss-Seidel’s method (GS method) is a modification of Jacobi’s method,
where we use the new xk+1(i) immediately after it has been computed.

xk+1(i) =
(
−

i−1∑
j=1

aijxk+1(j)−
n∑

j=i+1

aijxk(j) + bi
)
/aii, for i = 1, 2, . . . , n.

(8.4)
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3. The Successive overrelaxation method (SOR method) is obtained by
introducing an acceleration parameter 0 < ω < 2 in the GS method. We
write x(i) = ωx(i) + (1− ω)x(i) and this leads to the method

xk+1(i) = ω
(
−
i−1∑
j=1

aijxk+1(j)−
n∑

j=i+1

aijxk(j)+bi
)
/aii+(1−ω)xk(i). (8.5)

The SOR method reduces to the Gauss-Seidel method for ω = 1. Denoting
the right hand side of (8.4) by xgsk+1 we can write (8.5) as xk+1 = ωxgsk+1 +
(1 − ω)xk, and we see that xk+1 is located on the straight line passing
through the two points xgsk+1 and xk. The restriction 0 < ω < 2 is necessary
for convergence (cf. Theorem 8.14). Normally, the best results are obtained
for the relaxation parameter ω in the range 1 ≤ ω < 2 and then xk+1 is
computed by linear extrapolation, i. e., it is not located between xgsk+1 and
xk.

4. We mention also briefly the symmetric successive overrelaxation method
SSOR. One iteration in SSOR consists of two SOR sweeps. A forward SOR
sweep (8.5), computing an approximation denoted xk+1/2 instead of xk+1,
is followed by a back SOR sweep computing

xk+1(i) = ω
(
−
i−1∑
j=1

aijxk+1/2(j)−
n∑

j=i+1

aijxk+1(j)+bi
)
/aii+(1−ω)xk+1/2(i)

(8.6)
in the order i = n, n− 1, . . . 1. The method is slower and more complicated
than the SOR method. Its main use is as a symmetric preconditioner. For
if A is symmetric then SSOR combines the two SOR steps in such a way
that the resulting iteration matrix is similar to a symmetric matrix. We
will not discuss this method any further here and refer to Section 9.6 for an
alternative example of a preconditioner.

We will refer to the R, J, GS and SOR methods as the classical (iteration)
methods. The R method will be discussed later, see Section 8.3.1.

8.1.1 The discrete Poisson system

Consider the classical methods applied to the discrete Poisson matrix A ∈ Rn×n
given by (3.7). Let n = m2 and set h = 1/(m+ 1). In component form the linear
system Ax = b can be written (cf. (3.4))

4v(i, j)− v(i−1, j)− v(i+1, j)− v(i, j−1)− v(i, j+1) = h2fi,j , i, j = 1, . . . ,m,
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with homogenous boundary conditions also given in (3.4). Solving for v(i, j) we
obtain the fixed point form

v(i, j) =
(
v(i−1, j)+v(i+1, j)+v(i, j−1)+v(i, j+1)+ei,j

)
/4, ei,j := fi,j/(m+1)2.

(8.7)
The R, J, GS , and SOR methods takes the form

R : vk+1(i, j) = vk(i, j) + α
(
vk(i−1, j) + vk(i, j−1) + vk(i+1, j)

+ vk(i, j+1)− 4vk(i, j) + e(i, j)
)

J : vk+1(i, j) =
(
vk(i−1, j) + vk(i, j−1) + vk(i+1, j) + vk(i, j+1)

+ e(i, j)
)
/4

GS : vk+1(i, j) =
(
vk+1(i−1, j) + vk+1(i, j−1) + vk(i+1, j) + vk(i, j+1)

+ e(i, j)
)
/4

SOR : vk+1(i, j) = ω
(
vk+1(i−1, j) + vk+1(i, j − 1) + vk(i+ 1, j) + vk(i, j + 1)

+ e(i, j)
)
/4 + (1− ω)vk(i, j).

(8.8)
We note that

• For α = 1/4 the R and J methods in (8.8) are identical.

• For a general system the R and J methods are identical if A is constant and
nonzero on the diagonal and α is chosen as the inverse of this constant. See
Exercise 8.2.

• For the discrete Poisson problem the choice α = 1/4 in the J method is
optimal in a way to become clear in Section 8.3.1.

• For GS and SOR we have used the natural ordering, i. e., (i1, j1) < (i2, j2)
if and only if j1 ≤ j2 and i1 < i2 if j1 = j2. For the J method any ordering
can be used.

Exercise 8.2 (Richardson and Jacobi)
Show that if aii = d 6= 0 for all i then Richardson’s method with α := 1/d is the
same as Jacobi’s method.

In Algorithm 8.3 we give a Matlab program to test the convergence of Ja-
cobi’s method on the discrete Poisson problem. We carry out Jacobi iterations
on the linear system (8.7) with F = (fij) ∈ Rm×m, starting with V 0 = 0 ∈
R(m+2)×(m+2). The output is the number of iterations k, to obtain ‖V (k) −
U‖M := maxi,j |vij−uij | < tol. Here [uij ] ∈ R(m+2)×(m+2) is the ”exact” solution
of (8.7) computed using the fast Poisson solver in Algorithm 4.1. We set k = K+1
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k100 k2500 k10 000 k40 000 k160 000

J 385 8386
GS 194 4194

SOR 35 164 324 645 1286

Table 8.1. The number of iterations kn to solve the discrete Poisson
problem with n unknowns using the methods of Jacobi, Gauss-Seidel, and SOR
(see text) with a tolerance 10−8.

if convergence is not obtained in K iterations. In Table 8.1 we show the output
k = kn from this algorithm using F = ones(m,m) for m = 10, 50, K = 104, and
tol = 10−8. We also show the number of iterations for Gauss-Seidel and SOR with
a value of ω known as the optimal acceleration parameter ω∗ := 2/

(
1+sin( π

m+1 )
)
.

We will derive this value later.

Algorithm 8.3 (Jacobi)

1 function k=jdp (F ,K, t o l )
2 m=length (F) ; U=f a s t p o i s s o n (F) ; V=zeros (m+2,m+2) ; E=F/(m+1) ˆ2 ;
3 for k=1:K
4 V( 2 :m+1 ,2:m+1)=(V( 1 :m, 2 :m+1)+V( 3 :m+2 ,2:m+1) . . .
5 +V( 2 :m+1 ,1:m)+V( 2 :m+1 ,3:m+2)+E) /4 ;
6 i f max(max(abs (V−U) ) )<to l , return
7 end
8 end
9 k=K+1;

For the GS and SOR methods we have used Algorithm 8.4. This is the analog
of Algorithm 8.3 using SOR instead of J to solve the discrete Poisson problem. w
is an acceleration parameter with 0 < w < 2. For w = 1 we obtain Gauss-Seidel’s
method.
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Algorithm 8.4 (SOR)

1 function k=sordp (F ,K,w, t o l )
2 m=length (F) ; U=f a s t p o i s s o n (F) ; V=zeros (m+2,m+2) ; E=F/(m+1) ˆ2 ;
3 for k=1:K
4 for j =2:m+1
5 for i =2:m+1
6 V( i , j )=w∗(V( i −1, j )+V( i +1, j )+V( i , j−1) . . .
7 +V( i , j +1)+E( i −1, j−1) )/4+(1−w) ∗V( i , j ) ;
8 end
9 end

10 i f max(max(abs (V−U) ) )<to l , return
11 end
12 end
13 k=K+1;

We make several remarks about these programs and the results in Table 8.1.

1. The rate (speed) of convergence is quite different for the four methods. The
R, J and GS methods converge, but rather slowly. The R method with
α = 1/4 and the J method needs about twice as many iterations as the
GS method. The improvement using the SOR method with optimal ω is
spectacular.

2. We show in Section 8.3.4 that the number of iterations kn for a size n problem
is kn = O(n) for the J and GS method and kn = O(

√
n) for SOR with

optimal ω. The choice of tol will only influence the constants multiplying n
or
√
n.

3. From (8.8) it follows that each iteration requires O(n) arithmetic operations.
Thus the number of arithmetic operations to achieve a given tolerance is
O(kn×n). Therefore the number of arithmetic operations for the J and GS
method is O(n2), while it is only O(n3/2) for the SOR method with optimal
ω. Asymptotically, for J and GS this is the same as using banded Cholesky,
while SOR competes with the fast method (without FFT).

4. We do not need to store the coefficient matrix so the storage requirements
for these methods on the discrete Poisson problem is O(n), asymptotically
the same as for the fast methods.

5. Jacobi’s method has the advantage that it can be easily parallelized.

8.2 Classical Iterative Methods; Matrix Form
To study convergence we need matrix formulations of the classical methods.



196 Chapter 8. The Classical Iterative Methods

8.2.1 Fixed-point form

In general we can construct an iterative method by choosing a nonsingular matrix
M and write Ax = b in the equivalent form M−1Ax = M−1b. This system can
be written x = x −M−1Ax +M−1b, and we obtain Ax = b in a fixed-point
form

x = Gx+ c, G = I −M−1A, c = M−1b. (8.9)

For a general G ∈ Cn×n and c ∈ Cn a solution of x = Gx + c is called a
fixed-point. The fixed-point is unique if I −G is nonsingular.

The corresponding iterative method is given by

xk+1 := Gxk + c. (8.10)

This is known as a fixed-point iteration. Starting with x0 this defines a se-
quence {xk} of vectors in Cn. If limk→∞ xk = x for some x ∈ Cn then x is a
fixed point since

x = lim
k→∞

xk+1 = lim
k→∞

(Gxk + c) = G lim
k→∞

xk + c = Gx+ c.

8.2.2 The preconditioning and splitting matrix

Different choices of M in (8.9) lead to different iterative methods. The matrix
M can be interpreted in two ways. It is a preconditioning matrix since a good
choice of M can lead to a preconditioned system M−1Ax = M−1b with smaller
condition number. It is also known as a splitting matrix, since if we split A in
the form A = M + (A−M) then Ax = b can be written Mx = (M −A)x+ b,
and this leads to the iterative method

Mxk+1 = (M −A)xk + b (8.11)

which is equivalent to (8.9).

8.2.3 The splitting matrices for the classical methods

We now derive M for the classical methods. For J, GS and SOR it is convenient
to write A as a sum of three matrices, A = D − AL − AR, where −AL, D,
and −AR are the lower, diagonal, and upper part of A, respectively. Thus D :=
diag(a11, . . . , ann),

AL :=


0
−a2,1 0

...
. . .

. . .

−an,1 · · · −an,n−1 0

 , AR :=


0 −a1,2 · · · −a1,n

. . .
. . .

...
0 −an−1,n

0

 .
(8.12)
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Theorem 8.5 (Splitting matrices for R, J, and SOR)
The splitting and iteration matrices for the R, J and SOR methods are given by

MR = α−1I, MJ = D, Mω = ω−1D −AL,

GR = I − αA, GJ = I −D−1A, Gω = I − (ω−1D −AL)−1A.
(8.13)

We obtain the matrices M1 and G1 for the GS method by letting ω = 1 in Mω

and Gω

Proof. To find M we write the methods in the form (8.11). The formulas for G
then follows immediately from (8.9).

The matrix form of the R method is xk+1 = xk +α(b−Axk) or α−1xk+1 =
α−1(I − A)xk + b, and the formulas for MR and GR follows. The equation
Ax = b can be written Dx−ALx−ARx = b or Dx = ALx+ARx+ b. This
leads to

J : Dxk+1 = ALxk +ARxk + b, or

MJxk+1 = (AL +AR)xk + b,

SOR : Dxk+1 = ω
(
ALxk+1 +ARxk + b

)
+ (1− ω)Dxk, or

Mωxk+1 =
(
AR + (ω−1 − 1)D

)
xk + b.

(8.14)

Example 8.6 (Splitting matrices)
For the system [

2 −1
−1 2

] [
x1

x2

]
=

[
1
1

]
we find

AL =

[
0 0
1 0

]
, D =

[
2 0
0 2

]
, AR =

[
0 1
0 0

]
,

and

MJ = D =

[
2 0
0 2

]
, Mω = ω−1D −AL =

[
2ω−1 0
−1 2ω−1

]
.

The iteration matrix Gω = I −M−1
ω A is given by

Gω =

[
1 0
0 1

]
−
[
ω/2 0
ω2/4 ω/2

] [
2 −1
−1 2

]
=

[
1− ω ω/2

ω(1− ω)/2 1− ω + ω2/4

]
. (8.15)

For the J and GS method we have

GJ = I −D−1A =

[
0 1/2

1/2 0

]
, G1 =

[
0 1/2
0 1/4

]
. (8.16)
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We could have derived these matrices directly from the component form of the
iteration. For example, for the GS method we have the component form

xk+1(1) =
1

2
xk(2) +

1

2
, xk+1(2) =

1

2
xk+1(1) +

1

2
.

Substituting the value of xk+1(1) from the first equation into the second equation
we find

xk+1(2) =
1

2
(
1

2
xk(2) +

1

2
) +

1

2
=

1

4
xk(2) +

3

4
.

Thus

xk+1 =

[
xk+1(1)
xk+1(2)

]
=

[
0 1/2
0 1/4

] [
xk(1)
xk(2)

]
+

[
1/2
3/4

]
= G1xk + c.

8.3 Convergence
Definition 8.7 (Convergence of xk+1 := Gxk + c)
We say that the iterative method xk+1 := Gxk + c converges if the sequence
{xk} converges for any starting vector x0.

We have the following necessary and sufficient condition for convergence:

Theorem 8.8 (Convergence of an iterative method)
The iterative method xk+1 := Gxk + c converges if and only if limk→∞G

k = 0.

Proof. We subtract x = Gx + c from xk+1 = Gxk + c. The vector c cancels
and we obtain xk+1 − x = G(xk − x). By induction on k

xk − x = Gk(x0 − x), k = 0, 1, 2, . . . (8.17)

Clearly xk − x → 0 if Gk → 0. The converse follows by choosing x0 − x = ej ,
the jth unit vector for j = 1, . . . , n.

Theorem 8.9 (Sufficient condition for convergence)
If ‖G‖ < 1 for some consistent matrix norm on Cn×n, then the iteration xk+1 =
Gxk + c converges.

Proof. We have

‖xk − x‖ = ‖Gk(x0 − x)‖ ≤ ‖Gk‖‖x0 − x‖ ≤ ‖G‖k‖x0 − x‖ → 0, k →∞.
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A necessary and sufficient condition for convergence involves the eigenvalues
of G. We define the spectral radius of a matrix A ∈ Cn×n as the maximum
absolute value of its eigenvalues.

ρ(A) := max
λ∈σ(A)

|λ|. (8.18)

Theorem 8.10 (When does an iterative method converge?)
Suppose G ∈ Cn×n and c ∈ Cn. The iteration xk+1 = Gxk + c converges if and
only if ρ(G) < 1.

We will prove this theorem using Theorem 8.27 in Section 8.4.

8.3.1 Convergence of Richardson’s method.

Recall that Richardson’s method can be written in the form

xk+1 = xk + αrk, rk = b−Axk. (8.19)

We will assume that α is real. If all eigenvalues of A have positive real parts
then then the R method converges provided α is positive and sufficiently small.
We show this result for positive eigenvalues and leave the more general case to
Exercise 8.13.

Theorem 8.11 (Convergence of Richardson’s method)
If A has positive eigenvalues then the R method converges if and only if 0 < α <
2/ρ(A). Moreover,

min
α
G(α) = G(α∗), α∗ :=

2

λmax + λmin
, and ρ

(
G(α∗)

)
=
λmax − λmin
λmax + λmin

=
κ− 1

κ+ 1
,

(8.20)
where λmax and λmin are the largest and smallest eigenvalue of A and κ :=
λmax/λmin.

Proof. The eigenvalues ofG(α) = I−αA are µj(α) = 1−αλj , j = 1, . . . , n. We
have maxj µj < 1 if and only if α > 0 and minj µj = 1− αρ(A) > −1 if and only
if α < 2/ρ(A). The method converges if and only if ρ(G(α)) < 1 which from what
we have shown is equivalent to 0 < α < 2/ρ(A). Since 1− α∗λmin = α∗λmax − 1
we have we have

ρ
(
G(α∗)

)
= 1− α∗λmin =

λmax − λmin
λmax + λmin

=
κ− 1

κ+ 1
.

Now G(α) ≥ G(α∗), for if 0 < α < α∗ then from what we showed ρ
(
G(α)

)
≥

1− αλmin > 1− α∗λmin = ρ
(
G(α∗)

)
, and if α∗ < α < 2/ρ(A) then −ρ

(
G(α)

)
≤

1− αλmax < 1− α∗λmax = −ρ
(
G(α∗)

)
, and again ρ

(
G(α)

)
> ρ
(
G(α∗)

)
.
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Corollary 8.12 (Rate of convergence for the R method)
Suppose A is symmetric positive definite with largest and smallest eigenvalue λmax
and λmin, respectively. Richardson’s method with acceleration parameter α∗ :=

2
λmax+λmin

converges. More precisely

‖xk − x‖2 ≤
(κ− 1

κ+ 1

)k‖x0 − x‖2, k = 0, 1, 2, . . . (8.21)

where κ := λmax/λmin is the spectral condition number of A.

Proof. The spectral norm ‖ ‖2 is consistent and therefore ‖xk−x‖2 ≤ ‖G(α∗)‖k2‖x0−
x‖2. But for a symmetric positive definite matrix the spectral norm is equal to
the spectral radius and the result follows form (8.20).

Exercise 8.13 (Convergence of the R-method when eigenvalues have positive real part)
Suppose all eigenvalues λj of A have positive real parts uj for j = 1, . . . , n
and that α is real. Show that the R method converges if and only if 0 < α <
minj(2uj/|λj |2).

8.3.2 Convergence of SOR

The condition ω ∈ (0, 2) is necessary for convergence of the SOR method.

Theorem 8.14 (Necessay condition for convergence of SOR)
Suppose A ∈ Cn×n is nonsingular with nonzero diagonal elements. If the SOR
method applied to A converges then ω ∈ (0, 2).

Proof. We have (cf. (8.14)) Dxk+1 = ω
(
ALxk+1 +ARxk + b

)
+ (1 − ω)Dxk

or xk+1 = ω
(
Lxk+1 + Rxk + D−1b

)
+ (1 − ω)xk, where L := D−1AL and

R := D−1AR. Thus (I−ωL)xk+1 = (ωR+(1−ω)I)xk +D−1b so the following
form of the iteration matrix is obtained

Gω = (I − ωL)−1
(
ωR+ (1− ω)I

)
. (8.22)

We next compute the determinant of Gω. Since I − ωL is lower triangular with
ones on the diagonal, the same holds for the inverse by Lemma 1.22, and therefore
the determinant of this matrix is equal to one. The matrix ωR+(1−ω)I is upper
triangular with 1−ω on the diagonal and therefore its determinant equals (1−ω)n.
It follows that det(Gω) = (1− ω)n. Since the determinant of a matrix equals the
product of its eigenvalues we must have |λ| ≥ |1−ω| for at least one eigenvalue λ
of Gω and we conclude that ρ(Gω) ≥ |ω − 1|. But then ρ(Gω) ≥ 1 if ω is not in
the interval (0, 2) and by Theorem 8.10 SOR diverges.

The SOR method always converges for a symmetric positive definite matrix.



8.3. Convergence 201

Theorem 8.15 (SOR on positive definite matrix)
SOR converges for a symmetric positive definite matrix A ∈ Rn×n if and only
if 0 < ω < 2. In particular, Gauss-Seidel’s method converges for a symmetric
positive definite matrix.

Proof. By Theorem 8.14 convergence implies 0 < ω < 2. Suppose now 0 < ω < 2
and let (λ,x) be an eigenpair for Gω. Note that λ and x can be complex. We
need to show that |λ| < 1. The following identity will be shown below:

ω−1(2− ω)|1− λ|2x∗Dx = (1− |λ|2)x∗Ax, (8.23)

where D := diag(a11, . . . , ann). Now x∗Ax and x∗Dx are positive for all nonzero
x ∈ Cn since a positive definite matrix has positive diagonal elements aii =
eTi Aei > 0. It follows that the left hand side of (8.23) is nonnegative and then
the right hand side must be nonnegative as well. This implies |λ| ≤ 1. It remains
to show that we cannot have λ = 1. By (8.13) the eigenpair equation Gωx = λx
can be written x− (ω−1D −AL)−1Ax = λx or

Ax = (ω−1D −AL)y, y := (1− λ)x. (8.24)

Now Ax 6= 0 implies that λ 6= 1.
To prove equation (8.23) consider the matrix E := ω−1D+AR −D. Since

AR −D = −AL −A we find Ey = (ω−1D −AL −A)y
(8.24)

= Ax−Ay = λAx.
Observe that (ω−1D −AL)∗ = ω−1D −AR so that by (8.24)

(Ax)∗y + y∗(λAx) = y∗(ω−1D −AR)y + y∗Ey = y∗(2ω−1 − 1)Dy

= ω−1(2− ω)|1− λ|2x∗Dx.

Since (Ax)∗ = x∗A, y := (1− λ)x and y∗ = (1− λ)x∗ this also equals

(Ax)∗y + y∗(λAx) = (1− λ)x∗Ax+ λ(1− λ)x∗Ax = (1− |λ|2)x∗Ax,

and (8.23) follows.

Exercise 8.16 (Examle: GS converges, J diverges)
Show (by finding its eigenvalues) that the matrix1 a a

a 1 a
a a 1


is symmetric positive definite for −1/2 < a < 1. Thus, GS converges for these
values of a. Show that the J method does not converge for 1/2 < a < 1.
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Exercise 8.17 (Divergence example for J and GS)
Show that both Jacobi’s method and Gauss-Seidel’s method diverge for A = [ 1 2

3 4 ].

Exercise 8.18 (Strictly diagonally dominance; The J method)
Show that the J method converges if |aii| >

∑
j 6=i|aij | for i = 1, . . . , n.

Exercise 8.19 (Strictly diagonally dominance; The GS method)

Consider the GS method. Suppose r := maxi ri < 1, where ri =
∑
j 6=i

|aij |
|aii| . Show

using induction on i that |εk+1(j)| ≤ r‖εk‖∞ for j = 1, . . . , i. Conclude that
Gauss-Seidel’s method is convergent when A is strictly diagonally dominant.

8.3.3 Convergence of the classical methods for the discrete
Poisson matrix

We know the eigenvalues of the discrete Poisson matrix A given by (3.7) and we
can use this to estimate the number of iterations necessary to achieve a given
accuracy for the various methods.

Recall that by (3.20) the eigenvalues λj,k of A are

λj,k = 4− 2 cos (jπh)− 2 cos (kπh), j, k = 1, . . . ,m, h = 1/(m+ 1).

It follows that the largest and smallest eigenvalue of A, and the spectral condition
number κ of A, are given by

λmax = 8 cos2 w, λmin = 8 sin2 w, κ :=
cos2 w

sin2 w
, w :=

π

2(m+ 1)
. (8.25)

Consider first the J method. The matrix GJ = I −D−1A = I −A/4 has
eigenvalues

µj,k = 1− 1

4
λj,k =

1

2
cos(jπh) +

1

2
cos(kπh), j, k = 1, . . . ,m. (8.26)

It follows that ρ(GJ) = cos(πh) < 1. Since GJ is symmetric it is normal, and the
spectral norm is equal to the spectral radios (cf. Theorem 7.14). We obtain

‖xk − x‖2 ≤ ‖GJ)‖k2‖x0 − x‖2 = cosk(πh)‖x0 − x‖2, k = 0, 1, 2, . . . (8.27)

The R method given by xk+1 = xk + αrk with α = 2/(λmax + λmin) = 1/4
is the same as the J-method so (8.27) holds in this case as well. This also follows
from Corollary 8.12 with κ given by (8.25).

For the SOR method it is possible to explicitly determine ρ(Gω) for any
ω ∈ (0, 2). The following result will be shown in Section 8.3.2.
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Figure 8.1. ρ(Gω) with ω ∈ [0, 2] for n = 100, (lower curve) and n =
2500 (upper curve).

Theorem 8.20 (The spectral radius of SOR matrix)
Consider the SOR iteration (8.8), with the natural ordering. The spectral radius
of Gω is

ρ(Gω) =

 1
4

(
ωβ +

√
(ωβ)2 − 4(ω − 1)

)2

, for 0 < ω ≤ ω∗,
ω − 1, for ω∗ < ω < 2,

(8.28)

where β := ρ(GJ) = cos(πh) and

ω∗ :=
2

1 +
√

1− β2
> 1. (8.29)

Moreover,
ρ(Gω) > ρ(Gω∗) for ω ∈ (0, 2) \ {ω∗}. (8.30)

A plot of ρ(Gω) as a function of ω ∈ (0, 2) is shown in Figure 8.1 for n = 100
(lower curve) and n = 2500 (upper curve). As ω increases the spectral radius of
Gω decreases monotonically to the minimum ω∗. Then it increases linearly to the
value one for ω = 2. We call ω∗ the optimal relaxation parameter.

For the discrete Poisson problem we have β = cos(πh) and it follows from
(8.28),(8.29) that

ω∗ =
2

1 + sin(πh)
, ρ(Gω∗) = ω∗ − 1 =

1− sin(πh)

1 + sin(πh)
, h =

1

m+ 1
. (8.31)
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n=100 n=2500 k100 k2500

J 0.959493 0.998103 446 9703
GS 0.920627 0.99621 223 4852

SOR 0.56039 0.88402 32 150

Table 8.2. Spectral radia for GJ , G1, Gω∗ and the smallest integer kn
such that ρ(G)kn ≤ 10−8.

Letting ω = 1 in (8.28) we find ρ(G1) = β2 = ρ(GJ)2 = cos2(πh) for the
GS method. Thus, for the discrete Poisson problem the J method needs twice as
many iterations as the GS method for a given accuracy.

The values of ρ(GJ), ρ(G1), and ρ(Gω∗) = ω∗ − 1 are shown in Table 8.2
for n = 100 and n = 2500. We also show the smallest integer kn such that
ρ(G)kn ≤ 10−8. This is an estimate for the number of iteration needed to obtain
an accuracy of 10−8. These values are comparable to the exact values given in
Table 8.1.

8.3.4 Number of iterations

Consider next the rate of convergence of the iteration xk+1 = Gxk + c. We
like to know how fast the iterative method converges. Suppose ‖ ‖ is a matrix
norm that is subordinate to a vector norm also denoted by ‖ ‖. Recall that
xk − x = Gk(x0 − x). For k sufficiently large

‖xk − x‖ ≤ ‖Gk‖‖x0 − x‖ ≈ ρ(G)k‖x0 − x‖.

For the last formula we apply Theorem 8.30 which says that limk→∞‖Gk‖1/k =
ρ(G). For Jacobi’s method and the spectral norm we have ‖Gk

J‖2 = ρ(GJ)k (cf.
(8.27)).

For fast convergence we should use a G with small spectral radius.

Lemma 8.22 (Number of iterations)
Suppose ρ(G) = 1−η for some 0 < η < 1, ‖ ‖ a consistent matrix norm on Cn×n,
and let s ∈ N. Then

k̃ :=
s log(10)

η
(8.32)

is an estimate for the smallest number of iterations k so that ρ(G)k ≤ 10−s.

Proof. The estimate k̃ is an approximate solution of the equation ρ(G)k = 10−s.
Thus, since − log(1− η) ≈ η when η is small

k = − s log (10)

log(1− η)
≈ s log(10)

η
= k̃.
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The following estimates are obtained. They agree with those we found nu-
merically in Section 8.1.1.

• R and J: ρ(GJ) = cos(πh) = 1 − η, η = 1 − cos(πh) = 1
2π

2h2 + O(h4) =
π2

2 /n+O(n−2). Thus

k̃n =
2 log(10)s

π2
n+O(n−1) = O(n).

• GS: ρ(G1) = cos2(πh) = 1−η, η = 1−cos2(πh) = sin2 πh = π2h2 +O(h4) =
π2/n+O(n−2). Thus

k̃n =
log(10)s

π2
n+O(n−1) = O(n).

• SOR: ρ(Gω∗) = 1−sin(πh)
1+sin(πh) = 1− 2πh+O(h2). Thus,

k̃n =
log(10)s

2π

√
n+O(n−1/2) = O(

√
n).

Exercise 8.23 (Convergence example for fix point iteration)
Consider for a ∈ C

x :=

[
x1

x2

]
=

[
0 a
a 0

] [
x1

x2

]
+

[
1− a
1− a

]
=: Gx+ c.

Starting with x0 = 0 show by induction

xk(1) = xk(2) = 1− ak, k ≥ 0,

and conclude that the iteration converges to the fixed-point x = [1, 1]T for |a| < 1
and diverges for |a| > 1. Show that ρ(G) = 1 − η with η = 1 − |a|. Compute the
estimate (8.32) for the rate of convergence for a = 0.9 and s = 16 and compare
with the true number of iterations determined from |a|k ≤ 10−16.

Exercise 8.24 (Estimate in Lemma 8.22 can be exact)
Consider the iteration in Example 8.6. Show that ρ(GJ) = 1/2. Then show that
xk(1) = xk(2) = 1− 2−k for k ≥ 0. Thus the estimate in Lemma 8.22 is exact in
this case.

We note that
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1. The convergence depends on the behavior of the powers Gk as k increases.
The matrix M should be chosen so that all elements in Gk converge quickly
to zero and such that the linear system (8.11) is easy to solve for xk+1.
These are conflicting demands. M should be an approximation to A to
obtain a G with small elements, but then (8.11) might not be easy to solve
for xk+1.

2. The convergence limk→∞‖Gk‖1/k = ρ(G) can be quite slow (cf. Exer-
cise 8.25).

Exercise 8.25 (Slow spectral radius convergence)
The convergence limk→∞‖Ak‖1/k = ρ(A) can be quite slow. Consider

A :=


λ a 0 ··· 0 0
0 λ a ··· 0 0
0 0 λ ··· 0 0
...

...
0 0 0 ··· λ a
0 0 0 ··· 0 λ

 ∈ Rn×n.

If |λ| = ρ(A) < 1 then limk→∞A
k = 0 for any a ∈ R. We show below that the

(1, n) element of Ak is given by f(k) :=
(
k

n−1

)
an−1λk−n+1 for k ≥ n− 1.

(a) Pick an n, e.g. n = 5, and make a plot of f(k) for λ = 0.9, a = 10, and
n − 1 ≤ k ≤ 200. Your program should also compute maxk f(k). Use your
program to determine how large k must be before f(k) < 10−8.

(b) We can determine the elements of Ak explicitly for any k. Let E := (A −
λI)/a. Show by induction that Ek =

[
0 In−k
0 0

]
for 1 ≤ k ≤ n − 1 and that

En = 0.

(c) We have Ak = (aE + λI)k =
∑min{k,n−1}
j=0

(
k
j

)
ajλk−jEj and conclude that

the (1, n) element is given by f(k) for k ≥ n− 1.

8.3.5 Stopping the iteration

In Algorithms 8.3 and 8.4 we had access to the exact solution and could stop the
iteration when the error was sufficiently small in the infinity norm. The decision
when to stop is obviously more complicated when the exact solution is not known.
One possibility is to choose a vector norm, keep track of ‖xk+1 − xk‖, and stop
when this number is sufficiently small. The following result indicates that ‖xk−x‖
can be quite large if ‖G‖ is close to one.

Lemma 8.26 (Be careful when stopping)
Suppose ‖G‖ < 1 for some consistent matrix norm on Cn×n which is subordinate
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to a vector norm also denoted by ‖ ‖. If xk = Gxk−1 + c and x = Gx+ c. Then

‖xk − xk−1‖ ≥
1− ‖G‖
‖G‖

‖xk − x‖, k ≥ 1. (8.33)

Proof. We find

‖xk − x‖ = ‖G(xk−1 − x)‖ ≤ ‖G‖‖xk−1 − x‖
= ‖G‖‖xk−1 − xk + xk − x‖ ≤ ‖G‖

(
‖xk−1 − xk‖+ ‖xk − x‖

)
.

Thus (1− ‖G‖)‖xk − x‖ ≤ ‖G‖‖xk−1 − xk‖ which implies (8.33).

Another possibility is to stop when the residual vector rk := b − Axk is
sufficiently small in some norm. To use the residual vector for stopping it is
convenient to write the iterative method (8.10) in an alternative form. If M is the
splitting matrix of the method then by (8.11) we have Mxk+1 = Mxk−Axk+b.
This leads to

xk+1 = xk +M−1rk, rk = b−Axk. (8.34)

Testing on rk works fine if A is well conditioned, but Theorem 7.28 shows
that the relative error in the solution can be much larger than the relative error
in rk if A is ill-conditioned.

8.4 Powers of a matrix
Let A ∈ Cn×n be a square matrix. In this section we consider the special matrix
sequence {Ak} of powers of A. We want to know when this sequence converges
to the zero matrix. Such a sequence occurs in iterative methods (cf. (8.17)),
in Markov processes in statistics, in the converge of geometric series of matrices
(Neumann series cf. Section 8.4.2) and in many other applications.

8.4.1 The spectral radius

In this section we show the following theorem.

Theorem 8.27 (When is limk→∞A
k = 0?)

For any A ∈ Cn×n we have

lim
k→∞

Ak = 0⇐⇒ ρ(A) < 1,

where ρ(A) is the spectral radius of A given by (8.18).

Clearly ρ(A) < 1 is a necessary condition for limk→∞A
k = 0. For if (λ,x)

is an eigenpair of A with |λ| ≥ 1 and ‖x‖2 = 1 then Akx = λkx, and this implies
‖Ak‖2 ≥ ‖Akx‖2 = ‖λkx‖2 = |λ|k, and it follows that Ak does not tend to zero.
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The sufficiency condition is harder to show. We construct a consistent matrix
norm on Cn×n such that ‖A‖ < 1 and then use Theorems 8.8 and 8.9.

We start with

Theorem 8.28 (Any consistent norm majorizes the spectral radius)
For any matrix norm ‖·‖ that is consistent on Cn×n and any A ∈ Cn×n we have
ρ(A) ≤ ‖A‖.

Proof. Let (λ,x) be an eigenpair for A and define X := [x, . . . ,x] ∈ Cn×n. Then
λX = AX, which implies |λ| ‖X‖ = ‖λX‖ = ‖AX‖ ≤ ‖A‖ ‖X‖. Since ‖X‖ 6= 0
we obtain |λ| ≤ ‖A‖.

The next theorem shows that if ρ(A) < 1 then ‖A‖ < 1 for some consistent
matrix norm on Cn×n, thus completing the proof of Theorem 8.27.

Theorem 8.29 (The spectral radius can be approximated by a norm)
Let A ∈ Cn×n and ε > 0 be given. There is a consistent matrix norm ‖·‖ on Cn×n
such that ρ(A) ≤ ‖A‖ ≤ ρ(A) + ε.

Proof. Let A have eigenvalues λ1, . . . , λn. By the Schur Triangulation Theo-
rem 5.13 there is a unitary matrix U and an upper triangular matrix R = [rij ]
such that U∗AU = R. For t > 0 we define Dt := diag(t, t2, . . . , tn) ∈ Rn×n, and
note that the (i, j) element in DtRD

−1
t is given by ti−jrij for all i, j. For n = 3

DtRD
−1
t =

λ1 t−1r12 t−2r13

0 λ2 t−1r23

0 0 λ3

 .
For each B ∈ Cn×n and t > 0 we use the one norm to define the matrix norm
‖B‖t := ‖DtU

∗BUD−1
t ‖1. We leave it as an exercise to show that ‖ ‖t is a

consistent matrix norm on Cn×n. We define ‖B‖ := ‖B‖t, where t is chosen so
large that the sum of the absolute values of all off-diagonal elements in DtRD

−1
t

is less than ε. Then

‖A‖ = ‖DtU
∗AUD−1

t ‖1 = ‖DtRD
−1
t ‖1 = max

1≤j≤n

n∑
i=1

|
(
DtRD

−1
t

)
ij
|

≤ max
1≤j≤n

(|λj |+ ε) = ρ(A) + ε.

A consistent matrix norm of a matrix can be much larger than the spectral
radius. However the following result holds.
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Theorem 8.30 (Spectral radius convergence)
For any consistent matrix norm ‖·‖ on Cn×n and any A ∈ Cn×n we have

lim
k→∞

‖Ak‖1/k = ρ(A). (8.35)

Proof. By Theorems 5.1 and 8.28 we obtain ρ(A)k = ρ(Ak) ≤ ‖Ak‖ for any k ∈
N so that ρ(A) ≤ ‖Ak‖1/k. Let ε > 0 and consider the matrixB := (ρ(A)+ε)−1A.
Then ρ(B) = ρ(A)/(ρ(A) + ε) < 1 and ‖Bk‖ → 0 by Theorem 8.27 as k → ∞.
Choose N ∈ N such that ‖Bk‖ < 1 for all k ≥ N . Then for k ≥ N

‖Ak‖ = ‖(ρ(A) + ε)kBk‖ =
(
ρ(A) + ε

)k‖Bk‖ <
(
ρ(A) + ε

)k
.

We have shown that ρ(A) ≤ ‖Ak‖1/k ≤ ρ(A) + ε for k ≥ N . Since ε is arbitrary
the result follows.

Exercise 8.31 (A special norm)
Show that ‖B‖t := ‖DtU

∗BUD−1
t ‖1 defined in the proof of Theorem 8.29 is a

consistent matrix norm on Cn×n.

8.4.2 Neumann series

Carl Neumann., 1832–1925. He studied potential theory. The Neumann boundary
conditions are named after him.

Let B be a square matrix. In this section we consider the Neumann series∑∞
k=0B

k which is a matrix analogue of a geometric series of numbers.
Consider an infinite series

∑∞
k=0Ak of matrices in Cn×n. We say that the

series converges if the sequence of partial sums {Sm} given by Sm =
∑m
k=0Ak

converges. The series converges if and only if {Sm} is a Cauchy sequence, i.e. to
each ε > 0 there exists an integer N so that ‖Sl − Sm‖ < ε for all l > m ≥ N .

Theorem 8.32 (Neumann series)
Suppose B ∈ Cn×n. Then

1. The series
∑∞
k=0B

k converges if and only if ρ(B) < 1.
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2. If ρ(B) < 1 then (I −B) is nonsingular and (I −B)−1 =
∑∞
k=0B

k.

3. If ‖B‖ < 1 for some consistent matrix norm ‖·‖ on Cn×n then

‖(I −B)−1‖ ≤ 1

1− ‖B‖
. (8.36)

Proof.

1. Suppose ρ(B) < 1. We show that Sm :=
∑m
k=0B

k is a Cauchy sequence
and hence convergent. Let ε > 0. By Theorem 8.29 there is a consistent
matrix norm ‖·‖ on Cn×n such that ‖B‖ < 1. Then for l > m

‖Sl − Sm‖ = ‖
l∑

k=m+1

Bk‖ ≤
l∑

k=m+1

‖B‖k ≤ ‖B‖m+1
∞∑
k=0

‖B‖k =
‖B‖m+1

1− ‖B‖
.

But then {Sm} is a Cauchy sequence provided N is such that ‖B‖
N+1

1−‖B‖ < ε.

Conversely, suppose (λ,x) is an eigenpair for B with |λ| ≥ 1. We find
Smx =

∑m
k=0B

kx =
(∑m

k=0 λ
k
)
x. Since λk does not tend to zero the

series
∑∞
k=0 λ

k is not convergent and therefore {Smx} and hence {Sm}
does not converge.

2. We have

( m∑
k=0

Bk
)
(I−B) = I+B+· · ·+Bm−(B+· · ·+Bm+1) = I−Bm+1. (8.37)

Since ρ(B) < 1 we conclude that Bm+1 → 0 and hence taking limits in
(8.37) we obtain

(∑∞
k=0B

k
)
(I −B) = I which completes the proof of 2.

3. By 2: ‖(I −B)−1‖ = ‖
∑∞
k=0B

k‖ ≤
∑∞
k=0‖B‖k = 1

1−‖B‖ .

Exercise 8.33 (When is A+E nonsingular?)
Suppose A ∈ Cn×n is nonsingular and E ∈ Cn×n. Show that A+E is nonsingular
if and only if ρ(A−1E) < 1.

8.5 The Optimal SOR Parameter ω
The following analysis is only carried out for the discrete Poisson matrix. It also
holds for the averaging matrix given by (3.9). A more general theory is presented
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in [35]. We will compare the eigenpair equations for GJ and Gω. It is convenient
to write these equations using the matrix formulation TV + V T = h2F . If
GJv = µv is an eigenpair of GJ then

1

4
(vi−1,j + vi,j−1 + vi+1,j + vi,j+1) = µvi,j , i, j = 1, . . . ,m, (8.38)

where V := vec(v) ∈ Rm×m and vi,j = 0 if i ∈ {0,m+ 1} or j ∈ {0,m+ 1}.
Suppose (λ,w) is an eigenpair for Gω. By (8.22) (I − ωL)−1

(
ωR + (1 −

ω)I
)
w = λw or

(ωR+ λωL)w = (λ+ ω − 1)w, (8.39)

where li,i−m = ri,i+m = 1/4 for all i, and all other elements in L and R are equal
to zero. Let w = vec(W ), where W ∈ Cm×m. Then (8.39) can be written

ω

4
(λwi−1,j + λwi,j−1 + wi+1,j + wi,j+1) = (λ+ ω − 1)wi,j , (8.40)

where wi,j = 0 if i ∈ {0,m+ 1} or j ∈ {0,m+ 1}.

Theorem 8.34 (The optimal ω)
Consider the SOR method applied to the discrete Poisson matrix (3.9), where we
use the natural ordering. Moreover, assume ω ∈ (0, 2).

1. If λ 6= 0 is an eigenvalue of Gω then

µ :=
λ+ ω − 1

ωλ1/2
(8.41)

is an eigenvalue of GJ .

2. If µ is an eigenvalue of GJ and λ satisfies the equation

µωλ1/2 = λ+ ω − 1 (8.42)

then λ is an eigenvalue of Gω.

Proof. Suppose (λ,w) is an eigenpair forGω. We claim that (µ,v) is an eigenpair

for GJ , where µ is given by (8.41) and v =~(V ) with vi,j := λ−(i+j)/2wi,j . Indeed,
replacing wi,j by λ(i+j)/2vi,j in (8.40) and cancelling the common factor λ(i+j)/2

we obtain

ω

4
(vi−1,j + vi,j−1 + vi+1,j + vi,j+1) = λ−1/2(λ+ ω − 1)vi,j .

But then

GJv = (L+R)v =
λ+ ω − 1

ωλ1/2
v = µv.
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For the converse let (µ,v) be an eigenpair for GJ and let et λ be a solution of
(8.42). We define as before v =: vec(V ), W = vec(W ) with wi,j := λ(i+j)/2vi,j .
Inserting this in (8.38) and canceling λ−(i+j)/2 we obtain

1

4
(λ1/2wi−1,j + λ1/2wi,j−1 + λ−1/2wi+1,j + λ−1/2wi,j+1) = µwi,j .

Multiplying by ωλ1/2 we obtain

ω

4
(λwi−1,j + λwi,j−1 + wi+1,j + wi,j+1) = ωµλ1/2wi,j ,

Thus, if ωµ1/2λ1/2 = λ+ ω − 1 then by (8.40) (λ,w) is an eigenpair for Gω.

Proof of Theorem 8.20
Combining statement 1 and 2 in Theorem 8.34 we see that ρ(Gω) = |λ(µ)|, where
λ(µ) is an eigenvalue of Gω satisfying (8.42) for some eigenvalue µ of GJ . The
eigenvalues of GJ are 1

2 cos(jπh) + 1
2 cos(kπh), j, k = 1, . . . ,m, so µ is real and

both µ and −µ are eigenvalues. Thus, to compute ρ(Gω) it is enough to consider
(8.42) for a positive eigenvalue µ of GJ . Solving (8.42) for λ = λ(µ) gives

λ(µ) :=
1

4

(
ωµ±

√
(ωµ)2 − 4(ω − 1)

)2

. (8.43)

Both roots λ(µ) are eigenvalues of Gω. The discriminant

d(ω) := (ωµ)2 − 4(ω − 1).

is strictly decreasing on (0, 2) since

d′(ω) = 2(ωµ2 − 2) < 2(ω − 2) < 0.

Moreover d(0) = 4 > 0 and d(2) = 4µ2 − 4 < 0. As a function of ω, λ(µ) changes
from real to complex when d(ω) = 0. The root in (0, 2) is

ω = ω̃(µ) := 2
1−

√
1− µ2

µ2
=

2

1 +
√

1− µ2
. (8.44)

In the complex case we find

|λ(µ)| = 1

4

(
(ωµ)2 + 4(ω − 1)− (ωµ)2

)
= ω − 1, ω̃(µ) < ω < 2.

In the real case both roots of (8.43) are positive and the larger one is

λ(µ) =
1

4

(
ωµ+

√
(ωµ)2 − 4(ω − 1)

)2

, 0 < ω ≤ ω̃(µ). (8.45)
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Both λ(µ) and ω̃(µ) are strictly increasing as functions of µ. It follows that |λ(µ)|
is maximized for µ = ρ(GJ) =: β and for this value of µ we obtain (8.28) for
0 < ω ≤ ω̃(β) = ω∗.

Evidently ρ(Gω) = ω − 1 is strictly increasing in ω∗ < ω < 2. Equation
(8.30) will follow if we can show that ρ(Gω) is strictly decreasing in 0 < ω < ω∗.
By differentiation

d

dω

(
ωβ +

√
(ωβ)2 − 4(ω − 1)

)
=
β
√

(ωβ)2 − 4(ω − 1) + ωβ2 − 2√
(ωβ)2 − 4(ω − 1)

.

Since β2(ω2β2 − 4ω + 4) < (2 − ωβ2)2 the numerator is negative and the strict
decrease of ρ(Gω) in 0 < ω < ω∗ follows.

8.6 Review Questions
8.6.1 Consider a matrix A ∈ Cn×n with nonzero diagonal elements.

• Define the J and GS method in component form,

• Do they always converge?

• Give a necessary and sufficient condition that An → 0.

• Is there a matrix norm ‖ ‖ consistent on Cn×n such that ‖A‖ < ρ(A)?

8.6.2 What is a Neumann series? when does it converge?

8.6.3 How do we define convergence of a fixed point iteration xk+1 = Gxk + c?
When does it converge?

8.6.4 Define Richardson’s method.
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Chapter 9

The Conjugate Gradient
Method

Magnus Rudolph Hestenes, 1906-1991 (left), Eduard L. Stiefel, 1909-1978 (right).

The conjugate gradient method was published by Hestenes and Stiefel
in 1952, [11] as a direct method for solving linear systems. Today its main use is
as an iterative method for solving large sparse linear systems. On a test problem
we show that it performs as well as the SOR method with optimal acceleration
parameter, and we do not have to estimate any such parameter. However the
conjugate gradient method is restricted to symmetric positive definite systems. We
also consider the mathematical formulation of the preconditioned conjugate
gradient method. It is used to speed up convergence of the conjugate gradient
method and we study this on a partial differential equation example.

The conjugate gradient method can also be used for minimization and is
related to a method known as steepest descent. This method and the conjugate
gradient method are both minimization methods and iterative methods for solving
linear equations.

Throughout this chapter A ∈ Rn×n will be a symmetric positive definite
matrix. Thus, AT = A and yTAy > 0 for all nonzero y ∈ Rn. We recall that A
has positive eigenvalues and that the spectral (2-norm) condition number of A is
given by κ := λmax

λmin
, where λmax and λmin are the largest and smallest eigenvalue

215
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x0 x1

x2 x3

x0 x1

x2

Figure 9.1. Level curves for Q(x, y) given by (9.2). Also shown is a
steepest descent iteration (left) and a conjugate gradient iteration (right) to find
the minimum of Q. (cf Examples 9.3,9.6)
.

of A.

9.1 Quadratic Minimization and Steepest Descent
We start by discussing some aspect of quadratic minimization and its relation to
solving linear systems.

Consider for A ∈ Rn×n and b ∈ Rn the quadratic function Q : Rn → R
given by

Q(y) :=
1

2
yTAy − bTy. (9.1)

As an example, some level curves of

Q(x, y) :=
1

2

[
x y

] [ 2 −1
−1 2

] [
x
y

]
= x2 − xy + y2 (9.2)

are shown in Figure 9.1. The level curves are ellipses and the graph of Q is a
paraboloid (cf. Exercise 9.1).
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Exercise 9.1 (Paraboloid)
Let A = UDUT be the spectral decomposition of A, i. e., U is orthonormal and
D = diag(λ1, . . . , λn) is diagonal. Define new varables v = [v1, . . . , vn]T := UTy,
and set c := UT b = [c1, . . . , cn]T . Show that

Q(y) =
1

2

n∑
j=1

λjv
2
j −

n∑
j=1

cjvj .

Minimizing a quadratic function is equivalent to solving a linear system.

Lemma 9.2 (Quadratic function)
A vector x ∈ Rn minimizes Q given by (9.1) if and only if Ax = b. Moreover,
the residual r(y) := b−Ay at any y ∈ Rn is equal to the negative gradient, i. e.,

r(y) = −∇Q(y), where ∇ :=
[
∂
∂y1

, . . . , ∂
∂yn

]T
.

Proof. Expanding Q(y + εh) := 1
2 (y + εh)TA(y + εh)− bT (y + εh) we find for

any y,h ∈ Rn and ε ∈ R

Q(y + εh) = Q(y)− εhT r(y) +
1

2
ε2hTAh, where r(y) := b−Ay. (9.3)

If y = x, ε = 1, and Ax = b then (9.3) simplifies to Q(x+h) = Q(x) + 1
2h

TAh,
and since A is symmetric positive definite Q(x + h) > Q(x) for all nonzero
h ∈ Rn. It follows that x is the unique minimum of Q. Conversely, if Ax 6= b
and h := r(x), then by (9.3), Q(x + εh) − Q(x) = −ε(hTr(x) − 1

2εh
TAh) < 0

for ε > 0 sufficiently small. Thus x does not minimize Q. By (9.3) for y ∈ Rn

∂

∂yi
Q(y) := lim

ε→0

1

ε
(Q(y + εei)−Q(y))

= lim
ε→0

1

ε

(
−εeTi r(y)) +

1

2
ε2eTi Aei

)
= −eTi r(y), i = 1, . . . , n,

showing that r(y) = −∇Q(y).

A general class of minimization algorithms for Q and solution algorithms for
a linear system is given as follows:

1. Choose x0 ∈ Rn.

2. For k = 0, 1, 2, . . .

Choose a “search direction” pk,

Choose a “step length” αk,

Compute xk+1 = xk + αkpk.

(9.4)
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We would like to generate a sequence {xk} that converges quickly to the minimum
x of Q.

For a fixed direction pk we say that αk is optimal if Q(xk+1) is as small as
possible, i.e.

Q(xk+1) = Q(xk + αkpk) = min
α∈R

Q(xk + αpk).

By (9.3) we have Q(xk + αpk) = Q(xk) − αpTk rk + 1
2α

2pTkApk, where rk :=

b−Axk. Since pTkApk ≥ 0 we find a minimum αk by solving ∂
∂αQ(xk+αpk) = 0.

It follows that the optimal αk is uniquely given by

αk :=
pTk rk
pTkApk

. (9.5)

In the method of Steepest descent, also known as the Gradient method
we choose pk = rk the negative gradient, and the optimal αk. Starting from x0

we compute for k = 0, 1, 2 . . .

xk+1 = xk +
( rTk rk
rTkArk

)
rk. (9.6)

This is similer to Richardson’s method (8.19), but in that method we used
a constant step length. Computationally, a step in the steepest descent iteration
canbe organizedd as follows

tk = Ark,

αk = (rTk rk)/(rTk tk),

xk+1 = xk + αkrk,

rk+1 = rk − αktk.

(9.7)

Here, and in general, the following updating of the residual is used:

rk+1 = b−Axk+1 = b−A(xk + αkpk) = rk − αktk, tk := Apk. (9.8)

Example 9.3 (Steepest descent iteration)
Suppose Q(x, y) is given by (9.2). Starting with x0 = [−1,−1/2]T and r0 =
−Ax0 = [3/2, 0]T we find

t0 = 3
[

1
−1/2

]
, α0 =

1

2
, x1 = −4−1 [ 1

2 ] , r1 = 3 ∗ 4−1 [ 0
1 ]

t1 = 3 ∗ 4−1
[−1

2

]
, α1 =

1

2
, x2 = −4−1

[
1

1/2

]
, r2 = 3 ∗ 4−1

[
1/2
0

]
,
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and in general for k ≥ 1

t2k−2 = 3 ∗ 41−k [ 1
−1/2

]
, x2k−1 = −4−k [ 1

2 ] , r2k−1 = 3 ∗ 4−k [ 0
1 ]

t2k−1 = 3 ∗ 4−k
[−1

2

]
, x2k = −4−k

[
1

1/2

]
, r2k = 3 ∗ 4−k

[
1/2
0

]
.

Since αk = 1/2 is constant for all k the methods of Richardson, Jacobi and steepest
descent are the same on this simple problem. See the left part of Figure 9.1. The
rate of convergence is determined from ‖xj+1‖2/‖xj‖ = ‖rj+1‖2/‖rj‖2 = 1/2 for
all j.

Exercise 9.4 (Steepest descent iteration)
Verify the numbers in Example 9.3.

9.2 The Conjugate Gradient Method
In the steepest descent method the choice pk = rk implies that the last two
gradients are orthogonal. Indeed, by (9.8), rTk+1rk = (rk − αkArk)Tpk = 0 since

αk =
rTk rk

pTkApk
and A is symmetric. In the conjugate gradient method all gradients

are orthogonal11. We achieve this by using A-orthogonal search directions
i. e., pTi Apj = 0 for all i 6= j.

9.2.1 Derivation of the method

As in the steepest descent method we choose a starting vector x0 ∈ Rn. If
r0 = b−Ax0 = 0 then x0 is the exact solution and we are finished, otherwise we
initially make a steepest descent step. It follows that rT1 r0 = 0 and p0 := r0.

For the general case we define for j ≥ 0

pj := rj −
j−1∑
i=0

(
rTj Api

pTi Api
)pi, (9.9)

xj+1 := xj + αjpj αj :=
rTj rj

pTj Apj
, (9.10)

rj+1 = rj − αjApj . (9.11)

We note that

1. pj is computed by the Gram-Schmidt orthogonalization process applied to
the residuals r0, . . . , rj using the A-inner product. The search directions
are therefore A-orthogonal and nonzero as long as the residuals are linearly
independent.

11It is this property that has given the method its name.
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2. Equation (9.11) follows from (9.8).

3. It can be shown that the step length αj is optimal for all j (cf. Exercise
9.9)).

Lemma 9.5 (The residuals are orthogonal)
Suppose that for some k ≥ 0 that xj is well defined, rj 6= 0, and rTi rj = 0
for i, j = 0, 1, . . . , k, i 6= j. Then xk+1 is well defined and rTk+1rj = 0 for
j = 0, 1, . . . , k.

Proof. Since the residuals rj are orthogonal and nonzero for j ≤ k, they are
linearly independent, and it follows form the Gram-Schmidt Theorem 0.29 that
pk is nonzero and pTkApi = 0 for i < k. But then xk+1 and rk+1 are well defined.
Now

rTk+1rj
(9.11)

= (rk − αkApk)Trj

(9.9)
= rTk rj − αkpTkA

(
pj +

j−1∑
i=0

(
rTj Api

pTi Api
)pi
)

pTkApi = 0
= rTk rj − αkpTkApj = 0, j = 0, 1, . . . , k.

That the final expression is equal to zero follows by orthogonality andA-ortogonality
for j < k and by the definition of αk for j = k. This completes the proof.

The expression (9.9) for pk can be greatly simplified. All terms except the
last one vanish, since by orthogonality of the residuals

rTj Api
(9.11)

= rTj
(ri − ri+1

αi

)
= 0, i = 0, 1, . . . , j − 2.

For the last term with k = j − 1

βk := −
rTk+1Apk
pTkApk

(9.11)
=

rTk+1(rk+1 − rk)

αkpTkApk

(9.10)
=

rTk+1rk+1

rTk rk
. (9.12)

To summarize, in the conjugate gradient method we start with x0, p0 =
r0 = b−Ax0 and then generate a sequence of vectors {xk} as follows:

For k = 0,1, 2, . . .

xk+1 := xk + αkpk, αk :=
rTk rk
pTkApk

, (9.13)

rk+1 := rk − αkApk, (9.14)

pk+1 := rk+1 + βkpk, βk :=
rTk+1rk+1

rTk rk
. (9.15)
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The residuals and search directions are orthogonal andA-orthogonal, respectively.
The conjugate gradient method is also a direct method. Since dimRn = n

the n + 1 residuals r0, . . . , rn cannot all be nonzero and for orthogonal residuals
we find the exact solution in at most n iterations.

For computation we organize the iterations as follows for k = 0, 1, 2, . . .

tk = Apk,

αk = (rTk rk)/(pTk tk),

xk+1 = xk + αkpk,

rk+1 = rk − αktk,
βk = (rTk+1rk+1)/(rTk rk),

pk+1 := rk+1 + βkpk.

(9.16)

Example 9.6 (Conjugate gradient iteration)
Consider (9.16) applied to the positive definite linear system

[
2 −1
−1 2

]
[ x1
x2

] = [ 0
0 ] .

Starting as in Example 9.3 with x0 =
[
−1
−1/2

]
we find p0 = r0 =

[
3/2
0

]
and then

t0 =
[

3
−3/2

]
, α0 = 1/2, x1 =

[
−1/4
−1/2

]
, r1 =

[
0

3/4

]
, β0 = 1/4, p1 =

[
3/8
3/4

]
,

t1 =
[

0
9/8

]
, α1 = 2/3, x2 = 0, r2 = 0.

Thus x2 is the exact solution as illustrated in the right part of Figure 9.1.

Exercise 9.7 (Conjugate gradient iteration, II)
Do one iteration with the conjugate gradient method when x0 = 0. (Answer:

x1 =
(

bT b
bTAb

)
b.)

Exercise 9.8 (Conjugate gradient iteration, III)
Do two conjugate gradient iterations for the system[

2 −1
−1 2

] [
x1

x2

]
=

[
0
3

]
starting with x0 = 0.

Exercise 9.9 (The cg step length is optimal)
Show that the step length αk in the conjugate gradient method is optimal12.

12Hint: use induction on k to show that pk = rk +
∑k−1
j=0 ak,jrj for some constants ak,j .
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Exercise 9.10 (Starting value in cg)
Show that the conjugate gradient method (9.16) for Ax = b starting with x0 is
the same as applying the method to the system Ay = r0 := b−Ax0 starting with
y0 = 0.13

9.2.2 The conjugate gradient algorithm

In this section we give numerical examples and discuss implementation.
The formulas in (9.16) form a basis for an algorithm.

Algorithm 9.11 (Conjugate gradient iteration)
The symmetric positive definite linear systemAx = b is solved by the conjugate
gradient method. x is a starting vector for the iteration. The iteration is
stopped when ||rk||2/||b||2 ≤ tol or k > itmax. K is the number of iterations
used.

1 function [ x ,K]=cg (A, b , x , to l , itmax )
2 r=b−A∗x ; p=r ; rho0=b ’∗b ; rho=r ’∗ r ;
3 for k=0: itmax
4 i f sqrt ( rho/ rho0 )<= t o l
5 K=k ; return
6 end
7 t=A∗p ; a=rho /(p ’∗ t ) ;
8 x=x+a∗p ; r=r−a∗ t ;
9 rhos=rho ; rho=r ’∗ r ;

10 p=r+(rho / rhos ) ∗p ;
11 end
12 K=itmax +1;

The work involved in each iteration is

1. one matrix times vector (t = Ap),

2. two inner products ((pT t and rTr),

3. three vector-plus-scalar-times-vector (x = x + ap, r = r − at and p =
r + (rho/rhos)p),

The dominating part is the computation of t = Ap.

9.2.3 Numerical example

We test the conjugate gradient method on two examples. For a similar test for
the steepest descent method see Exercise 9.17. Consider the matrix given by the

13Hint: The conjugate gradient method for Ay = r0 can be written yk+1 := yk + γkqk,

γk :=
sTk sk

qT
k
Aqk

, sk+1 := sk − γkAqk, qk+1 := sk+1 + δkqk, δk :=
sTk+1sk+1

sT
k
sk

. Show that

yk = xk − x0, sk = rk, and qk = pk, for k = 0, 1, 2 . . ..
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n 2 500 10 000 40 000 1 000 000 4 000 000
K 19 18 18 16 15

Table 9.12. The number of iterations K for the averaging problem on a√
n×
√
n grid for various n

Kronecker sum T 2 := T 1 ⊗ I + I ⊗ T 1 where T 1 = tridiagm(a, d, a). We recall
that this matrix is symmetric positive definite if d > 0 and d ≥ 2|a|. We set
h = 1/(m+ 1) and f = [1, . . . , 1]T ∈ Rn.

We consider two problems.

1. a = 1/9, d = 5/18, the Averaging matrix.

2. a = −1, d = 2, the Poisson matrix.

9.2.4 Implementation issues

Note that for our test problems T 2 only has O(5n) nonzero elements. Therefore,
taking advantage of the sparseness of T 2 we can compute t in Algorithm 9.11
in O(n) arithmetic operations. With such an implementation the total number
of arithmetic operations in one iteration is O(n). We also note that it is not
necessary to store the matrix T 2.

To use the Conjugate Gradient Algorithm on the test matrix for large n
it is advantageous to use a matrix equation formulation. We define matrices
V ,R,P ,B,T ∈ Rm×m by x = vec(V ), r = vec(R), p = vec(P ), t = vec(T ),
and h2f = vec(B). Then T 2x = h2f ⇐⇒ T 1V + V T 1 = B, and t = T 2p ⇐⇒
T = T 1P + PT 1.

This leads to the following algorithm for testing the conjugate gradient al-
gorithm on the matrix

A = tridiagm(a, d, a)⊗ Im + Im ⊗ tridiagm(a, d, a) ∈ R(m2)×(m2).



224 Chapter 9. The Conjugate Gradient Method

n 2 500 10 000 40 000 160 000
K 94 188 370 735
K/
√
n 1.88 1.88 1.85 1.84

Table 9.14. The number of iterations K for the Poisson problem on a√
n×
√
n grid for various n

Algorithm 9.13 (Testing conjugate gradient)

1 function [V,K]= c g t e s t (m, a , d , to l , itmax )
2 R=ones (m) /(m+1) ˆ2 ; rho=sum(sum(R.∗R) ) ; rho0=rho ; P=R;
3 V=zeros (m,m) ; T1=sparse ( t r i d i a g o n a l ( a , d , a ,m) ) ;
4 for k=1: itmax
5 i f sqrt ( rho/ rho0 )<= t o l
6 K=k ; return
7 end
8 T=T1∗P+P∗T1 ;
9 a=rho/sum(sum(P.∗T) ) ; V=V+a∗P; R=R−a∗T;

10 rhos=rho ; rho=sum(sum(R.∗R) ) ; P=R+(rho/ rhos ) ∗P;
11 end
12 K=itmax +1;

For both the averaging- and Poison matrix we use tol = 10−8.
For the averaging matrix we obtain the values in Table 9.12.
The convergence is quite rapid. It appears that the number of iterations

can be bounded independently of n, and therefore we solve the problem in O(n)
operations. This is the best we can do for a problem with n unknowns.

Consider next the Poisson problem. In in Table 9.14 we list K, the required
number of iterations, and K/

√
n.

The results show that K is much smaller than n and appears to be propor-
tional to

√
n. This is the same speed as for SOR and we don’t have to estimate

any acceleration parameter.
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9.3 Convergence

Leonid Vitaliyevich Kantorovich, 1912-1986 (left), Aleksey Nikolaevich Krylov, 1863-
1945 (center), Pafnuty Lvovich Chebyshev, 1821-1894 (right)

9.3.1 The A-norm

The convergence analysis for both steepest descent and conjugate gradients is
in terms of a special inner product. We define the A-inner product and the
corresponding A-norm by

〈x,y〉 := xTAy, ‖y‖A :=
√
yTAy, x,y ∈ Rn, (9.17)

Exercise 9.15 (The A-inner product)
Show that if A is symmetric positive definite then the A-inner product is indeed
an inner product.

9.3.2 The Main Theorem

The following theorem gives upper bounds for the A-norm of the error in both
methods.

Theorem 9.16 (Error bound for steepest descent and conjugate gradients)

Suppose A is symmetric positive definite. For the A-norms of the errors in the
steepest descent method (9.6) the following upper bounds hold

||x− xk||A
||x− x0||A

≤
(
κ− 1

κ+ 1

)k
< e−

2
κk, , k > 0, (9.18)

while for the conjugate gradient method we have

||x− xk||A
||x− x0||A

≤ 2

(√
κ− 1√
κ+ 1

)k
< 2e

− 2√
κ
k
, k ≥ 0. (9.19)
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Here κ = cond2(A) := λmax/λmin is the spectral condition number of A, and
λmax and λmin are the largest and smallest eigenvalue of A, respectively.

Theorem 9.16 implies

1. Since κ−1
κ+1 < 1 the steepest descent method always converges for a symmetric

positive definite matrix. The convergence can be slow when κ−1
κ+1 is close to

one, and this happens even for a moderately ill-conditioned A.

2. The rate of convergence for the conjugate gradient method appears to be
determined by the square root of the spectral condition number. This is is
much better than the estimate for the steepest descent method. Especially
for problems with large condition numbers.

3. The proofs of the estimates in (9.18) and (9.19) are quite different. This is
in spite of their similar appearance.

9.3.3 The number of iterations for the model problems

Consider the test matrix

T 2 := tridiagm(a, d, a)⊗ Im + Im ⊗ tridiagm(a, d, a) ∈ R(m2)×(m2).

The eigenvalues were given in (3.20) as

λj,k = 2d+ 2a cos(jπh) + 2a cos(kπh), j, k = 1, . . . ,m. (9.20)

For the averaging problem given by d = 5/18, a = 1/9, the largest and smallest
eigenvalue of T 2 are given by λmax = 5

9 + 4
9 cos (πh) and λmin = 5

9 −
4
9 cos (πh).

Thus

κA =
5 + 4 cos(πh)

5− 4 cos(πh)
≤ 9,

and the condition number is bounded independently of n. It follows from (9.19)
that the number of iterations can be bounded independently of the size n of the
problem, and this is in agreement with what we observed in Table 9.12.

For the Poisson problem we have by (8.25) the condition number

κP =
λmax
λmin

=
cos2(πh/2)

sin2(πh/2)
and
√
κP =

cos(πh/2)

sin(πh/2)
≈ 2

πh
≈ 2

π

√
n.

Thus, (see also Exercise 7.33) we solve the discrete Poisson problem in O(n3/2)
arithmetic operations using the conjugate gradient method. This is the same as
for the SOR method and for the fast method without the FFT. In comparison the
Cholesky Algorithm requires O(n2) arithmetic operations both for the averaging
and the Poisson problem.
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Exercise 9.17 (Program code for testing steepest descent)
Write a function K=sdtest(m,a,d,tol,itmax) to test the Steepest descent method on
the matrix T 2. Make the analogues of Table 9.12 and Table 9.14. For Table 9.14
it is enough to test for say n = 100, 400, 1600, 2500, and tabulate K/n instead of
K/
√
n in the last row. Conclude that the upper bound (9.18) is realistic. Compare

also with the number of iterations for the J and GS method in Table 8.1.

Exercise 9.18 (Using cg to solve normal equations)
Consider solving the linear system ATAx = AT b by using the conjugate gradient
method. Here A ∈ Rm,n, b ∈ Rm and ATA is positive definite14. Explain why
only the following modifications in Algorithm 9.11 are necessary

1. r=A’(b-A*x); p=r;

2. a=rho/(t’*t);

3. r=r-a*A’*t;

Note that the condition number of the normal equations is cond2(A)2, the square
of the condition number of A.

9.4 Proof of the Convergence Estimates

9.4.1 Convergence proof for steepest descent

For the proof of (9.18) the following inequality will be used.

Theorem 9.19 (Kantorovich inequality)
For any symmetric positive definite matrix A ∈ Rn×n

1 ≤ (yTAy)(yTA−1y)

(yTy)2
≤ (M +m)2

4Mm
y 6= 0, y ∈ Rn, (9.21)

where M := λmax and m := λmin are the largest and smallest eigenvalue of A,
respectively.

Proof. For j = 1, . . . , n let (λj ,uj) be orthonormal eigenpairs of A and y ∈ Rn.
By Theorem 5.1 (λ−1

j ,uj) are eigenpairs for A−1. Let y =
∑n
j=1 cjuj be the

corresponding eigenvector expansion of y. By orthonormality, (cf. (5.6))

a :=
yTAy

yTy
=

n∑
i=1

tiλi, b :=
yTA−1y

yTy
=

n∑
i=1

ti
λi
, (9.22)

14This system known as the normal equations appears in linear least squares problems and
will be considered in this context in Chapter 11.
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where

ti =
c2i∑n
j=1 c

2
j

≥ 0, i = 1, . . . , n and

n∑
i=1

ti = 1. (9.23)

Thus a and b are convex combinations of the eigenvalues of A and A−1, respec-
tively. Let c be a positive constant to be chosen later. By the geometric/arithmetic
mean inequality (7.27) and (9.22)

√
ab =

√
(ac)(b/c) ≤ (ac+ b/c)/2 =

1

2

n∑
i=1

ti
(
λic+ 1/(λic)

)
=

1

2

n∑
i=1

tif(λic),

where f : [mc,Mc]→ R is given by f(x) := x+ 1/x. By (9.23)

√
ab ≤ 1

2
max

mc≤x≤Mc
f(x).

Since f ∈ C2 and f ′′ is positive it follows from Lemma 7.36 that f is a convex
function. But a convex function takes it maximum at one of the endpoints of the
range (cf. Exercise 9.20) and we obtain

√
ab ≤ 1

2
max{f(mc), f(Mc)}. (9.24)

Choosing c := 1/
√
mM we find f(mc) = f(Mc) =

√
M
m +

√
m
M = M+m√

mM
. By (9.24)

we obtain
(yTAy)(yTA−1y)

(yTy)2
= ab ≤ (M +m)2

4Mm
,

the upper bound in (9.21). For the lower bound we use the Cauchy-Schwarz
inequality as follows

1 =
( n∑
i=1

ti
)2

=

(
n∑
i=1

(tiλi)
1/2(ti/λi)

1/2

)2

≤
( n∑
i=1

tiλi
)( n∑

i=1

ti/λi
)

= ab.

Exercise 9.20 (Maximum of a convex function)
Show that if f : [a, b]→ R is convex then maxa≤x≤b f(x) ≤ max{f(a), f(b)}.

Proof of (9.18)
Let εj := x− xj , j = 0, 1, . . ., where Ax = b. It is enough to show that

‖εk+1‖2A
‖εk‖2A

≤
(
κ− 1

κ+ 1

)2

, k = 0, 1, 2, . . . , (9.25)
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for then ‖εk‖A ≤
(
κ−1
κ+1

)
‖εk−1‖ ≤ · · · ≤

(
κ−1
κ+1

)k
‖ε0‖. It follows from (9.6) that

εk+1 = εk − αkrk, αk :=
rTk rk
rTkArk

.

We find

‖εk‖2A = εTkAεk = rTkA
−1rk,

‖εk+1‖2A = (εk − αkrk)TA(εk − αkrk)

= εTkAεk − 2αkr
T
kAεk + α2

kr
T
kArk = ‖εk‖2A −

(rTk rk)2

rTkArk
.

Combining these and using Kantorovich inequality

‖εk+1‖2A
‖εk‖2A

= 1− (rTk rk)2

(rTkArk)(rTkA
−1rk)

≤ 1− 4λminλmax
(λmin + λmax)2

=

(
κ− 1

κ+ 1

)2

and (9.25) is proved.
The inequality

x− 1

x+ 1
< e−2/x for x > 1 (9.26)

follows from the familiar series expansion of the exponential function. Indeed,
with y = 1/x, using 2k/k! = 2, k = 1, 2, and 2k/k! < 2 for k > 2, we find

e2/x = e2y =

∞∑
k=0

(2y)k

k!
< 1 + 2

∞∑
k=1

yk =
1 + y

1− y
=
x+ 1

x− 1

and (9.26) follows. �

9.4.2 Krylov spaces and the best approximatetion property

For the convergence analysis of the conjugate gradient method certain subspaces
of of Rn called Krylov spaces play a central role. In fact the iterates in the
conjugate gradient method are best approximation of the solution from these
subspaces using the A-norm to measure the error.

The Krylov spaces are defined by W0 = {0} and

Wk = span(r0,Ar0,A
2r0, . . . ,A

k−1r0), k = 1, 2, 3, · · · .

They are nested subspaces

W0 ⊂W1 ⊂W2 ⊂ · · · ⊂Wn ⊂ Rn

with dim(Wk) ≤ k for all k ≥ 0. Moreover, If v ∈Wk then Av ∈Wk+1.
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Lemma 9.21 (Krylov space)
For the iterates in the conjugate gradient method we have

xk − x0 ∈Wk, rk,pk ∈Wk+1, k = 0, 1, . . . , (9.27)

and

rTkw = pTkAw = 0, w ∈Wk. (9.28)

Proof. (9.27) clearly holds for k = 0 since p0 = r0. Suppose it holds for some
k ≥ 0. Then rk+1 = rk − αkApk ∈ Wk+2 and by pk+1 = rk+1 + βkpk ∈
Wk+2 and xk+1 − x0

(9.10)
= xk − x0 + αkpk ∈ Wk+1. Thus (9.27) follows by

induction. Since any w ∈ Wk is a linear combination of {r0, r1, . . . , rk−1} and
also {p0,p1, . . . ,pk−1}, (9.28) follows.

Theorem 9.22 (Best approximation property)
Suppose Ax = b, where A ∈ Rn×n is symmetric positive definite and {xk} is
generated by the conjugate gradient method (cf. (9.13)). Then

‖x− xk‖A = min
w∈Wk

‖x− x0 −w‖A. (9.29)

Proof. Fix k, let w ∈ Wk and u := xk − x0 −w,. By (9.27) u ∈ Wk and then
(9.28) implies that rTk u = 0. Since (x− xk)TAu = rTk u we find

‖x− x0 −w‖2A = (x− xk + u)TA(x− xk + u)

= (x− xk)A(x− xk) + 2rTk u+ uTAu

= ‖x− xk‖2A + ‖u‖2A ≥ ‖x− xk‖2A.

Taking square roots the result follows.

If x0 = 0 then (9.29) says that xk is the element in Wk that is closest
to the solution x in the A-norm. More generally, if x0 6= 0 then x − xk =
(x−x0)− (xk−x0) and xk−x0 is the element in Wk that is closest to x−x0 in
the A-norm. This is the orthogonal projection of x−x0 into Wk, see Figure 9.2.

Recall that to each polynomial p(t) :=
∑m
j=0 ajt

m there corresponds a matrix
polynomial p(A) := a0I+a1A+ · · ·+amA

m. Moreover, if (λj ,uj) are eigenpairs
of A then (p(λj),uj) are eigenpairs of p(A) for j = 1, . . . , n.

Lemma 9.23 (Krylov space and polynomials)
Suppose Ax = b where A ∈ Rn×n is symmetric positive definite with orthonormal
eigenpairs (λj ,uj), j = 1, 2, . . . , n, and let r0 := b − Ax0 for some x0 ∈ Rn.
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xk − x0
Wk

x− xk

x− x0

Figure 9.2. The orthogonal projection of x− x0 into Wk.

To each w ∈ Wk there corresponds a polynomial P (t) :=
∑k−1
j=0 ajt

k−1 such that

w = P (A)r0. Moreover, if r0 =
∑n
j=1 σjuj then

||x− x0 −w||2A =

n∑
j=1

σ2
j

λj
Q(λj)

2, Q(t) := 1− tP (t). (9.30)

Proof. If w ∈Wk then w = a0r0 + a1Ar0 + · · ·+ ak−1A
k−1r0 for some scalars

a0, . . . , ak−1. But then w = P (A)r0. We find

A(x− x0 −w) = A(x− x0 − P (A)r0) = r0 −AP (A)r0 = Q(A)r0,

and so ‖x − x0 − w‖2A = cTA−1c, where c = Q(A)r0. Using the eigenvector
expansion for r0 we obtain

c =

n∑
j=1

σjQ(λj)uj , A−1c =

n∑
i=1

σi
Q(λi)

λi
ui. (9.31)

Now (9.30) follows by the orthonormality of the eigenvectors.

We will use the following theorem to estimate the rate of convergence.

Theorem 9.24 (cg and best polynomial approximation)
Suppose [a, b] with 0 < a < b is an interval containing all the eigenvalues of A.
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Then in the conjugate gradient method

||x− xk||A
||x− x0||A

= min
Q∈Πk
Q(0)=1

max
a≤x≤b

|Q(x)|, (9.32)

where Πk denotes the class of univariate polynomials of degree ≤ k with real
coefficients.

Proof. With the notation in Lemma 9.23 we find ||x − x0||2A = r0A
−1r0 =∑n

j=1

σ2
j

λj
. Therefore, by the best approximation property and (9.30), for any

w ∈Wk

||x− xk||2A ≤ ||x− x0 −w||2A ≤ max
a≤x≤b

|Q(x)|2
n∑
j=1

σ2
j

λj
= max
a≤x≤b

|Q(x)|2||x− x0||2A,

where Q ∈ Πk and Q(0) = 1. Minimizing over such polynomials Q and taking
square roots the result follows.

In the next section we use properties of the Chebyshev polynomials to show
that

||x− xk||A
||x− x0||A

≤ min
Q∈Πk
Q(0)=1

max
λmin≤x≤λmax

|Q(x)| = 2(√κ+1√
κ−1

)k
+
(√κ−1√

κ+1

)k , (9.33)

where κ = λmax/λmin is the spectral condition number of A. Ignoring the second
term in the denominator this implies the first inequality in (9.19). The second
inequality follows from (9.26).

Exercise 9.25 (Krylov space and cg iterations)
Consider the linear system Ax = b where

A =

 2 −1 0
−1 2 −1

0 −1 2

 , and b =

 4
0
0

 .
a) Determine the vectors defining the Krylov spaces for k ≤ 3 taking as initial

approximation x = 0. Answer: [b,Ab,A2b] =

 4 8 20
0 −4 −16
0 0 4

 .
b) Carry out three CG-iterations on Ax = b. Answer:

[x0,x1,x2,x3] =

 0 2 8/3 3
0 0 4/3 2
0 0 0 1

 ,



9.4. Proof of the Convergence Estimates 233

[r0, r1, r2, r3] =

 4 0 0 0
0 2 0 0
0 0 4/3 0

 ,
[Ap0,Ap1,Ap2] =

 8 0 0
−4 3 0

0 −2 16/9

 ,
[p0,p1,p2,p3] =

 4 1 4/9 0
0 2 8/9 0
0 0 12/9 0

 ,
c) Verify that

• dim(Wk) = k for k = 0, 1, 2, 3.

• x3 is the exact solution of Ax = b.

• r0, . . . , rk−1 is an orthogonal basis for Wk for k = 1, 2, 3.

• p0, . . . ,pk−1 is an A-orthogonal basis for Wk for k = 1, 2, 3.

• {|rkε} is monotonically decreasing.

• {|xk − xε} is monotonically decreasing.

9.4.3 Chebyshev polynomials

The proof of the estimate (9.33) for the error in the conjugate gradient method
is based on an extremal property of the Chebyshev polynomials. Suppose a < b,
c 6∈ [a, b] and k ∈ N. Consider the set Sk of all polynomials Q of degree ≤ k such
that Q(c) = 1. For any continuous function f on [a, b] we define

‖f‖∞ = max
a≤x≤b

|f(x)|.

We want to find a polynomial Q∗ ∈ Sk such that

‖Q∗‖∞ = min
Q∈Sk

‖Q‖∞.

We will show that Q∗ is uniquely given as a suitably shifted and normalized
version of the Chebyshev poynomial. The Chebyshev polynomial Tn of degree
n can be defined recursively by

Tn+1(t) = 2tTn(t)− Tn−1(t), n ≥ 1, t ∈ R,

starting with T0(t) = 1 and T1(t) = t. Thus T2(t) = 2t2 − 1, T3(t) = 4t3 − 3t etc.
In general Tn is a polynomial of degree n.

There are some convenient closed form expressions for Tn.



234 Chapter 9. The Conjugate Gradient Method

Lemma 9.26 (Closed forms of Chebyshev polynomials)
For n ≥ 0

1. Tn(t) = cos (narccos t) for t ∈ [−1, 1],

2. Tn(t) = 1
2

[(
t+
√
t2 − 1

)n
+
(
t+
√
t2 − 1

)−n]
for |t| ≥ 1.

Proof. 1. With Pn(t) = cos (n arccos t) we have Pn(t) = cosnφ, where t = cosφ.
Therefore,

Pn+1(t) + Pn−1(t) = cos (n+ 1)φ+ cos (n− 1)φ = 2 cosφ cosnφ = 2tPn(t),

and it follows that Pn satisfies the same recurrence relation as Tn. Since P0 = T0

and P1 = T1 we have Pn = Tn for all n ≥ 0.
2. Fix t with |t| ≥ 1 and let xn := Tn(t) for n ≥ 0. The recurrence relation

for the Chebyshev polynomials can then be written

xn+1 − 2txn + xn−1 = 0 for n ≥ 1, with x0 = 1, x1 = t. (9.34)

To solve this difference equation we insert xn = zn into (9.34) and obtain zn+1 −
2tzn + zn−1 = 0 or z2 − 2tz + 1 = 0. The roots of this equation are

z1 = t+
√
t2 − 1, z2 = t−

√
t2 − 1 =

(
t+
√
t2 − 1

)−1
.

Now zn1 , zn2 and more generally c1z
n
1 +c2z

n
2 are solutions of (9.34) for any constants

c1 and c2. We find these constants from the initial conditions x0 = c1 + c2 = 1
and x1 = c1z1 + c2z2 = t. Since z1 + z2 = 2t the solution is c1 = c2 = 1

2 .

We show that the unique solution to our minimization problem is

Q∗(x) =
Tk(u(x))

Tk(u(c))
, u(x) =

b+ a− 2x

b− a
. (9.35)

Clearly Q∗ ∈ Sk.

Theorem 9.27 (A minimal norm problem)
Suppose a < b, c 6∈ [a, b] and k ∈ N. If Q ∈ Sk and Q 6= Q∗ then ‖Q‖∞ > ‖Q∗‖∞.

Proof. Recall that a nonzero polynomial p of degree k can have at most k zeros.
If p(z) = p′(z) = 0, we say that p has a double zero at z. Counting such a zero
as two zeros it is still true that a nonzero polynomial of degree k has at most k
zeros.

|Q∗| takes on its maximum 1/|Tk(u(c))| at the k + 1 points µ0, . . . , µk in
[a, b] such that u(µi) = cos(iπ/k) for i = 0, 1, . . . , k. Suppose Q ∈ Sk and that
‖Q‖ ≤ ‖Q∗‖. We have to show that Q ≡ Q∗. Let f ≡ Q −Q∗. We show that f
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Figure 9.3. This is an illustration of the proof of Theorem 9.27 for
k = 3. f ≡ Q−Q∗ has a double zero at µ1 and one zero between µ2 and µ3.

has at least k zeros in [a, b]. Since f is a polynomial of degree ≤ k and f(c) = 0,
this means that f ≡ 0 or equivalently Q ≡ Q∗.

Consider Ij = [µj−1, µj ] for a fixed j. Let

σj = f(µj−1)f(µj).

We have σj ≤ 0. For if say Q∗(µj) > 0 then

Q(µj) ≤ ‖Q‖∞ ≤ ‖Q∗‖∞ = Q∗(µj)

so that f(µj) ≤ 0. Moreover,

−Q(µj−1) ≤ ‖Q‖∞ ≤ ‖Q∗‖∞ = −Q∗(µj−1).

Thus f(µj−1) ≥ 0 and It follows that σj ≤ 0. Similarly, σj ≤ 0 if Q∗(µj) < 0.
If σj < 0, f must have a zero in Ij since it is continuous. Suppose σj = 0.

Then f(µj−1) = 0 or f(µj) = 0. If f(µj) = 0 then Q(µj) = Q∗(µj). But
then µj is a maximum or minimum both for Q and Q∗. If µj ∈ (a, b) then
Q′(µj) = Q∗′(µj) = 0. Thus f(µj) = f ′(µj) = 0, and f has a double zero at
µj . We can count this as one zero for Ij and one for Ij+1. If µj = b, we still
have a zero in Ij . Similarly, if f(µj−1) = 0, a double zero of f at µj−1 appears if
µj−1 ∈ (a, b). We count this as one zero for Ij−1 and one for Ij .

In this way we associate one zero of f for each of the k intervals Ij , j =
1, 2, . . . , k. We conclude that f has at least k zeros in [a, b].
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Exercise 9.28 (Another explicit formula for the Chebyshev polynomial)

Show that

Tn(t) = cosh(narccosh t) for |t| ≥ 1,

where arccosh is the inverse function of coshx := (ex + e−x)/2.

Theorem 9.27 with a, and b, the smallest and largest eigenvalue of A, and
c = 0 implies that the minimizing polynomial in (9.33) is given by

Q∗(x) = Tk

(
b+ a− 2x

b− a

)
/Tk

(
b+ a

b− a

)
. (9.36)

By Lemma 9.26

max
a≤x≤b

∣∣∣∣Tk (b+ a− 2x

b− a

)∣∣∣∣ = max
−1≤t≤1

∣∣Tk(t)
∣∣ = 1. (9.37)

Moreover with t = (b+ a)/(b− a) we have

t+
√
t2 − 1 =

√
κ+ 1√
κ− 1

, κ = b/a.

Thus again by Lemma 9.26 we find

Tk

(
b+ a

b− a

)
= Tk

(
κ+ 1

κ− 1

)
=

1

2

[(√
κ+ 1√
κ− 1

)k
+

(√
κ− 1√
κ+ 1

)k]
(9.38)

and (9.33) follows.

9.4.4 Monotonicity of the error

The error analysis for the conjugate gradient method is based on the A-norm. We
end this chapter by considering the Euclidian norm of the error, and show that it
is strictly decreasing.

Theorem 9.29 (The error in cg is strictly decreasing)
Let in the conjugate gradient method m be the smallest integer such that rm+1 = 0.
For k ≤ m we have ‖εk+1‖2 < ‖εk‖2. More precisely,

‖εk‖22 − ‖εk+1‖22 =
‖pk‖22
‖pk‖2A

(‖εk‖2A + ‖εk+1‖2A)

where εj = x− xj and Ax = b..
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Proof. For j ≤ m

εj = xm+1 − xj = xm − xj + αmpm = xm−1 − xj + αm−1pm−1 + αmpm = ...

so that

εj =

m∑
i=j

αipi, αi =
rTi ri
pTi Api

. (9.39)

By (9.39) and A-orthogonality

‖εj‖2A = εjAεj =

m∑
i=j

α2
ip
T
i Api =

m∑
i=j

(rTi ri)
2

pTi Api
. (9.40)

By (9.15) and Lemma 9.21

pTi pk = (ri + βi−1pi−1)Tpk = βi−1p
T
i−1pk = · · · = βi−1 · · ·βk(pTk pk),

and since βi−1 · · ·βk = (rTi ri)/(r
T
k rk) we obtain

pTi pk =
rTi ri
rTk rk

pTk pk, i ≥ k. (9.41)

Since
‖εk‖22 = ‖εk+1 + xk+1 − xk‖22 = ‖εk+1 + αkpk‖22,

we obtain

‖εk‖22 − ‖εk+1‖22 =αk
(
2pTk εk+1 + αkp

T
k pk

)
(9.39)

= αk
(
2

m∑
i=k+1

αip
T
i pk + αkp

T
k pk

)
=
( m∑
i=k

+

m∑
i=k+1

)
αkαip

T
i pk

(9.41)
=
( m∑
i=k

+

m∑
i=k+1

) rTk rk
pTkApk

rTi ri
pTi Api

rTi ri
rTk rk

pTk pk

(9.40)
=
‖pk‖22
‖pk‖2A

(
‖εk‖2A + ‖εk+1‖2A

)
.

and the Theorem is proved.

9.5 Preconditioning
For problems Ax = b of size n, where both n and cond2(A) are large, it is often
possible to improve the performance of the conjugate gradient method by using a
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technique known as preconditioning. Instead of Ax = b we consider an equiva-
lent system BAx = Bb, where B is nonsingular and cond2(BA) is smaller than
cond2(A). The matrix B will in many cases be the inverse of another matrix,
B = M−1. We cannot use CG on BAx = Bb directly since BA in general is
not symmetric even if both A and B are. But if B (and hence M) is symmet-
ric positive definite then we can apply CG to a symmetrized system and then
transform the recurrence formulas to an iterative method for the original system
Ax = b. This iterative method is known as the preconditioned conjugate
gradient method. We shall see that the convergence properties of this method
is determined by the eigenvalues of BA.

Suppose B is symmetric positive definite. By Theorem 2.38 there is a non-
singular matrix C such that B = CTC. (C is only needed for the derivation and
will not appear in the final formulas). Now

BAx = Bb⇔ CT (CACT )C−Tx = CTCb⇔ (CACT )y = Cb, & x = CTy.

We have 3 linear systems

Ax = b (9.42)

BAx = Bb (9.43)

(CACT )y = Cb, & x = CTy. (9.44)

Note that (9.42) and (9.44) are symmetric positive definite linear systems. In
addition to being symmetric positive definite the matrix CACT is similar to
BA. Indeed,

CT (CACT )C−T = BA.

Thus CACT and BA have the same eigenvalues. Therefore if we apply the con-
jugate gradient method to (9.44) then the rate of convergence will be determined
by the eigenvalues of BA.

We apply the conjugate gradient method to (CACT )y = Cb. Denoting the
search direction by qk and the residual by zk = Cb − CACTyk we obtain the
following from (9.13), (9.14), and (9.15).

yk+1 = yk + αkqk, αk = zTk zk/q
T
k (CACT )qk,

zk+1 = zk − αk(CACT )qk,

qk+1 = zk+1 + βkqk, βk = zTk+1zk+1/z
T
k zk.

With

xk := CTyk, pk := CTqk, sk := CTzk, rk := C−1zk (9.45)
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this can be transformed into

xk+1 = xk + αkpk, αk =
sTk rk
pTkApk

, (9.46)

rk+1 = rk − αkApk, (9.47)

sk+1 = sk − αkBApk, (9.48)

pk+1 = sk+1 + βkpk, βk =
sTk+1rk+1

sTk rk
. (9.49)

Here xk will be an approximation to the solution x of Ax = b, rk = b−Axk
is the residual in the original system, and sk = Bb−BAxk is the residual in the
preconditioned system. This follows since by (9.45)

rk = C−1zk = b−C−1CACTyk = b−Axk

and sk = CTzk = CTCrk = Brk. We start with r0 = b − Ax0, p0 = s0 =
Br0 and obtain the following preconditioned conjugate gradient algorithm for
determining approximations xk to the solution of a symmetric positive definite
system Ax = b.

Algorithm 9.30 (Preconditioned conjugate gradient )
The symmetric positive definite linear system Ax = b is solved by the pre-
conditioned conjugate gradient method on the system BAx = Bb, where B
is symmetric positive definite . x is a starting vector for the iteration. The
iteration is stopped when ||rk||2/||b||2 ≤ tol or k > itmax. K is the number of
iterations used.

1 function [ x ,K]=pcg (A,B, b , x , to l , itmax )
2 r=b−A∗x ; p=B∗ r ; s=p ; rho=s ’∗ r ; rho0=b ’∗b ;
3 for k=0: itmax
4 i f sqrt ( rho/ rho0 )<= t o l
5 K=k ; return
6 end
7 t=A∗p ; a=rho /(p ’∗ t ) ;
8 x=x+a∗p ; r=r−a∗ t ;
9 w=B∗ t ; s=s−a∗w;

10 rhos=rho ; rho=s ’∗ r ;
11 p=r+(rho/ rhos ) ∗p ;
12 end
13 K=itmax +1;

Appart from the calculation of ρ this algorithm is quite similar to Algo-
rithm 9.11. The main additional work is contained in w = B ∗ t. We’ll discuss
this further in connection with an example. There the inverse of B is known and
we have to solve a linear system to find w.

We have the following convergence result for this algorithm.
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Theorem 9.31 (Error bound preconditioned cg)
Suppose we apply a symmetric positive definite preconditioner B to the symmet-
ric positive definite system Ax = b. Then the quantities xk computed in Algo-
rithm 9.30 satisfy the following bound:

||x− xk||A
||x− x0||A

≤ 2

(√
κ− 1√
κ+ 1

)k
, for k ≥ 0,

where κ = λmax/λmin is the ratio of the largest and smallest eigenvalue of BA.

Proof. Since Algorithm 9.30 is equivalent to solving (9.44) by the conjugate
gradient method Theorem 9.16 implies that

||y − yk||CACT

||y − y0||CACT

≤ 2

(√
κ− 1√
κ+ 1

)k
, for k ≥ 0,

where yk is the conjugate gradient approximation to the solution y of (9.44) and
κ is the ratio of the largest and smallest eigenvalue of CACT . Since BA and
CACT are similar this is the same as the κ in the theorem. By (9.45) we have

‖y − yk‖2CACT = (y − yk)T (CACT )(y − yk)

= (CT (y − yk))TA(CT (y − yk)) = ‖x− xk‖2A

and the proof is complete.

We conclude that B should satisfy the following requirements for a problem
of size n:

1. The eigenvalues of BA should be located in a narrow interval. Preferably
one should be able to bound the length of the interval independently of n.

2. The evaluation ofBx for a given vector x should not be expensive in storage
and arithmetic operations, ideally O(n) for both.

9.6 Preconditioning Example

9.6.1 A variable coefficient problem

Consider the problem

− ∂
∂x

(
c(x, y)∂u∂x

)
− ∂

∂y

(
c(x, y)∂u∂y

)
= f(x, y) (x, y) ∈ Ω = (0, 1)2

u(x, y) = 0 (x, y) ∈ ∂Ω.
(9.50)

Here Ω is the open unit square while ∂Ω is the boundary of Ω. The functions f
and c are given and we seek a function u = u(x, y) such that (9.50) holds. We
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assume that c and f are defined and continuous on Ω and that c(x, y) > 0 for all
(x, y) ∈ Ω. The problem (9.50) reduces to the Poisson problem in the special case
where c(x, y) = 1 for (x, y) ∈ Ω .

As for the Poisson problem we solve (9.50) numerically on a grid of points

{(jh, kh) : j, k = 0, 1, . . . ,m+ 1}, where h = 1/(m+ 1),

and where m is a positive integer. Let (x, y) be one of the interior grid points.
For univariate functions f, g we use the central difference approximations

∂

∂t

(
f(t)

∂

∂t
g(t)

)
≈

(
f(t+

h

2
)
∂

∂t
g(t+ h/2)− f(t− h

2
)
∂

∂t
g(t− h

2
)

)
/h

≈
(
f(t+

h

2
)
(
g(t+ h)− g(t)

)
− f(t− h

2
)
(
g(t)− g(t− h)

))
/h2

to obtain

∂

∂x

(
c
∂u

∂x

)
j,k
≈
cj+ 1

2 ,k
(vj+1,k − vj,k)− cj− 1

2 ,k
(vj,k − vj−1,k)

h2

and
∂

∂y

(
c
∂u

∂y

)
j,k
≈
cj,k+ 1

2
(vj,k+1 − vj,k)− cj,k− 1

2
(vj,k − vj,k−1)

h2
,

where cp,q = c(ph, qh) and vj,k ≈ u(jh, kh). With these approximations the
discrete analog of (9.50) turns out to be

−(P hv)j,k = h2fj,k j, k = 1, . . . ,m
vj,k = 0 j = 0,m+ 1 all k or k = 0,m+ 1 all j,

(9.51)

where

−(P hv)j,k = (cj,k− 1
2

+ cj− 1
2 ,k

+ cj+ 1
2 ,k

+ cj,k+ 1
2
)vj,k

− cj,k− 1
2
vj,k−1 − cj− 1

2 ,k
vj−1,k − cj+ 1

2 ,k
vj+1,k − cj,k+ 1

2
vj,k+1

(9.52)
and fj,k = f(jh, kh).

As before we let V = (vj,k) ∈ Rm×m and F = (fj,k) ∈ Rm×m. The
corresponding linear system can be written Ax = b where x = vec(V ), b =
h2vec(F ), and the n-by-n coefficient matrix A is given by

ai,i = cji,ki− 1
2

+ cji− 1
2 ,ki

+ cji+ 1
2 ,ki

+ cji,ki+ 1
2
, i = 1, 2, . . . , n

ai+1,i = ai,i+1 = −cji+ 1
2 ,ki

, imodm 6= 0

ai+m,i = ai,i+m = −cji,ki+ 1
2
, i = 1, 2, . . . , n−m

ai,j = 0 otherwise,
(9.53)
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where (ji, ki) with 1 ≤ ji, ki ≤ m is determined uniquely from the equation
i = ji + (ki − 1)m for i = 1, . . . , n. If c(x, y) = 1 for all (x, y) ∈ Ω we recover the
Poisson matrix.

In general we cannot write A as a Kronecker sum. But we can show that A
is symmetric and it is positive definite as long as the function c is positive on Ω.

Theorem 9.32 (Positive definite matrix)
If c(x, y) > 0 for (x, y) ∈ Ω then the matrix A given by (9.53) is symmetric
positive definite.

Proof.
To each x ∈ Rn there corresponds a matrix V ∈ Rm×m such that x =

vec(V ). We claim that

xTAx =

m∑
j=1

m∑
k=0

cj,k+ 1
2

(
vj,k+1 − vj,k

)2
+

m∑
k=1

m∑
j=0

cj+ 1
2 ,k

(
vj+1,k − vj,k

)2
, (9.54)

where v0,k = vm+1,k = vj,0 = vj,m+1 = 0 for j, k = 0, 1, . . . ,m+1. Since cj+ 1
2 ,k

and
cj,k+ 1

2
correspond to values of c in Ω for the values of j, k in the sums it follows

that they are positive and from (9.54) we see that xTAx ≥ 0 for all x ∈ Rn.
Moreover if xTAx = 0 then all quadratic factors are zero and vj,k+1 = vj,k for
k = 0, 1, . . . ,m and j = 1, . . . ,m. Now vj,0 = vj,m+1 = 0 implies that V = 0 and
hence x = 0. Thus A is symmetric positive definite.

It remains to prove (9.54). From the connection between (9.52) and (9.53)
we have

xTAx =

m∑
j=1

m∑
k=1

−(P hv)j,kvj,k

=

m∑
j=1

m∑
k=1

(
cj,k− 1

2
v2
j,k + cj− 1

2 ,k
v2
j,k + cj+ 1

2 ,k
v2
j,k + cj,k+ 1

2
v2
j,k

− cj,k− 1
2
vj,k−1vj,k − cj,k+ 1

2
vj,kvj,k+1

− cj− 1
2 ,k
vj−1,kvj,k − cj+ 1

2 ,k
vj,kvj+1,k

)
.

Using the homogenous boundary conditions we obtain
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m∑
j=1

m∑
k=1

cj,k− 1
2
v2
j,k =

m∑
j=1

m∑
k=0

cj,k+ 1
2
v2
j,k+1,

m∑
j=1

m∑
k=1

cj,k− 1
2
vj,k−1vj,k =

m∑
j=1

m∑
k=0

cj,k+ 1
2
vj,k+1vj,k,

m∑
j=1

m∑
k=1

cj− 1
2 ,k
v2
j,k =

m∑
k=1

m∑
j=0

cj+ 1
2 ,k
v2
j+1,k,

m∑
j=1

m∑
k=1

cj− 1
2 ,k
vj−,kvj,k =

m∑
k=1

m∑
j=0

cj+ 1
2 ,k
vj+1,kvj,k.

It follows that

xTAx =

m∑
j=1

m∑
k=0

cj,k+ 1
2

(
v2
j,k + v2

j,k+1 − 2vj,kvj,k+1

)
+

m∑
k=1

m∑
j=0

cj+ 1
2 ,k

(
v2
j,k + v2

j+1,k − 2vj,kvj+1,k

)
and (9.54) follows.

9.6.2 Applying preconditioning

Consider solving Ax = b, where A is given by (9.53) and b ∈ Rn. Since A is
positive definite it is nonsingular and the system has a unique solution x ∈ Rn.
Moreover we can use either Cholesky factorization or the block tridiagonal solver
to find x. Since the bandwidth of A is m =

√
n both of these methods require

O(n2) arithmetic operations for large n.
If we choose c(x, y) ≡ 1 in (9.50), we get the Poisson problem. With this in

mind, we may think of the coefficient matrix Ap arising from the discretization
of the Poisson problem as an approximation to the matrix (9.53). This suggests
using B = A−1

p , the inverse of the discrete Poisson matrix as a preconditioner for
the system (9.51).

Consider Algorithm 9.30. With this preconditioner the calculation w = Bt
takes the form Apwk = tk.

In Section 4.2 we developed a Simple fast Poisson Solver, Cf. Algorithm 4.1.
This method can be utilized to solve Apw = t.

Consider the specific problem where

c(x, y) = e−x+y and f(x, y) = 1.
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n 2500 10000 22500 40000 62500
K 222 472 728 986 1246
K/
√
n 4.44 4.72 4.85 4.93 4.98

Kpre 22 23 23 23 23

Table 9.33. The number of iterations K (no preconditioning) and Kpre

(with preconditioning) for the problem (9.50) using the discrete Poisson problem
as a preconditioner.

We have used Algorithm 9.11 (conjugate gradient without preconditioning),
and Algorithm 9.30 (conjugate gradient with preconditioning) to solve the problem
(9.50). We used x0 = 0 and ε = 10−8. The results are shown in Table 9.33.

Without preconditioning the number of iterations still seems to be more or
less proportional to

√
n although the convergence is slower than for the constant

coefficient problem. Using preconditioning speeds up the convergence consider-
ably. The number of iterations appears to be bounded independently of n.

Using a preconditioner increases the work in each iteration. For the present
example the number of arithmetic operations in each iteration changes from O(n)
without preconditioning to O(n3/2) or O(n log2 n) with preconditioning. This is
not a large increase and both the number of iterations and the computing time is
reduced significantly.

Let us finally show that the number κ = λmax/λmin which determines the
rate of convergence for the preconditioned conjugate gradient method applied to
(9.50) can be bounded independently of n.

Theorem 9.34 (Eigevalues of preconditioned matrix)
Suppose 0 < c0 ≤ c(x, y) ≤ c1 for all (x, y) ∈ [0, 1]2. For the eigenvalues of the
matrix BA = A−1

p A just described we have

κ =
λmax
λmin

≤ c1
c0
.

Proof.
Suppose A−1

p Ax = λx for some x ∈ Rn \ {0}. Then Ax = λApx. Multi-

plying this by xT and solving for λ we find

λ =
xTAx

xTApx
.

We computed xTAx in (9.54) and we obtain xTApx by setting all the c’s there
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equal to one

xTApx =

m∑
i=1

m∑
j=0

(
vi,j+1 − vi,j

)2
+

m∑
j=1

m∑
i=0

(
vi+1,j − vi,j

)2
.

Thus xTApx > 0 and bounding all the c’s in (9.54) from below by c0 and above
by c1 we find

c0(xTApx) ≤ xTAx ≤ c1(xTApx)

which implies that c0 ≤ λ ≤ c1 for all eigenvalues λ of BA = A−1
p A.

Using c(x, y) = e−x+y as above, we find c0 = e−2 and c1 = 1. Thus κ ≤ e2 ≈
7.4, a quite acceptable matrix condition number which explains the convergence
results from our numerical experiment.

9.7 Review Questions
9.7.1 Does the steepest descent and conjugate gradient method always converge?

9.7.2 What kind of orthogonalities occur in the conjugate gradient method?

9.7.3 What is a Krylow space?

9.7.4 What is a convex function?

9.7.5 How do SOR and conjugate gradient compare?
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Chapter 10

Orthonormal and Unitary
Transformations

Alston Scott Householder, 1904-1993 (left), James Hardy Wilkinson, 1919-1986 (right).
Householder and Wilkinson are two of the founders of modern numerical analysis and scien-
tific computing.

Gauss transformations, (cf. Theorem 2.60, the PLU theorem) are used in
Gaussian elimination to reduce a matrix to triangular form. These are not the
only kind of transformations that can be used for such a task. In this chapter we
study how transformations by orthonormal and unitary matrices can be used to
reduce a square matrix to upper triangular form and more generally a rectangular
matrix to upper triangular (also called upper trapezoidal) form. This lead to
a decomposition of the matrix known as a QR decomposition and a reduced
form which we refer to as a QR factorization. The QR decomposition and
factorization will be used in later chapters to solve least squares- and eigenvalue
problems.

It cannot be repeated too often that orthonormal transformations have the
advantage that they preserve the Euclidian norm of a vector, and the spectral
norm and Frobenius norm of a matrix, see Lemma 6.24 and Theorem 7.20. This
means that when an orthonormal transformation is applied to an inaccurate vector
or matrix then the error will not grow. Thus in general an orthonormal transfor-

249
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x

y = Hx

“mirror”

v = x− y

Px

Figure 10.1. The Householder transformation in Exercise 10.2

mation is numerically stable.

10.1 The Householder Transformation
Definition 10.1 (Householder transformation)
A matrix H ∈ Cn×n of the form

H := I − uu∗, where u ∈ Cn and u∗u = 2

is called a Householder transformation. The name elementary reflector is
also used.

In the real case and for n = 2 we find H =
[

1−u2
1 −u1u2

−u2u1 1−u2
2

]
. A Householder

transformation is Hermitian and unitary. Indeed, H∗ = (I − uu∗)∗ = H and

H∗H = H2 = (I − uu∗)(I − uu∗) = I − 2uu∗ + u(u∗u)u∗ = I.

In the real case H is symmetric and orthonormal.
There are several ways to represent a Householder transformation. House-

holder used I − 2uu∗, where u∗u = 1. For any nonzero v ∈ Rn the matrix

H := I − 2
vv∗

v∗v
(10.1)

is a Householder transformation. Indeed, H = I − uu∗, where u :=
√

2 v
‖v‖2 has

length
√

2. Moreover, if x,y ∈ Rn with ‖x‖2 = ‖y‖2 and v := x − y 6= 0, then
Hx = y (Cf. Exercise 10.2).
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Exercise 10.2 (Reflector)
Suppose x,y ∈ Rn with ‖x‖2 = ‖y‖2 and v := x− y 6= 0.

(a) Show that Hx :=
(
I − 2vvT

vT v

)
x = y. 15.

(b) Let M := {w ∈ Rn : wTv = 0} and P := I − vvT

vT v
. Show that Px =

(x+y)/2 ∈M. Thus y is the reflected image of x, whereM is the ”mirror”.
See Figure 10.1.

(c) Determine the matrices H,P and the ”mirror” M when x := [1, 0, 1]T and
y := [−1, 0, 1]T .

A main use of Householder transformations is to produce zeros in vectors.

Theorem 10.3 (Zeros in vectors)
Suppose x ∈ Cn is nonzero and define ρ ∈ C and z,u ∈ Cn by

ρ :=

{
x1/|x1|, if x1 6= 0,

1, otherwise.
, , z := ρx/‖x‖2 u :=

z + e1√
1 + z1

. (10.2)

Then u∗u = 2, x = ρ‖x‖2z and

Hx := (I − uu∗)x = ae1, a := −ρ‖x‖2. (10.3)

Proof. Since |ρ| = 1 we have ρ‖x‖2z = |ρ|2x = x. Moreover, ‖z‖2 = 1 and

z1 = |x1|/‖x‖2 is real so that u∗u = (z+e1)∗(z+e1)
1+z1

= 2+2z1
1+z1

= 2. Finally,

Hx = x− (u∗x)u = ρ‖x‖2(z − (u∗z)u) = ρ‖x‖2(z − (z∗ + e∗1)z

1 + z1
(z + e1))

= ρ‖x‖2(z − (z + e1)) = −ρ‖x‖2e1 = ae1.

The formulas in Theorem 10.3 are implemented in the following algorithm
adapted from [26]. To any given x ∈ Cn a number a and a vector u with u∗u = 2
is computed so that (I − uu∗)x = ae1.

15Hint: Show first that vT v = 2vTx
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Algorithm 10.4 (Generate a Householder transformation)

1 function [ u , a]= housegen ( x )
2 a=norm( x ) ;
3 i f a==0
4 u=x ; u (1 )=sqrt (2 ) ; return ;
5 end
6 i f x (1 )== 0
7 r =1;
8 else
9 r=x (1) /abs ( x (1 ) ) ;

10 end
11 u=conj ( r ) ∗x/a ;
12 u (1)=u (1) +1;
13 u=u/sqrt (u (1 ) ) ;
14 a=−r ∗a ;
15 end

Note that

• If x = 0 then any u with ‖u‖2 =
√

2 can be used in the Householder
transformation. In the algorithm we use u =

√
2e1 in this case.

• In Theorem 10.3 the first component of z is z1 = |x1|/‖x‖2 ≥ 0. Since
‖z‖2 = 1 we have 1 ≤ 1 + z1 ≤ 2. It follows that u is well defined and we
avoid cancelation error when computing 1 + z1.

Exercise 10.5 (What does algorithm housegen do when x = e1?)
Determine H in Algorithm 10.4 when x = e1.

Householder transformations can also be used to zero out only the lower part
of a vector. Suppose xT := [y, z]T , where y ∈ Ck, z ∈ Cn−k for some 1 ≤ k < n.

The command [û, a] := housegen(z) defines a Householder transformation Ĥ =

I−ûû∗ so that Ĥz = ae1. With uT := [0, û]T ∈ Cn we see that u∗u = û∗û = 2,
and

Hx =

[
y
ae1

]
, where H := I − uu∗ =

[
I 0
0 I

]
−
[
0
û

] [
0 û∗

]
=

[
I 0

0 Ĥ

]
,

defines a Householder transformation that produces zeros in the lower part of x.

Exercise 10.6 (Examples of Householder transformations)
If x,y ∈ Rn with ‖x‖2 = ‖y‖2 and v := x − y 6= 0 then it follows from Exer-

cise 10.2 that
(
I − 2vvT

vT v

)
x = y. Use this to construct a Householder transforma-

tion H such that Hx = y in the following cases.
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a) x =

[
3
4

]
, y =

[
5
0

]
.

b) x =

 2
2
1

 , y =

 0
3
0

.

Exercise 10.7 (2× 2 Householder transformation)
Show that a real 2× 2 Householder transformation can be written in the form

H =

[
− cosφ sinφ
sinφ cosφ

]
.

Find Hx if x = [cosφ, sinφ]T .

10.2 Householder Triangulation
We say that a matrix R ∈ Cm×n is upper trapezoidal, if ri,j = 0 for j < i and
i = 1, 2, . . . ,m. Upper trapezoidal matrices corresponding to m < n, m = n, and
m > n look as follows:

x x x x
0 x x x
0 0 x x

 ,

x x x x
0 x x x
0 0 x x
0 0 0 x

 ,

x x x
0 x x
0 0 x
0 0 0

 .
In this section we consider a method for bringing a matrix to upper trapezoidal
form using Householder transformations. We treat the cases m > n and m ≤
n separately and consider first m > n. We describe how to find a sequence
H1, . . . ,Hn of Householder transformations such that

An+1 := HnHn−1 · · ·H1A =

[
R1

0

]
= R,

and where R1 is upper triangular. We define

A1 := A, Ak+1 = HkAk, k = 1, 2, . . . , n.
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Suppose Ak is upper trapezoidal in its first k−1 columns (which is true for k = 1)

Ak =



a1
1,1 · · · a1

1,k−1 a1
1,k · · · a1

1,j · · · a1
1,n

. . .
...

...
...

...

ak−1
k−1,k−1 ak−1

k−1,k · · · ak−1
k−1,j · · · ak−1

k−1,n

akk,k · · · akk,j · · · akk,n
...

...
...

aki,k · · · aki,j · · · aki,n
...

...
...

akm,k · · · akm,j · · · akm,n


=

[
Bk Ck

0 Dk

]
.

(10.4)

Let Ĥk := I − ûkû∗k be a Householder transformation that maps the first
column [akk,k, . . . , a

k
m,k]T of Dk to a multiple of e1, Ĥk(Dke1) = ake1. Using

Algorithm 10.4 we have [ûk, ak] = housegen(Dke1). Then Hk :=
[
Ik−1 0

0 Ĥk

]
is a

Householder transformation and

Ak+1 := HkAk =

[
Bk Ck

0 ĤkDk

]
=

[
Bk+1 Ck+1

0 Dk+1

]
,

where Bk+1 ∈ Ck×k is upper triangular and Dk+1 ∈ C(m−k)×(n−k). Thus Ak+1

is upper trapezoidal in its first k columns and the reduction has been carried one
step further. At the end R := An+1 =

[
R1
0

]
, where R1 is upper triangular.

The process can also be applied to A ∈ Cm×n if m ≤ n. In this case m− 1
Householder transformations will suffice and Hm−1 · · ·H1A is upper trapezoidal.

In an algorithm we can store most of the vectors ûk = [ukk, . . . , umk]T and
Ak in A. However, the elements uk,k and ak = rk,k have to compete for the
diagonal in A. For m = 4 and n = 3 the two possibilities look as follows:

A =


u11 r12 r13

u21 u22 r23

u31 u32 u33

u41 u42 u43

 or A =


r11 r12 r13

u21 r22 r23

u31 u32 r33

u41 u42 u43

 .
Whatever alternative is chosen, if the looser is needed, it has to be stored in a
separate vector. In the following algorithm we store ak = rk,k in A. We also
apply the Householder transformations to a second matrix B. The algorithm can
then be used to solve linear systems and least squares problems with one or more
right hand sides, or to compute the product of the Householder transformations
by choosing B = I.
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Algorithm 10.8 (Householder triangulation)
Suppose A ∈ Cm×n, B ∈ Cm×r and let s := min(n,m − 1). The algorithm
uses housegen to compute Householder transformationsH1, . . . ,Hs such that
R = Hs · · ·H1A is upper trapezoidal and C = Hs · · ·H1B. If B is the empty
matrix then C is the empty matrix with m rows and 0 columns.

1 function [R,C] = house t r i ang (A,B)
2 [m, n]= s ize (A) ; r=s ize (B, 2 ) ; A=[A,B ] ;
3 for k=1:min(n ,m−1)
4 [ v ,A(k , k ) ]= housegen (A( k :m, k ) ) ;
5 C=A( k :m, k+1:n+r ) ; A( k :m, k+1:n+r )=C−v∗(v ’∗C) ;
6 end
7 R=triu (A( : , 1 : n ) ) ; C=A( : , n+1:n+r ) ;

Here v = ûk and we have used ĤkC = (I − vv∗)C = C − v(v∗C) for
the update. The Matlab command triu extracts the upper triangular part of A
putting zeros in rows n+ 1, . . . ,m.

10.2.1 Solving linear systems using unitary transformations

Consider now the linear system Ax = b, where A is square. Using Algorithm 10.8
we obtain an upper triangular system Rx = c that is nonsingular if A is non-
singular. Thus, it can be solved by back substitution and we have a method for
solving linear systems that is an alternative to Gaussian elimination. The two
methods are similar since they both reduce A to upper triangular form using
certain transformations and they both work for nonsingular systems.

Which method is better? Here is a short discussion.

• Advantages with Householder:

– Row interchanges are not necessary, but see [5].

– Numerically stable.

• Advantages with Gauss

– Half the number of arithmetic operations compared to Householder.

– Row interchanges are often not necessary.

– Usually stable (but no guarantee).

Linear systems can be constructed where Gaussian elimination will fail nu-
merically even if row interchanges are used, see [34]. On the other hand the
transformations used in Householder triangulation are unitary so the method is
quite stable. So why is Gaussian elimination more popular than Householder tri-
angulation? One reason is that the number of arithmetic operations in (10.5)
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when m = n is 4n3/3 = 2Gn, which is twice the number for Gaussian elimina-
tion. We show this below. Numerical stability can be a problem with Gaussian
elimination, but years and years of experience shows that it works well for most
practical problems and pivoting is often not necessary. Also Gaussian elimination
often wins for banded and sparse problems.

10.2.2 The number of arithmetic operations

The bulk of the work in Algorithm 10.8 is the computation of C − v ∗ (vT ∗C)
for each k. In the real case it can be determined from the following lemma.

Lemma 10.9 (Updating a Householder transformation)
Suppose A ∈ Rm×n, u ∈ Rm and v ∈ Rn. The computation of A− u(uTA) and
A− (Av)vT both cost approximately 4mn arithmetic operations.

Proof. It costs 2mn arithmetic operations to compute wT := uTA, mn arith-
metic operations to compute W = uwT and mn arithmetic operations for the
final subtraction A−W , a total of 4mn arithmetic operations. Taking the trans-
pose we obtain the same count for A− (Av)vT .

Since in Algorithm 10.8, C ∈ C(m−k+1)×(n+r−k) and m ≥ n the cost of
computing the update C−v∗(vT ∗C) is 4(m−k)(n+r−k) arithmetic operations.
This implies that the work in Algorithm 10.8 can be estimated as∫ n

0

4(m− k)(n+ r − k)dk = 2m(n+ r)2 − 2

3
(n+ r)3. (10.5)

For m = n and r = 0 this gives 4n3/3 for the number of arithmetic operations to
bring a matrix A ∈ Rn×n to upper triangular form using Householder transform-
tions.

10.3 The QR Decomposition and QR Factorization
Gaussian elimination without row interchanges results in an LU factorization
A = LU of A ∈ Rn×n. Consider Householder triangulation of A. Applying
Algorithm 10.8 gives R = Hn−1 · · ·H1A implying the factorization A = QR,
where Q = H1 · · ·Hn−1 is orthonormal and R is upper triangular. This is known
as a QR-factorization of A.

10.3.1 Existence

For a rectangular matrix we define the following.
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Definition 10.10 (QR decomposition)
Let A ∈ Cm×n with m,n ∈ N. We say that A = QR is a QR decomposition
of A if Q ∈ Cm,m is square and unitary and R is upper trapezoidal. If m ≥ n
then R takes the form

R =

[
R1

0m−n,n

]
where R1 ∈ Cn×n is upper triangular and 0m−n,n is the zero matrix with m − n
rows and n columns. For m ≥ n we call A = Q1R1 a QR factorization of A if
Q1 ∈ Cm×n has orthonormal columns and R1 ∈ Cn×n is upper triangular.

Suppose m ≥ n. A QR factorization is obtained from a QR decomposition
A = QR by simply using the first n columns of Q and the first n rows of R.
Indeed, if we partition Q as [Q1,Q2] and R =

[
R1
0

]
, where Q1 ∈ Rm×n and

R1 ∈ Rn×n then A = Q1R1 is a QR factorization of A. On the other hand
a QR factorization A = Q1R1 of A can be turned into a QR decomposition
by extending the set of columns {q1, . . . , qn} of Q1 into an orthonormal basis
{q1, . . . , qn, qn+1, . . . , qm} for Rm and adding m−n rows of zeros to R1. We then
obtain the QR decomposition A = QR, where Q = [q1, . . . , qm] and R =

[
R1
0

]
.

Example 10.11 (QR decomposition and factorization)
An example of a QR decomposition is

A =


1 3 1
1 3 7
1 −1 −4
1 −1 2

 =
1

2


1 1 −1 −1
1 1 1 1
1 −1 −1 1
1 −1 1 −1

×


2 2 3
0 4 5
0 0 6
0 0 0

 = QR,

while a QR factorization A = Q1R1 is obtained by dropping the last column of Q
and the last row of R, so that

A =
1

2


1 1 −1
1 1 1
1 −1 −1
1 −1 1

×
2 2 3

0 4 5
0 0 6

 = Q1R1.

Consider existence and uniqueness.

Theorem 10.12 (Existence of QR decomposition)
Any matrix A ∈ Cm×n with m,n ∈ N has a QR decomposition.

Proof. The function housegen(x) returns a Householder transformation for
any x ∈ Cn. Thus with B = I in Algorithm 10.8 we obtain a QR decomposition
A = QR, where Q = C∗ = H1 · · ·Hs, is unitary. Thus a QR decomposition
always exists.
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Theorem 10.13 (Uniqueness of QR factorization)
If m ≥ n and A is real then the QR factorization is unique if A has linearly
independent columns and R has positive diagonal elements.

Proof. LetA = Q1R1 be a QR factorization ofA. Note thatATA = RT
1Q

T
1Q1R1 =

RT
1R1. Since ATA is symmetric positive definite the matrix R1 is nonsingular,

and if its diagonal elements are positive this is the Cholesky factorization of ATA.
Since the Cholesky factorization is unique it follows that R1 is unique and since
necessarily Q1 = AR−1

1 , it must also be unique.

Example 10.14 (QR decomposition and factorization)
Consider finding the QR decomposition and factorization of the matrix A =[

2 −1
−1 2

]
using the method of the uniqueness proof of Theorem 10.12. We find

B := ATA =
[

5 −4
−4 5

]
. The Cholesky factorization of B = RTR is given by

R = 1√
5

[
5 −4
0 3

]
. Now R−1 = 1

3
√

5
[ 3 4
0 5 ] so Q = AR−1 = 1√

5

[
2 1
−1 2

]
. Since A is

square A = QR is both the QR decomposition and QR factorization of A.

The QR factorization can be used to prove a classical determinant inequality.

Theorem 10.15 (Hadamard’s inequality)
For any A = [a1, . . . ,an] ∈ Cn×n we have

|det(A)| ≤
n∏
j=1

‖aj‖2. (10.6)

Equality holds if and only if A has a zero column or the columns of A are orthog-
onal.

Proof. Let A = QR be a QR factorization of A. Since

1 = det(I) = det(Q∗Q) = det(Q∗) det(Q) = det(Q)∗ det(Q) = |det(Q)|2

we have |det(Q)| = 1. LetR = [r1, . . . , rn]. Then (A∗A)jj = ‖aj‖22 = (R∗R)jj =
‖rj‖22, and

|det(A)| = |det(QR)| = |det(R)| =
n∏
j=1

|rjj | ≤
n∏
j=1

‖rj‖2 =

n∏
j=1

‖aj‖2.

The inequality is proved. We clearly have equality if A has a zero column, for
then both sides of (10.6) are zero. Suppose the columns are nonzero. We have
equality if and only if rjj = ‖rj‖2 for j = 1, . . . , n. This happens if and only if R
is diagonal. But then A∗A = R∗R is diagonal, which means that the columns of
A are orthogonal.



10.3. The QR Decomposition and QR Factorization 259

Exercise 10.16 (QR decomposition)

A =


1 2
1 2
1 0
1 0

 , Q =
1

2


1 1 1 1
1 1 −1 −1
1 −1 −1 1
1 −1 1 −1

 , R =


2 2
0 2
0 0
0 0

 .
Show that Q is orthonormal and that QR is a QR decomposition of A. Find a
QR factorization of A.

Exercise 10.17 (Householder triangulation)

a) Let

A :=

 1 0 1
−2 −1 0
2 2 1

 .
Find Householder transformations H1,H2 ∈ R3×3 such that H2H1A is
upper triangular.

b) Find the QR factorization of A, when R has positive diagonal elements.

10.3.2 QR and Gram-Schmidt

The Gram-Schmidt orthogonalization of the columns of A can be used to find the
QR factorization of A.

Theorem 10.18 (QR and Gram-Schmidt)
Suppose A =∈ Rm×n has rank n and let v1, . . . ,vn be the result of applying Gram
Schmidt to the columns a1, . . . ,an of A, i. e.,

v1 = a1, vj = aj −
j−1∑
i=1

aTj vi

vTi vi
vi, for j = 2, . . . , n. (10.7)

Let
Q1 := [q1, . . . , qn], qj :=

vj
‖vj‖2

, j = 1, . . . , n and

R1 :=



‖v1‖2 aT2 q1 aT3 q1 · · · aTn−1q1 aTnq1

0 ‖v2‖2 aT3 q2 · · · aTn−1q2 aTnq2

0 ‖v3‖2 · · · aTn−1q3 aTnq3

. . .
. . .

...
...

. . . ‖vn−1‖2 aTnqn−1

0 ‖vn‖2


.

(10.8)
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Then A = Q1R1 is the unique QR factorization of A.

Proof. Let Q1 and R1 be given by (10.8). The matrix Q1 is well defined and
has orthonormal columns, since {q1, . . . , qn} is an orthonormal basis for span(A)
by Theorem 0.29. By (10.7)

aj = vj +

j−1∑
i=1

aTj vi

vTi vi
vi = rjjqj +

j−1∑
i=1

qirij = Q1R1ej , j = 1, . . . , n.

Clearly R1 has positive diagonal elements and the factorization is unique.

Example 10.19 (QR using Gram-Schmidt)
Consider finding the QR decomposition and factorization of the matrix A =[

2 −1
−1 2

]
= [a1,a2] using Gram-Schmidt. Using (10.7) we find v1 = a1 and

v2 = a2 − aT2 v1

vT1 v1
v1 = 3

5 [ 1
2 ]. Thus Q = [q1, q2], where q1 = 1√

5

[
2
−1

]
and

q2 = 1√
5

[ 1
2 ]. By (10.8) we find

R1 = R =

[
‖v1‖2 aT2 q1

0 ‖v2‖2

]
=

1√
5

[
5 −4
0 3

]
and this agrees with what we found in Example 10.14.

Exercise 10.20 (QR using Gram-Schmidt, II)
Construct Q1 and R1 in Example 10.11 using Gram-Schmidt orthogonalization.

Warning. The Gram-Schmidt orthogonalization process should not be used
to compute the QR factorization numerically. The columns of Q1 computed in
floating point arithmetic using Gram-Schmidt orthogonalization will often be far
from orthogonal. There is a modified version of Gram-Schmidt which behaves
better numerically, see [2]. Here we only considered Householder transformations
(cf. Algorithm 10.8).

10.4 Givens Rotations
In some applications, the matrix we want to triangulate has a special structure.
Suppose for example that A ∈ Rn×n is square and upper Hessenberg as illustrated
by a Wilkinson diagram for n = 4

A =


x x x x
x x x x
0 x x x
0 0 x x

 .
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x

y=Rx
θ

Figure 10.2. A plane rotation.

Only one element in each column needs to be annihilated and a full Householder
transformation will be inefficient. In this case we can use a simpler transformation.

Definition 10.21 (Givens rotation, plane rotation)
A plane rotation (also called a Given’s rotation) is a matrix P ∈ R2,2 of the
form

P :=

[
c s
−s c

]
, where c2 + s2 = 1.

A plane rotation is orthonormal and there is a unique angle θ ∈ [0, 2π) such
that c = cos θ and s = sin θ. Moreover, the identity matrix is a plane rotation
corresponding to θ = 0.

Exercise 10.22 (Plane rotation)

Show that if x = [ r cosα
r sinα ] then Px =

[
r cos (α−θ)
r sin (α−θ)

]
. Thus P rotates a vector x in

the plane an angle θ clockwise. See Figure 10.2.

Suppose

x =

[
x1

x2

]
6= 0, c :=

x1

r
, s :=

x2

r
, r := ‖x‖2.

Then

Px =
1

r

[
x1 x2

−x2 x1

] [
x1

x2

]
=

1

r

[
x2

1 + x2
2

0

]
=

[
r
0

]
,

and we have introduced a zero in x. We can take P = I when x = 0.
For an n-vector x ∈ Rn and 1 ≤ i < j ≤ n we define a rotation in the

i, j-plane as a matrix P ij = (pkl) ∈ Rn×n by pkl = δkl except for positions
ii, jj, ij, ji, which are given by[

pii pij
pji pjj

]
=

[
c s
−s c

]
, where c2 + s2 = 1.
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Thus, for n = 4,

P 1,2 =


c s 0 0
−s c 0 0
0 0 1 0
0 0 0 1

 , P 13 =


c 0 s 0
0 1 0 0
−s 0 c 0
0 0 0 1

 , P 23 =


1 0 0 0
0 s c 0
0 −s c 0
0 0 0 1

 .

Karl Adolf Hessenberg, 1904-1959 (left), James Wallace Givens, Jr, 1910-1993 (right)

Premultiplying a matrix by a rotation in the i, j-plane changes only rows
i and j of the matrix, while postmultiplying the matrix by such a rotation only
changes column i and j. In particular, if B = P ijA and C = AP ij then B(k, :
) = A(k, :), C(:, k) = A(:, k) for all k 6= i, j and[
B(i, :)
B(j, :)

]
=

[
c s
−s c

] [
A(i, :)
A(j, :)

]
,
[
C(:, i) C(:, j)

]
=
[
A(:, i) A(:, j)

] [ c s
−s c

]
.

(10.9)
An upper Hessenberg matrix A ∈ Rn×n can be transformed to upper trian-

gular form using rotations P i,i+1 for i = 1, . . . , n− 1. For n = 4 the process can
be illustrated as follows.

A =

[
x x x x
x x x x
0 x x x
0 0 x x

]
P 12→

[
r11 r12 r13 r14
0 x x x
0 x x x
0 0 x x

]
P 23→

[ r11 r12 r13 r14
0 r22 r23 r24
0 0 x x
0 0 x x

]
P 34→

[ r11 r12 r13 r14
0 r22 r23 r24
0 0 r33 r34
0 0 0 r44

]
.

For an algorithm see Exercise 10.23.

Exercise 10.23 (Solving upper Hessenberg system using roations)
Let A ∈ Rn×n be upper Hessenberg and nonsingular, and let b ∈ Rn. The fol-
lowing algorithm solves the linear system Ax = b using rotations P k,k+1 for
k = 1, . . . , n − 1. It uses the back solve algorithm 2.2. Determine the number of
arithmetic operations of this algorithm.
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Algorithm 10.24 (Upper Hessenberg linear system)

1 function x=r o t h e s s t r i (A, b)
2 n=length (A) ; A=[A b ] ;
3 for k=1:n−1
4 r=norm ( [A(k , k ) ,A( k+1,k ) ] ) ;
5 i f r>0
6 c=A(k , k ) / r ; s=A( k+1,k ) / r ;
7 A( [ k k+1] ,k+1:n+1)=[c s ;− s c ]∗A( [ k k+1] ,k+1:n+1) ;
8 end
9 A(k , k )=r ; A( k+1,k ) =0;

10 end
11 x=backso lve (A( : , 1 : n ) ,A( : , n+1) ,n) ;

10.5 Review Questions
10.5.1 What is a Householder transformation?

10.5.2 Why are they good for numerical work?

10.5.3 What are the main differences between solving a linear system by Gaussian
elimination and Householder transformations?

10.5.4 What are the differences between a QR decomposition and a QR factor-
ization?

10.5.5 Does any matrix have a QR decomposition?

10.5.6 What is a Givens transformation?



264 Chapter 10. Orthonormal and Unitary Transformations



Chapter 11

Least Squares

Consider the linear system Ax = b of m equations in n unknowns. It is overde-
termined, if m > n, square, if m = n, and underdetermined, if m < n. In either
case the system can only be solved approximately if b /∈ span(A). One way to
solve Ax = b approximately is to select a vector norm ‖·‖, say a p-norm, and look
for x ∈ Cn which minimizes ‖Ax − b‖. The use of the one and ∞ norm can be
formulated as linear programming problems, while the Euclidian norm leads to a
linear system. Only this norm is considered here.

Definition 11.1 (Least squares problem)
Suppose m,n ∈ N, A ∈ Cm×n and b ∈ Cm. To find x ∈ Cn that minimizes
E : Cn → R given by

E(x) := ‖Ax− b‖22,
is called the least squares problem. A minimizer x is called a least squares
solution.

Since the square root function is monotone, minimizing E(x) or
√
E(x) is equiv-

alent.
One way to solve the least squares problem is to write E as a quadratic

function and set partial derivatives equal to zero. IfA and b have real components
we find

E(x) := (Ax− b)T (Ax− b) = xTBx− 2cTx+ β,

where
B = ATA, c = AT b, β = bT b.

By Lemma 9.2 all minimums are solutions of the linear system Bx = c or

ATAx = AT b

265
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known as the normal equations. The coefficient matrix is symmetric positive
semidefinite. If it is positive definite then the least square problem has a unique
solution. By Corollary 2.36 ATA is positive definite if and only if A has linearly
independent columns. In particular, m ≥ n is necessary for a unique solution.

11.1 Numerical Examples
Example 11.2 (Average)
Consider the least squares problem defined by

x1 = 1
x1 = 1
x1 = 2

, A =

1
1
1

 , x = [x1], b =

1
1
2

 ,
We find

‖Ax− b‖22 = (x1 − 1)2 + (x1 − 1)2 + (x1 − 2)2 = 3x2
1 − 8x1 + 6.

Setting the first derivative with respect to x1 equal to zero we obtain 6x1−8 = 0 or
x1 = 4/3, the average of b1, b2, b3. The second derivative is positive and x1 = 4/3
is a global minimum. The normal equation is 3x1 = 4.

Example 11.3 (Input/output model)
Suppose we have a simple input/output model. To every input u ∈ Rn we obtain
an output y ∈ R. Assuming we have a linear relation

y = uTx =

n∑
i=1

uixi,

between u and y, how can we determine x?
Performing m ≥ n experiments we obtain a table of values

u u1 u2 · · · um
y y1 y2 · · · ym

.

We would like to find x such that

Ax =


uT1
uT2
...
uTm

x =


y1

y2

...
ym

 = b.

We can estimate x by solving the least squares problem min‖Ax− b‖22.
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11.2 Curve Fitting
Given

• size: 1 ≤ n ≤ m,

• sites: S := {t1, t2, . . . , tm} ⊂ [a, b],

• y-values: y = [y1, y2, . . . , ym]T ∈ Rm,

• functions: φj : [a, b]→ R, j = 1, . . . , n.

Find a function (curve fit) p : [a, b] → R given by p :=
∑n
j=1 xjφj such that

p(tk) ≈ yk for k = 1, . . . ,m.
An example is shown in Figure 11.1. Here φ1(t) = 1 and φ2(t) = t and p is

a straight line (linear regression).

- t

6

y

@
@
@
@
@
@
@
@
@
@
@@

×

×

×

×

Figure 11.1. A least squares fit to data.

The curve fitting problem can be defined from an overdetermined linear
system:

 p(t1)
...

p(tm)

 = Ax :=

φ1(t1) · · · φn(t1)
...

...
φ1(tm) · · · φn(tm)


x1

...
xn

 =

 y1

...
ym

 =: b. (11.1)
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Then we find x ∈ Rn as a solution of the corresponding least squares problem
given by

E(x) := ‖Ax− b‖22 =

m∑
k=1

( n∑
j=1

xjφj(tk)− yk
)2
. (11.2)

Typical examples of functions φj are polynomials, trigonometric functions, expo-
nential functions, or splines.

In (11.2) one can also include weights wk > 0 for k = 1, . . . ,m and minimize

E(x) :=

m∑
k=1

wk
( n∑
j=1

xjφj(tk)− yk
)2
.

If yk is an accurate observation, we can choose a large weight wk. This will force
p(tk)−yk to be small. Similarly, a small wk will allow p(tk)−yk to be large. If an
estimate for the standard deviation δyk in yk is known for each k, we can choose
wk = 1/(δyk)2, k = 1, 2, . . . ,m. For simplicity we will assume in the following
that wk = 1 for all k.

Lemma 11.4 (Curve fitting)
Let A be given by (11.1). The matrix ATA is symmetric positive definite if and
only if {φ1, . . . , φn} is linearly independent on S, i. e.,

p(tk) :=

n∑
j=1

xjφj(tk) = 0, k = 1, . . . ,m ⇒ x1 = · · · = xn = 0. (11.3)

Proof. A is positive definite if and only if A has linearly independent columns.
Since (Ax)k =

∑n
j=1 xjφj(tk), k = 1, . . . ,m this is equivalent to (11.3).

Example 11.5 (Straight line fit)
Consider m ≥ n = 2, φ1(t) = 1, and φ2(t) = t. The normal equations can be
written [

m
∑
tk∑

tk
∑
t2k

] [
x1

x2

]
=

[ ∑
yk∑
tkyk

]
. (11.4)

Here k ranges from 1 to m in the sums. Recall that a nonzero polynomial of degree
at most n has at most n roots. Therefore, by the Lemma 11.4, this 2 × 2 system
is symmetric positive definite if and only if there are at least 2 distinct sites tk.
With the data

t 1.0 2.0 3.0 4.0
y 3.1 1.8 1.0 0.1

the normal equations (11.4) become

[
4 10
10 30

] [
x1

x2

]
=

[
6

10.1

]
. The data and the

least squares polynomial p(t) = x1 + x2t = 3.95− 0.98t are shown in Figure 11.1.
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Example 11.6 (Ill conditioning and the Hilbert matrix)
The normal equations can be extremely ill-conditioned. Consider the curve fitting
problem using the polynomials φj(t) := tj−1, for j = 1, . . . , n and equidistant sites
tk = (k − 1)/(m − 1) for k = 1, . . . ,m. The normal equations are Bnx = cn,
where for n = 3

B3x :=

 m
∑
tk

∑
t2k∑

tk
∑
t2k

∑
t3k∑

t2k
∑
t3k

∑
t4k

 x1

x2

x3

 =

 ∑
yk∑
tkyk∑
t2kyk

 .
Bn is symmetric positive definite if at least n of the t’s are distinct. However
Bn is extremely ill-conditioned even for moderate n. Indeed, 1

mBn ≈Hn, where
Hn ∈ Rn×n is the Hilbert Matrix with i, j element 1/(i + j − 1). Thus for
n = 3

H3 =

1 1
2

1
3

1
2

1
3

1
4

1
3

1
4

1
5

 .
The elements of 1

mBn are related to Riemann sums approximations to the elements
of Hn. In fact,

1

m
bi,j =

1

m

m∑
k=1

ti+j−2
k =

1

m

m∑
k=1

(
k − 1

m− 1

)i+j−2

≈
∫ 1

0

xi+j−2dx =
1

i+ j − 1
= hi,j .

The elements of H−1
n are determined in Exercise 0.51. We find K1(H6) ≈ 3 ·107.

It appears that 1
mBn and hence Bn is ill-conditioned for moderate n at least if

m is large. The cure for this problem is to use a different basis for polynomials.
Orthogonal polynomials are an excellent choice. Another possibility is to use the
shifted power basis (t− t̃)j−1, j = 1, . . . , n, for a suitable t̃, see Exercise 11.8.

Exercise 11.7 (Straight line fit (linear regression))
Suppose (ti, yi)

m
i=1 are m points in the plane. We consider the over-determined

systems
(i) x1 = y1

x1 = y2

...
x1 = ym

(ii) x1 + t1x2 = y1

x1 + t2x2 = y2

...
x1 + tmx2 = ym

a) Find the normal equations for (i) and the least squares solution.

b) Find the normal equations for (ii) and give a geometric interpretation of the
least squares solution.
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Exercise 11.8 (Straight line fit using shifted power form)
Related to (ii) in Exercise 11.7 we have the overdetermined system

(iii) x1 + (ti − t̂)x2 = yi, i = 1, 2, . . . ,m,

where t̂ = (t1 + · · ·+ tm)/m.

a) Find the normal equations for (iii) and give a geometric interpretation of the
least squares solution.

b) Fit a straight line to the points (ti, yi): (998.5, 1), (999.5, 1.9), (1000.5, 3.1)
and (1001.5, 3.5) using a). Draw a sketch of the solution.

Exercise 11.9 (Fitting a circle to points)
In this problem we derive an algorithm to fit a circle (t− c1)2 + (y − c2)2 = r2 to
m ≥ 3 given points (ti, yi)

m
i=1 in the (t, y)-plane. We obtain the overdetermined

system

(ti − c1)2 + (yi − c2)2 = r2, i = 1, . . . ,m, (11.5)

of m equations in the three unknowns c1, c2 and r. This system is nonlinear, but
it can be solved from the linear system

tix1 + yix2 + x3 = t2i + y2
i , i = 1, . . . ,m, (11.6)

and then setting c1 = x1/2, c2 = x2/2 and r2 = c21 + c22 + x3.

a) Derive (11.6) from (11.5). Explain how we can find c1, c2, r once [x1, x2, x3]
is determined.

b) Formulate (11.6) as a linear least squares problem for suitable A and b.

c) Does the matrix A in b) have linearly independent columns?

d) Use (11.6) to find the circle passing through the three points (1, 4), (3, 2), (1, 0).

11.3 Least Squares and Singular Value
Decomposition and Factorization

The singular value decomposition and factorization can be used to characterize all
solution of the least squares problems. We first consider orthogonal projections.
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b1
S

b2b

Figure 11.2. The orthogonal projection of b into S.

11.3.1 Sum of subspaces and orthogonal projections

Suppose S and T are subspaces of Rn or Cn endowed with an inner product 〈 , 〉.
The following subsets are subspaces of Rn or Cn.

• The set S + T := {s+ t : s ∈ S and t ∈ T } is called the sum of S and T .

• If S ∩ T = {0} then S + T is called a direct sum and denoted S ⊕ T .

• If 〈s, t〉 = 0 for all s ∈ S and t ∈ T then S + T is called an orthogonal

sum and denoted S
⊥
⊕T .

Every x ∈ S ⊕T can be decomposed uniquely in the form x = s+ t, where s ∈ S
and t ∈ T . For if x = s1 + t1 = s2 + t2 for s1, s2 ∈ S and t1, t2 ∈ T , then
s1 − s2 = t2 − t1 and it follows that s1 − s2 and t2 − t1 belong to both S and T
and hence to S ∩ T . But then s1 − s2 = t2 − t1 = 0 so s1 = s2 and t2 = t1.

An orthogonal sum is a direct sum. For if b ∈ S ∩ T then b is orthogonal to

itself, 〈b, b〉 = 0, which implies that b = 0. Thus, every b ∈ S
⊥
⊕T can be written

uniquely as b = b1 + b2, where b1 ∈ S and b2 ∈ T . The vectors b1 and b2 are
called the orthogonal projections of b into S and T . For any s ∈ S we have
〈b− b1, s〉 = 〈b2, s〉 = 0, see Figure 11.2.

Consider a singular value decomposition ofA and the corresponding singular
value factorization:

A = UΣV ∗ = [U1,U2]

[
Σ1 0
0 0

] [
V ∗1
V ∗2

]
= U1Σ1V

∗
1, Σ1 = diag(σ1, . . . , σr),
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where A has rank r so that σ1 ≥ · · · ≥ σr > 0 and U1 = [u1, . . . ,ur], V 1 =
[v1, . . . ,vr]. We recall (cf. Theorem 6.16)

• the set of columns of U1 is an orthonormal basis for the column space
span(A),

• the set of columns of U2 is an orthonormal basis for the null space ker(A∗),

Theorem 11.10 (Orthogonal projection and least squares solution)
Let A ∈ Cm×n, b ∈ Cm, S := span(A) and T := ker(A∗). If A = U1Σ1V

∗
1 is a

singular value factorization of A then:

1. Cm = S
⊥
⊕T is an orthogonal decomposition of Cm with respect to the

usual inner product 〈s, t〉 = t∗s.

2. The orthogonal projection b1 of b into S is

b1 = U1U
∗
1b = AA†b, where A† := V 1Σ

−1
1 U∗1 ∈ Cn×m. (11.7)

3. x ∈ Cn is a solution of the least squares problem if and only if Ax = b1. In
particular the least squares problem always has a solution.

Proof. By block multiplication b = UU∗b = [U1,U2

[
U∗1
U∗2

]
b = b1 + b2, where

b1 = U1U
∗
1b ∈ S and b2 = U2U

∗
2b ∈ T . Since U∗2U1 = 0 it follows that

〈b1, b2〉 = b∗2b1 = 0 implying Part 1. Moreover, b1 is the orthogonal projection
into S. Since V ∗1V 1 = I we find

AA†b = (U1Σ1V
∗
1)(V 1Σ

−1
1 U∗1)b = U1U

∗
1b = b1

and Part 2 follows. For any x ∈ Cn we have Ax − b1 ∈ S and b∗2(Ax − b1) = 0
so by Pythagoras

‖b−Ax‖22 = ‖(b1 −Ax) + b2‖22 = ‖b1 −Ax‖22 + ‖b2‖22 ≥ ‖b2‖22.

We obtain the minimum value ‖b2‖2 of ‖b−Ax‖22 if and only if Ax = b1. Since
b1 ∈ span(A) we can always find such an x and existence follows.

Example 11.11 (Projections and least squares solutions)
We have the singular value factorization (cf. Example 6.13)

A :=

1 1
1 1
0 0

 =
1√
2

1
1
0

 [2]
1√
2

[
1 1

]
.
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We then find

A† =
1√
2

[
1
1

]
[
1

2
]

1√
2

[
1 1 0

]
=

1

4

[
1 1 0
1 1 0

]
=

1

4
AT .

Thus,

b1 = U1U
∗
1b =

1

2

1
1
0

 [1 1 0]b =
1

2

1 1 0
1 1 0
0 0 0

b1b2
b3

 = AA†b =

(b1 + b2)/2
(b1 + b2)/2

0

 .
Moreover, the set of all least quares solutions is

{x ∈ R2 : Ax = b1} = {x1, x2 ∈ R : x1 + x2 =
b1 + b2

2
}. (11.8)

Theorem 11.12 (Uniqueness)
The least squares solution is unique if and only if A has linearly independent
columns.

Proof. By what we just showed any solution x of the least squares problem
satisfies Ax = b1. There is a unique such x if and only if rank(A) = n.

It follows that only square or overdetermined systems can have unique solu-
tions.

Theorem 11.13 (Characterization)
The following is equivalent:

1. x is a least squares solution,

2. x = A†b+ z for some z ∈ Cn with Az = 0,

3. A∗Ax = A∗b (normal equations).

Proof.

1. =⇒ 2. Le x be a least squares solution, i. e., Ax = b1. If z := x−A†b then
Az = Ax−AA†b = b1 − b1 = 0 and x = A†b+ z.

2. =⇒ 3. If x = A†b+ z with Az = 0 then

A∗Ax = A∗A(A†b+ z) = A∗(AA†b+Az) = A∗b1 = A∗b.

The last equality follows since b = b1 + b2 and b2 ∈ ker(A∗).



274 Chapter 11. Least Squares

3. =⇒ 1. If A∗Ax = A∗b then A∗(Ax − b) = A∗(Ax − b1) = 0. But then
Ax− b1 ∈ span(A)∩ ker(A∗) and Ax− b1 = 0. It follows that x is a least
squares solution.

Example 11.14 (Least squares solutions)
Consider the least squares solutions x in (11.8). Since ker(A) = {[ z

−z ] : z ∈ R}
it follows from Part 2 of Theorem 11.13 that

x =
1

4

[
1 1 0
1 1 0

]b1b2
b3

+

[
z
−z

]
=

[
b1+b2

4 + z
b1+b2

4 − z

]
.

The normal equations take the form

ATAx =

[
2 2
2 2

] [
x1

x2

]
= AT b =

[
b1 + b2
b1 + b2

]
.

Thus we obtain (11.8).

11.3.2 The generalized inverse

Consider the matrix A† := V 1Σ
−1
1 U∗1 in (11.7). If A is square and nonsingu-

lar then A†A = AA† = I and A† is the usual inverse of A. Thus A† is a
generalization of the usual inverse. The matrix A† satisfies Properties (1)- (4)
in Exercise 11.15 and these properties define A† uniquely (cf. Exercise 11.16).
The unique matrix B satisfying Properties (1)- (4) in Exercise 11.15 is called the
generalized inverse or pseudo inverse of A and denoted A†. It follows that
A† := V 1Σ

−1
1 U∗1 for any singular value factorization U1Σ1V

∗
1 of A. We show in

Exercise 11.18 that if A has linearly independent columns then

A† = (A∗A)−1A∗. (11.9)

Exercise 11.15 (The generalized inverse)
Show that B := V 1Σ

−1
1 U∗1 satisfies (1) ABA = A, (2) BAB = B, (3) (BA)∗ =

BA, and (4) (AB)∗ = AB.

Exercise 11.16 (Uniqueness of generalized inverse)
Given A ∈ Cm×n, and suppose B,C ∈ Cn×m satisfy

ABA = A (1) ACA = A,
BAB = B (2) CAC = C,

(AB)∗ = AB (3) (AC)∗ = AC,
(BA)∗ = BA (4) (CA)∗ = CA.



11.3. Least Squares and Singular Value Decomposition and Factorization 275

Verify the following proof that B = C.

B = (BA)B = (A∗)B∗B = (A∗C∗)A∗B∗B = CA(A∗B∗)B

= CA(BAB) = (C)AB = C(AC)AB = CC∗A∗(AB)

= CC∗(A∗B∗A∗) = C(C∗A∗) = CAC = C.

Exercise 11.17 (Verify that a matrix is a generalized inverse)

Show that the matrices A =
[

1 1
1 1
0 0

]
and B = 1

4 [ 1 1 0
1 1 0 ] satisfy the axioms in Exer-

cise 11.15. Thus we can conclude that B = A† without computing the singular
value decomposition of A.

Exercise 11.18 (Linearly independent columns and generalized inverse)

Suppose A ∈ Cm×n has linearly independent columns. Show that A∗A is nonsin-
gular and A† = (A∗A)−1A∗. If A has linearly independent rows, then show that
AA∗ is nonsingular and A† = A∗(AA∗)−1.

Exercise 11.19 (The generalized inverse of a vector)
Show that u† = (u∗u)−1u∗ if u ∈ Cn,1 is nonzero.

Exercise 11.20 (The generalized inverse of an outer product)
If A = uv∗ where u ∈ Cm, v ∈ Cn are nonzero, show that

A† =
1

α
A∗, α = ‖u‖22‖v‖22.

Exercise 11.21 (The generalized inverse of a diagonal matrix)

Show that diag(λ1, . . . , λn)† = diag(λ†1, . . . , λ
†
n) where

λ†i =

{
1/λi, λi 6= 0

0 λi = 0.

Exercise 11.22 (Properties of the generalized inverse)
Suppose A ∈ Cm×n. Show that

a) (A∗)† = (A†)∗.

b) (A†)† = A.

c) (αA)† = 1
αA
†, α 6= 0.
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Exercise 11.23 (The generalized inverse of a product)
Suppose k,m, n ∈ N, A ∈ Cm×n, B ∈ Cn×k. Suppose A has linearly independent
columns and B has linearly independent rows.

a) Show that (AB)† = B†A†. Hint: Let E = AF , F = B†A†. Show by using
A†A = BB† = I that F is the generalized inverse of E.

b) Find A ∈ R1,2, B ∈ R2,1 such that (AB)† 6= B†A†.

Exercise 11.24 (The generalized inverse of the conjugate transpose)
Show that A∗ = A† if and only if all singular values of A are either zero or one.

Exercise 11.25 (Linearly independent columns)
Show that if A has rank n then A(A∗A)−1A∗b is the projection of b into span(A).
(Cf. Exercise 11.18.)

Exercise 11.26 (Analysis of the general linear system)
Consider the linear system Ax = b where A ∈ Cn×n has rank r > 0 and b ∈ Cn.
Let

U∗AV =

[
Σ1 0
0 0

]
represent the singular value decomposition of A.

a) Let c = [c1, . . . , cn]T = U∗b and y = [y1, . . . , yn]T = V ∗x. Show that Ax = b
if and only if [

Σ1 0
0 0

]
y = c.

b) Show that Ax = b has a solution x if and only if cr+1 = · · · = cn = 0.

c) Deduce that a linear system Ax = b has either no solution, one solution or
infinitely many solutions.

Exercise 11.27 (Fredholm’s alternative)
For any A ∈ Cm×n, b ∈ Cn show that one and only one of the following systems
has a solution

(1) Ax = b, (2) A∗y = 0, y∗b 6= 0.

In other words either b ∈ span(A), or we can find y ∈ ker(A∗) such that y∗b 6= 0.
This is called Fredholm’s alternative.
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11.4 Numerical Solution
We assume that m ≥ n, A ∈ Rm×n and b ∈ Rm. Numerical methods can be
based on normal equations, QR factorization, or Singular Value Factorization.
We discuss each of these approaches in turn. Another possibility is to use an
iterative method like the conjugate gradient method (cf. Exercise 9.18).

11.4.1 Normal equations

Suppose A has linearly independent columns. The coefficient matrix B := ATA
in the normal equations is symmetric positive definite, and we can solve these
equations using the Cholesky factorization of B. Consider forming the normal
equations. We can use either a column oriented (inner product)- or a row oriented
(outer product) approach.

1. inner product: (ATA)i,j =
∑m
k=1 ak,iak,j , i, j = 1, . . . , n,

(AT b)i =
∑m
k=1 ak,ibk, i = 1, . . . , n,

2. outer product: ATA =
∑m
k=1

ak1

...
akn

 [ak1 · · · akn], AT b =
∑m
k=1

ak1

...
akn

 bk.

The outer product form is suitable for large problems since it uses only one pass
through the data importing one row of A at a time from some separate storage.

Consider the number of operations to find the least squares solution. We
need 2m arithmetic operations for each inner product. Since B is symmetric we
only need to compute n(n + 1)/2 such inner products. It follows that B can be
computed in approximately mn2 arithmetic operations. In conclusion the number
of operations are mn2 to find B, 2mn to find AT b, n3/3 to find R, n2 to solve
RTy = c and n2 to solve Rx = y. If m ≈ n it takes 4

3n
3 = 2Gn arithmetic

operations. If m is much bigger than n the number of operations is approximately
mn2, the work to compute B.

A problem with the normal equations approach is that the linear system can
be poorly conditioned. In fact the 2-norm condition number of B := ATA is the
square of the condition number of A. This follows, since the eigenvalues of B are
the square of the singular values of A so that

K2(B) =
σ2

1

σ2
n

=

(
σ1

σn

)2

= K2(A)2.

If A is ill-conditioned, this could make the normal equations approach problem-
atic. One difficulty which can be encountered is that the computed ATA might
not be positive definite. See Problem 11.36 for an example.
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11.4.2 QR factorization

Gene Golub, 1932-2007. He pioneered use of the QR factorization to solve least
square problems.

SupposeA ∈ Rm×n has rank n and let b ∈ Rm. The QR factorization can be
used to solve the least squares problem. Suppose A = Q1R1 is a QR factorization
of A. Since Q1 has orthonormal columns we find

ATA = RT
1Q

T
1Q1R1 = RT

1R1, AT b = RT
1Q

T
1 b.

Since A has rank n the matrix RT
1 is nonsingular and can be canceled. Thus

ATAx = AT b =⇒ R1x = c1, c1 := QT
1 b.

We can use Householder transformations or Givens rotations to find R1 and c1.
Consider using the Householder triangulation algorithm Algorithm 10.8. We find
R = QTA and c = QT b, where A = QR is the QR decomposition of A. The
matrices R1 and c1 are located in the first n rows of R and c. Using also Al-
gorithm 2.2 we have the following method to solve the full rank least squares
problem.

1. [R,c]=housetriang(A,b).

2. x=rbacksolve(R(1:n,1:n),c(1:n),n).

Example 11.28 (Solution using QR factorization)



11.4. Numerical Solution 279

Consider the least squares problem with

A =


1 3 1
1 3 7
1 −1 −4
1 −1 2

 and b =


1
1
1
1

 .
This is the matrix in Example 10.11. The least squares solution x is found by
solving the system2 2 3

0 4 5
0 0 6

x1

x2

x3

 =
1

2

1 1 1 1
1 1 −1 −1
1 −1 −1 1

×


1
1
1
1


and we find x = [1, 0, 0]T .

Using Householder triangulation is a useful alternative to normal equations
for solving full rank least squares problems. It can even be extended to rank defi-
cient problems, see [2]. The 2 norm condition number for the system R1x = c1 is
K2(R1) = K2(Q1R1) = K2(A), and as discussed in the previous section this is the
square root of K2(ATA), the condition number for the normal equations. Thus
if A is mildly ill-conditioned the normal equations can be quite ill-conditioned
and solving the normal equations can give inaccurate results. On the other hand
Algorithm 10.8 is quite stable.

But using Householder transformations requires more work. The leading
term in the number of arithmetic operations in Algorithm 10.8 is approximately
2mn2 − 2n3/3, (cf. (10.5) while the number of arithmetic operations needed to
form the normal equations, taking advantage of symmetry is approximately mn2.
Thus for m much larger than n using Householder triangulation requires twice
as many arithmetic operations as the approach based on the normal equations.
Also, Householder triangulation have problems taking advantage of the structure
in sparse problems.

11.4.3 Singular value factorization

This method can be used even if A does not have full rank. By Theorem 11.13

x = A†b+ z,

where A† is the generalized inverse of A, is a least squares solution for any z ∈
ker(A). If A has linearly independent columns then ker(A) = {0} and x = A†b
is the unique solution.

When rank(A) is less than the number of columns of A then ker(A) 6= {0},
and we have a choice of z. One possible choice is z = 0 giving the solution A†b.
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Theorem 11.29 (Minimal solution)
The least squares solution with minimal Euclidian norm is x = A†b corresponding
to z = 0.

Proof. Suppose x = A†b+ z, with z ∈ ker(A). Recall that if the right singular
vectors of A are partitioned as [v1, . . . ,vr,vr+1, . . . ,vn] = [V 1,V 2], then V 2 is
a basis for ker(A). Moreover, V ∗2V 1 = 0 since V has orthonormal columns. If
A† = V 1Σ

−1
1 U∗1 and z ∈ ker(A) then z = V 2y for some y ∈ Cn−r and we obtain

z∗A†b = y∗V ∗2V 1Σ
−1U∗1b = 0.

Thus z and A†b are orthogonal so that by Pythagoras ‖x‖22 = ‖A†b + z‖22 =
‖A†b‖22 + ‖z‖22 ≥ ‖A

†b‖22 with equality for z = 0.

Using MATLAB a least squares solution can be found using x=A\b if A has
full rank.For rank deficient problems the function x=lscov(A,b) finds a least
squares solution with a maximal number of zeros in x.

Example 11.30 (Rank deficient least squares solution)
For A as in Example 11.14 with b = [1, 1]T lscov gives the solution [1, 0]T

corresponding to z = [1/2,−1/2]. The minimal norm solution is [1/2, 1/2].

11.5 Perturbation Theory for Least Squares
In this section we consider what effect small changes in the data A, b have on the
solution x of the least squares problem min‖Ax− b‖2.

If A has linearly independent columns then we can write the least squares
solution x (the solution of A∗Ax = A∗b) as

x = A†b = A†b1, A† := (A∗A)−1A∗,

where b1 is the orthogonal projection of b into the column space span(A).

11.5.1 Perturbing the right hand side

Let us now consider the effect of a perturbation in b on x.

Theorem 11.31 (Perturbing the right hand side)
Suppose A ∈ Cm×n has linearly independent columns, and let b, e ∈ Cm. Let
x,y ∈ Cn be the solutions of min‖Ax− b‖2 and min‖Ay − b− e‖2. Finally, let
b1, e1 be the orthogonal projections of b and e into span(A). If b1 6= 0, we have
for any operator norm

1

K(A)

‖e1‖
‖b1‖

≤ ‖y − x‖
‖x‖

≤ K(A)
‖e1‖
‖b1‖

, K(A) = ‖A‖‖A†‖. (11.10)
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A       span( )

= N( )ATτ

b

e

e1 b1

b2

Figure 11.3. Graphical interpretation of the bounds in Theorem 11.31.

Proof. Subtracting x = A†b1 from y = A†b1 +A†e1 we have y − x = A†e1.
Thus ‖y − x‖ = ‖A†e1‖ ≤ ‖A†‖‖e1‖. Moreover, ‖b1‖ = ‖Ax‖ ≤ ‖A‖‖x‖.
Therefore ‖y − x‖/‖x‖ ≤ ‖A‖‖A†‖‖e1‖/‖b1‖ proving the rightmost inequality.
From A(x− y) = e1 and x = A†b1 we obtain the leftmost inequality.

(11.10) is analogous to the bound (7.13) for linear systems. We see that
the number K(A) = ‖A‖‖A†‖ generalizes the condition number ‖A‖‖A−1‖ for
a square matrix. The main difference between (11.10) and (7.13) is however that
‖e‖/‖b‖ in (7.13) has been replaced by ‖e1‖/‖b1‖, the orthogonal projections of e
and b into span(A). If b lies almost entirely in ker(A∗), i.e. ‖b‖/‖b1‖ is large, then
‖e1‖/‖b1‖ can be much larger than ‖e‖/‖b‖. This is illustrated in Figure 11.3. If
b is almost orthogonal to span(A), ‖e1‖/‖b1‖ will normally be much larger than
‖e‖/‖b‖.

Example 11.32 (Perturbing the right hand side)
Suppose

A =

 1 1
0 1
0 0

 , b =

 10−4

0
1

 , e =

 10−6

0
0

 .
For this example we can compute K(A) by finding A† explicitly. Indeed,

ATA =

[
1 1
1 2

]
, (ATA)−1 =

[
2 −1
−1 1

]
, A† = (ATA)−1AT =

[
1 −1 0
0 1 0

]
.

Thus K∞(A) = ‖A‖∞‖A†‖∞ = 2 · 2 = 4 is quite small.

Consider now the projections b1 and e1. We find AA† =
[

1 0 0
0 1 0
0 0 0

]
. Hence

b1 = AA†b = [10−4, 0, 0]T , and e1 = AA†e = [10−6, 0, 0]T .
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Thus ‖e1‖∞/‖b1‖∞ = 10−2 and (11.10) takes the form

1

4
10−2 ≤ ‖y − x‖∞

‖x‖∞
≤ 4 · 10−2.

To verify the bounds we compute the solutions as x = A†b = [10−4, 0]T and
y = A†(b+ e) = [10−4 + 10−6, 0]T . Hence

‖x− y‖∞
‖x‖∞

=
10−6

10−4
= 10−2,

Exercise 11.33 (Condition number)
Let

A =

 1 2
1 1
1 1

 , b =

 b1
b2
b3

 .
a) Determine the projections b1 and b2 of b on span(A) and ker(AT ).

b) Compute K(A) = ‖A‖2‖A†‖2.

For each A we can find b and e so that we have equality in the upper bound
in (11.10). The lower bound is best possible in a similar way.

Exercise 11.34 (Equality in perturbation bound)

a) Let A ∈ Cm×n. Show that we have equality to the right in (11.10) if b = AyA,
e1 = yA† where ‖AyA‖ = ‖A‖, ‖A†yA†‖ = ‖A†‖.

b) Show that we have equality to the left if we switch b and e in a).

c) Let A be as in Example 11.32. Find extremal b and e when the l∞ norm is
used.

11.5.2 Perturbing the matrix

The analysis of the effects of a perturbation E inA is quite difficult. The following
result is stated without proof, see [20, p. 51]. For other estimates see [2] and [28].

Theorem 11.35 (Perturbing the matrix)
Suppose A,E ∈ Cm×n, m > n, where A has linearly independent columns and
α := 1 − ‖E‖2‖A†‖2 > 0. Then A + E has linearly independent columns. Let
b = b1 + b2 ∈ Cm where b1 and b2 are the orthogonal projections into span(A)
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and ker(A∗) respectively. Suppose b1 6= 0. Let x and y be the solutions of
min‖Ax− b‖2 and min‖(A+E)y − b‖2. Then

ρ =
‖x− y‖2
‖x‖2

≤ 1

α
K(1 + βK)

‖E‖2
‖A‖2

, β =
‖b2‖2
‖b1‖2

, K = ‖A‖2‖A†‖2. (11.11)

(11.11) says that the relative error in y as an approximation to x can be
at most K(1 + βK)/α times as large as the size ‖E‖2/‖A‖2 of the relative per-
turbation in A. β will be small if b lies almost entirely in span(A), and we have
approximately ρ ≤ 1

αK‖E‖2/‖A‖2. This corresponds to the estimate (7.19) for
linear systems. If β is not small, the term 1

αK
2β‖E‖2/‖A‖2 will dominate. In

other words, the condition number is roughly K(A) if β is small and K(A)2β if
β is not small. Note that β is large if b is almost orthogonal to span(A) and that
b2 = b−Ax is the residual of x.

Exercise 11.36 (Problem using normal equations)
Consider the least squares problems where

A =

 1 1
1 1
1 1+ε

 , b =

 2
3
2

 , ε ∈ R.

a) Find the normal equations and the exact least squares solution.

b) Suppose ε is small and we replace the (2, 2) entry 3+2ε+ε2 in ATA by 3+2ε.
(This will be done in a computer if ε <

√
u, u being the round-off unit).

For example, if u = 10−16 then
√
u = 10−8. Solve ATAx = AT b for x

and compare with the x found in a). (We will get a much more accurate
result using the QR factorization or the singular value decomposition on this
problem).

11.6 Perturbation Theory for Singular Values
In this section we consider what effect a small change in the matrix A has on the
singular values.

We recall the Hoffman-Wielandt Theorem for singular values, Theorem 6.30.
If A,B ∈ Rm×n are rectangular matrices with singular values α1 ≥ α2 ≥ · · · ≥ αn
and β1 ≥ β2 ≥ · · · ≥ βn, then

n∑
j=1

|αj − βj |2 ≤ ‖A−B‖2F .

This shows that the singular values of a matrix are well conditioned. Changing
the Frobenius norm of a matrix by small amount only changes the singular values
by a small amount.

Using the 2-norm we have a similar result.
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Theorem 11.37 (Perturbation of singular values)
Let A,B ∈ Rm×n be rectangular matrices with singular values α1 ≥ α2 ≥ · · · ≥ αn
and β1 ≥ β2 ≥ · · · ≥ βn. Then

|αj − βj | ≤ ‖A−B‖2, for j = 1, 2, . . . , n. (11.12)

Proof. Fix j and let S be the n − j + 1 dimensional subspace for which the
minimum in Theorem 6.29 is obtained for A. Then

αj = max
x∈S
x 6=0

‖(B + (A−B))x‖2
‖x‖2

≤ max
x∈S
x 6=0

‖Bx‖2
‖x‖2

+max
x∈S
x 6=0

‖(A−B)x‖2
‖x‖2

≤ βj+‖A−B‖2.

By symmetry we obtain βj ≤ αj + ‖A−B‖2 and the proof is complete.

The following result is an analogue of Theorem 7.31.

Theorem 11.38 (Generalized inverse when perturbing the matrix)
Let A,E ∈ Rm×n have singular values α1 ≥ · · · ≥ αn and ε1 ≥ · · · ≥ εn. If
‖A†‖2‖E‖2 < 1 then

1. rank(A+E) ≥ rank(A),

2. ‖(A+E)†‖2 ≤ ‖A†‖2
1−‖A†‖2‖E‖2

= 1
αr−ε1 ,

where r is the rank of A.

Proof. Suppose A has rank r and let B := A + E have singular values β1 ≥
· · · ≥ βn. In terms of singular values the inequality ‖A†‖2‖E‖2 < 1 can be written
ε1/αr < 1 or αr > ε1. By Theorem 11.37 we have αr − βr ≤ ε1, which implies
βr ≥ αr−ε1 > 0, and this shows that rank(A+E) > r. To prove 2., the inequality
βr ≥ αr − ε1 implies that

‖(A+E)†‖2 ≤
1

βr
≤ 1

αr − ε1
=

1/αr
1− ε1/αr

=
‖A†‖2

1− ‖A†‖2‖E‖2
.

11.7 Review Questions
11.7.1 Do the normal equations always have a solution?

11.7.2 When is the least squares solution unique?
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11.7.3 Express the general least squares solution in terms of the generalized in-
verse.

11.7.4 Consider perturbing the right-hand side in a linear equation and a least
squares problem. What is the main difference in the perturbation inequali-
ties?

11.7.5 Why does one often prefer using QR factorization instead of normal equa-
tions for solving least squares problems.

11.7.6 What is an orthogonal sum?

11.7.7 How is an orthogonal projection defined?
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Chapter 12

Numerical Eigenvalue
Problems

12.1 Eigenpars
Eigenpairs have applications in quantum mechanics, differential equations, elas-
ticity in mechanics, etc, etc. Typical computational problems involve

• Finding one or a few of the eigenvalues.

• Finding one or a few of the eigenpairs.

• Finding all eigenvalues.

• Finding all eigenpairs.

In this and the next chapter we consider some numerical methods for finding
one or more of the eigenvalues and eigenvectors of a matrix A ∈ Cn×n. Maybe
the first method which comes to mind is to form the characteristic polynomial πA
of A, and then use a polynomial root finder, like Newton’s method to determine
one or several of the eigenvalues.

It turns out that this is not suitable as an all purpose method. One reason is
that a small change in one of the coefficients of πA(λ) can lead to a large change in
the roots of the polynomial. For example, if πA(λ :) = λ16 and q(λ) = λ16−10−16

then the roots of πA are all equal to zero, while the roots of q are λj = 10−1e2πij/16,
j = 1, . . . , 16. The roots of q have absolute value 0.1 and a perturbation in one of
the polynomial coefficients of magnitude 10−16 has led to an error in the roots of
approximately 0.1. The situation can be somewhat remedied by representing the
polynomials using a different basis.

We will see that for many matrices the eigenvalues are less sensitive to per-
turbations in the elements of the matrix. In this text we will only consider methods

289
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which work directly with the matrix.

12.2 Gerschgorin’s Theorem
The following theorem is useful for locating eigenvalues of an arbitrary square
matrix.

Theorem 12.1 (Gerschgorin’s circle theorem )
Suppose A ∈ Cn×n. Define for i = 1, 2, . . . , n

Ri = {z ∈ C : |z − aii| ≤ ri}, ri :=

n∑
j=1
j 6=i

|aij |,

Cj = {z ∈ C : |z − ajj | ≤ cj}, cj :=

n∑
i=1
i 6=j

|aij |.

Then any eigenvalue of A lies in R ∩ C where R = R1 ∪ R2 ∪ · · · ∪ Rn and
C = C1 ∪ C2 ∪ · · · ∪ Cn.

Proof. Suppose (λ,x) is an eigenpair for A. We claim that λ ∈ Ri, where
i is such that |xi| = ‖x‖∞. Indeed, Ax = λx implies that

∑
j aijxj = λxi or

(λ− aii)xi =
∑
j 6=i aijxj . Dividing by xi and taking absolute values we find

|λ− aii| = |
∑
j 6=i

aijxj/xi| ≤
∑
j 6=i

|aij ||xj/xi| ≤ ri

since |xj/xi| ≤ 1 for all j. Thus λ ∈ Ri.
Since λ is also an eigenvalue of AT , it must be in one of the row disks of

AT . But these are the column disks Cj of A. Hence λ ∈ Cj for some j.

The set Ri is a subset of the complex plane consisting of all points inside a
circle with center at aii and radius ri, c.f. Figure 12.1. Ri is called a (Gerschgorin)
row disk.

An eigenvalue λ lies in the union of the row disks R1, . . . , Rn and also in
the union of the column disks C1, . . . , Cn. If A is Hermitian then Ri = Ci for
i = 1, 2, . . . , n. Moreover, in this case the eigenvalues of A are real, and the
Gerschgorin disks can be taken to be intervals on the real line.

Example 12.2 (Gerschgorin)
Let T = tridiag(−1, 2,−1) ∈ Rm×m be the second derivative matrix. Since A is
Hermitian we have Ri = Ci for all i and the eigenvalues are real. We find

R1 = Rm = {z ∈ R : |z−2| ≤ 1}, and Ri = {z ∈ R : |z−2| ≤ 2}, i = 2, 3, . . . ,m−1.
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Figure 12.1. The Gerschgorin disk Ri.

We conclude that λ ∈ [0, 4] for any eigenvalue λ of T . To check this, we recall
that by Lemma 3.8 the eigenvalues of T are given by

λj = 4

[
sin

jπ

2(m+ 1)

]2

, j = 1, 2, . . . ,m.

When m is large the smallest eigenvalue 4
[
sin π

2(m+1)

]2
is very close to zero and

the largest eigenvalue 4
[
sin mπ

2(m+1)

]2
is very close to 4. Thus Gerschgorin’s theo-

rem gives a remarkably good estimate for large m.

Sometimes some of the Gerschgorin disks are distinct and we have

Corollary 12.3 (Disjoint Gerschgorin disks)
If p of the Gerschgorin row disks are disjoint from the others, the union of these
disks contains precisely p eigenvalues. The same result holds for the column disks.

Proof. Consider a family of matrices

A(t) := D + t(A−D), D := diag(a11, . . . , ann), t ∈ [0, 1].

We have A(0) = D and A(1) = A. As a function of t, every eigenvalue of A(t)
is a continuous function of t. This follows from Theorem 12.8, see Exercise 12.5.
The row disks Ri(t) of A(t) have radius proportional to t, indeed

Ri(t) = {z ∈ C : |z − aii| ≤ tri}, ri :=

n∑
j=1

j 6=i

|aij |.
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Clearly 0 ≤ t1 < t2 ≤ 1 implies Ri(t1) ⊂ Ri(t2) and Ri(1) is a row disk of A
for all i. Suppose

⋃p
k=1Rik(1) are disjoint from the other disks of A and set

Rp(t) :=
⋃p
k=1Rik(t) for t ∈ [0, 1]. Now Rp(0) contains only the p eigenvalues

ai1,i1 , . . . , aip,ip of A(0) = D. As t increases from zero to one the set Rp(t) is
disjoint from the other row disks of A and by the continuity of the eigenvalues
cannot loose or gain eigenvalues. It follows that Rp(1) must contain p eigenvalues
of A.

Example 12.4 Consider the matrix A =
[ 1 ε1 ε2
ε3 2 ε4
ε5 ε6 3

]
, where |εi| ≤ 10−15 all i. By

Corollary 12.3 the eigenvalues λ1, λ2, λ3 of A are distinct and satisfy |λj − j| ≤
2× 10−15 for j = 1, 2, 3.

Exercise 12.5 (Continuity of eigenvalues)
Suppose t1, t2 ∈ [0, 1] and that µ is an eigenvalue of A(t2). Show, using Theo-
rem 12.8 with A = A(t1) and E = A(t2) −A(t1), that A(t1) has an eigenvalue
λ such that

|λ− µ| ≤ C(t2 − t1)1/n, where C ≤ 2
(
‖D‖2 + ‖A−D‖2

)
.

Thus, as a function of t, every eigenvalue of A(t) is a continuous function of t.

Semyon Aranovich Gershgorin, 1901-1933 (left), Jacques Salomon Hadamard, 1865-
1963 (right).

Exercise 12.6 (Nonsingularity using Gerschgorin)
Consider the matrix

A =


4 1 0 0
1 4 1 0
0 1 4 1
0 0 1 4

 .

Show using Gerschgorin’s theorem that A is nonsingular.



12.3. Perturbation of Eigenvalues 293

Exercise 12.7 (Gerschgorin, strictly diagonally dominant matrix)
Show using Gerschgorin,s theorem that a strictly diagonally dominant matrix A
(|ai,i| >

∑
j 6=i |ai,j | for all i) is nonsingular.

12.3 Perturbation of Eigenvalues
In this section we study the following problem. Given matrices A,E ∈ Cn×n,
where we think of E as a pertubation of A. By how much do the eigenvalues of
A and A+E differ? Not surprisingly this problem is more complicated than the
corresponding problem for linear systems.

We illustrate this by considering two examples. Suppose A0 := 0 is the zero
matrix. If λ ∈ σ(A0 +E) = σ(E), then |λ| ≤ ‖E‖∞ by Theorem 8.28, and any
zero eigenvalue of A0 is perturbed by at most ‖E‖∞. On the other hand consider
for ε > 0 the matrices

A1 :=


0 1 0 · · · 0 0
0 0 1 · · · 0 0
...

...
...

...
...

0 0 0 · · · 0 1
0 0 0 · · · 0 0

 , E :=


0 0 0 · · · 0 0
0 0 0 · · · 0 0
...

...
...

...
...

0 0 0 · · · 0 0
ε 0 0 · · · 0 0

 = εene
T
1 .

The characteristic polynomial of A1 +E is π(λ) := (−1)n(λn − ε), and the zero

eigenvalues of A1 are perturbed by the amount |λ| = ‖E‖1/n∞ . Thus, for n = 16,
a perturbation of say ε = 10−16 gives a change in eigenvalue of 0.1.

The following theorem shows that a dependence ‖E‖1/n∞ is the worst that
can happen.

Theorem 12.8 (Elsner’s theorem(1985))
Suppose A,E ∈ Cn×n. To every µ ∈ σ(A+E) there is a λ ∈ σ(A) such that

|µ− λ| ≤ K‖E‖1/n2 , K =
(
‖A‖2 + ‖A+E‖2

)1−1/n
. (12.1)

Proof. Suppose A has eigenvalues λ1, . . . , λn and let λ1 be one which is closest
to µ. Let u1 with ‖u1‖2 = 1 be an eigenvector corresponding to µ, and extend
u1 to an orthonormal basis {u1, . . . ,un} of Cn. Note that

‖(µI −A)u1‖2 = ‖(A+E)u1 −Au1‖2 = ‖Eu1‖2 ≤ ‖E‖2,
n∏
j=2

‖(µI −A)uj‖2 ≤
n∏
j=2

(|µ|+ ‖Auj‖2) ≤
(
‖(A+E)‖2 + ‖A‖2

)n−1
.
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Using this and Hadamard’s inequality (10.6) we find

|µ− λ1|n ≤
n∏
j=1

|µ− λj | = |det(µI −A)| = |det
(
(µI −A)[u1, . . . ,un]

)
|

≤ ‖(µI −A)u1‖2
n∏
j=2

‖(µI −A)uj‖2 ≤ ‖E‖2
(
‖(A+E)‖2 + ‖A‖2

)n−1
.

The result follows by taking nth roots in this inequality.

It follows from this theorem that the eigenvalues depend continuously on the

elements of the matrix. The factor ‖E‖1/n2 shows that this dependence is almost,
but not quite, differentiable. As an example, the eigenvalues of the matrix [ 1 1

ε 1 ]
are 1±

√
ε and this expression is not differentiable at ε = 0.

Recall that a matrix is nondefective if the eigenvectors form a basis for Cn.
For nondefective matrices we can get rid of the annoying exponent 1/n in ‖E‖2.
For a more general discussion than in the following theorem see [28].

Theorem 12.9 (Absolute errors)
Suppose A ∈ Cn×n has linearly independent eigenvectors {x1, . . . ,xn} and let
X = [x1, . . . ,xn] be the eigenvector matrix. To any µ ∈ C and x ∈ Cn with
‖x‖p = 1 we can find an eigenvalue λ of A such that

|λ− µ| ≤ Kp(X)‖r‖p, 1 ≤ p ≤ ∞, (12.2)

where r := Ax − µx and Kp(X) := ‖X‖p ‖X−1‖p. If for some E ∈ Cn×n it
holds that (µ,x) is an eigenpair for A +E, then we can find an eigenvalue λ of
A such that

|λ− µ| ≤ Kp(X)‖E‖p, 1 ≤ p ≤ ∞, (12.3)

Proof. If µ ∈ σ(A) then we can take λ = µ and (12.2), (12.3) hold trivially. So
assume µ /∈ σ(A). Since A is nondefective it can be diagonalized, we have A =
XDX−1, where D = diag(λ1, . . . , λn) and (λj ,xj) are the eigenpairs of A for
j = 1, . . . , n. DefineD1 := D−µI. ThenD−1

1 = diag
(
(λ1−µ)−1, . . . , (λn−µ)−1

)
exists and

XD−1
1 X−1r =

(
X(D − µI)X−1

)−1
r = (A− µI)−1(A− µI)x = x.

Using this and Lemma 12.11 below we obtain

1 = ‖x‖p = ‖XD−1
1 X−1r‖p ≤ ‖D−1

1 ‖pKp(X)‖r‖p =
Kp(X)‖r‖p
minj |λj − µ|

.

But then (12.2) follows. If (A+E)x = µx then 0 = Ax − µx+Ex = r +Ex.
But then ‖r‖p = ‖−Ex‖p ≤ ‖E‖p. Inserting this in (12.2) proves (12.3).
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The equation (12.3) shows that for a nondefective matrix the absolute error
can be magnified by at most Kp(X), the condition number of the eigenvector
matrix with respect to inversion. If Kp(X) is small then a small perturbation
changes the eigenvalues by small amounts.

Even if we get rid of the exponent 1/n, the equation (12.3) illustrates that
it can be difficult or sometimes impossible to compute accurate eigenvalues and
eigenvectors of matrices with almost linearly dependent eigenvectors. On the other
hand the eigenvalue problem for normal matrices is better conditioned. Indeed,
if A is normal then it has a set of orthonormal eigenvectors and the eigenvector
matrix is unitary. If we restrict attention to the 2-norm then K2(X) = 1 and
(12.3) implies the following result.

Theorem 12.10 (Perturbations, normal matrix)
Suppose A ∈ Cn×n is normal and let µ be an eigenvalue of A + E for some
E ∈ Cn×n. Then we can find an eigenvalue λ of A such that |λ− µ| ≤ ‖E‖2.

For an even stronger result for Hermitian matrices see Corollary 5.30. We
conclude that the situation for the absolute error in an eigenvalue of a Hermitian
matrix is quite satisfactory. Small perturbations in the elements are not magnified
in the eigenvalues.

In the proof of Theorem 12.9 we used that the p-norm of a diagonal matrix
is equal to its spectral radius.

Lemma 12.11 (p-norm of a diagonal matrix)
If A = diag(λ1, . . . , λn) is a diagonal matrix then ‖A‖p = ρ(A) for 1 ≤ p ≤ ∞.

Proof. For p =∞ the proof is left as an exercise. For any x ∈ Cn and p <∞ we
have

‖Ax‖p = ‖[λ1x1, . . . , λnxn]T ‖p =
( n∑
j=1

|λj |p|xj |p
)1/p ≤ ρ(A)‖x‖p.

Thus ‖A‖p = maxx6=0
‖Ax‖p
‖x‖p ≤ ρ(A). But from Theorem 8.28 we have ρ(A) ≤

‖A‖p and the proof is complete.

Exercise 12.12 (∞-norm of a diagonal matrix)
Give a direct proof that ‖A‖∞ = ρ(A) if A is diagonal.

For the accuracy of an eigenvalue of small magnitude we are interested in
the size of the relative error.
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Theorem 12.13 (Relative errors)
Suppose in Theorem 12.9 that A ∈ Cn×n is nonsingular. To any µ ∈ C and
x ∈ Cn with ‖x‖p = 1, we can find an eigenvalue λ of A such that

|λ− µ|
|λ|

≤ Kp(X)Kp(A)
‖r‖p
‖A‖p

, 1 ≤ p ≤ ∞, (12.4)

where r := Ax − µx. If for some E ∈ Cn×n it holds that (µ,x) is an eigenpair
for A+E, then we can find an eigenvalue λ of A such that

|λ− µ|
|λ|

≤ Kp(X)‖A−1E‖p ≤ Kp(X)Kp(A)
‖E‖p
‖A‖p

, 1 ≤ p ≤ ∞, (12.5)

Proof. Applying Theorem 8.28 to A−1 we have for any λ ∈ σ(A)

1

λ
≤ ‖A−1‖p =

Kp(A)

‖A‖p

and (12.4) follows from (12.2). To prove (12.5) we define the matrices B :=
µA−1 and F := −A−1E. If (λj ,x) are the eigenpairs for A then

(
µ
λj
,x
)

are the

eigenpairs for B for j = 1, . . . , n. Since (µ,x) is an eigenpair for A+E we find

(B + F − I)x = (µA−1 −A−1E − I)x = A−1
(
µI − (E +A)

)
x = 0.

Thus (1,x) is an eigenpair for B + F . Applying Theorem 12.9 to this eigenvalue
we can find λ ∈ σ(A) such that |µλ − 1| ≤ Kp(X)‖F ‖p = Kp(X)‖A−1E‖p which
proves the first estimate in (12.5). The second inequality in (12.5) follows from
the submultiplicativity of the p-norm.

12.4 Unitary Similarity Transformation of a Matrix
into Upper Hessenberg Form

Before attempting to find eigenvalues and eigenvectors of a matrix (exceptions
are made for certain sparse matrices), it is often advantageous to reduce it by
similarity transformations to a simpler form. Orthogonal or unitary similarity
transformations are particularly important since they are insensitive to noise in
the elements of the matrix. In this section we show how this reduction can be
carried out.

Recall that a matrix A ∈ Cn×n is upper Hessenberg if ai,j = 0 for j =
1, 2, . . . , i−2, i = 3, 4, . . . , n. We will reduce A ∈ Cn×n to upper Hessenberg form
by unitary similarity transformations. Let A1 = A and define Ak+1 = HkAkHk

for k = 1, 2, . . . , n − 2. Here Hk is a Householder transformation chosen to
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introduce zeros in the elements of column k of Ak under the subdiagonal. The
final matrix An−1 will be upper Hessenberg.

If A1 = A is Hermitian, the matrix An−1 will be Hermitian and tridiagonal.
For if A∗k = Ak then

A∗k+1 = (HkAkHk)∗ = HkA
∗
kHk = Ak+1.

Since An−1 is upper Hessenberg and Hermitian, it must be tridiagonal.
To describe the reduction to upper Hessenberg or tridiagonal form in more

detail we partition Ak as follows

Ak =

[
Bk Ck

Dk Ek

]
.

Suppose Bk ∈ Ck,k is upper Hessenberg, and the first k − 1 columns of Dk ∈
Cn−k,k are zero, i.e. Dk = [0,0, . . . ,0,dk]. Let V k = I − vkv∗k ∈ Cn−k,n−k be a
Householder transformation such that V kdk = αke1. Define

Hk =

[
Ik 0
0 V k

]
∈ Cn×n.

The matrix Hk is a Householder transformation, and we find

Ak+1 = HkAkHk =

[
Ik 0
0 V k

] [
Bk Ck

Dk Ek

] [
Ik 0
0 V k

]
=

[
Bk CkV k

V kDk V kEkV k

]
.

Now V kDk = [V k0, . . . ,V k0,V kdk] = (0, . . . ,0, αke1). Moreover, the matrix
Bk is not affected by the Hk transformation. Therefore the upper left (k + 1)×
(k + 1) corner of Ak+1 is upper Hessenberg and the reduction is carried one step
further. The reduction stops with An−1 which is upper Hessenberg.

To find Ak+1 we use Algorithm 10.4 to find vk and αk. We store vk in the
kth column of a matrix L as L(k + 1 : n, k) = vk. This leads to the following
algorithm.
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Algorithm 12.14 (Householder reduction to Hessenberg form) This
algorithm uses Householder similarity transformations to reduce a matrix
A ∈ Cn×n to upper Hessenberg form. The reduced matrix B is tridiagonal if
A is symmetric. Details of the transformations are stored in a lower triangular
matrix L. The elements of L can be used to assemble a unitary matrix Q such
that B = Q∗AQ. Algorithm 10.4 is used in each step of the reduction.

1 function [ L ,B] = hesshousegen (A)
2 n=length (A) ; L=zeros (n , n) ; B=A;
3 for k=1:n−2
4 [ v ,B( k+1,k ) ]= housegen (B( k+1:n , k ) ) ;
5 L( k+1:n , k )=v ; B( k+2:n , k )=zeros (n−k−1 ,1) ;
6 C=B( k+1:n , k+1:n) ; B( k+1:n , k+1:n)=C−v∗(v ’∗C) ;
7 C=B( 1 : n , k+1:n) ; B( 1 : n , k+1:n)=C−(C∗v ) ∗v ’ ;
8 end

Exercise 12.15 (Number of arithmetic operations, Hessenberg reduction)

Show that the number of arithmetic operations for Algorithm 12.14 is 10
3 n

3 = 5Gn.

We can use the output of Algorithm 12.14 to assemble the matrix Q ∈ Rn×n
such that Q is orthonormal and Q∗AQ is upper Hessenberg. We need to compute

the product Q = H1H2 · · ·Hn−2, where Hk =
[
I 0
0 I−vkvTk

]
and vk ∈ Rn−k.

Since v1 ∈ Rn−1 and vn−2 ∈ R2 it is most economical to assemble the product
from right to left. We compute

Qn−1 = I and Qk = HkQk+1 for k = n− 2, n− 3, . . . , 1.

Suppose Qk+1 has the form
[
Ik 0
0 Uk

]
, where Uk ∈ Rn−k,n−k. Then

Qk =

[
Ik 0
0 I − vkvTk

]
∗
[
Ik 0
0 Uk

]
=

[
Ik 0
0 Uk − vk(vTkUk)

]
.

This leads to the following algorithm.

Algorithm 12.16 (Assemble Householder transformations)
Suppose [L,B] = hesshousegen(A) is the output of Algorithm 12.14. This
algorithm assembles an orthonormal matrix Q from the columns of L such that
B = Q∗AQ is upper Hessenberg.

1 function Q = accumulateQ (L)
2 n=length (L) ; Q=eye (n) ;
3 for k=n−2:−1:1
4 v=L( k+1:n , k ) ; C=Q( k+1:n , k+1:n) ;
5 Q( k+1:n , k+1:n)=C−v∗(v ’∗C) ;
6 end
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Exercise 12.17 (Assemble Householder transformations)
Show that the number of arithmetic operations required by Algorithm 12.16 is
4
3n

3 = 2Gn.

Exercise 12.18 (Tridiagonalize a symmetric matrix)
If A is real and symmetric we can modify Algorithm 12.14 as follows. To find
Ak+1 from Ak we have to compute V kEkV k where Ek is symmetric. Dropping
subscripts we have to compute a product of the form G = (I − vvT )E(I − vvT ).
Let w := Ev, β := 1

2v
Tw and z := w − βv. Show that G = E − vzT − zvT .

Since G is symmetric, only the sub- or superdiagonal elements of G need to be
computed. Computing G in this way, it can be shown that we need O(4n3/3)
operations to tridiagonalize a symmetric matrix by orthonormal similarity trans-
formations. This is less than half the work to reduce a nonsymmetric matrix to
upper Hessenberg form. We refer to [27] for a detailed algorithm.

12.5 Computing a Selected Eigenvalue of a
Symmetric Matrix

Let A ∈ Rn×n be symmetric with eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λn. In this section
we consider a method to compute an approximation to the mth eigenvalue λm for
some 1 ≤ m ≤ n. Using Householder similarity transformations as outlined in the
previous section we can assume that A is symmetric and tridiagonal.

A =


d1 c1
c1 d2 c2

. . .
. . .

. . .

cn−2 dn−1 cn−1

cn−1 dn

 . (12.6)

Suppose one of the off-diagonal elements is equal to zero, say ci = 0. We then
have A =

[
A1 0
0 A2

]
, where

A1 =


d1 c1
c1 d2 c2

. . .
. . .

. . .

ci−2 di−1 ci−1

ci−1 di

 and A2 =


di+1 ci+1

ci+1 di+2 ci+2

. . .
. . .

. . .

cn−2 dn−1 cn−1

cn−1 dn

 .
Thus A is block diagonal and each diagonal block is tridiagonal. By 6. of Theo-
rem 5.1 we can split the eigenvalue problem into two smaller problems involving
A1 and A2. We assume that this reduction has been carried out so that A is
irreducible, i. e., ci 6= 0 for i = 1, . . . , n− 1.



300 Chapter 12. Numerical Eigenvalue Problems

We first show that irreducibility implies that the eigenvalues are distinct.

Lemma 12.19 (Distinct eigevalues of a tridiagonal matrix)
An irreducible, tridiagonal and symmetric matrix A ∈ Rn×n has n real and dis-
tinct eigenvalues.

Proof. Let A be given by (12.6). By Theorem 5.23 the eigenvalues are real.
Define for x ∈ R the polynomial pk(x) := det(xIk −Ak) for k = 1, . . . , n, where
Ak is the upper left k×k corner of A (the leading principal submatrix of order k).
The eigenvalues of A are the roots of the polynomial pn. Using the last column
to expand for k ≥ 2 the determinant pk+1(x) we find

pk+1(x) = (x− dk+1)pk(x)− c2kpk−1(x). (12.7)

Since p1(x) = x− d1 and p2(x) = (x− d2)(x− d1)− c21 this also holds for k = 0, 1
if we define p−1(x) = 0 and p0(x) = 1. For M sufficiently large we have

p2(−M) > 0, p2(d1) < 0, p2(+M) > 0.

Since p2 is continuous there are y1 ∈ (−M,d1) and y2 ∈ (d1,M) such that p2(y1) =
p2(y2) = 0. It follows that the root d1 of p1 separates the roots of p2, so y1 and
y2 must be distinct. Consider next

p3(x) = (x− d3)p2(x)− c22p1(x) = (x− d3)(x− y1)(x− y2)− c22(x− d1).

Since y1 < d1 < y2 we have for M sufficiently large

p3(−M) < 0, p3(y1) > 0, p3(y2) < 0, p3(+M) > 0.

Thus the roots x1, x2, x3 of p3 are separated by the roots y1, y2 of p2. In the
general case suppose for k ≥ 2 that the roots z1, . . . , zk−1 of pk−1 separate the
roots y1, . . . , yk of pk. Choose M so that y0 := −M < y1, yk+1 := M > yk. Then

y0 < y1 < z1 < y2 < z2 · · · < zk−1 < yk < yk+1.

We claim that for M sufficiently large

pk+1(yj) = (−1)k+1−j |pk+1(yj)| 6= 0, for j = 0, 1, . . . , k + 1.

This holds for j = 0, k + 1, and for j = 1, . . . , k since

pk+1(yj) = −c2kpk−1(yj) = −c2k(yj − z1) · · · (yj − zk−1).

It follows that the roots x1, . . . , xk+1 are separated by the roots y1, . . . , yk of pk
and by induction the roots of pn (the eigenvalues of A) are distinct.
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12.5.1 The inertia theorem

We say that two matrices A,B ∈ Cn×n are congruent if A = E∗BE for some
nonsingular matrix E ∈ Cn×n. By Theorem 5.21 a Hermitian matrix A is both
congruent and similar to a diagonal matrix D, U∗AU = D where U is uni-
tary. The eigenvalues of A are the diagonal elements of D. Let π(A), ζ(A) and
υ(A) denote the number of positive, zero and negative eigenvalues of A. If A is
Hermitian then all eigenvalues are real and π(A) + ζ(A) + υ(A) = n.

Theorem 12.20 (Sylvester’s inertia theorem )
If A,B ∈ Cn×n are Hermitian and congruent then π(A) = π(B), ζ(A) = ζ(B)
and υ(A) = υ(B).

Proof. Suppose A = E∗BE, where E is nonsingular. Assume first that A and
B are diagonal matrices. Suppose π(A) = k and π(B) = m < k. We shall show
that this leads to a contradiction. Let E1 be the upper left m × k corner of E.
Since m < k, we can find a nonzero x such that E1x = 0 (cf. Lemma 0.32). Let
yT = [xT ,0T ] ∈ Cn, and z = [z1, . . . , zn]T = Ey. Then zi = 0 for i = 1, 2, . . . ,m.
If A has positive eigenvalues λ1, . . . , λk and B has eigenvalues µ1, . . . , µn, where
µi ≤ 0 for i ≥ m+ 1 then

y∗Ay =

n∑
i=1

λi|yi|2 =

k∑
i=1

λi|xi|2 > 0.

But

y∗Ay = y∗E∗BEy = z∗Bz =

n∑
i=m+1

µi|zi|2 ≤ 0,

a contradiction.
We conclude that π(A) = π(B) if A and B are diagonal. Moreover, υ(A) =

π(−A) = π(−B) = υ(B) and ζ(A) = n−π(A)−υ(A) = n−π(B)−υ(B) = ζ(B).
This completes the proof for diagonal matrices.

Let in the general case U1 and U2 be unitary matrices such that U∗1AU1 =
D1 and U∗2BU2 = D2 where D1 and D2 are diagonal matrices. Since A =
E∗BE, we find D1 = F ∗D2F where F = U∗2EU1 is nonsingular. Thus D1 and
D2 are congruent diagonal matrices. But since A and D1, B and D2 have the
same eigenvalues, we find π(A) = π(D1) = π(D2) = π(B). Similar results hold
for ζ and υ.

Corollary 12.21 (Counting eigenvalues using the LDLT factorization)
Suppose A = tridiag(ci, di, ci) ∈ Rn×n is symmetric and that α ∈ R is such that
A−αI has an symmetric LU factorization, i.e. A−αI = LDLT where L is unit
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lower triangular and D is diagonal. Then the number of eigenvalues of A strictly
less than α equals the number of negative diagonal elements in D. The diagonal
elements d1(α), . . . , dn(α) in D can be computed recursively as follows

d1(α) = d1 − α, dk(α) = dk − α− c2k−1/dk−1(α), k = 2, 3, . . . , n. (12.8)

Proof. Since the diagonal elements in R in an LU factorization equal the
diagonal elements in D in an LDLT factorization we see that the formulas in
(12.8) follows immediately from (1.4). Since L is nonsingular, A− αI and D are
congruent. By the previous theorem υ(A− αI) = υ(D), the number of negative
diagonal elements in D. If Ax = λx then (A − αI)x = (λ − α)x, and λ − α is
an eigenvalue of A − αI. But then υ(A − αI) equals the number of eigenvalues
of A which are less than α.

Exercise 12.22 (Counitng eigenvalues)
Consider the matrix in Exercise 12.6. Determine the number of eigenvalues greater
than 4.5.

Exercise 12.23 (Overflow in LDLT factorization)
Let for n ∈ N

An =



10 1 0 · · · 0

1 10 1
. . .

...

0
. . .

. . .
. . . 0

...
. . . 1 10 1

0 · · · 0 1 10


∈ Rn×n.

a) Let dk be the diagonal elements of D in a symmetric factorization of An. Show
that 5+

√
24 < dk ≤ 10, k = 1, 2, . . . , n.

b) Show that Dn := det(An) > (5+
√

24)n. Give n0 ∈ N such that your computer
gives an overflow when Dn0

is computed in floating point arithmetic.

Exercise 12.24 (Simultaneous diagonalization)
(Simultaneous diagonalization of two symmetric matrices by a congruence trans-
formation). Let A,B ∈ Rn×n where AT = A and B is symmetric positive
definite. Let B = UTDU where U is orthonormal and D = diag(d1, . . . , dn).

Let Â = D−1/2UAUTD−1/2 where

D−1/2 := diag
(
d
−1/2
1 , . . . , d−1/2

n

)
.
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a) Show that Â is symmetric.

Let Â = Û
T
D̂Û where Û is orthonormal and D̂ is diagonal. Set E = UTD−1/2Û

T
.

b) Show that E is nonsingular and that ETAE = D̂, ETBE = I.

For a more general result see Theorem 10.1 in [17].

12.5.2 Approximating λm

Corollary 12.21 can be used to determine the mth eigenvalue of A, where λ1 ≥
λ2 ≥ · · · ≥ λn. Using Gerschgorin’s theorem we first find an interval [a, b], such
that (a, b) contains the eigenvalues of A. Let for x ∈ [a, b]

ρ(x) := #{k : dk(x) > 0 for k = 1, . . . , n}

be the number of eigenvalues of A which are strictly greater than x. Clearly
ρ(a) = n, ρ(b) = 0. Choosing a tolerance ε and using bisection we proceed as
follows:

h = b− a;

for j = 1 : itmax

c = (a+ b)/2;

if b− a < eps ∗ h
λ = (a+ b)/2; return

end

k = ρ(c);

if k ≥ m a = c else b = c;

end

(12.9)

We generate a sequence {[aj , bj ]} of intervals, each containing λm and bj −
aj = 2−j(b− a).

As it stands this method will fail if in (12.8) one of the dk(α) is zero. One
possibility is to replace such a dk(α) by a suitable small number, say δk = ckεM ,
where εM is the Machine epsilon, typically 2×10−16 for Matlab. This replacement
is done if |dk(α)| < |δk|.

Exercise 12.25 (Program code for one eigenvalue)
Suppose A = tridiag(c,d, c) is symmetric and tridiagonal with elements d1, . . . , dn
on the diagonal and c1, . . . , cn−1 on the neighboring subdiagonals. Let λ1 ≥ λ2 ≥
· · · ≥ λn be the eigenvalues of A. We shall write a program to compute one
eigenvalue λm for a given m using bisection and the method outlined in (12.9).
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a) Write a function k=count(c,d,x) which for given x counts the number
of eigenvalues of A strictly greater than x. Use the replacement described
above if one of the dj(x) is close to zero.

b) Write a function lambda=findeigv(c,d,m) which first estimates an
interval (a, b] containing all eigenvalues of A and then generates a sequence
{(aj , bj ]} of intervals each containing λm. Iterate until bj − aj ≤ (b− a)εM ,
where εM is Matlab’s machine epsilon eps. Typically εM ≈ 2.22× 10−16.

c) Test the program on T := tridiag(−1, 2,−1) of size 100. Compare the exact
value of λ5 with your result and the result obtained by using Matlab’s built-in
function eig.

Exercise 12.26 (Determinant of upper Hessenberg matrix)
Suppose A ∈ Cn×n is upper Hessenberg and x ∈ C. We will study two algorithms
to compute f(x) = det(A− xI).

a) Show that Gaussian elimination without pivoting requires O(n2) arithmetic
operations.

b) Show that the number of arithmetic operations is the same if partial pivoting
is used.

c) Estimate the number of arithmetic operations if Given’s rotations are used.

d) Compare the two methods discussing advantages and disadvantages.

12.6 Review Questions
12.6.1 Suppose A,E ∈ Cn×n. To every µ ∈ σ(A+E) there is a λ ∈ σ(A) which

is in some sense close to µ.

• What is the general result (Elsner’s theorem)?

• what if A is non defective?

• what if A is normal?

• what if A is Hermitian?

12.6.2 Can Gerschgorin’s theorem be used to check if a matrix is nonsingular?

12.6.3 How many arithmetic operation does it take to reduce a matrix by sim-
ilarity transformations to upper Hessenberg form by Householder transfor-
mations?

12.6.4 Give a condition ensuring that a tridiagonal symmetric matrix has real
and distinct eigenvalues:
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12.6.5 What is the content of Sylvester’s inertia theorem?

12.6.6 Give an application of this theorem.
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Chapter 13

The QR Algorithm

The QR algorithm is a method to find all eigenvalues and eigenvectors of a matrix.
It is related to a simpler method called the power method and we start studying
this method and its variants.

13.1 The Power Method and its variants
These methods can be used to compute a single eigenpair of a matrix. They also
play a role in the QR algorithm.

13.1.1 The power method

The power method in its basic form is a technique to compute the eigenvector
corresponding to the largest (in absolute value) eigenvalue of a matrix A ∈ Cn×n.
As a by product we can also find the corresponding eigenvalue. We define a
sequence {zk} of vectors in Cn by

zk := Akz0 = Azk−1, k = 1, 2, . . . . (13.1)

Example 13.1 (Power method)
Let

A =

[
2 −1
−1 2

]
, z0 :=

[
1
0

]
.

We find

z1 = Az0 =

[
2
−1

]
, z2 = Az1 =

[
5
−4

]
, · · · , zk =

1

2

[
1 + 3k

1− 3k

]
, · · · .

307
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It follows that 2zk/3
k converges to the eigenvector [1,−1] corresponding to the

dominant eigenvalue λ = 3. The sequence of Rayleigh quotients {zTkAzk/zTk zk}
will converge to the dominant eigenvalue λ = 3.

To understand better what happens we expand z0 in terms of the eigenvectors

z0 =
1

2

[
1
−1

]
+

1

2

[
1
1

]
= c1v1 + c2v2.

Since Ak has eigenpairs (λkj ,vj), j = 1, 2 we find

zk = c1λ
k
1v1 + c2λ

k
2v2 = c13kv1 + c21kv2.

Thus 3−kzk = c1v1 + 3−kc2v2 → c1v1. Since c1 6= 0 the result is convergence to
the dominant eigenvector.

Let A ∈ Cn×n have eigenpairs (λj ,vj), j = 1, . . . , n with |λ1| > |λ2| ≥ · · · ≥
|λn|.

Given z0 ∈ Cn we assume that

(i) |λ1| > |λ2| ≥ |λ3| ≥ · · · ≥ |λn|,
(ii) zT0 v1 6= 0

(iii) A has linearly independent eigenvectors.

(13.2)

The first assumption means that A has a dominant eigenvalue λ1 of algebraic
multiplicity one. The second assumption says that z0 has a component in the
direction v1. The third assumption is not necessary, but is included in order to
simplify the analysis.

To see what happens let z0 = c1v1 +c2v2 + · · ·+cnvn, where by assumption
(ii) of (13.2) we have c1 6= 0. Since Akvj = λkjvj for all j we see that

zk = c1λ
k
1v1 + c2λ

k
2v2 + · · ·+ cnλ

k
nvn, k = 0, 1, 2, . . . . (13.3)

Dividing by λk1 we find

zk
λk1

= c1v1 + c2

(λ2

λ1

)k
v2 + · · ·+ cn

(λn
λ1

)k
vn, k = 0, 1, 2, . . . . (13.4)

Assumption (i) of (13.2) implies that (λj/λ1)k → 0 as k → ∞ for all j ≥ 2 and
we obtain

lim
k→∞

zk
λk1

= c1v1, (13.5)

the dominant eigenvector of A. It can be shown that this also holds for defective
matrices as long as (i) and (ii) of (13.2) hold, see for example page 58 of [27].
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In practice we need to scale the iterates zk somehow and we normally do
not know λ1. Instead we choose a norm on Cn, set x0 = z0/‖z0‖ and generate
for k = 1, 2, . . . unit vectors as follows:

(i) yk = Axk−1

(ii) xk = yk/‖yk‖.
(13.6)

Lemma 13.2 (Convergence of the power method)
Suppose (13.2) holds. Then

lim
k→∞

( |λ1|
λ1

)k
xk =

c1
|c1|

v1

‖v1‖
.

In particular, if λ1 > 0 and c1 > 0 then the sequence {xk} will converge to the
eigenvector u1 := v1/‖v1‖ of unit length.

Proof. By induction on k it follows that xk = zk/‖zk‖ for all k ≥ 0, where zk =
Akz0. Indeed, this holds for k = 1, and if it holds for k − 1 then yk = Axk−1 =
Azk−1/‖zk−1‖ = zk/‖zk−1‖ and xk = (zk/‖zk−1‖)(‖zk−1‖/‖zk‖) = zk/‖zk‖.
But then

xk =
zk
‖zk‖

=
c1λ

k
1

|c1λk1 |

v1 + c2
c1

(
λ2

λ1

)k
v2 + · · ·+ cn

c1

(
λn
λ1

)k
vn

‖v1 + c2
c1

(
λ2

λ1

)k
v2 + · · ·+ cn

c1

(
λn
λ1

)k
vn‖

, k = 0, 1, 2, . . . ,

and this implies the lemma.

Suppose we know an approximate eigenvector u of A, but not the corre-
sponding eigenvalue µ. One way of estimating µ is to minimize the Euclidian
norm of the residual r(λ) := Au− λu.

Theorem 13.3 (The Rayleigh quotient minimizes the residual)
Let A ∈ Cn×n, u ∈ Cn \ {0}, and let ρ : C→ R be given by ρ(λ) = ‖Au− λu‖2.
Then ρ is minimized when λ := u∗Au

u∗u , the Rayleigh quotient for A.

Proof. Assume u∗u = 1 and extend u to an orthonormal basis {u,U} for Cn.
Then U∗u = 0 and[

u∗

U∗

]
(Au− λu) =

[
u∗Au− λu∗u
U∗Au− λU∗u

]
=

[
u∗Au− λ
U∗Au

]
.

By unitary invariance of the Euclidian norm

ρ(λ)2 = |u∗Au− λ|2 + ‖U∗Au‖22,
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and ρ has a global minimum at λ = u∗Au.

Exercise 13.4 (Orthogonal vectors)
Show that u and Au− λu are orthogonal when λ = u∗Au

u∗u .

Using Rayleigh quotients we can incorporate the calculation of the eigenvalue
into the power iteration. We can then compute the residual and stop the iteration
when the residual is sufficiently small. But what does it mean to be sufficiently
small? Recall that if A is nonsingular with a nonsingular eigenvector matrix X
and (µ,u) is an approximate eigenpair with ‖u‖2 = 1, then by (12.4) we can find
an eigenvalue λ of A such that

|λ− µ|
|λ|

≤ K2(X)K2(A)
‖Au− µu‖2
‖A‖2

.

Thus if the relative residual is small and both A and X are well conditioned then
the relative error in the eigenvalue will be small.

This discussion leads to the power method with Rayleigh quotient compu-
tation. Given A ∈ Cn×n, a starting vector z ∈ Cn, a maximum number K of
iterations, and a convergence tolerance tol. The power method combined with
a Rayleigh quotient estimate for the eigenvalue is used to compute a dominant
eigenpair (l,x) of A with ‖x‖2 = 1. The integer it returns the number of itera-
tions needed in order for ‖Ax − lx‖2/‖A‖F < tol. If no such eigenpair is found
in K iterations the value it = K + 1 is returned.

Algorithm 13.5 (The power method)

1 function [ l , x , i t ]= power i t (A, z ,K, t o l )
2 a f=norm(A, ’fro’ ) ; x=z/norm( z ) ;
3 for k=1:K
4 y=A∗x ; l=x ’∗ y ;
5 i f norm(y−l ∗x ) / af<t o l
6 i t=k ; x=y/norm( y ) ; return
7 end
8 x=y/norm( y ) ;
9 end

10 i t=K+1;

Example 13.6 (Power method)
We try powerit on the three matrices

A1 :=

[
1 2
3 4

]
, A2 :=

[
1.7 −0.4
0.15 2.2

]
, and A3 =

[
1 2
−3 4

]
.
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In each case we start with the random vector z = [0.6602, 0.3420] and tol = 10−6.
For A1 we get convergence in 7 iterations, for A2 it takes 174 iterations, and for
A3 we do not get convergence.

The matrix A3 does not have a dominant eigenvalue since the two eigenval-
ues are complex conjugate of each other. Thus the basic condition (i) of (13.2) is
not satisfied and the power method diverges. The enormous difference in the rate
of convergence for A1 and A2 can be explained by looking at (13.4). The rate of

convergence depends on the ratio |λ2|
|λ1| . If this ratio is small then the convergence

is fast, while it can be quite slow if the ratio is close to one. The eigenvalues of
A1 are λ1 = 5.3723 and λ2 = −0.3723 giving a quite small ratio of 0.07 and the
convergence is fast. On the other hand the eigenvalues of A2 are λ1 = 2 and
λ2 = 1.9 and the corresponding ratio is 0.95 resulting in slow convergence.

A variant of the power method is the shifted power method In this method
we choose a number s and apply the power method to the matrix A − sI. The
number s is called a shift since it shifts an eigenvalue λ of A to λ− s of A− sI.
Sometimes the convergence can be faster if the shift is chosen intelligently. For
example, if we apply the shifted power method to A2 in Example 13.6 with shift
1.8, then with the same starting vector and tol as above, we get convergence in
17 iterations instead of 174 for the unshifted algorithm.

13.1.2 The inverse power method

Another variant of the power method with Rayleigh quotient is the inverse power
method. This method can be used to determine any eigenpair (λ,x) of A as long
as λ has algebraic multiplicity one. In the inverse power method we apply the
power method to the inverse matrix (A − sI)−1, where s is a shift. If A has
eigenvalues λ1, . . . , λn in no particular order then (A− sI)−1 has eigenvalues

µ1(s) = (λ1 − s)−1, µ2(s) = (λ2 − s)−1, . . . , µn(s) = (λn − s)−1.

Suppose λ1 is a simple eigenvalue ofA. Then lims→λ1
|µ1(s)| =∞, while lims→λ1

µj(s) =
(λj − λ1)−1 < ∞ for j = 2, . . . , n. Hence, by choosing s sufficiently close to λ1

the inverse power method will converge to that eigenvalue.
For the inverse power method (13.6) is replaced by

(i) (A− sI)yk = xk−1

(ii) xk = yk/‖yk‖.
(13.7)

Note that we solve the linear system rather than computing the inverse matrix.
Normally the PLU factorization of A − sI is precomputed in order to speed up
the computation.
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13.1.3 Rayleigh quotient iteration

A variant of the inverse power method is known simply as Rayleigh quotient
iteration. In this method we change the shift from iteration to iteration, using
the previous Rayleigh quotient sk−1 as the current shift. In each iteration we need
to compute the following quantities

(i) (A− sk−1I)yk = xk−1,

(ii) xk = yk/‖yk‖,
(iii) sk = x∗kAxk,

(iv) rk = Axk − skxk.

We can avoid the calculation of Axk in (iii) and (iv). Let

ρk :=
y∗kxk−1

y∗kyk
, wk :=

xk−1

‖yk‖2
.

Then

sk =
y∗kAyk
y∗kyk

= sk−1 +
y∗k(A− sk−1I)yk

y∗kyk
= sk−1 +

y∗kxk−1

y∗kyk
= sk−1 + ρk,

rk = Axk − skxk =
Ayk − (sk−1 + ρk)yk

‖yk‖2
=
xk−1 − ρkyk
‖yk‖2

= wk − ρkxk.

Another problem is that the linear system in i) becomes closer and closer to
singular as sk converges to the eigenvalue. Thus the system becomes more and
more ill-conditioned and we can expect large errors in the computed yk. This is
indeed true, but we are lucky. Most of the error occurs in the direction of the
eigenvector and this error disappears when we normalize yk in ii). Miraculously,
the normalized eigenvector will be quite accurate.

Given an approximation (s,x) to an eigenpair (λ,v) of a matrix A ∈ Cn×n.
The following algorithm computes a hopefully better approximation to (λ,v) by
doing one Rayleigh quotient iteration. The length nr of the new residual is also
returned
Algorithm 13.7 (Rayleigh quotient iteration)

1 function [ x , s , nr ]= r a y l e i g h i t (A, x , s )
2 n=length ( x ) ;
3 y=(A−s ∗eye (n , n) ) \x ;
4 yn=norm( y ) ;
5 w=x/yn ;
6 x=y/yn ;
7 rho=x ’∗w;
8 s=s+rho ;
9 nr=norm(w−rho∗x ) ;
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k 1 2 3 4 5
‖r‖2 1.0e+000 7.7e-002 1.6e-004 8.2e-010 2.0e-020
|s− λ1| 3.7e-001 -1.2e-002 -2.9e-005 -1.4e-010 -2.2e-016

Table 13.9. Quadratic convergence of Rayleigh quotient iteration.

Since the shift changes from iteration to iteration the computation of y in
rayleighit will require O(n3) arithmetic operations for a full matrix. For such
a matrix it might pay to reduce it to a upper Hessenberg form or tridiagonal
form before starting the iteration. However, if we have a good approximation to
an eigenpair then only a few iterations are necessary to obtain close to machine
accuracy.

If Rayleigh quotient iteration converges the convergence will be quadratic
and sometimes even cubic. We illustrate this with an example.

Example 13.8 (Rayleigh quotient iteration)
The smallest eigenvalue of the matrix A = [ 1 2

3 4 ] is λ1 = (5 −
√

33)/2 ≈ −0.37.
Starting with x = [1, 1]T and s = 0 rayleighit converges to this eigenvalue
and corresponding eigenvector. In Table 13.9 we show the rate of convergence by
iterating rayleighit 5 times. The errors are approximately squared in each
iteration indicating quadratic convergence.

13.2 The basic QR Algorithm
The QR algorithm is an iterative method to compute all eigenvalues and eigen-
vectors of a matrix A ∈ Cn×n. The matrix is reduced to triangular form by
a sequence of unitary similarity transformations computed from the QR factor-
ization of A. Recall that for a square matrix the QR factorization and the QR
decomposition are the same. If A = QR is a QR factorization then Q ∈ Cn×n is
unitary, Q∗Q = I and R ∈ Cn×n is upper triangular.

The basic QR algorithm takes the following form:

A1 = A

for k = 1, 2, . . .

QkRk = Ak (QR factorization of Ak)

Ak+1 = RkQk.

end

(13.8)

The determination of the QR factorization of Ak and the computation of
RkQk is called a QR step. It is not at all clear that a QR step does anything
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useful. At this point, since Rk = Q∗kAk we find

Ak+1 = RkQk = Q∗kAkQk, (13.9)

so Ak+1 is unitary similar to Ak. By induction Ak+1 is unitary similar to A.
Thus, each Ak has the same eigenvalues as A. We shall see that the basic QR
algorithm is related to the power method.

Here are two examples to illustrate what happens.

Example 13.10 (QR iteration; real eigenvalues)
We start with

A1 = A =

[
2 1
1 2

]
=
( 1√

5

[
2 −1
1 2

] )
∗
( 1√

5

[
5 4
0 3

] )
= Q1R1

and obtain

A2 = R1Q1 =
1

5

[
5 4
0 3

]
∗
[
2 −1
1 2

]
=

1

5

[
14 3
3 6

]
=

[
2.8 0.6
0.6 1.2

]
.

Continuing we find

A4 ≈
[

2.997 −0.074
−0.074 1.0027

]
, A10 ≈

[
3.0000 −0.0001
−0.0001 1.0000

]
A10 is almost diagonal and contains approximations to the eigenvalues λ1 = 3
and λ2 = 1 on the diagonal.

Example 13.11 (QR iteration; complex eigenvalues)
Applying the QR iteration (13.8) to the matrix

A1 = A =


0.9501 0.8913 0.8214 0.9218
0.2311 0.7621 0.4447 0.7382
0.6068 0.4565 0.6154 0.1763
0.4860 0.0185 0.7919 0.4057


we obtain

A14 =


2.323 0.047223 −0.39232 −0.65056

−2.1e− 10 0.13029 0.36125 0.15946
−4.1e− 10 −0.58622 0.052576 −0.25774

1.2e− 14 3.3e− 05 −1.1e− 05 0.22746

 .
This matrix is almost quasi-triangular and estimates for the eigenvalues λ1, . . . , λ4

of A can now easily be determined from the diagonal blocks of A14. The 1×1 blocks
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give us two real eigenvalues λ1 ≈ 2.323 and λ4 ≈ 0.2275. The middle 2×2 block has
complex eigenvalues resulting in λ2 ≈ 0.0914 + 0.4586i and λ3 ≈ 0.0914− 0.4586i.
From Gerschgorin’s circle theorem 12.1 and Corollary 12.3 it follows that the
approximations to the real eigenvalues are quite accurate. We would also expect
the complex eigenvalues to have small absolute errors.

These two examples illustrate what happens in general. The sequence (Ak)k
converges to the triangular Schur form (Cf. Theorem 5.13) if all the eigenvalues
are real or the quasi-triangular Schur form (Cf. Definition 5.17) if some of the
eigenvalues are complex.

13.2.1 Relation to the power method

Let us show that the basic QR algorithm is related to the power method. We
obtain the QR factorization of the powers Ak as follows:

Theorem 13.12 (QR and power)
For k = 1, 2, 3, . . ., the QR factorization of Ak is Ak = Q̃kR̃k, where

Q̃k := Q1 · · ·Qk and R̃k := Rk · · ·R1, (13.10)

and Q1, . . . ,Qk, R1, . . . ,Rk are the matrices generated by the basic QR algorithm
(13.8).

Proof. By (13.9)

Ak = Q∗k−1Ak−1Qk−1 = Q∗k−1Q
∗
k−2Ak−2Qk−2Qk−1 = · · · = Q̃

∗
k−1AQ̃k−1.

(13.11)
The proof is by induction on k. Clearly Q̃1R̃1 = Q1R1 = A1. Suppose Q̃k−1R̃k−1 =

Ak−1 for some k ≥ 2. Since QkRk = Ak and using (13.11)

Q̃kR̃k = Q̃k−1(QkRk)R̃k−1 = Q̃k−1AkR̃k−1 = (Q̃k−1Q̃
∗
k−1)AQ̃k−1R̃k−1 = Ak.

Since R̃k is upper triangular, its first column is a multiple of e1 so that

Ake1 = Q̃kR̃ke1 = r̃
(k)
11 Q̃ke1 or q̃

(k)
1 := Q̃ke1 =

1

r̃
(k)
11

Ake1.

Since ‖q̃(k)
1 ‖2 = 1 the first column of Q̃k is the result of applying the normalized

power iteration (13.6) to the starting vector x0 = e1. If this iteration converges we
conclude that the first column of Q̃k must converge to a dominant eigenvector of
A. It can be shown that the first column of Ak must then converge to λ1e1, where
λ1 is a dominant eigenvalue of A. This is clearly what happens in Examples 13.10
and 13.11. Indeed, what is observed in practice is that the sequence (Q̃

∗
kAQ̃k)k

converges to a (quasi-triangular) Schur form of A.
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A =

[
x x x x
0 x x x
0 0 x x
0 0 0 x

]
P ∗12→

[
x x x x
x x x x
0 0 x x
0 0 0 x

]
P ∗23→

[
x x x x
x x x x
0 x x x
0 0 0 x

]
P ∗34→

[
x x x x
x x x x
0 x x x
0 0 x x

]
.

Figure 13.1. Post multiplication in a QR step.

13.2.2 Invariance of the Hessenberg form

One QR step requires O(n3) arithmetic operations for a matrix A of order n. By
an initial reduction of A to upper Hessenberg form H1 using Algorithm 12.14, the
cost of a QR step can be reduced to O(n2). Consider a QR step on H1. We first
determine plane rotations P i,i+1, i = 1, . . . , n−1 so that P n−1,n · · ·P 1,2H1 = R1

is upper triangular. The details were described in Section 10.4. ThusH1 = Q1R1,
whereQ1 = P ∗1,2 · · ·P

∗
n−1,n is a QR factorization ofH1. To finish the QR step we

compute R1Q1 = R1P
∗
1,2 · · ·P

∗
n−1,n. This postmultiplication step is illustrated

by the Wilkinson diagram in Figure 13.1.
The postmultiplication by P i,i+1 introduces a nonzero in position (i + 1, i)

leaving the other elements marked by a zero in Figure 13.1 unchanged. Thus
the final matrix RP ∗1,2 · · ·P

∗
n−1,n is upper Hessenberg and a QR step leaves the

Hessenberg form invariant.
In conclusion, to compute Ak+1 from Ak requires O(n2) arithmetic opera-

tions if Ak is upper Hessenberg and O(n) arithmetic operations if Ak is tridiago-
nal.

13.2.3 Deflation

If a subdiagonal element ai+1,i of an upper Hessenberg matrix A is equal to zero,
then the eigenvalues of A are the union of the eigenvalues of the two smaller
matrices A(1 : i, 1 : i) and A(i+ 1 : n, i+ 1 : n). Thus if during the iteration the
(i+ 1, i) element of Ak is sufficiently small then we can continue the iteration on
the two smaller submatrices separately.

To see what effect this can have on the eigenvalues of A suppose |a(k)
i+1,i| ≤ ε.

Let Âk := Ak − a
(k)
i+1,iei+1e

T
i be the matrix obtained from Ak by setting the

(i+ 1, i) element equal to zero. Since Ak = Q̃
∗
k−1AQ̃k−1 we have

Âk = Q̃
∗
k−1(A+E)Q̃k−1, E = Q̃k−1(a

(k)
i+1,iei+1e

T
i )Q̃

∗
k−1.

Since Q̃k−1 is unitary, ‖E‖F = ‖a(k)
i+1,iei+1e

T
i ‖F = |a(k)

i+1,i| ≤ ε and setting a
(k)
i+1,i =

0 amounts to a perturbation in the original A of at most ε. For how to chose ε
see the discussion on page 94-95 in [27].

This deflation occurs often in practice and can with a proper implementation
reduce the computation time considerably. It should be noted that to find the
eigenvectors of the original matrix one has to continue with some care, see [27].
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13.3 The Shifted QR Algorithms
Like in the inverse power method it is possible to speed up the convergence by
introducing shifts. The explicitly shifted QR algorithm works as follows:

A1 = A

for k = 1, 2, . . .

Choose a shift sk

QkRk = Ak − skI (QR factorization of Ak − sI)

Ak+1 = RkQk + skI.

end

Since Rk = Q∗k(Ak − skI) we find

Ak+1 = Q∗k(Ak − skI)Qk + skI = Q∗kAkQk

and Ak+1 and Ak are unitary similar.
The shifted QR algorithm is related to the power method with shift, cf.

Theorem 13.12 and also the inverse power method. In fact the last column ofQk is
the result of one iteration of the inverse power method toA∗ with shift sk. Indeed,
since A − skI = QkRk we have (A − skI)∗ = R∗kQ

∗
k and (A − skI)∗Qk = R∗k.

Thus, sinceR∗k is lower triangular with n, n element r
(k)
nn we find (A−skI)∗Qken =

R∗ken = r
(k)
nnen from which the conclusion follows.

The shift sk := eTnAken is called the Rayleigh quotient shift, while the
eigenvalue of the lower right 2× 2 corner of Ak closest to the n, n element of Ak

is called theWilkinson shift. This shift can be used to find complex eigenvalues
of a real matrix. The convergence is very fast and at least quadratic both for the
Rayleigh quotient shift and the Wilkinson shift.

By doing two QR iterations at a time it is possible to find both real and com-
plex eigenvalues without using complex arithmetic. The corresponding algorithm
is called the implicitly shifted QR algorithm

After having computed the eigenvalues we can compute the eigenvectors in
steps. First we find the eigenvectors of the triangular or quasi-triangular matrix.
We then compute the eigenvectors of the upper Hessenberg matrix and finally we
get the eigenvectors of A.

Practical experience indicates that only O(n) iterations are needed to find
all eigenvalues of A. Thus both the explicit- and implicit shift QR algorithms are
normally O(n3) algorithms.

For further remarks and detailed algorithms see [27].
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13.4 A Convergence Theorem
There is no theorem which proves convergence of the QR algorithm in general. The
following theorem shows convergence of the basic QR algorithm under somewhat
restrictive assumptions.

Theorem 13.13 (Convergence of basis QR)
Suppose in the basic QR algorithm (13.8) that

1. A ∈ Rn×n can be diagonalized, X−1AX = Λ := diag(λ1, . . . , λn).

2. The eigenvalues λ1, . . . , λn are real with |λ1| > |λ2| > · · · > |λn| > 0.

3. The inverse of the eigenvector matrix has an LU factorization X−1 = LR.

Let Q̃k = Q1 . . .Qk for k ≥ 1. Then there is a diagonal matrix Dk with diagonal
elements ±1 such that Q̃kDk → Q, where QTAQ is triangular and Q is the
Q-factor in the QR factorization of the eigenvector matrix X.

Proof. In this proof we assume that every QR factorization has an R with
positive diagonal elements so that the factorization is unique. Let X = QR be
the QR factorization of X. We observe that QTAQ is upper triangular. For since
X−1AX = Λ we have R−1QTAQR = Λ so that QTAQ = RΛR−1 is upper

triangular. Since Ak+1 = Q̃
T

kAQ̃k, it is enough to show that Q̃kDk → Q for
some diagonal matrix Dk with diagonal elements ±1.

We define the nonsingular matrices

F k := RΛkLΛ−kR−1 = Q̂kR̂k, Gk := R̂kRΛkR, Dk := diag
( δ1
|δ1|

, . . . ,
δn
|δn|

)
,

where δ1, . . . , δn are the diagonal elements in the upper triangular matrix Gk and
F k = Q̂kR̂k is the QR factorization of F k. Then

Ak = XΛkX−1 = QRΛkLR = Q(RΛkLΛ−kR−1)(RΛkR)

= QF k(RΛkR) = QQ̂kR̂k(RΛkR) = (QQ̂kD
−1
k )(DkGk),

and this is the QR factorization ofAk. Indeed, QQ̂kD
−1
k is a product of orthonor-

mal matrices and therefore orthonormal. Moreover DkGk is a product of upper
triangular matrices and therefore upper triangular. Note thatDk is chosen so that
this matrix has positive diagonal elements. By Theorem 13.12 Ak = Q̃kR̃k is also
the QR factorization of Ak, and we must have Q̃k = QQ̂kD

−1
k or Q̃kDk = QQ̂k.

The theorem will follow if we can show that Q̂k → I.
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The matrix ΛkLΛ−k is lower triangular with elements ( λiλj )klij on and under

the diagonal. Thus for n = 3

ΛkLΛ−k =

 1 0 0

(λ2

λ1
)kl21 1 0

(λ3

λ1
)kl31 (λ3

λ2
)kl32 1

 .
By Assumption 2. it follows that ΛkLΛ−k → I, and hence F k → I. Since

R̂
T

k R̂k is the Cholesky factorization of F TkF k it follows that R̂
T

k R̂k → I. By the

continuity of the Cholesky factorization it holds R̂k → I and hence R̂
−1

k → I.

But then Q̂k = F kR̂
−1

k → I.

Exercise 13.14 (QR convergence detail)

Use Theorem 7.31 to show that R̂k → I implies R̂
−1

k → I.

13.5 Review Questions
13.5.1 What is the main use of the power method?

13.5.2 Can the QR method be used to find all eigenvectors of a matrix?

13.5.3 Can the power method be used to find an eigenvalue?

13.5.4 Do the power method converge to an eigenvector corresponding to a com-
plex eigenvalue?

13.5.5 What is the inverse power method?

13.5.6 Give a relation between the QR algorithm and the power method.

13.5.7 How can we make the basic QR algorithm converge faster?
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Appendix A

Determinants

The first systematic treatment of determinants was given by Cauchy in 1812. He
adopted the word “determinant”. The first use of determinants was made by
Leibniz in 1693 in a letter to De L’Hôspital. By the beginning of the 20th century
the theory of determinants filled four volumes of almost 2000 pages (Muir, 1906–
1923. Historic references can be found in this work). The main use of determinants
in this text will be to study the characteristic polynomial of a matrix.

In this section we prove the elementary properties of determinants that we
need.

A.1 Permutations
For n ∈ N, let Nn = {1, 2, . . . , n}. A permutation is a function σ : Nn → Nn
which is one-to-one and onto. That is, {σ(1), σ(2), . . . , σ(n)} is a rearrangement
of {1, 2, . . . , n}. If n = 2, there are two permutations {1, 2} and {2, 1}, while
for n = 3 we have six permutations {1, 2, 3}, {1, 3, 2}, {2, 1, 3}, {2, 3, 1}, {3, 1, 2}
and {3, 2, 1}. We denote the set of all permutations on Nn by Sn. There are n!
elements in Sn.

If σ, τ are two permutations in Sn, we can define their product στ as

στ = {σ(τ(1)), σ(τ(2)), . . . , σ(τ(n))}.

For example if σ = {1, 3, 2} and τ = {3, 2, 1}, then στ = {σ(3), σ(2), σ(1)} =
{2, 3, 1}, while τσ = {τ(1), τ(3), τ(2)} = {3, 1, 2}. Thus in general στ 6= τσ. It
is easily shown that the product of two permutations σ, τ is a permutation, i.e.
στ : Nn → Nn is one-to-one and onto.

The permutation ε = {1, 2, . . . , n} is called the identity permutation in Sn.

323



324 Appendix A. Determinants

We have εσ = σε = σ for all σ ∈ Sn.
Since each σ ∈ Sn is one-to-one and onto, it has a unique inverse σ−1. To

define σ−1(j) for j ∈ Nn, we find the unique i such that σ(i) = j. Then σ−1(j) = i.
We have σ−1σ = σσ−1 = ε. As an example, if σ = {2, 3, 1} then σ−1 = {3, 1, 2},
and σ−1σ = σσ−1 = {1, 2, 3} = ε.

With each σ ∈ Sn we can associate a + or − sign. We define

sign(σ) =
g(σ)

|g(σ)|
,

where

g(σ) =

n∏
i=2

(σ(i)− σ(1))(σ(i)− σ(2)) · · · (σ(i)− σ(i−1)).

For example if ε = {1, 2, 3, 4} and σ = {4, 3, 1, 2}, then

g(ε) = (2−1)(3−1)(3−2)(4−1)(4−2)(4−3) = 1! · 2! · 3! > 0,

g(σ) = (3−4)(1−4)(1−3)(2−4)(2−3)(2−1)

= (−1)(−3)(−2)(−2)(−1) · 1 = −1! · 2! · 3! < 0.

Thus sign(ε) = +1 and sign(σ) = −1.
g(σ) contains one positive factor (2−1) and five negative ones. The negative

factors are called inversions. The number of inversions equals the number of times
a bigger integer precedes a smaller one in σ. That is, in {4, 3, 1, 2} 4 precedes 3,
1 and 2 ( three inversions corresponding to the negative factors (3−4), (1−4) and
(2−4) in g(σ)), and 3 precedes 1 and 2 ((1−3) and (2−3) in g(σ)). This makes it
possible to compute sign(σ) without actually writing down g(σ).

In general, the sign function has the following properties

1. sign(ε) = 1.

2. sign(στ) = sign(σ)sign(τ) for σ, τ ∈ Sn.

3. sign(σ−1) = sign(σ) for σ ∈ Sn.

Since all factors in g(ε) are positive, we have g(ε) = |g(ε)| and sign(ε) = 1. This
proves 1. To prove 2 we first note that for any Sn

sign(σ) =
g(σ)

g(ε)
.

Since g(σ) and g(ε) contain the same factors apart from signs and g(ε) > 0, we
have |g(σ)| = g(ε). Now

sign(στ) =
g(στ)

g(ε)
=
g(στ)

g(τ)

g(τ)

g(ε)
=
g(στ)

g(τ)
sign(τ).
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We have to show that g(στ)/g(τ) = g(σ)/g(ε). We write g(σ)/g(ε) in the form

g(σ)

g(ε)
=

n∏
i=2

i−1∏
j=1

rσ(i, j), rσ(i, j) =
σ(i)− σ(j)

i− j
.

Now

g(στ)

g(τ)
=

∏n
i=2(σ(τ(i))− σ(τ(1))) · · · (σ(τ(i))− σ(τ(i−1)))∏n

i=2(τ(i)− τ(1)) · · · (τ(i)− τ(i−1))
=

n∏
i=2

i−1∏
j=1

rσ(τ(i), τ(j)).

τ is a permutation so g(σ)/g(ε) and g(στ)/g(τ) contain the same factors. More-
over, the sign of the factors are the same since r(i, j) = r(j, i) for all i 6= j.
Thus g(σ)/g(ε) = g(στ)/g(τ), and 2 is proved. Finally, 3 follows from 1 and 2;
1 = sign(ε) = sign(σσ−1) = sign(σ)sign(σ−1) so that σ and σ−1 have the same
sign.

Example A.1 (Properties of permutations)
It can be shown that ρ(στ) = (ρσ)τ for ρ, σ, τ ∈ Sn, i.e. multiplication of permu-
tations is associative. (In fact, we have

1. Multiplication is associative.

2. There exists an identity permutation ε.

3. Every permutation has an inverse.

Thus the set Sn of permutations is a group with respect to multiplication. Sn is
called the symmetric group of degree n).

A.2 Basic Properties of Determinants
For any A ∈ Cn×n the determinant of A is defined the number

det(A) =
∑
σ∈Sn

sign(σ)aσ(1),1aσ(2),2 · · · aσ(n),n. (A.1)

This sum ranges of all n! permutations of {1, 2, . . . , n}. We also denote the deter-
minant by (Cayley, 1841) ∣∣∣∣∣∣∣∣∣

a11 a12 · · · a1n

a21 a22 · · · a2n

...
...

...
an1 an2 · · · ann

∣∣∣∣∣∣∣∣∣ .
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From the definition we have∣∣∣∣ a11 a12

a21 a22

∣∣∣∣ = a11a22 − a21a12.

The first term on the right corresponds to the identity permutation ε given by
ε(i) = i, i = 1, 2. The second term comes from the permutation σ = {2, 1}. For
n = 3 ∣∣∣∣∣∣

a11 a12 a13

a21 a22 a23

a31 a32 a33

∣∣∣∣∣∣ = a11a22a33 − a11a32a23 − a21a12a33

+ a21a32a13 + a31a12a23 − a31a22a13.

The following is a list of properties of determinants.

1. Triangular matrix The determinant of a triangular matrix is the product
of the diagonal elements. det(A) = a11a22 · · · ann. In particular det(I) = 1.

2. Transpose det(AT ) = det(A).

3. Homogeneity For any βi ∈ C, i = 1, 2, . . . , n, we have

det
( [
β1a1, β2a2, . . . , βnan)

] )
= β1β2 · · ·βn det

( [
a1,a2, . . . ,an)

] )
.

4. Permutation of columns If τ ∈ Sn then

det(B) := det[(aτ(1),aτ(2), . . . ,aτ(n))] = sign(τ) det[(a1,a2, . . . ,an)].

5. Additivity

det
( [
a1, . . . ,ak−1,ak + a′k,ak+1, . . . ,an

] )
= det

( [
a1, . . . ,an

] )
+ det

( [
a1, . . . ,a

′
k . . . ,an

] )
.

6. Singular matrix det(A) = 0 if and only if A is singular.

7. Product rule If A,B ∈ Cn×n then det(AB) = det(A) det(B).

8. Block triangular If A is block triangular with diagonal blocks B and C
then det(A) = det(B) det(C).

Proof.

1. If σ 6= ε, we can find distinct integers i and j such that σ(i) > i and σ(j) < j.
But then aσ(i),i = 0 if A is upper triangular and aσ(j),j = 0 if A is lower
triangular. Hence

det(A) = sign(ε)aε(1),1aε(2),2 · · · aε(n),n = a1,1a2,2 · · · an,n.

Since the identity matrix is triangular with all diagonal elements equal to
one, we have that det(I) = 1.
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2. By definition of AT and the det-function

det(AT ) =
∑
σ∈Sn

sign(σ)a1,σ(1)a2,σ(2) · · · an,σ(n).

Consider an element ai,σ(i). If σ(i) = j then

ai,σ(i) = aσ−1(j),j .

Since σ(1), σ(2), . . . , σ(n) ranges through {1, 2, . . . , n}, we obtain

det(AT ) =
∑
σ∈Sn sign(σ)aσ−1(1),1aσ−1(2),2 · · · aσ−1(n),n

=
∑
σ∈Sn sign(σ−1)aσ−1(1),1aσ−1(2),2 · · · aσ−1(n),n

=
∑
σ−1∈Sn sign(σ−1)aσ−1(1),1aσ−1(2),2 · · · aσ−1(n),n

= det(A).

3. This follows immediately from the definition of det[(β1a1, β2a2, . . . , βnan)].

4. We have

det(B) =
∑
σ∈Sn

sign(σ)aσ(1),τ(1)aσ(2),τ(2) · · · aσ(n),τ(n).

Fix i in {1, 2, . . . , n}. Let k = σ(i) and m = τ(i). Then τ−1(m) = i and
σ(τ−1(m)) = k. Hence

aσ(i),τ(i) = ak,m = aστ−1(m),m.

Moreover, sign(σ) = sign(τ)sign(στ−1). Thus

det(B) = sign(τ)
∑
σ∈Sn

sign(στ−1)aστ−1(1),1aστ−1(2),2 · · · aστ−1(n),n.

But as σ ranges over Sn, στ−1 also ranges over Sn. Hence

det(B) = sign(τ) det[(a1,a2, . . . ,an)].

5. This follows at once from the definition.

6. We observe that the determinant of a matrix is equal to the product of the
eigenvalues and that a matrix is singular if and only if zero is an eigenvalue
(cf. Theorems 5.2, 0.54). But then the result follows.

7. To better understand the general proof, we do the 2 × 2 case first. Let
A = (a1,a2), B = (b1, b2). Then

AB = (Ab1,Ab2) = (b1,1a1 + b2,1a2, b1,2a1 + b2,2a2).
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Using the additivity, we obtain

det(AB) = det(b1,1a1, b1,2a1) + det(b2,1a2, b1,2a1)
+ det(b1,1a1, b2,2a2) + det(b2,1a2, b2,2a2).

Next we have by homogeneity

det(AB) = b1,1b1,2 det(a1,a1) + b2,1b1,2 det(a2,a1)
+ b1,1b2,2 det(a1,a2) + b2,1b2,2 det(a2,a2).

Property 6 implies that det(a1,a1) = det(a2,a2) = 0. Using Property 4, we
obtain det(a2,a1) = −det(a1,a2) and

det(AB) = (b1,1b2,2 − b2,1b1,2) det(a1,a2) = det(B) det(A).

The proof for n > 2 follows the n = 2 case step by step. Let C =
(c1, c2, . . . , cn) = AB. Then

ci = Abi = b1,ia1 + b2,ia2 + · · ·+ bn,ian, i = 1, 2, . . . , n.

Using the additivity, we obtain

det(AB) =

n∑
i1=1

n∑
i2=1

· · ·
n∑

in=1

det[(bi1,1ai1 , bi2,2ai2 , . . . , bin,nain)].

Next we have by homogeneity

det(AB) =

n∑
i1=1

n∑
i2=1

· · ·
n∑

in=1

bi1,1bi2,2 · · · bin,n det[(ai1 ,ai2 , . . . ,ain)].

Property 6 implies that det[(ai1 , . . . ,ain)] = 0 if any two of the indices
i1, . . . , in are equal. Therefore we only get a contribution to the sum when-
ever i1, . . . , in is a permutation of {1, 2, . . . , n}. Thus

det(AB) =
∑
σ∈Sn

bσ(1),1 · · · bσ(n),n det[(aσ(1), . . . ,aσ(n))].

By Property 4 we obtain

det(AB) =
∑
σ∈Sn

sign(τ)bσ(1),1 · · · bσ(n),n det[(a1, . . . ,an)].

According to the definition of det(B) this is equal to det(B) det(A).
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8. Suppose A is block upper triangular. Let

Sn,k = {σ ∈ Sn : σ(i) ≤ k if i ≤ k, and σ(i) ≥ k+1 if i ≥ k+1}.

We claim that aσ(1),1 · · · aσ(n),n = 0 if σ 6∈ Sn,k, because if σ(i) > k for some
i ≤ k then aσ(i),i = 0 since it lies in the zero part of A. If σ(i) ≤ k for some
i ≥ k+1, we must have σ(j) > k for some j ≤ k to make “room” for σ(i),
and aσ(j),j = 0. It follows that

det(A) =
∑

σ∈Sn,k

sign(σ)aσ(1),1 · · · aσ(n),n.

Define

ρ(i) =

{
σ(i) i = 1, . . . , k
i i = k+1, . . . , n,

τ(i) =

{
i i = 1, . . . , k
σ(i) i = k+1, . . . , n.

If σ ∈ Sn,k, ρ and τ will be permutations. Moreover, σ = ρτ . Define ρ̂ and τ̂
in Sk and Sn−k respectively by ρ̂(i) = ρ(i), i = 1, . . . , k, and τ̂(i) = τ(i+k)−k
for i = 1, . . . , n−k. As σ ranges over Sn,k, ρ̂ and τ̂ will take on all values in
Sk and Sn−k respectively. Since sign(ρ̂) = sign(ρ) and sign(τ̂) = sign(τ), we
find

sign(σ) = sign(ρ)sign(τ) = sign(ρ̂)sign(τ̂).

Then

det(A) =
∑
ρ̂∈Sk

∑
τ̂∈Sn−k sign(ρ̂)sign(τ̂)bρ̂(1),1 · · · bρ̂(k),kdτ̂(1),1 · · · dτ̂(n−k),n−k

= det(B) det(D).

A.3 The Adjoint Matrix and Cofactor Expansion
We start with a useful formula for the solution of a linear system.

Let Aj(b) denote the matrix obtained from A by replacing the jth column
of A by b. For example,

A =

[
1 2
2 1

]
, b =

[
3
6

]
, A1(b) =

[
3 2
6 1

]
, A2(b) =

[
1 3
2 6

]
,

I =

[
1 0
0 1

]
, x =

[
x1

x2

]
, I1(x) =

[
x1 0
x2 1

]
I2(x) =

[
1 x1

0 x2

]
.
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Theorem A.2 (Cramer’s rule (1750))
Suppose A ∈ Cn×n with det(A) 6= 0 and b ∈ Cn. Let x = [x1, x2, . . . , xn]T be the
unique solution of Ax = b. Then

xj =
det(Aj(b))

det(A)
, j = 1, 2, . . . , n.

Proof. Since 1 = det(I) = det(AA−1) = det(A) det(A−1) we have det(A−1) =
1/ det(A). Then

det(Aj(b))

det
(
A)

= det(A−1Aj(b))

= det([A−1a1, . . . ,A
−1aj−1,A

−1b,A−1aj+1, . . . ,A
−1an]

)
= det([e1, . . . , ej−1,x, ej+1, . . . , en]

)
= xj ,

where we used Property 8 for the last equality.

Let Ai,j denote the submatrix of A obtained by deleting the ith row and
jth column of A. For example,

A =

 1 2 3
4 5 6
7 8 9

 , A1,1 =

[
5 6
8 9

]
, A1,2 =

[
4 6
7 9

]
,

A2,1 =

[
2 3
8 9

]
, A2,2 =

[
1 3
7 9

]
, etc.

Definition A.3 (Cofactor and Adjoint)
For A ∈ Cn×n and 1 ≤ i, j ≤ n the determinant det(Aij) is called the cofactor
of aij. The matrix adj(A) ∈ Cn×n with elements (−1)i+j det(Aj,i) is called the
adjoint of A.

Theorem A.4 (The inverse as an adjoint)
If A ∈ Cn×n is nonsingular then

A−1 =
1

det(A)
adj(A).

Proof. Let A−1 = [x1, . . . ,xn], where xj = [x1j , . . . , xnj ]
T . The equation

AA−1 = I implies that Axj = ej for j = 1, . . . , n and by Cramer’s rule

xij =
det(Ai(ej))

det(A)
= (−1)i+j

det(Aji)

det(A)
, j = 1, 2, . . . , n.
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For the last equality we first interchange the first and ith column of Ai(ej). By
Property 4 it follows that det(Ai(ej)) = (−1)i−1 det

(
[ej ,a1, . . . ,ai−1,ai+1, . . . ,an]

)
.

We then interchange row j and row 1. Using Property 8 we obtain

det(Ai(ej)) = (−1)i+j−2 det(Aji) = (−1)i+j det(Aji).

Corollary A.5 (The adjoint and the inverse)
For any A ∈ Cn×n we have

A adj(A) = adj(A)A = det(A)I. (A.2)

Proof. If A is nonsingular then (A.2) follows from Theorem A.4. We simply
multiply by A from the left and from the right. Suppose next that A is singular
with m zero eigenvalues λ1, . . . , λm and nonzero eigenvalues λm+1, . . . , λn. We
define ε0 := minm+1≤j≤n|λj |. For any ε ∈ (0, ε0) the matrix A + εI has nonzero
eigenvalues ε, . . . , ε, λm+1 + ε, . . . , λn + ε and hence is nonsingular. By what we
have proved

(A+ εI) adj(A+ εI) = adj(A+ εI)(A+ εI) = det(A+ εI)I. (A.3)

Since the elements in A+ εI and adj(A+ εI) depend continuously on ε we can
take limits in (A.3) to obtain (A.2).

Corollary A.6 (Cofactor expansion)
For any A ∈ Cn×n we have

det(A) =

n∑
j=1

(−1)i+jaij det(Aij) for i = 1, . . . , n, (A.4)

det(A) =

n∑
i=1

(−1)i+jaij det(Aij) for j = 1, . . . , n. (A.5)

Proof. By (A.2) we haveA adj(A) = det(A)I. But then det(A) = eTi Aadj(A)ei =∑n
j=1(−1)i+jaij det(Aij) which is (A.4). Applying this row expansion to AT we

find det(AT ) =
∑n
j=1(−1)i+jaji det(Aji). Switching the roles of i and j proves

(A.5).
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A.4 Computing Determinants
A determinant of an n-by-n matrix computed from the definition can contain up
to n! terms and we need other methods to compute determinants.

A matrix can be reduced to upper triangular form using elementary row
operations. We can then use Property 1. to compute the determinant. The
elementary operations using either rows or columns are

1. Interchanging two rows(columns).

2. Multiply a row(column) by a scalar α.

3. Add a constant multiple of one row(column) to another row(column).

Let B be the result of performing an elementary operation on A. For the three
elementary operations the numbers det(A) and det(B) are related as follows.

1. det(B) = −det(A) (from Property 4.)

2. det(B) = α det(A) (from Property 3.)

3. det(B) = det(A)(from Properties 5., 7.)

It follows from Property 2. that it is enough to show this for column operations.
The proof of 1. and 2. are immediate. For 3. suppose we add α times column k
to column i for some k 6= i. Then using Properties 5. and 7. we find

det(B) = det
( [
a1, . . . ,ai−1,ai + αak,ai+1, . . . ,an

] )
5.
= det(A) + det

( [
a1, . . . ,ai−1, αak,ai+1, . . . ,an

] ) 7.
= det(A)

A.5 Some Useful Determinant Formulas
SupposeA ∈ Cm×n and suppose for an integer r ≤ min{m,n} that i = {i1, . . . , ir}
and j = {j1, . . . , jr} are integers with 1 ≤ i1 < i2 < · · · < ir ≤ m and 1 ≤ j1 <
j2 < · · · < jr. We let

A(i, j) =

ai1,j1 · · · ai1,jr
...

...
air,j1 · · · air,jr


be the submatrix of A consisting of rows i1, . . . , ir and columns j1, . . . , jr. The
following formula bears a strong resemblance to the formula for matrix multipli-
cation.

Theorem A.7 (Cauchy-Binet formula)
Let A ∈ Cm×p, B ∈ Cp×n and C = AB. Suppose 1 ≤ r ≤ min{m,n, p} and let



A.5. Some Useful Determinant Formulas 333

i = {i1, . . . , ir} and j = {j1, . . . , jr} be integers with 1 ≤ i1 < i2 < · · · < ir ≤ m
and 1 ≤ j1 < j2 < · · · < jr ≤ n. Then

det
(
C(i, j)

)
=
∑
k

det
(
A(i,k)

)
det
(
B(k, j)

)
, (A.6)

where we sum over all k = {k1, . . . , kr} with 1 ≤ k1 < k2 < · · · < kr ≤ p.
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Appendix B

Computer Arithmetic

B.1 Absolute and Relative Errors
Suppose a and b are real or complex scalars. If b is an approximation to a then
there are different ways of measuring the error in b.

Definition B.1 (Absolute error)
The absolute error in b as an approximation to a is the number ε := |a− b|. The
number e := b− a is called the error in b as an approximation to a. This is what
we have to add to a to get b.

Note that the absolute error is symmetric in a and b, so that ε is also the
absolute error in a as an approximation to b

Definition B.2 (Relative error) If a 6= 0 then the relative error in b as an
approximation to a is defined by

ρ = ρb :=
|b− a|
|a|

.

We say that a and b agree to approximately − log10 ρ digits.

As an example, if a := 31415.9265 and b := 31415.8951, then ρ = 0.999493 ∗
10−6 and a and b agree to approximately 6 digits.

We have b = a(1 + r) for some r if and only if ρ = |r|.
We can also consider the relative error ρa := |a − b|/|b| in a as an approxi-

mation to b.

Lemma B.3 (Relative errors)
If a, b 6= 0 and ρb < 1 then ρa ≤ ρb/(1− ρb).

335
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Proof. Since |a|ρb = |b− a| ≥ |a| − |b| we obtain |b| ≥ |a| − |a− b| = (1− ρb)|a|.
Then

ρa =
|b− a|
|b|

≤ |b− a|
(1− ρb)|a|

=
ρb

1− ρb
.

If ρb is small then ρa is small and it does not matter wether we choose ρa or
ρb to discuss relative error.

B.2 Floating Point Numbers
We shall assume that the reader is familiar with different number systems (binary,
octal, decimal, hexadecimal) and how to convert from one number system to
another. We use (x)β to indicate a number written to the base β. If no parenthesis
and subscript are used, the base 10 is understood. For instance,

(100)2 = 4,

(0.1)2 = 0.5,

0.1 = (0.1)10 = (0.0001100110011001 . . .)2.

In general,

x = (cmcm−1 . . . c0.d1d2 . . . dn)β

means

x =

m∑
i=0

ciβ
i +

n∑
i=1

diβ
−i, 0 ≤ ci, di ≤ β − 1.

We can move the decimal point by adding an exponent:

y = x · βe,

for example

(0.1)10 = (1.100110011001 . . .)2 · 2−4.

We turn now to a description of the floating-point numbers. We will only
describe a standard system, namely the binary IEEE floating-point standard.
Although it is not used by all systems, it has been widely adopted and is used in
MATLAB. For a more complete introduction to the subject see [12],[26].

We denote the real numbers which are represented in our computer by F .
The set F are characterized by three integers t, and e, e. We define

εM := 2−t, machine epsilon, (B.1)
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-

Figure B.1. Distribution of some positive floating-point numbers

and

F := {0} ∪ S ∪ N ,where

N := N+ ∪N−, N+ := ∪ee=eNe, N− := −N+,

Ne :=
{

(1.d1d2 · · · dt)2

}
∗ 2e = {1, 1 + εM , 1 + 2εM , . . . , 2− εM} ∗ 2e,

S := S+ ∪ S−, S+ := {εM , 2εM , 3εM , . . . , 1− εM} ∗ 2e, S− := −S+.

(B.2)

Example B.4 (Floating numbers)
Suppose t := 2, e = 3 and e := −2. Then εM = 1/4 and we find

N−2 = {1

4
,

5

16
,

3

8
,

7

16
}, N−1 = {1

2
,

5

8
,

3

4
,

7

8
}, N0 = {1, 5

4
,

3

2
,

3

4
,

7

4
},

N1 = {2, 5

2
, 3,

7

2
}, N2 = {4, 5, 6, 7}, N3 = {8, 10, 12, 14},

S+ = { 1

16
,

1

8
,

3

16
}, S− = {− 3

16
,−1

8
,− 1

16
}.

The position of some of these sets on the real line is shown in Figure B.1

1. The elements of N are called normalized (floating-point) numbers.
They consists of three parts, the sign +1 or -1, the mantissa (1.d1d2 · · · dt)2,
and the exponent part 2e.

2. the elements in N+ has the sign +1 indicated by the bit σ = 0 and the
elements in N− has the sign bit σ = 1. Thus the sign of a number is (−1)σ.
The standard system has two zeros +0 and −0.

3. The mantissa is a number between 1 and 2. It consists of t+ 1 binary digits.

4. The number e in the exponent part is restricted to the range e ≤ e ≤ e.
5. The positive normalized numbers are located in the interval [rm, rM ], where

rm := 2e, rM := (2− εM ) ∗ 2e. (B.3)
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6. The elements in S are called subnormal or denormalized. As for nor-
malized numbers they consists of three parts, but the mantissa is less than
one in size. The main use of subnormal numbers is to soften the effect of
underflow. If a number is in the range (0, (1− εM/2)∗2e), then it is rounded
to the nearest subnormal number or to zero.

7. Two additional symbols ”Inf” and ”NaN” are used for special purposes.

8. The symbol Inf is used to represent numbers outside the interval [−rM , rM ]
(overflow), and results of arithmetic operations of the form x/0, where
x ∈ N . Inf has a sign, +Inf and -Inf.

9. The symbol NaN stands for ”not a number”. a NaN results from illegal
operations of the form 0/0, 0 ∗ Inf, Inf/Inf, Inf− Inf and so on.

10. The choices of t, e, and e are to some extent determined by the architecture
of the computer. A floating-point number, say x, occupies n := 1 + τ + t
bits, where 1 bit is used for the sign, τ bits for the exponent, and t bits for
the fractional part of the mantissa.

τ t

σ exp frac

Here σ = 0 if x > 0 and σ = 1 if x < 0, and exp ∈ {0, 1, 2, 3, . . . , 2τ − 1} is
an integer. The integer frac is the fractional part d1d2 · · · dt of the mantissa.
The value of a normalized number in the standard system is

x = (−1)σ ∗ (1.frac)2 ∗ 2exp−b, where b := 2τ−1 − 1. (B.4)

The integer b is called the bias.

11. To explain the choice of b we note that the extreme values exp = 0 and
exp = 2τ − 1 are used for special purposes. The value exp = 0 is used for
the number zero and the subnormal numbers, while exp = 2τ − 1 is used
for Inf and NaN. Since 2b = 2τ − 2, the remaining numbers of exp, i. e.,
exp ∈ {1, 2, . . . , 2τ − 2} correspond to e in the set {1− b, 2− b, . . . , b}. Thus
in a standard system we have

e = 1− b, e = b := 2τ−1 − 1. (B.5)

12. The most common choices of τ and t are shown in the following table

precision τ t b εM = 2−t rm = 21−b rM
half 5 10 15 9.8× 10−4 6.1× 10−5 6.6× 104

single 8 23 127 1.2× 10−7 1.2× 10−38 3.4× 1038

double 11 52 1023 2.2× 10−16 2.2× 10−308 1.8× 10308

quad 15 112 16383 1.9× 10−34 3.4× 10−4932 1.2× 104932
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Here b is given by (B.5) and rM by (B.3) The various lines correspond to
a normalized number occupying half a word of 32 bits, one word (single
precision), two words (double precision), and 4 words (quad precision).

B.3 Rounding and Arithmetic Operations
The standard system is a closed system. Every x ∈ R has a representation as
either a floating-point number, or Inf or NaN, and every arithmetic operation
produces a result. We denote the computer representation of a real number x by
fl(x).

B.3.1 Rounding

To represent a real number x there are three cases.

fl(x) =


Inf, if x > rM ,

−Inf, if x < −rM ,
round to zero, otherwise.

To represent a real number with |x| ≤ rM the system chooses a machine number
fl(x) closest to x. This is known as rounding. When x is midway between two
numbers in F we can either choose the one of larger magnitude (round away
from zero), or pick the one with a zero last bit (round to zero). The standard
system uses round to zero. As an example, if x = 1 + εM/2, then x is midway
between 1 and 1 + εM . Therefore fl(x) = 1 + εM if round away from zero is used,
while fl(x) = 1 if x is rounded to zero. This is because the machine representation
of 1 has frac = 0.

The following lemma gives a bound for the relative error in rounding.

Theorem B.5 (Relative error in rounding)
If rm ≤ |x| ≤ rM then

fl(x) = x(1 + δ), |δ| ≤ uM :=
1

2
εM = 2−t−1.

Proof. Suppose 2e < x < 2e+1. Then fl(x) ∈ {1, 1+εM , 1+2εM , . . . , 2−εM}∗2e.
These numbers are uniformly spaced with spacing εM ∗2e and therefore |fl(x)−x| ≤
1
2εM2e ≤ 1

2εM ∗ |x|. The proof for a negative x is similar.

The number uM is called the rounding unit.
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B.3.2 Arithmetic operations

Suppose x, y ∈ N . In a standard system we have

fl(x ◦ y) = (x ◦ y)(1 + δ), |δ| ≤ uM , ◦ ∈ {+,−, ∗, /,√}, (B.6)

where uM is the rounding unit of the system. This means that the computed
value is as good as the rounded exact answer. This is usually achieved by using
one or several extra digits known as guard digits in the calculation.

B.4 Backward Rounding-Error Analysis
The computed sum of two numbers α1, α2 ∈ N satisfy fl(α1◦α2) = (α1+α2)(1+δ),
where |δ| ≤ uM , the rounding unit. If we write this as fl(α1 ◦α2) = α̃1 + α̃2, where
α̃i := αi(1 + δ) for i = 1, 2, we see that the computed sum is the exact sum of
two numbers which approximate the exact summands with small relative error,
|δ| ≤ uM . The error in the addition has been boomeranged back on the data
α1, α2, and in this context we call δ the backward error. A similar interpretation
is valid for the other arithmetic operations −, ∗, /,√ , and we assume it also holds
for the elementary functions sin, cos, exp, log and so on.

Suppose more generally we want to compute the value of an expression φ(α1,
. . . , αn) Here α1, . . . , αn ∈ N are given data, and we are using the arithmetic
operations, and implementations of the standard elementary functions, in the
computation. A backward error analysis consists of showing that the computed
result is obtained as the exact result of using data β := [β1, . . . βn]T instead of
α := [α1, . . . , αn]. In symbols

φ̃(α1, . . . , αn) = φ(β1, . . . , βn).

If we can show that the relative error in β as an approximation to α is O(uM )
either componentwise or norm-wise in some norm, then we say that the algorithm
to compute φ(α1, . . . , αn) is backward stable. Normally the constant K in the
O(uM ) term will grow with n. Typically K = p(n) for some polynomial p is
acceptable, while an exponential growth of K can be problematic.

B.4.1 Computing a sum

We illustrate this discussion by computing the backward error in the sum of n
numbers s := α1 + · · · + αn, where αi ∈ N for all i. We have the following
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algorithm.

s1 := α1

for k = 2 : n

sk := fl(sk−1 + αk)

end

s̃ := sn

Using a standard system we obtain for n = 3

s2 = fl(α1 + α2) = α1(1 + δ2) + α2(1 + δ2),

s3 = fl(s2 + α3) = s2(1 + δ3) + α3(1 + δ3) = α1(1 + η1) + α2(1 + η2) + α3(1 + η3),

η1 = η2 = (1 + δ2)(1 + δ3), η3 = (1 + δ3), |δi| ≤ uM .

In general, with δ1 := 0,

s̃ =

n∑
i=1

αi(1 + ηi). ηi = (1 + δi) . . . (1 + δn), |δi| ≤ uM , i = 1, . . . , n. (B.7)

With φ(α1, . . . , αn) := α1 + · · ·+ αn this shows that

s̃ = φ̃(α1, . . . , αn) = φ(β1, . . . , βn), βi = αi(1 + ηi). (B.8)

The following lemma gives a convenient bound on the η factors.

Lemma B.6 (Bound on factors)
Suppose for integers k,m with 0 ≤ m ≤ k and k ≥ 1 that

1 + ηk :=
(1 + δ1) · · · (1 + δm)

(1 + δm+1) · · · (1 + δk)
, |δj | ≤ uM , j = 1, . . . , k.

If kuM ≤ 1
11 then

|ηk| ≤ ku′M , where u′M := 1.1uM . (B.9)

Proof. We first show that

kuM ≤ α < 1 =⇒ |ηk| ≤ k
uM

1− α
. (B.10)

For convenience we use u := uM in the proof. Since u < 1 we have 1/(1 − u) =
1 + u+ u2/(1− u) > 1 + u and we obtain

(1− u)k ≤ (1− u)m

(1 + u)k−m
≤ 1 + ηk ≤

(1 + u)m

(1− u)k−m
≤ (1− u)−k.
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The proof of (B.10) will be complete if we can show that

1− ku ≤ (1− u)k, (1− u)−k ≤ 1 + ku′.

The first inequality is an easy induction on k. If it holds for k, then

(1−u)k+1 = (1−u)k(1−u) ≥ (1−ku)(1−u) = 1− (k+ 1)u+ku2 ≥ 1− (k+ 1)u.

The second inequality is a consequence of the first,

(1− u)−k ≤ (1− ku)−1 = 1 +
ku

1− ku
≤ 1 +

ku

1− α
= 1 + ku′.

Letting α = 1
11 in (B.10) we obtain (B.9).

The number u′M := 1.1uM , corresponding to α = 1/11, is called the ad-
justed rounding unit . In the literature many values of α can be found. [26]
uses α = 1/10 giving u′M = 1.12uM , while in [12] the value α = 0.01 can be found.
In the classical work [34] one finds 1/(1− α) = 1.06.

Let us return to the backward error (B.8) in a sum of n numbers. Since
δ1 = 0 we see that

|η1| ≤ (n− 1)u′M , |ηi| ≤ (n− i+ 1)u′M , for i = 2, . . . , n.

or more simply
|ηi| ≤ (n− 1)u′M , for i = 1, . . . , n. (B.11)

This shows that the algorithm for computing a sum is backward stable.
The bounds from a backward rounding-error analysis can be used together

with a condition number to bound the actual error in the computed result. To see
this for the sum, we subtract the exact sum s = α1 + · · ·+αn from the computed
sum s̃ = α1(1 + η1) + · · ·+ αn(1 + ηn), to get

|s̃− s| = |α1η1 + · · ·+ αnηn| ≤ (|α1|+ · · ·+ |αn|)(n− 1)u′M .

Thus the relative error in the computed sum of n numbers is bounded as follows

| s̃− s
s
| ≤ κ(n− 1)u′M , where κ :=

|α1|+ · · ·+ |αn|
α1 + · · ·+ αn

. (B.12)

This bound shows that the backward error can be magnified by at most κ. The
number κ is called the condition number for the sum.

The condition number measures how much a relative error in each of the
components in a sum can be magnified in the final sum. The backward error
shows how large these relative perturbations can be in the actual algorithm we
used to compute the sum. Using backward error analysis and condition number
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separates the process of estimating the error in the final result into two distinct
jobs.

A problem where small relative changes in the data leads to large relative
changes in the exact result is called ill conditioned. We see that computing a
sum can be ill-conditioned if the exact value of the sum is close to zero and some
of the individual terms have large absolute values with opposite signs.

B.4.2 Computing an inner product

Computing an inner product p := α1γ1 + · · ·+αnγn is also backward stable using
the standard algorithm

p1 := fl(α1γ1)

for k = 2 : n

pk := fl
(
pk−1 + fl(αkγk)

)
end

p̃ := pn

For a backward error analysis of this algorithm we only need to modify (B.7)
slightly. All we have to do is to add terms fl(αkγk) = αkγk(1 + πk) to the terms
of the sum. The result is

p̃ =

n∑
k=1

αkγk(1 + ηk), ηk = (1 + πk)(1 + δk) · · · (1 + δn), k = 1, . . . , n,

where δ1 = 0. Thus for the inner product of n terms we obtain

| p̃− p
p
| ≤ κnuM , κ :=

|α1γ1|+ · · ·+ |αnγn|
|α1γ1 + · · ·+ αnγn|

. (B.13)

The computation can be ill conditioned if the exact value is close to zero and some
of the components are large in absolute value.

B.4.3 Computing a matrix product

Using matrix norms we can bound the backward error in matrix algorithms. Sup-
pose we want to compute the matrix product C = A ∗B. Let n be the number
of columns of A and the number of rows of B. Each element in C is the inner
product of a row of A and a column of B. Thus if C̃ is the computed product
then from (B.13)

| c̃ij − cij
cij

| ≤ κijnu′M , κij :=
|a1b1|+ · · ·+ |anbn|
|a1b1 + · · ·+ anbn|

, all i, j. (B.14)



344 Appendix B. Computer Arithmetic

We write this as |c̃ij − cij | ≤ κij |cij |nu′M . Using the infinity matrix norm we find∑
j

|c̃ij − cij | ≤ nu′M
∑
j

κij |cij | ≤ κnu′M
∑
j

|cij | ≤ κnu′M‖C‖∞, all i,

where κ := maxij κij . Maximizing over i we obtain

‖C̃ −C‖∞
‖C‖∞

≤ κnu′M . (B.15)

The calculation of a matrix product can be ill conditioned if one or more of the
product elements are small and the corresponding inner products have large terms
of opposite signs.
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Differentiation of Vector
Functions

For any sufficiently differentiable f : Rn → R we recall that the partial derivative
with respect to the ith variable of f is defined by

Dif(x) :=
∂f(x)

∂xi
:= lim

h→0

f(x+ hei)− f(x)

h
, x ∈ Rn,

where ei is the ith unit vector in Rn. For each x ∈ Rn we define the gradient
∇f(x) ∈ Rn, and the hessian Hf = ∇∇T f(x) ∈ Rn,n of f by

∇f :=

D1f
...

Dnf

 , Hf := ∇∇T f :=

D1D1f · · · D1Dnf
...

...
DnD1 · · · DnDnf

 , (C.1)

where ∇T f := (∇f)T is the row vector gradient. The operators ∇∇T and ∇T∇
are quite different. Indeed, ∇T∇f = D2

1f + · · · + D2
nf =: ∇2 the Laplacian of

f , while ∇∇T can be thought of as an outer product resulting in a matrix.

Lemma C.1 (Product rules)
For f, g : Rn → R we have the product rules

1. ∇(fg) = f∇g + g∇f, ∇T (fg) = f∇T g + g∇T f,

2. ∇∇T (fg) = ∇f∇T g +∇g∇T f + f∇∇T g + g∇∇T f .

3. ∇2(fg) = 2∇T f∇g + f∇2g + g∇2f .

345
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We define the Jacobian of a vector function f = [f1, . . . fm]T : Rn → Rm
as the m,n matrix

∇Tf :=

D1f1 · · · Dnf1

...
...

D1fm · · · Dnfm

 .
As an example, if f(x) = f(x, y) = x2 − xy + y2 and g(x, y) := [f(x, y), x− y]T

then

∇f(x, y) =

[
2x− y
−x+ 2y

]
, ∇Tg(x, y) =

[
2x− y −x+ 2y

1 −1

]
,

Hf(x, y) =

[
∂2f
∂x2

∂2f
∂x∂y

∂2f
∂y∂x

∂2f
∂y2

]
=

[
2 −1
−1 2

]
.

The second order Taylor expansion in n variables can be expressed in terms
of the gradient and the hessian.

Lemma C.2 (Second order Taylor expansion)
Suppose f ∈ C2(Ω), where Ω ∈ Rn contains two points x,x + h ∈ Ω, such that
the line segment L := {x+ th : t ∈ (0, 1)} ⊂ Ω. Then

f(x+ h) = f(x) + hT∇f(x) +
1

2
hT∇∇T f(c)h, for some c ∈ L. (C.2)

Proof. Let g : [0, 1]→ R be defined by g(t) := f(x+ th). Then g ∈ C2[0, 1] and
by the chain rule

g(0) = f(x) g(1) = f(x+ h),

g′(t) =

n∑
i=1

hi
∂f(x+ th)

∂xi
= hT∇f(x+ th),

g′′(t) =

n∑
i=1

n∑
j=1

hihj
∂2f(x+ th)

∂xi∂xj
= hT∇∇T f(x+ th)h.

Inserting these expressions in the second order Taylor expansion

g(1) = g(0) + g′(0) +
1

2
g′′(u), for some u ∈ (0, 1),

we obtain (C.2) with c = x+ uh.

The gradient and hessian of some functions involving matrices can be found
from the following lemma.
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Lemma C.3 (Functions involving matrices)
For any m,n ∈ N, B ∈ Rn,n, C ∈ Rm,n, and x ∈ Rn,y ∈ Rm we have

1. ∇(yTC) = ∇T (Cx) = C,

2. ∇(xTBx) = (B +BT )x, ∇T (xTBx) = xT (B +BT ),

3. ∇∇T (xTBx) = B +BT .

Proof.

1. We find Di(y
TC) = limh→0

1
h

(
(y+hei)

TC −yTC
)

= eTi C and Di(Cx) =
limh→0

1
h (C(x+ hei)−Cx) = Cei and 1. follows.

2. Here we find

Di(x
TBx) = lim

h→0

1

h

(
(x+ hei)

TB(x+ hei)− xTBx
)

= lim
h→0

(
eTi Bx+ xTBei + heTi ei

)
= eTi (B +BT )x,

and the first part of 2. follows. Taking transpose we obtain the second part.

3. Combining 1. and 2. we obtain 3.
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two-norm, 170

minimal polynomial, 140
Minkowski’s inequality, 12, 182
mixed product rule, 95

naive Gaussian elimination, 85
NaN, 338
natural ordering, 91
negative (semi)definite, 64, 65
Neumann series, 209
nilpotent matrix, 121
nonsingular matrix, 21
nontrivial subspaces, 9
norm, 11

l1-norm, 12
l2-norm, 12
l∞-norm, 12
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absolute norm, 173
continuity, 13
Euclidian norm, 12
infinity-norm, 12
max norm, 12
monotone norm, 173
one-norm, 12
triangle inequality, 12
two-norm, 12

normal equations, 266
normal matrix, 127
null space (ker), 11

operation count, 59
operator norm, 168
optimal relaxation parameter, 203
optimal step length, 218
orthogonal decomposition, 272
orthogonal matrix, see orthonor-

mal matrix, 123
orthogonal projections, 271
orthogonal sum, 271
orthonormal matrix, 123
outer product, 47
overflow, 338

p-norms, 12
paraboloid, 217
parallelogram identity, 182
partial pivoting, 78
permutation, 323

identity, 323
inversion, 324
sign, 324
symmetric group, 325

permutation matrix, 80
perpendicular vectors, 17
pivot row, 78
pivot vector, 80
plane rotation, 261
PLU factorization, 58, 77
Poisson matrix, 92

Poisson problem, 90
five point stencil, 91
nine point scheme, 100
Poisson matrix, 92
variable coefficients, 240

Poisson problem (1D), 38
polarization identity, 184
positive definite, 64
positive semidefinite, 64
power method, 307

inverse, 311
Rayleigh quotient iteration,

312
shifted, 311

preconditioned conjugate gradi-
ent method, 215

preconditioning, 237
preconditioning matrix, 196
principal minor, 57
principal submatrix, 56
principal vectors, 137
pseudo inverse, 274

QR algorithm
implicit shift, 317
Rayleigh quotient shift, 317
shifted, 317
Wilkinson shift, 317

QR decomposition, 257
QR factorization, 257
quadratic form, 64
quadruple precision, 339

rate of convergence, 204
Rayleigh quotient, 129

generalized, 143
Rayleigh quotient iteration, 312
rectangular diagonal matrix, 147
relative error, 174, 335
residual vector, 175
Richardson’s method, 191
right triangular, 54
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rotation in the i, j-plane, 261
rounding unit, 339
rounding-error analysis

adjusted rounding unit, 342
backward error, 340
backward stable, 340
condition number, 342
ill-conditioned, 343

row operations, 332
row space, 11

scalar product, 14
scaled partial pivoting, 79
Schur factors, 124
Schur form, real, 143
second derivative matrix, 39
semi-Cholesky factorization, 74
Sherman-Morrison formula, 24
shifted power method, 311
similar matrices, 122
similarity transformation, 122
single precision, 339
singular value decomposition, 147
singular value factorization, 151
singular values

Courant-Fischer theorem, 161
error analysis, 283
Hoffman-Wielandt theorem,

162
singular vectors, 148
span, 6
spectral radius, 199, 207
spectral theorem, 129
spectrum, 29, 119
splitting matrices for R, J, and

SOR, 197
splitting matrix, 196
standard inner product in Cn,

123
steepest descent, 218
stencil, 91
sum of subspaces, 271

sums of integers, 60
SVD, 147
SVF, 151
Sylvester’s inertia theorem, 301
symmetric positive semidefinite,

65

trace, 120
triangle inequality, 12
triangular matrix

left triangular, 54
right triangular, 54
unit triangular, 55

trivial subspace, 9
two point boundary value prob-

lem, 38

unit triangular, 55
unit vectors, 3
unitary matrix, 123
upper trapezoidal matrix, 253

vector
angle, 17
linearly dependent, 6
linearly independent, 6
nontrivial subspaces, 9
orthogonal, 17
orthonormal, 17

vector norm, 11
vector space

basis, 7
change of basis matrix, 10
complementary, 9
complex inner product space,

15
dimension, 8
dimension formula for sums

of subspaces, 9
direct sum, 9
enlarging vectors to a basis,

8
examples of subspaces, 8
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existence of basis, 8
intersection, 9
normed, 12
orthogonal vectors, 17
real, 4
real inner product space, 14
span, 7
subspace, 8
sum, 9
union, 9

vectorization, 91

weights, 268


