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Chapter 0

A Short Review of Linear
Algebra

In this introductory chapter we give a compact introduction to linear algebra with
emphasis on R” and C". For a more elementary introduction, see for example the
book [22]. We start by introducing the notation used.

0.1 Notation

The following sets and notations will be used in this book.

1. The sets of natural numbers, integers, rational numbers, real numbers, and
complex numbers are denoted by N, Z, Q, R, C, respectively.

2. We use the “colon equal” symbol v := e to indicate that the symbol v is
defined by the expression e.

3. R™ is the set of n-tuples of real numbers which we will represent as column
vectors. Thus © € R"™ means

T
T2
T = . )
Tn
where z; € R for : = 1,...,n. Row vectors are normally identified using the
transpose operation. Thus if & € R™ then « is a column vector and 7 is a

row vector.
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. Addition and scalar multiplication are denoted and defined by
1+ Y1 axy

T+y= : , ax=| ! |, z,yecR" aeck
Ty + Yn axy

. R™*™ is the set of matrices A with real elements. The integers m and n are
the number of rows and columns in the tableau

a11 a12 te A1n

a21 a22 to a2n
A =

aml Am2 Amn

The element in the 7th row and jth column of A will be denoted by a;_j, a;j,
A(i,j) or (A); ;. We use the notations

. T
aiy ag.
ag; aép

J T :

a.; = . y Q. :[ailaai%'naain]» Az[a:ha:z,u-a:n]z .
T
Amj Q.

for the columns a.; and rows az-? of A. We often drop the colon and write a;

and a! with the risk of some confusion. If m = 1 then A is a row vector, if

n =1 then A is a column vector, while if m = n then A is a square matrix.

In this text we will denote matrices by boldface capital letters A, B,C), - - -

and vectors most often by boldface lower case letters x,y, z, - .

. The imaginary unit /—1 is denoted by i. The complex conjugate and the

modulus of a complex number z is denoted by Z and |z|, respectively. Thus

if z =2 +iy = re’® = r(cos ¢ + isin¢), with =,y € R, is a complex number

then z := z — iy = re™*® = cos¢ —isin¢ and |z| := VZz = /22 + 92 = 1.

Re(z) := z and Im(z) := y denote the real and imaginary part of the complex

number z.

. For matrices and vectors with complex elements we use the notation A €

C™*™ and & € C™. We define complex row vectors using either the transpose

T or the conjugate transpose operation x* := Tzl = [Z1,...,Tnl.

. For z,y € C" and a € C the operations of vector addition and scalar

multiplication is defined by component operations as in the real case (cf.

4.).

. The arithmetic operations on rectangular matrices are

® matrix addition C = A+ B if A, B, C are matrices of the same size,
i.e., with the same number of rows and columns, and ¢;; = a;; + b;;
for all 4, j.



0.1.

Notation

¢ multiplication by a scalar C = «A, where ¢;; = aa;; for all 7, 5.
® matrix multiplication C = AB, C = A- B or C = A x B, where
A e C™P BeCrm C e C™" and ¢;; = Y p_qaiby; for i =

1,....m,j=1,...,n.

¢ element-by-element matrix operations C = A x B, D = A/B,
and E = A Ar where all matrices are of the same size and ¢;; = a;;b;;,
dij = a;j/bij and e;; = a;; for all 4,7 and suitable r. The element-by-
element product C = A x B is known as the Schur product and also

the Hadamard product.

10. Let A € R™*" or A € C™*". The transpose AT and conjugate trans-
pose A" are n X m matrices with elements aiTj = aj; and a;; = @j;, respec-
tively. If B is an n, p matrix then (AB)T = BT A" and (AB)* = B*A*.

11.

12.

The unit vectors in R™ and C" are denoted by

1 0 0
0 1 0
€1 1= 0 y €2 1= 0 , €3 1= 1 ’
0 0 0
while I, = I := [0;;]7;_,, where

1 ifi =y,
0y 1= ;
0 otherwise,

(1)

is the identity matrix of order n. Both the collumns and the transpose of

the rows of I are the unit vectors e, eq,...,€,.

Some matrices with many zeros have names indicating their “shape”. Sup-

pose A € R"*"™ or A € C"*". Then A is

¢ diagonal if a;; = 0 for ¢ # j.

¢ upper triangular or right triangular if a;; = 0 for ¢ > j.

¢ lower triangular or left triangular if a;; = 0 for ¢ < j.

¢ upper Hessenberg if a;; =0 for i > j + 1.

¢ lower Hessenberg if a;,; = 0 for ¢ < j + 1.
¢ tridiagonal if a;; = 0 for |i — j| > 1.
¢ d-banded if a;; = 0 for |i — j| > d.
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13. We use the following notations for diagonal- and tridiagonal n x n matrices

di 0 -+ 0 y
0 dy - 0 1
diag(d;) = diag(dy,...,dn):= | . . . | = ,
0 0 - d, dn
d1 C1

aq d2 C2
B = tridiag(a;, d;, ¢;) = tridiag(a, d, ¢) :=

Gp—2 dn_1 Cp—1
Qp—1 dn

Here bj; =d; fort=1,...,n, bi41; =a;4, b1 =c;fori=1,...,n—1, and
b;; = 0 otherwise.

14. Suppose A €e C"™*" and 1 < i1 <ig <+ < <m, 1 <j1 < Jo< -+ <
Je < n. The matrix A(i,5) € C"*¢ is the submatrix of A consisting of rows

1 :=[i1,...,1,] and columns j := [j1,..., j|
iy g1 Qiy,go 0 Qigje
. . T U
N 21 19 - (73 22,J1 12,]2 125]c
Ju g2 0 Je

Qipgi Qipge 0 Qige

For the special case of consecutive rows and columns we use the notation

Qry,cq Qryei+1 """ Qry,co

Ari+1,e7 Ori4+l,e9+1 """ Ari+1,co

A(ry i rg,c1 i Ca) i= . . .
Qry,cq Qrg,ci+1 " Qry co

0.2 Vector Spaces and Subspaces

Many mathematical systems have analogous properties to vectors in R? or R3.

Definition 0.1 (Real vector space)

A real vector space is a nonempty set V, whose objects are called vectors,
together with two operations + : VxV — V and - : RxV — V, called addition
and scalar multiplication, satisfying the following axioms for all vectors uw, v, w
in V and scalars c,d in R.

(V1) The sumu+wv isinV,
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(V2) u+v=v+u,

(V3) u+ (v+w) =(u+v)+w,

(V4) There is a zero vector 0 such that u + 0 = u,

(V5) For each w in V there is a vector —u in V such that u + (—u) =0,
(S1) The scalar multiple ¢ - u is in V,

(S2) ¢c-(u+v)=c-u+c-v,

(S3) (c+d)-u=c-u+d-u,

(S4) ¢ (d-u) = (cd) - u,

(85) 1 -u=mu.

The scalar multiplication symbol - is often omitted, writing cv instead of c-v. We
define u — v := u + (—v). We call V a complex vector space if the scalars
consist of all compler numbers C. In this book a vector space is either real or
complez.

From the axioms it follows that
1. The zero vector is unique.
2. For each u € V the negative —u of u is unique.
3. 0u=0,c0=0, and —u = (—1)u.

Here are some examples
1. The space R", where n € N, is a real vector space.
2. Similarly, C™ is a complex vector space.

3. Let D be a subset of R and d € N. The set V of all functions f,g : D — R?
is a real vector space with

(f+9)(t) == F(O) +9(t), (cf)(t):=cf(t), teD, ceR

Two functions f,g in V are equal if f(t) = g(t) for all ¢ € D. The zero
element is the zero function given by f(¢) = 0 for all ¢ € D and the
negative of f is given by —f = (—1)f. In the following we will use boldface
letters for functions only if d > 1.
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4. For n > 0 the space II,, of polynomials of degree at most n consists of all
polynomials p: R - R, p: R — C, or p: C — C of the form

p(t) = ag + art + ast® + - + ant”, 2

where the coefficients ag, . .., a, are real or complex numbers. p is called the
zero polynomial if all coefficients are zero. All other polynomials are said
to be nontrivial. The degree of a nontrivial polynomial p given by (2) is
the smallest integer 0 < k < n such that p(t) = ag + - - - + at* with a; # 0.
The degree of the zero polynomial is not defined. II,, is a vector space if we
define addition and scalar multiplication as for functions.

Definition 0.2 (Linear combination)

Forn > 1let X := {x1,...,x,} be a set of vectors in a vector space V and let
ci,...,Cp be scalars.
1. The sum cyxy + - -+ + cpxy 18 called a linear combination of x4, ..., x,.

2. The linear combination is nontrivial if c;x; # 0 for at least one j.
3. The set of all linear combinations of elements in X is denoted span(X).

4. A wvector space is finite dimensional if it has a finite spanning set; i.e.,
there exists n € N and {x1,...,x,} in V such that V = span({x1,...,z,}).

Example 0.3 (Linear combinations)

1. Any @ = [x1,...,2,]7 in C™ can be written as a linear combination of the
unit vectors as € = x1e1+xoes+- - +xmem,. Thus, C™ = span({ei,...,en})
and C™ is finite dimensional. Similarly R™ is finite dimensional.

2. Let 11 = U,IL, be the space of all polynomials. 11 is a vector space that
is not finite dimensional. For suppose Il is finite dimensional. Then II =
span({p1,...,pm}) for some polynomials p1,...,pm. Letd be an integer such
that the degree of p; is less than d for j =1,...,m. A polynomial of degree
d cannot be written as a linear combination of p1,...,pm, a contradiction.

0.2.1 Linear independence and bases

Definition 0.4 (Linear independence)

A set X = {x1,...,x,} of nonzero vectors in a vector space is linearly de-
pendent if 0 can be written as a nontrivial linear combination of {x1,...,Tx}.
Otherwise X is linearly independent.
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A set of vectors X = {x1,...,x,} is linearly independent if and only if
X1+ -+ e, =0 = cp=--=c¢,=0. (3)
Suppose {&1,...,x,} is linearly independent. Then
1. If & € span(X) then the scalars ¢y, ..., ¢, in the representation & = ¢y +

-+ + ¢, T, are unique.

2. Any nontrivial linear combination of x1, ..., x, is nonzero,

Lemma 0.5 (Linear independence and span)
Suppose v1,...,v, span a vector space V and that ws,...,wy are linearly inde-
pendent vectors in V. Then k < n.

Proof. Suppose k > n. Write w; as a linear combination of elements from
the set Xy := {v1,...,v,}, say w1 = c1v1 + -+ + ¢,v,. Since wy; # 0 not
all the c’s are equal to zero. Pick a nonzero c, say c¢;;. Then wv; can be
expressed as a linear combination of w; and the remaining v’s. So the set
Xy = {w1,v1,...,0;, -1,V 41, ..,V must also be a spanning set for V. We
repeat this for we and A;. In the linear combination we = d;, wy + Zj;éil d;vj,
we must have d;, # 0 for some iy with i5 # i;. For otherwise we = dyw; con-
tradicting the linear independence of the w’s. So the set X5 consisting of the
v’s with v;, replaced by w; and v;, replaced by ws is again a spanning set for
V. Repeating this process n — 2 more times we obtain a spanning set X,, where
v1,...,V, have been replaced by wi,...,w,. Since k > n we can then write wy,
as a linear combination of wy,...,w, contradicting the linear independence of
the w’s. We conclude that k£ < n. O

Definition 0.6 (basis)
A finite set of vectors {v1,...,v,} in a vector space V is a basis for V if

1. spanf{vy,...,v,} = V.

2. {vy,...,v,} is linearly independent.

Theorem 0.7 (Basis subset of a spanning set)

Suppose V is a vector space and that {v1,...,v,} is a spanning set for V. Then
we can find a subset {v;,,...,v;, } that forms a basis for V.
Proof. 1f {vy,...,v,} is linearly dependent we can express one of the v’s as a

nontrivial linear combination of the remaining v’s and drop that v from the span-
ning set. Continue this process until the remaining v’s are linearly independent.
They still span the vector space and therefore form a basis. 0O
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Corollary 0.8 (Existence of a basis)
A wector space is finite dimensional if and only if it has a basis.

Proof. Let V = span{vi,...,v,} be a finite dimensional vector space. By
Theorem 0.7, V has a basis. Conversely, if V = span{vy,...,v,} and {v1,...,v,}
is a basis then it is by definition a finite spanning set. 0O

Theorem 0.9 (Dimension of a vector space)
Every basis for a vector space V has the same number of elements. This number
is called the dimension of the vector space and denoted dim V.

Proof. Suppose X = {vy,...,v,} and Y = {w,...,wi} are two bases for V.
By Lemma 0.5 we have £ < n. Using the same Lemma with & and ) switched
we obtain n < k. We conclude that n = k. 0

The set of unit vectors {ey,...,e,} form a basis for both R” and C™.

Theorem 0.10 (Enlarging vectors to a basis )
Every linearly independent set of vectors {v1,...,v;} in a finite dimensional vec-
tor space V can be enlarged to a basis for V.

Proof. If {vy,...,vr} does not span V we can enlarge the set by one vector vj41
which cannot be expressed as a linear combination of {vy,...,vx}. The enlarged
set is also linearly independent. Continue this process. Since the space is finite
dimensional it must stop after a finite number of steps. 0

0.2.2 Subspaces
Definition 0.11 (Subspace)

A nonempty subset S of a real or complex vector space V is called a subspace of
V if
(V1) The sum u+v isin S for any u,v € S.

(S1) The scalar multiple cu is in S for any scalar ¢ and any u € S.

Using the operations in V), any subspace S of V is a vector space, i.e., all 10
axioms V1 — V5 and S1 — S5 are satisfied for S. In particular, S must contain
the zero element in V. This follows since the operations of vector addition and
scalar multiplication are inherited from V.

Example 0.12 (Examples of subspaces)
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1. {0}, where O is the zero vector is a subspace, the trivial subspace. The
dimension of the trivial subspace is defined to be zero. All other subspaces
are nontrivial.

2.V is a subspace of itself.

3. span(X) is a subspace of V for any X = {x1,...,x,} C V. Indeed, it is
easy to see that (V1) and (S1) hold.

4. The sum of two subspaces R and S of a vector space V is defined by
R+S:={r+s:reR and s € S}. (4)
Clearly (V1) and (S1) hold and it is a subspace of V .

5. The intersection of two subspaces R and S of a vector space V is defined

by
RNS:={zx:xeR and xz € S}. (5)

It is a subspace of V.

6. The union of two subspaces R and S of a vector space V is defined by
RUS:={x:x R orxecS} (6)
In general it is not a subspace of V.

7. A sum of two subspaces R and S of a vector space V is called a direct
sum and denoted R® S if RNS = {0}. The subspaces R and S are called
complementary in the subspace R & S.

Theorem 0.13 (Dimension formula for sums of subspaces)
Let R and S be two finite dimensional subspaces of a vector space V. Then

dim(R + 8) = dim(R) + dim(S) — dim(R N S). (7)
In particular, for a direct sum
dim(R @ S) = dim(R) + dim(S). (8)

Proof. Let {u1,...,u,} be a basis for RNS, where {u1,...,u,} =0, the empty
set, in the case RNS = {0}. We use Theorem 0.10 to extend {u1,...,u,} to a ba-
sis {u1,...,up, 71,...,74} for R and a basis {u1,...,up, s1,...,8:} for S. Every
x € R+S can be written as a linear combination of {u1,...,up, 71,...,7¢,81,..., 8¢}
so these vectors span R + S. We show that they are linearly independent and
hence a basis. Suppose u + 7 + s = 0, where u := >-"_, ajuy, v := Y1, pjrj,



10 Chapter 0. A Short Review of Linear Algebra

and s := Z;Zl 0j8;. Now r = —(u+s) belongs to both R and to § and hence r €

R NS. Therefore r can be written as a linear combination of u1,...,u, say r :=
>F_) Bjuj. Butthen 0 = 3%, Bju;—>"9_, pjrj and since {ur, ..., up, 71,..., 7}
is linearly independent we must have f; = --- = B, = p1 = -+ = pg =0
and hence » = 0. We then have u + s = 0 and by linear independence of
{u1,...,up,81,...,8} weobtain o = -+ =, =01 =--- = 0y = 0. We have
shown that the vectors {ui,...,up,71,...,74,81,...,8;} constitute a basis for

R+ S. But then
dm(R+S)=p+qg+t=(p+q) +(p+t)—p=dim(R)+ dim(S) — dim(RNS)
and (7) follows. (7) implies (8) since dim{0} =0. O

It is convenient to introduce a matrix transforming a basis in a subspace
into a basis for the space itself.

Lemma 0.14 (Change of basis matrix)

Suppose S is a subspace of a finite dimensional vector space V and let {s1,...,8,}
be a basis for S and {v1,..., v} a basis for V. Then each s; can be expressed
as a linear combination of v1,...,Vy,, say
m
sj:Zaijviforjzl,...,n. (9)
i=1
IfxeSthenz =37 | cjs; = > ;" biv; for some coefficients b= [by, ..., by]",
c:=[c1,...,cn)T. Moreover b = Ac, where A = [a;;] € C™*" is given by (9).

The matriz A has linearly independent columns.

Proof. (9) holds for some a;; since s; € V and {vy,...,v,,} spans V. Since
{s1,...,8,} is a basis for § and {v1,...,v,,} a basis for V, every @ € S can be

written & = Z?:l ¢jsj = >, byv; for some scalars (c¢;) and (b;). But then

n m m n

m n

Z bivi = = ZCij (i) chj(z aijvi) = Z (Zaijcj)'ui.

i=1 j=1 j=1 =1 i=1 j=1
Since {v1,...,vn} is linearly independent it follows that b; = 37, a;jc; for
i=1,...,mor b= Ac. Finally, to show that A has linearly independent columns
suppose b := Ac = 0 for some ¢ = [cy,...,c,|T. Define x := Z?Zl ¢;8j. Then
x =)Y." bv; and since b = 0 we have = 0. But since {s1,...,s,} is linearly
independent it follows that c=0. 0O

The matrix A in Lemma 0.14 is called a change of basis matrix.
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0.2.3 The vector spaces R"” and C"

When V = R™ we can think of n vectors in R™, say x1,...,x,, as a set X :=
{z1,...,x,} or as the columns of a matrix X = [xy,...,z,] € R™*" A
linear combination can then be written as a matrix times vector Xe¢, where
c=c,...,c,)7T is the vector of scalars. Thus

span(X) = span(X) = {Xc: c e R"}.

Of course the same holds for C™.
In R™ and C™ each of the following statements is equivalent to linear inde-
pendence of X.

(i) Xe=0=c=0,

(ii) X has linearly independent columns,

Definition 0.15 (Column space and null space)
Associated with a matric X = [xq,...,x,] € R™*"™ are the following subspaces

1. The subspace span(X) is called the column space of X. It is the smallest
subspace containing X = {x1,..., Ty }.

2. span(XT) is called the row space of X. It is generated by the rows of X
written as column vectors.

3. The subspace ker(X) := {y € R" : Xy = 0} is called the null space or
kernel space of X.

Note that the subspace ker(X) is nontrivial if and only if X is linearly
dependent.

0.3 Vector Norms

To measure the size of a vector we use norms.

Definition 0.16 (Vector norm)
A (vector) norm in a real (resp. complex) vector space V is a function || :
V — R that satisfies for all x,y inV and all a in R (resp. C)

1. ||z|| > 0 with equality if and only if x = 0. (positivity)
2. |laz| = |a| [|z]|. (homogeneity)

3. |l +yl <[l + [lyll- (subadditivity)
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The triple (V, R, ||]l) (resp. (V,C,|-|])) is called a normed vector space and
the inequality 3. is called the triangle inequality.

In this book we will use the following family of vector norms on ¥V = C™ and
Y =R".

Otto Ludwig Holder, 1859-1937 (left), Hermann Minkowski, 1864-1909 (right).

Definition 0.17 (Vector p-norms)
We define for p > 1 and x € R™ or x € C™ the p-norms by

lally = (émp)w, (10)

|l = max [, (1)

The most important cases are p = 1,2, 00:

n
1.z, = Z|x]| , (the one-norm or [;-norm)
j=1

2. x|z = 1/2:?=1|93j|2, (the two-norm, l>-norm, or Euclidian norm)

3. |x|leo = lrgjaé(n|xj|, (the infinity-norm, /,,-norm, or max norm)

Some remarks are in order.

1. That the Euclidian norm is a vector norm follows from Theorem 0.23. In
Section 7.3, we show that the p-norms are vector norms for 1 < p < oo.

2. The triangle inequality |z + yll, < [[z[l, + [lyll, is called Minkowski’s
inequality.
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3. To prove it one first establishes Holder’s inequality
= 11 N
Y lzyil < llzlpliylles —+- =1, zyeC (12)
= P q

The relation % + % = 1 means that if p = 1 then ¢ = co and if p = 2 then
q = 2 and Holder’s inequality is the same as the Cauchy-Schwarz inequality
(cf. Theorem 0.22) for the Euclidian norm.

4. The infinity norm is related to the other p-norms by

lim ||z|, = ||z|| for all x € C". (13)
p—00

5. The equation (13) clearly holds for & = 0. For x # 0 we write

n _ 1/p
|2l := wloo(Z (||ZE|]|(|,o )p> '

Jj=1

Now each term in the sum is not greater than one and at least one term is
equal to one, and we obtain

[]loe < 2] < n'P|@]oe, p> 1. (14)
Since limy, ;o0 n!/P =1 for any n € N we see that (13) follows.

We return now to the general case.

Definition 0.18 (Equivalent norms)
We say that two norms ||-|| and ||-||" on V are equivalent if there are positive
constants m and M such that for all vectors x € V we have

mla| < [lz]| < Mllz]". (15)

By (14) the p- and co-norms are equivalent for any p > 1. This result is
generalized in the following theorem.

Theorem 0.19 (Basic properties of vector norms)
The following holds for a normed vector space (V,C, ||-||).

1. |z —y|| > ||zl = llyll|, for all z,y € C" (inverse triangle inequality).
2. The vector norm is a continuous function V — R.

3. All vector norms on V are equivalent provided V is finite dimensional.
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Proof.

L. Since ||| = [lz —y + y|| <[l -y + [ly[| we obtain [ —y|| > [z - [y].
By symmetry ||z — y|| = ||ly — x| > ||ly|| — ||| and we obtain the inverse
triangle inequality.

2. This follows from the inverse triangle inequality.

3. The following proof can be skipped by those who do not have the necessary
background in advanced calculus. Define the ||-||" unit sphere

S={yeV:|yl =1}

The set S is a closed and bounded set and the function f: S — R given by
f(y) = |ly]| is continuous by what we just showed. Therefore f attains its
minimum and maximum value on §. Thus, there are positive constants m
and M such that

m< |yl <M, yes. (16)
For any « € V one has y := z/|z||' € S, and (15) follows if we apply (16)
to these y.

0.4 Inner Products

An inner product or scalar product in a vector space is a function mapping
pairs of vectors into a scalar.

0.4.1 Real and complex inner products
We consider first the real case.

Definition 0.20 (Real inner product)
An inner product in a real vector space V is a function (-,-) : V xV — R
satisfying for all x,y,z € V and all a,b € R the following conditions:

1. (x,x) > 0 with equality if and only if x = 0. (positivity)
2. (z,y) = (y, z) (symmetry)
3. (ax + by, z) = a(x, z) + b{y, ). (linearity)

The pair (V,(-,-)) is called a real inner product space. The function
-] :V —R, z— ||z == v/ {(x, x) (17)

is called the inner product norm.
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The standard inner product in V = R" is given by (x, y) := 2Ty = y T x.
It is clearly an inner product in R™. The corresponding inner product norm is the
Euclidian norm ||z|| = VaTz = ||z||2-

Consider next inner products in a complex vector space. Property 2. in the
definition of a real inner product is altered from symmetry to skew symmetry.

Definition 0.21 (Complex inner product)
An inner product in a complex vector space V is a function V xV — C satisfying
forallx,y,z €V and all a,b € C the following conditions:

1. (x,x) > 0 with equality if and only if x = 0. (positivity)
2. (x,y) = (y,x) (skew symmetry)
3. (ax + by, z) = alx, z) + b{y, ). (linearity)

The pair (V,(-,-)) is called a complex inner product space The function
V=R, @[] = (2, 2) (18)
is called the inner product norm.
Note the complex conjugate in 2. We find
(x,ay +bz) = a(z,y) + blz, 2), (az,ay) = |af*(2,y). (19)

The standard inner product in C" is given by
n
(x,y) =y'z=ag= Zx]E
j=1

It is clearly an inner product in C". The corresponding inner product norm is the
Euclidian norm ||z|| = ||z||2 = Va*x.

Viktor Yakovlevich Bunyakovsky, 1804-1889 (left), Augustin-Louis Cauchy, 1789-
1857 (center), Karl Hermann Amandus Schwarz,1843-1921 (right). The name Bun-
yakovsky is also associated with the Cauchy-Schwarz inequality.

The following inequality holds for any inner product.
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Theorem 0.22 (Cauchy-Schwarz inequality)
For any x,y in a real or complex inner product space

[z, )| < lllll|yll, (20)

with equality if and only if * and y are linearly dependent.

Proof. If y = 0 then (x,y) = (x,0y) = 0(x,y) = 0 and ||y|| = 0. Thus the
inequality holds with equality, and ® and y are linearly dependent. So assume
y # 0. Define

(z,y)
(y,y)

Then (z,y) = (x,y) — a{y,y) = 0 so that by 2. and (19)

zi=xT—ay, a:=

(ay, z) + (z,ay) = a{z,y) + a(z,y) = 0. (21)
But then

l]|* = (x, ) = (2 + ay, z + ay)

(21) (19)
= (2,2) + (ay,ay) = ||z|* + [af*|ly]?

[z, y)|?
> la]?|lyl* = Tl

Multiplying by ||y||? gives (20). We have equality if and only if 2 = 0, which
means that & and y are linearly dependent. 0O

Theorem 0.23 (Inner product norm)
The inner product norm is a vector norm.

Proof. For all ,y in an inner product space and all a in C we need to show

1. ||z|| > 0 with equality if and only if & = 0. (positivity)
2. |laz| = |al ||| (homogeneity)
3. e +yll < [l + [yl (subadditivity)

The first statement is an immediate consequence of positivity, while the second
one follows from (19). Expanding ||z + ay||* = (z + ay, T + ay) using (19) we
obtain

lz + ayl® = |zl* + aly, x) + alx,y) + laP|ly|*>, a€C, =zyeV. (22)
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Now (22) with @ = 1 and the Cauchy-Schwarz inequality implies
lz +yl* < [lz)* + 2l [yl + Iyl = (=] + [y])*

Taking square roots completes the proof. [

In the real case the Cauchy-Schwarz inequality implies that —1 < Hica‘“"l’ﬁ’;” <1

for nonzero x and y, so there is a unique angle ¢ in [0, 7] such that

_ (z,y)
%6 = Tzllyl (23)

This defines the angle between vectors in a real inner product space.

Exercise 0.24 (The A” A inner product)
Suppose A € R™*™ has linearly independent columns. Show that {(x,y) :=
xT AT Ay defines an inner product on R™.

Exercise 0.25 (Angle between vectors in complex case)
Show that in the complex case there is a unique angle 0 in [0,7/2] such that

)l
s = Tl 29

0.4.2 Orthogonality

Definition 0.26 (Orthogonality)

Two vectors x,y in a real or complex inner product space are orthogonal or
perpendicular, denoted as Ly, if (x,y) = 0. The vectors are orthonormal
if in addition ||z| = ||ly|| = 1.

From the definitions (23), (24) of angle 6 between two vectors in R™ or C”
it follows that « L y if and only if § = w/2.

Theorem 0.27 (Pythagoras)
For a real or complex inner product space

le +yl* = llz* + lyl*, & =Ly (25)

Proof. We set a =1 in (22) and use the orthogonality. 0O
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Pythagoras of Samos, BC 570-BC 495 (left), Jorgen Pedersen Gram, 1850-1916 (cen-
ter), Erhard Schmidt,1876-1959 (right).

Definition 0.28 (Orthogonal- and orthonormal bases)

A set of nonzero vectors {vy,...,vi} in a subspace S of a real or complex inner
product space is an orthogonal basis for S if it is a basis for S and (v;,v;) =0
fori# j. It is an orthonormal basis for S if it is a basis for S and (v;,v;) = 0;;
foralli,j.

A basis for a subspace of an inner product space can be turned into an
orthogonal- or orthonormal basis for the subspace by the following construction.

Theorem 0.29 (Gram-Schmidt)

Let {s1,...,85} be a basis for a real or complex inner product space (S, {(-,")).
Define
(8,00
v = 8y, V; =85 — A v, ]:2,,]{3 (26)
— (v;,vi)
Then {v1,...,v} is an orthogonal basis for S and the normalized vectors
V1 Vi
{ul,...,uk}:z{ geeey }
[[va]] vk
form an orthonormal basis for S.
Proof. To show that {v1,...,vs} is an orthogonal basis for S we use induction
on k. Define subspaces S; := span{si,...,s;} for j =1,... k. Clearly v; = s;
is an orthogonal basis for S;. Suppose for some j > 2 that vy,...,v;_1 is an
orthogonal basis for S;_; and let v; be given by (26) as a linear combination of
sj and vy,...,v;_1. Now each of these v, is a linear combination of si,...,s;,

and we obtain v; = Y 7_, a;s; for some ao,...,a; with a; = 1. Since sq,...,s;
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Figure 1. The construction of v1 and vs in Gram-Schmidt. The constant
¢ is given by ¢ := (s2,v1)/(v1,v1).

are linearly independent and a; # 0 we deduce that v; # 0. By the induction
hypothesis

7j—1
(s),vi) (s5,v1)
j 9 = B - [2) = j ) - ) =0
<UJ vl> <S] vl> — <'U1,’U,‘> <U vl> <8J vl> <’Ul,’Ul>< l Ul>
fori=1,...,5—1. Thus vy,...,v; is an orthogonal basis for S;.
If {vy,...,vx} is an orthogonal basis for S then clearly {uq,...,u;} is an

orthonormal basis for S. O

Sometimes we want to extend an orthogonal basis for a subspace to an
orthogonal basis for a larger space.

Theorem 0.30 (Orthogonal Extension of basis)
Suppose S C T are finite dimensional subspaces of a vector space V. An orthogonal
basis for S can always be extended to an orthogonal basis for T .

Proof. Suppose dimS := k < dim7 = n. Using Theorem 0.10 we first extend
an orthogonal basis s1,..., sy for S to a basis s1,..., Sk, Sk+1,..., 8, for T, and
then apply the Gram-Schmidt process to this basis obtaining an orthogonal basis
v1,...,v, for 7. This is an extension of the basis for S since v; = s; for ¢ =
1,..., k. We show this by induction. Clearly v; = s1. Suppose for some 2 < r < k
that v; = sj for j = 1,...,7 — 1. Consider (26) for j = r. Since (s,,v;) =
(sr,8;) =0 for i <r we obtain v, =s,. O

Letting S = span(sy,...,s;) and T be R™ or C" we obtain
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Corollary 0.31 (Extending orthogonal vectors to a basis)
For1<k<mn aset{s1,...,sx} of nonzero orthogonal vectors in R™ or C"™ can
be extended to an orthogonal basis for the whole space.

0.5 Linear Systems

Consider a linear system

anrr + a2 + - 4+ AT, = b
ao1x1  + axrz + -+ ATy, = by
am1T1 +  QmoTz + - + AmnTn = bm

of m equations in n unknowns. Here for all 7, j, the coefficients a;;, the unknowns
x;, and the components of the right hand sides b;, are real or complex numbers.
The system can be written as a vector equation

ria1 + 2202 + - - + Tpay = b,

where a; = [alj,...,amj]T eCmforj=1,...,nand b = [bl,...7bm]T e C™.
It can also be written as a matrix equation

ail a2 - A1n x1 b1
a21 azz A2n €2 by

Az =| . . =1 |=0b
Am1 Am?2 e Amn Tn bm

The system is homogeneous if b = 0 and it is said to be underdetermined,
square, or overdetermined if m < n, m = n, or m > n, respectively.

0.5.1 Basic properties

A linear system has a unique solution, infinitely many solutions, or no solution. To
discuss this we first consider the real case, and a homogeneous underdetermined
system.

Lemma 0.32 (Underdetermined system)
Suppose A € R™*™ with m < n. Then there is a nonzero x € R™ such that
Az =0.

Proof. Suppose A € R™*™ with m < n. The n columns of A span a subspace of
R™. Since R™ has dimension m the dimension of this subspace is at most m. By
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Lemma 0.5 the columns of A must be linearly dependent. It follows that there is
a nonzero x € R™ such that Az =0. 0O

A square matrix is either nonsingular or singular.

Definition 0.33 (Real nonsingular or singular matrix)

A square matriz A € R™"*"™ is said to be nonsingular if the only real solution of
the homogeneous system Ax = 0 is * = 0. The matriz is singular if there is a
nonzero x € R™ such that Ax = 0.

Theorem 0.34 (Linear systems; existence and uniqueness)
Suppose A € R" ™. The linear system Ax = b has a unique solution x € R™ for
any b € R™ if and only if the matriz A is nonsingular.

Proof. Suppose A is nonsingular. We define B = [A b] e R»*(+1) by adding a
column to A. By Lemma 0.32 there is a nonzero z € R"*! such that Bz = 0. If

. - T
we write z = { o ] where z = [217 .. .,zn] € R™ and z,41 € R, then

Zn+1

Bz =[Ab] { o ] = A% + 2,41 b= 0.
Zn+1
We cannot have z,1; = 0 for then Az = 0 for a nonzero 2z, contradicting the
nonsingularity of A. Define @ := —%/2, 1. Then
z 1 1
Aa:_—A< £ > — Az =——(—z,,b) =b,
Zn+1 Zn41 Zn+1

so x is a solution.

Suppose Az =b and Ay = b for x,y € R™. Then A(x — y) = 0 and since
A is nonsingular we conclude that € —y = 0 or = y. Thus the solution is
unique.

Conversely, if Az = b has a unique solution for any b € R™ then Ax = 0
has a unique solution which must be = 0. Thus A is nonsingular. 0O

For the complex case we have

Lemma 0.35 (Complex underdetermined system)
Suppose A € C™ "™ with m < n. Then there is a nonzero x € C" such that
Ax =0.

Definition 0.36 (Complex nonsingular matrix)

A square matriz A € C™*" s said to be nonsingular if the only complex solution
of the homogeneous system Ax = 0 is x = 0. The matriz is singular if it is not
nonsingular.
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Theorem 0.37 (Complex linear system; existence and uniqueness)
Suppose A € C"*™. The linear system Ax = b has a unique solution x € C" for
any b € C™ if and only if the matriz A is nonsingular.

James Joseph Sylvester, 1814-1897. The word matrix to denote a rectangular array of num-
bers, was first used by Sylvester in 1850.

0.5.2 The inverse matrix

Suppose A € C™"*™ is a square matrix. A matrix B € C"*" is called a right
inverse of A if AB = I. A matrix C € C"*" is said to be a left inverse of A
if CA = 1. We say that A is invertible if it has both a left- and a right inverse.
If A has a right inverse B and a left inverse C then

C=CI=C(AB)=(CA) B=IB=B

and this common inverse is called the inverse of A and denoted by A~!. Thus
the inverse satisfies A" A = AA" !t =1T.

We want to characterize the class of invertible matrices and start with a
lemma.

Theorem 0.38 (Product of nonsingular matrices)

If A, B,C € C"*" with AB = C then C is nonsingular if and only if both A and
B are nonsingular. In particular, if AB =1 or BA = I then A is nonsingular
and A™' = B.

Proof. Suppose both A and B are nonsingular and let Cx = 0. Then ABx =0
and since A is nonsingular we see that Bax = 0. Since B is nonsingular we have
x = 0. We conclude that C' is nonsingular.

For the converse suppose first that B is singular and let € C™ be a nonzero
vector so that Bx = 0. But then Cx = (AB)x = A(Bz) = A0 =050 C is
singular. Finally suppose B is nonsingular, but A is singular. Let & be a nonzero
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vector such that Az = 0. By Theorem 0.37 there is a vector « such that Bx = &
and  is nonzero since & is nonzero. But then Cx = (AB)x = A(Bx) = Az =0
for a nonzero vector  and C' is singular. 0O

Theorem 0.39 (When is a square matrix invertible?)
A square matriz is invertible if and only if it is nonsingular.

Proof. Suppose first A is a nonsingular matrix. By Theorem 0.37 each of the
linear systems Ab; = e; has a unique solution b; for i = 1,...,n. Let B =
[bl,...7bn]. Then AB = [Abl,...,Abn] = [el,...,en] = I so that A has a
right inverse B. By Theorem 0.38 B is nonsingular since I is nonsingular and
AB = I. Since B is nonsingular we can use what we have shown for A to conclude
that B has a right inverse C, i.e. BC = I. But then AB = BC = I so B has
both a right inverse and a left inverse which must be equal so A = C. Since
BC =1 we have BA = I, so B is also a left inverse of A and A is invertible.

Conversely, if A is invertible then it has a right inverse B. Since AB =1
and I is nonsingular, we again use Theorem 0.38 to conclude that A is nonsingular.
d

To verify that some matrix B is an inverse of another matrix A it is enough
to show that B is either a left inverse or a right inverse of A. This calculation
also proves that A is nonsingular. We use this observation to give simple proofs
of the following results.

Corollary 0.40 (Basic properties of the inverse matrix)
Suppose A, B € C"*™ are nonsingular and ¢ is a nonzero constant.

1. A~ is nonsingular and (A1)~ = A.
2. C = AB is nonsingular and C™* = B~'A™!.
3. AT is nonsingular and (AT)"1 =(A™HT = AT,
4. A* is nonsingular and (A*)~' = (A™H* =2 A,
5. cA is nonsingular and (cA)~t = 1A7".

Proof.

1. Since A™'A = T the matrix A is a right inverse of A™*. Thus A~ is
nonsingular and (A~ "1 = A.

2. We note that (B"*A™")(AB) = B"'(A"'A)B =B 'B =1. Thus AB
is invertible with the indicated inverse since it has a left inverse.

3. Now I = I" = (A'A)T = AT(A™HT showing that (A™')7 is a right
inverse of AT The proof of part 4 is similar.
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. -1 . . .
4. The matrix %A is a one sided inverse of cA.

|

Exercise 0.41 (The inverse of a general 2 x 2 matrix)

Show that
a b17" [ d b 1
¢ d T e a4 |7 YT ad—be

for any a, b, ¢, d such that ad — bc # 0.

Exercise 0.42 (The inverse of a special 2 x 2 matrix)
Find the inverse of

_ [ cosf) —sinf ]

sinf  cos@

Exercise 0.43 (Sherman-Morrison formula)
Suppose A € C™*", and B,C € R™™ for some n,m € N. If [+ CTA™'B)~!
exists then

(A+BCT)y'=A"'-A'BI+CTA'B)"'cTA™ .

0.6 Determinants

Determinants, denoted by det(-) or | - |,are useful for studying eigenvalues. Recall
that if A, B are square matrices of order n with real or complex elements, then
(see Appendix A for proofs)

1. det(AB) = det(A) det(B).

2. If A is triangular then det(A) = aj1a29 - - - apyp- In particular, det(I) = 1.
3. det(AT) = det(A), and det(A*) = det(A), (complex conjugate).

4. det(aA) = a" det(A), for a € C.

5. A is singular if and only if det(A) = 0.

6. fA= [C D} for some square matrices C, E then det(A) = det(C) det(E).

0 FE
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7. Cramer’s rule Suppose A € C"*" is nonsingular and b € C". Let x =

[x1,22,...,7,]T be the unique solution of Az = b. Then
= =1,2,...
JCj det(A) bl .] » < 7n7

where A;(b) denote the matrix obtained from A by replacing the jth column
of A by b.

8. Adjoint. Let A;; denote the submatrix of A obtained by deleting the ith
row and jth column of A. For A € C"*™ and 1 < 4,5 < n the determinant
det(A;;) is called the cofactor of a;;. The matrix adj(A) € C"*" with
elements adj(A);; = (—1)"77 det(A; ;) is called the adjoint of A.

9. Adjoint formula for the inverse. If A € C"*" is nonsingular then

A—l

1 .
= Jot(a) M-

10. Cofactor expansion. For any A € C"*™ we have

det(A) = Z(—l)“’jaij det(A;;) fori=1,...,n, (27)
j=1
det(A) =Y (=1)"a;; det(A;;) for j=1,...,n. (28)

Arthur Cayley, 1821-1895 (left), Gabriel Cramer 1704-1752 (center), Alexandre-
Thophile Vandermonde,1735-1796 (right). The notation | | for determinants is due
to Cayley 1841.

To compute the value of a determinant it is often convenient to use row- or
column operations to introduce zeros in a row or column of A and then use one
of the cofactor expansions.
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Exercise 0.44 (Cramer’s rule; special case)
Solve the following system by Cramers rule:

EIENH

Exercise 0.45 (Adjoint matrix; special case)
Show that if

2 -6 3
A=|3 -2 —6 |,
6 3 2
then
14 21 42
adj(A)=| —42 -14 21
21 —42 14
Moreover,
343 0 0
adj(A)A = 0 343 0 = det(A)I.
0 0 343

Example 0.46 (Determinant equation for a straight line)
The equation for a straight line through two points (z1,y1) and (z2,y2) in the
plane can be written as the equation

1 =z y
det(A) =1 1 Yi| = 0
1z yo

involving a determinant of order 3. We can compute this determinant using row
operations of type 3. Subtracting row 2 from row 3 and then row 1 from row 2
we obtain

1 2z vy 1 z Y
1 oy =0 mi—2 y1—y|= @ —2)(y2—v1)— (y1 —y)(x2 — 21).
1 z2 yo 0 z2—21 y2—wm

Rearranging the equation det(A) = 0 we obtain

which is the slope form of the equation of a straight line.
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WO

Figure 2. The triangle T defined by the three points Py, Py and Ps.

Exercise 0.47 (Determinant equation for a plane)

Show that
r y =z 1
roy1oa 1) 0
To Yo z2 1 '
T3 Y3 z3 1

is the equation for a plane through three points (x1,y1,21), (x2,y2, 22) and (x3,ys, 23)
in space.

Exercise 0.48 (Signed area of a triangle)
Let P; = (x4,v:), © = 1,2,3, be three points in the plane defining a triangle T.
Show that the area of T is'

1 1 1 1
A(T) = 5 r1 X2 I3
Y1 Y2 Y3

The area is positive if we traverse the vertices in counterclockwise order.

Exercise 0.49 (Vandermonde matrix)

Show that ) )
ne
1 = zy - 2 X
2 n—
1 zo0 o5 -+
= [[@:i — =),
. . ’L>j
1 =z x2 ... gnl
n n n

1Hint: A(T) = A(ABPgPl) + A(P3BCP2) — A(PlACPQ), c.f. Figure 2
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where [, (v — x5) = [Timg(2i — 21)(2; — x2) -+ (¥ — @;-1). This determinant
is called the Vandermonde determinant. 2

Exercise 0.50 (Cauchy determinant (1842))
Let a = [aq,...,an]t, B=[B1,...,Ba]T be in R™.

a) Consider the matric A € R™ " with elements a;; = 1/(a; + B;), 4, =
1,2,...,n. Show that

det(A) = Pg(a)g(B)

where P =[], H?:I aij, and for v = [y1,..., )T

n

9(v) = H(% =) (v —v2) - (Vi — Yie1)

Hint: Multiply the ith row of A by H?Zl(ai—kﬂj) fori=1,2,... ,n. Call the
resulting matriz C. Each element of C is a product of n—1 factors «,. + Bs.
Hence det(C) is a sum of terms where each term contain precisely n(n—1)
factors a,. + Bs. Thus det(C) = q(a, B) where q is a polynomial of degree
at most n(n—1) in «; and B;. Since det(A) and therefore det(C) vanishes
if oy = o for some i # j or B, = B for some r # s, we have that q(a, 3)
must be divisible by each factor in g(a) and g(3). Since g(ar) and g(B) is a
polynomial of degree n(n—1), we have

for some constant k independent of o and B. Show that k = 1 by choosing
Bi+ai:O,i:1,2,...,n.

b) Notice that the cofactor of any element in the above matrix A is the determi-
nant of a matrix of similar form. Use the cofactor and determinant of A to
represent the elements of A~" = (b x). Answer:

bjk = (ar + B5)Ax(=55)Bj(—aw),

where

Ap(x) =] (Ois_;k) o B =1 (ﬂ%_ﬂxl) '

s#k

2Hint: subtract mﬁ times column k from column k+1 for k =n—1,n—2,...,1.
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Exercise 0.51 (Inverse of the Hilbert matrix)
Let H, = (h;;) be the n x n matriz with elements h; ; = 1/(i+j—1). Use

Ezxercise 0.50 to show that the elements ti; i Ty, =H, "~ are given by

o JOIG)
Wi -1

where

F(i+1) = (Z ;2” >f(i), i=1,2,..., f(1)=-n

0.7 Eigenpairs

Suppose A € C™*™ is a square matrix, A € C and € C"*. We say that (\,x)
is an eigenpair for A if Ax = Ax and x is nonzero. The scalar A is called an
eigenvalue and z is said to be an eigenvector.? The set of eigenvalues is called
the spectrum of A and is denoted by o(A). For example, o(I) = {1,...,1} =

{1}.

Lemma 0.52 (Characteristic equation)
For any A € C"*™ we have A € 0(A) <= det(A — \I) =0.

Proof. Suppose (A, x) is an eigenpair for A. The equation Az = Az can be
written (A — AI)ax = 0. Since x is nonzero the matrix A — AI must be singular
with a zero determinant. Conversely, if det(A — AI) = 0 then A — \I is singular
and (A — AI)x = 0 for some nonzero x € C*. Thus Az = Az and (A, x) is an
eigenpair for A. 0O

The expression det(A — AI) is a polynomial of exact degree n in X. For
n = 3 we have

aip — A ai2 ais
det(A — )\I) = a1 a29 — A a93
asi as32 asz — A

Expanding this determinant by the first column we find

aza — A a23

det(A — )\I) = (an — )\) 39 33 — A

agz  azz — A

a12 a13
— a21

ai2 ais

+ as
a2 — A Q23

= (a11 — A)(a22 — A)(azs — A) +7(A)

3The word “eigen” is derived from German and means “own”
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for some polynomial 7 of degree at most one. In general
det(A — A1) = (a11 — N)(az2 — ) -+ (ann — A) +7(X), (29)

where each term in 7(\) has at most n — 2 factors containing A. It follows that
r is a polynomial of degree at most n — 2, m4 is a polynomial of exact degree n,
and the eigenvalues are the roots of this polynomial.

We observe that det(A — M) = (—1)" det(A — A) so det(A — A\I) = 0 if
and only if det(AI — A) = 0.

Definition 0.53 (Characteristic polynomial of a matrix)

The function ma: C — C given by ma(A) = det(A—AI) is called the characteris-
tic polynomial of A. The equation det(A—\I) = 0 is called the characteristic
equation of A.

By the fundamental theorem of algebra an n x n matrix has, counting multi-
plicities, precisely n eigenvalues A1, ..., A, some of which might be complex even
if A is real. The complex eigenpairs of a real matrix occur in complex conju-
gate pairs. Indeed, taking the complex conjugate on both sides of the equation
Az = \x with A real gives AT = \Z.

Using Property 6. of determinants we have an additional characterization of
a singular matrix.

Theorem 0.54 (Zero eigenvalue)
The matriz A € C"*™ is singular if and only if zero is an eigenvalue.

Proof. Zero is an eigenvalue if and only if m4(0) = det(A) = 0 which happens if
and only if A is singular. 0O

In general it is not easy to find all eigenvalues of a matrix. One notable
exception is a triangular matrix. By Property 2. of determinants we obtain

Theorem 0.55 (Eigenvalues of a triangular matrix)
The eigenvalues of a triangular matriz are given by its diagonal elements.

0.8 Algorithms and Numerical Stability

In this text we consider mathematical problems (i.e., linear algebra problems)
and many detailed numerical algorithms to solve them. Complexity is discussed
briefly in Section 2.2.2. As for programming issues we often vectorize the al-
gorithms leading to shorter and more efficient programs. Stability is important
both for the mathematical problems and for the numerical algorithms. Stability
can be studied in terms of perturbation theory leading to condition numbers, see
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Chapters 7, 11, 12. We will often use phrases like “the algorithm is numerically
stable” or “the algorithm is not numerically stable” without saying precisely what
we mean by this. Loosely speaking, an algorithm is numerically stable if the so-
lution, computed in floating point arithmetic, is the exact solution of a slightly
perturbed problem. To determine upper bounds for these perturbations is the
topic of backward error analysis. We give a rather limited introduction to
floating point arithmetic and backward error analysis in Appendix B, but in the
text we will not discuss this. This does not mean that numerical stability is not
an important issue. In fact, numerical stability is crucial for a good algorithm.
For thorough treatments of numerical stability issues we refer to the books [12]
and [26, 27].

A list of freely available software for solving linear algebra problems can be
found at

http://www.netlib.org/utk/people/JackDongarra/la-sw.html
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Chapter 1

A Special Linear System

Consider a system of n linear equations in n unknowns. In component form the
system can be written

a1171 + a2+ -+ 4 1Ty = b1,

a21%1 + a2+ -+ 4 GgpTy = by,

Ap1T1 + Ap2To+ - -- + AppTy = b'ru

and in matrix form
ailp a2 - Qin Tl b1
az; Q22 -t 42pn €2 bo
Ax = = =b

anl an2 e Ann Tn bn

The elements of A and b can be either real or complex numbers.

We recall (see Theorem 0.34) that the square system Ax = b has a unique
solution for all right hand sides b if and only if A is nonsingular, i.e., the ho-
mogeneous system Ax = 0 only has the solution * = 0. We also recall (cf.
Theorem 0.39) that a square matrix has an inverse if and only if A is nonsingular,
and the solution of Az = b can be written & = A~ 'b, where A™! is the inverse
of A.

35
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Carl Friedrich Gauss, 1777-1855 (left), Myrick Hascall Doolittle, 1830-1911 (right).

Gaussian elimination with row interchanges is the classical method for solv-
ing n linear equations in n unknowns®. After a introductory and elementary
discussion of Gaussian elimination we consider a problem leading to a linear sys-
tem where the coefficient matrix is tridiagonal. This special matrix will occur
repeatedly throughout this text. We then give an introduction to block multipli-
cation which is an indispensable tool in matrix analysis. We end the chapter with

some basic properties of triangular matrices.

1.1 Gaussian Elimination Example

We illustrate how Gaussian elimination works on a 3 x 3 system. For a general
discussion see Section 2.9.

Example 1.1 (Gaussian elimination on a 3 x 3 system)
Consider a nonsingular system of three equations in three unknowns:

1 1 1 1

a1 + ajaxe + ajzrs = by, 1
1 1 1 1

G511 + Ape%o + g3z = by, I

1 1 1 1
G311 + a35%9 + az3xs = by, 1IL.

To solve this system by Gaussian elimination suppose at, # 0. We subtract may :=
al,/aly times equation I from equation II and ms3; = aiy/ai, times equation I

4The method was known long before Gauss used it in 1809. It was further developed by
Doolittle in 1881, see [6].
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from equation III. The result is
1 1 1 1
1121 + ajpx2 +ajzrs = by, 1
2 2 2 /
a22$2 + CL23$3 = b2, II
2 2 2 /
a32.'1:2 + a33.’£3 = b3, III 5

where b7 = b} —m;1b; fori = 2,3 and af; = ag; —mjqay; fori,j=2,3. Ifay, =0
and a3, # 0 we first interchange equation I and equation II. If ai; = a3, = 0 we
interchange equation I and III. Since the system is nonsingular the first column
cannot be zero and an interchange is always possible.

If a3y # 0 we subtract mag := a3,/a3, times equation I’ from equation III’
to obtain

1 1 1 1
1121 + a2 +ajzzs =0y, 1
2 2 2 /
a59%2 + a3323 = by, 11
ajsrs = by, T,

where b = b3 — m32b3 and a3; = aly — mg2a3,. If a3, = 0 then ady # 0 (cf.
Theorem 2.59) and we first interchange equation II’ and equation III’. The reduced
system is easy to solve since it is upper triangular. Starting from the bottom and
moving upwards we find

T3 = bg/agz’,
T2 = (bg - a§3x3)/a§2
T = (b% - abxz - a%3x3)/ah.

This is known as back substituion.

Exercise 1.2 (Gaussian elimination example)
11 —1] [ 1

Solve the linear system Ax:= -1 1 3 xo| = |1| using Gaussian elimi-
2 8 3 XT3 1

nation.

Gaussian elimination with row interchanges can in principle be used to solve
any nonsingular linear system (cf. Theorem 2.59). However, for many systems
occuring in applications this method in its general form is not necessarily the
method of choice. Some of the issues are:

1. Computing time. Solving a dense system of order n by Gaussian elimina-
tion requires O(n?®) arithmetic operations and solving large linear systems
can require more time than we are willing to spend. For example, if n = 108
and one arithmetic operation takes 10712 seconds then the computing time
could be a staggering 10~2n3 ~ 278 hours.
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2. Row interchanges is another issue in Gaussian elimination. For exam-
ple, if we interchange two rows in a tridiagonal matrix then the tridiagonal
structure is lost in general.

3. Stability. For a well conditioned problem® Gaussian elimination using float-
ing point arithmetic will in most cases give an accurate solution. However
there is no guarantee for this, see the book [12] for a thorough discussion.

In this chapter we present a problem leading to a n x n tridiagonal linear system.
We show that row interchanges are not necessary for the two problems we consider
and derive stable algorithms that only requires O(n) arithmetic operations.

1.2 The Tridiagonal Second Derivative Matrix
Consider the simple two point boundary value problem
—u"(z) = f(z), =€[0,1], wu(0)=0, u(l)=0, (1.1)

where f is a given continuous function on [0, 1]. This problem is also known as the
one-dimensional (1D) Poisson problem. In principle it is easy to solve (1.1)
exactly. We just integrate f twice and determine the two integration constants
so that the homogeneous boundary conditions u(0) = u(1) = 0 are satisfied. For
example, if f(x) =1 then u(z) = z(z — 1)/2 is the solution.

Suppose f cannot be integrated exactly. Problem (1.1) can then be solved
approximately using the finite difference method. We need a difference ap-
proximation to the second derivative. If g is a function differentiable at = then

oy 9@t 5) —gle—§)
o) = o S

and applying this to a function u that is twice differentiable at x

u’(x + Q) _ u/(x _ Q) u(z+h)—u(z)  u(x)—u(z—h)
" S 2 27 1 h h
= h i h
_ lim u(z + h) — 2u(x) + u(x — h)
h—0 h?

To define the points where this difference approximation is used we choose a
positive integer m, let h := 1/(m+ 1) be the discretization parameter, and replace
the interval [0, 1] by grid points z; := jh for j =0,1,...,m + 1. We then obtain
approximations v; to the exact solution u(z;) for j = 1,...,m by replacing the
differential equation by the difference equation

—vi_1 + 20, — v . ,
: h,2j : :f(.jh)) jzla"'7m> UOZUm+1:0-

5see Chapter 7 for an introduction to condition numbers.
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Moving the h? factor to the right hand side this can be written as an m x m linear
system

2 -1 0
. . U1 f(h)
bz v, e
Tv=| 0 -~ = = . C| =n? : = b.
. B Um—1 f((m — l)h)
S Fon

(1.2)
The matrix T is called the second derivative matrix and will occur frequently
in this book. It is our first example of a tridiagonal matrix, T' = tridiag(a;, d;, ¢;) €
R™>™  where in this case a; = ¢; = —1 and d; = 2 for all 1.

1.3 LU Factorization of a Tridiagonal System

Consider solving the linear system Ax = b where A = tridiag(a;, d;, ¢;) € C**™
is tridiagonal. Instead of using Gaussian elimination we can try to construct
triangular matrices L and U such that the product A = LU has the form

di ¢
! ! 1 Uq C1
ar d C2

- e Un—-1 Cp—1
dnfl Cp—1 l 1

n—1 Un,
dn,

(1.3)
If L and U can be determined we can find & by solving two simpler systems
Ly=band Uz = y.

Gp—2
Ap—1

1.3.1 Algorithms
For n = 3 equation (1.3) takes the form

d1 C1 0 1 0 0 ul C1 0 U1 C1 0

aiy d2 Cy| = ll 1 0 0 Ug Co| = l1u1 llcl + U2 Co s

0 as d3 0 12 1 0 0 us 0 ZQ'LLQ 1262 + us
and if

uy =di, lLi=ay/ui, la=as/uz, wug=dy—lici, wu3z=ds— I,
then A = LU. For general n, if

up =dy, ly=ap/ug, uppr =dprr — e, k=1,2,...,n—1, (1.4)
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then A = LU, and if uq,ua,...,u,—1 are nonzero then (1.4) is well defined. If in
addition u,, # 0 then we can solve Ly = b and Ux = y for y and .

yl:bl) yk:bk_lk—lyk—la k:2a3a"'ana (1 5)

Ty = Yn/Un, Tk = (Yt — CkTps1)/uk, k=n—1,...,21. ’
We formulate this as two algorithms. Since division by zero can occur, the al-
gorithms will not work in general. We give sufficient conditions for success in
Theorem 1.7 below.

Algorithm 1.3 (trifactor)
Vectors I € C*!, uw € C" are computed from a,c € C* ', d € C*. This
implements the LU factorization of a tridiagonal matrix.

function [l ,u]=trifactor(a,d,c)
% [l,u]=trifactor (a,d,c)
u=d; l=a;
for k =1l:length(a)
()= (k) /u(k) ;
u(l1)=d (k)21 () e (k)
end

N o oA W N e

Algorithm 1.4 (trisolve)

The solution x of the tridiagonal system LUz = b is found from (1.5). Here
l,ceC" 1, ueC™andbe C" for some r € N. Thus we can solve a system
with several righthand sides. The vectors I, u can be output from trifactor.

1 function x = trisolve (l,u,c,b)

2 % z = trisolve (l,u,c,b)

3 x=b;

4 n= size(b,1);

5 for k =2:n

6 x(k,:)=b(k,:)=1(k=1)*x(k—1,:);
7 end

s x(n,:)=x(n,:) /u(n);

9 for k=n—-1:—1:1

x(k,:)=(x(k,:)—c(k)*x(k+1,:))/u(k);
end

=
= o

The number of arithmetic operations to compute the LU factorization of a
tridiagonal matrix using Algorithm 1.3 is 3n — 3, while the number of arithmetic
operations for Algorithm 1.4 is 5n — 4. This means that the complexity to solve a
tridiagonal system is O(n), or more precisely 8n — 7, and this number only grows
linearly with n, while Gaussian elimination on a full n x n system is an O(n?)
process.
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1.3.2 Diagonal dominance

We show that Algorithms 1.3, 1.4 are well defined for a class of tridiagonal linear
systems. Moreover, these linear systems have unique solutions.

Definition 1.5 (Diagonal dominance)
The matriz A = [a;;] € C"*" is weakly diagonally dominant if

lasil > lagl, i=1,...,n. (1.6)

i
It is strictly diagonally dominant if strict inequality holds fori=1,...,n.
The following holds for strictly diagonally dominant matrices.

Theorem 1.6 (Strict diagonal dominance)
A strictly diagonally dominant matriz is nonsingular. Moreover, the solution x
of Ax = b is bounded as follows:

b,
max |z;| < max (M), where o; = |a;| — Z\aiﬂ. (1.7)
1<i<n 1<i<n \ 0 vy
J

Proof. We first show that the bound (1.7) holds for any solution . Choose k so
that |zj| = max;|x;|. Then

bkl = lareze + Y arjrs] > lawelloe] = > langllzs| > |zl (Jarel =Y _lax;]),
7k ik ik
and this implies maxi<;<p|®;| = |zk| < % < maxi<i<n (%) For nonsingular-
ity, if Az = 0, then max;<;<p|z;| <0 by (1.7), and sox =0. O

The zero matrix is weakly diagonally dominant and we need additional con-
dition to guarantee nonsingularity. Consider the 3 matrices

110 10 0 2 -1 0
A =11 2 1], Ay=10 0 0|, A3=] -1 2 -1
01 1 00 1 0 -1 2

They are all weakly diagonally dominant, but A; and A, are singular, while Ag
is nonsingular. Indeed, for A; column two is the sum of columns one and three,
Aj has a zero row, and det(As) =4 # 0.

In the literature diagonal dominance is therefore most often defined by in-
cluding some additional sufficient conditions. We also need conditions guarantee-
ing that the LU factorization (1.3) of a tridiagonal matrix is well defined.
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Theorem 1.7 (Weak diagonal dominance)

Suppose A = tridiag(a;, d;, c;) € C"*™ is tridiagonal and weakly diagonally dom-
inant. If |di| > |c1]| and a; # 0 fori =1,...,n — 2, then A has a unique LU
factorization (1.3). If in addition d,, # 0, then A is nonsingular.

Proof. The matrix A has an LU factorization if the ug’s in (1.4) are nonzero for
k=1,...,n— 1. For this it is sufficient to show by induction that |uj| > |cx| for
k=1,...,n—1. By assumption |u1| = |d1| > |c1|. Suppose |u| > |cx| for some
1<k <n-—2. Then |cg|/|Jug] < 1 and by (1.4) and since ay # 0

arCr ar||Ck
| > |dyt1] — [a]lex]

Uk |Uk‘

[uk+1] = Idi+1 — leew| = |di1 — > |diy1] — |ak|. (1.8)

This also holds for k = n — 1 if a,—1 # 0. By (1.8) and weak diagonal dom-
inance |ug41| > |dpg1| — |ag| > |cx+1] and it follows by induction that an LU
factorization exists. It is unique since any LU factorization must satisfy (1.4). For
nonsingularity we need to show that u,, # 0. For then by Lemma 1.22, both L
and U are nonsingular, and this is equivalent to A = LU being nonsingular. If
an—1 # 0 then by (1.4) |u,| > |dn| — |an—1] > 0 by weak diagonal dominance,
while if a,—; = 0 then again by (1.8) |u,| > |d,| >0. O

Exercise 1.8 (Strict diagonal dominance)
Show that a strictly diagonally dominant and tridiagonal matrix A € C™*™ has a
unique LU factorizationS.

Consider now the special system Tw = b given by (1.2). The matrix T is
weakly diagonally dominant and satisfies the additional conditions in Theorem 1.7.
Thus it is nonsingular and we can solve the system in O(n) arithmetic operations
using Algorithms 1.3,1.4.

We could use the explicit inverse of T, given in Exercise 1.10, to compute
the solution of Tv = b as v = T 'b. However this is not a good idea. In
fact, all elements in T~ " are nonzero and the calculation of T~'b requires O(n?)
operations.

Exercise 1.9 (LU factorization of 2. derivative matrix)

6Hint, argue as in (1.8)
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Show that T = LU, where

10 0] r2 -1 0 0 7
3 .
-1 1 0o 2 -1 :
0 : mo -]

.0 0 == 1 L 0 0 =

is the LU factorization of T.

Exercise 1.10 (Inverse of 2. derivative matrix)
Let 8 € R™*™ have elements s;; given by

Sij = jlm+1-i), 1<j<i<m. (1.10)

Si; = ——
P m1

Show that ST = I and conclude that T~ = S.

Exercise 1.11 (Central difference approximation of 2. derivative)
Consider

flz+h) = 2f(x) + f(x—h)

02 , h>0, f:lx—h,xz+h =R

82f(x) :=

1. Show using Taylor expansion that if f € C? [x — h,z + h] then for some 7,
&% f () :f”(m), r—h<n <xz+h.

2. If f € C*[z — h,z + h] then for some 1y

"

2
FH@) = @)+ O ), wh<m<oth

82 f () is known as the central difference approximation to the second deriva-
tive at .

Exercise 1.12 (Two point boundary value problem)
We consider a finite difference method for the two point boundary value problem

—u"(z) +r(z)u'(x) + g(@)u(z) = f(z), forx € [a,b],

u(@) = g0, u(b) = g1. (L11)
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We assume that the given functions f,q and r are continuous on [a,b] and that
q(z) >0 for x € [a,b]. It can then be shown that (1.11) has a unique solution w.

To solve (1.11) numerically we choosem € N, h = (b—a)/(m+1), x; = a+jh
for5=0,1,...,m+ 1 and solve the difference equation

—vj_1 + 205 —vj41 Vj41 — Vj—1
J J J+ —|—r(x-) J+ J

2 j stz = fleg), j=1,....m, (112)

with vo = go and vy11 = 1.

(a) Show that (1.12) leads to a tridiagonal linear system Av = b, where A =
tridiag(a;,d;j.c;) € R™*™ has elements

h h
aj = —1=5r(z;), ¢ = =1+ gr(x)), dj =2+ h*q(x)),

and
W2 f(x1) —aigo,  ifj=1,
by = { W f(=;), if2<j<m—1,
R2f(xm) — cmgr, if 5 =m.

(b) Show that the linear system satisfies the conditions in Theorem 1.7 if the
spacing h is so small that %|r(z)| <1 for all x € [a,b].

(¢) Propose a method to find vy, ..., V.

Exercise 1.13 (Two point boundary value problem; computation)

(a) Consider the problem (1.11) with r = 0, f = ¢ = 1 and boundary condi-
tions u(0) = 1, u(l) = 0. The ezact solution is u(x) = 1 — sinhx/sinh 1.
Write a computer program to solve (1.12) for h = 0.1,0.05,0.025,0.0125,
and compute the "error” maxi<;<m|u(z;) — v;| for each h.

(b) Make a combined plot of the solution u and the computed points v;, j =
0,...,m+1 for h=0.1.

(c) One can show that the error is proportional to h? for some integer p. Estimate
p based on the error for h = 0.1,0.05,0.025,0.0125.

1.4 Block Multiplication

Block multiplication is a powerful and essentiasl tool for dealing with matrices. It
will be used extensively in this book.
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A rectangular matrix A can be partitioned into submatrices by drawing
horizontal lines between selected rows and vertical lines between selected columns.
For example, the matrix

1 2 3
A= |4 5 6
7 8 9

can be partitioned as

o [ar A2l= 15 o |, ) anasas = | 4506 |,
21 Az 718 9 o B
af] [1.23 12 3
(#i1) Cl,%i =14 5 61, (w) [A113A12:| =1 4]l5 6
aj, 7 8 9 718 9
In (i) the matrix A is divided into four submatrices

Ay = (1], A =[2,3], Ay = [ﬂ ; and Agy = [2 g} )

while in (4¢) and (i44) A has been partitioned into columns and rows, respectively.
The submatrices in a partition are often referred to as blocks and a partitioned
matrix is sometimes called a block matrix.

In the following we assume that A € C"™*P and B € CP*". Here are some
rules and observations for block multiplication.

1. If B = [bzl, ey b:n] is partitioned into columns then the partition of the
product AB into columns is

AB = [Ab:l,Abtz,...,Ab:n] .
In particular, if I is the identity matrix of order p then
A=AI=A [el,eg,...,ep] = [Ael,AeQ,...,Aep]

and we see that column j of A can be written Ae; for j =1,...,p.
2. Similarly, if A is partitioned into rows then

al, ol B
al, al B
AB=| . | B= . ,
T T
am: a’n’LlB

and taking A = T it follows that row i of B can be written el B for i =

1,...,m.
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A

. It is often useful to write the matrix-vector product Ax as a linear combi-

nation of the columns of A

Az = r1Q.1 + T2a.2 + - - + TpQ.p.

.If B= [Bl,Bg}, where By € CP*" and By € CP*("=7) then

A[B,,B,] = [AB,, AB,].

This follows from Rule 1. by an appropriate grouping of columns.

LIFA= El], where A; € CF*P and Ay € Cm=F)*P then
2

mER L

This follows from Rule 2. by a grouping of rows.

CIFPA = [AhAz] and B = {gl], where A; € C™%s5, Ay € Cm*(P—s)
2

B; € C¥*" and By € CP=9)*" then

(A1, As] {gj = [A1B1 + A;Bs].

Indeed, (AB);; = 37— @irbrj = 3op_y @by +3 2011 ainbry = (A1B1)i+
(A2B3);; = (A1B1 + A3B»);;.

A Ap
Ay A

Bll B12

d B =
} an {le B

] then

Ay Agp| |Bun Biz| _ |[AnBii+A;By AnnBio + A3 Ba
Ay A |Bai B Ay B+ A By AoiBis + ApBas |’

provided the vertical partition in A matches the horizontal one in B, i.e. the
number of columns in A1; and As; equals the number of rows in By, and
B> and the number of columns in A equals the number of rows in B. To
show this we use Rule 4. to obtain

AB — Ay A [Bu| |[Ain Ag2| |Bi
Azy Ags| |Boy| ' |Aar Aga| |Baa| |’

We complete the proof using Rules 5. and 6.

8. Consider finally the general case. If all the matrix products A;;By; in

s
Cij:ZAikBkjv i:]-v“'vpaj:]-v"'vq
k=1
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are well defined then

Ay - A |Bun -+ By Cn -+ Cyy

Ay -+ Ay |Ba -+ By, Cp - Cpy

The requirements are that
e the number of columns in A is equal to the number of rows in B.

e the position of the vertical partition lines in A has to mach the position
of the horizontal partition lines in B. The horizontal lines in A and
the vertical lines in B can be anywhere.

Exercise 1.14 (Matrix element as a quadratic form)
For any matrix A show that a;; = el Ae; for all i, j.

Exercise 1.15 (Outer product expansion of a matrix)
For any matrix A € C™*" show that A =", - a;jee] .

Exercise 1.16 (The product A7 A)
Let B = AT A. Explain why this product is defined for any matrix A. Show that
bij = a?;a:j for all 4, j.

Exercise 1.17 (Outer product expansion)
For A € R™*™ and B € RP*"™ show that
ABT = a. b} + asbL + -+ a.,bl.

This is called the outer product expansion of the columns of A and B.

Exercise 1.18 (System with many right hand sides; compact form)
Suppose A € R™*" B € R™*P_and X € R"*P. Show that

AX =B = A$;j:b;j,j:1,...,p.

Exercise 1.19 (Block multiplication example)

Suppose A = [A;, Ay] and B = ﬁ;l]. When is AB = A, B,?
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Exercise 1.20 (Another block multiplication example)
Suppose A, B,C € R™*"™ are given in block form by

A af 1 of 1 oF
A._{O Al], B._{O BJ, c._[o CJ,

where Ay, By, C; € R=1x(=1) SQhow that

T
C’AB:P a’ B, ]

0 ClAlBl

1.5 Triangular Matrices; Basic facts

We need some basic facts about triangular matrices and we start with
Lemma 1.21 (Inverse of a block triangular matrix)
Suppose

A= |:A11 A12:|

0 Axp

where A, A1 and Ags are square matrices. Then A is nonsingular if and only if
both A1, and Ass are nonsingular. In that case

o [AYY ©
Al = { 11 . ] , 1.13

0 A ( )
for some matriz C'.

Proof. Suppose A is nonsingular. We partition B := A~' conformally with A
and have N N
_ |B11 B 11 2| (I 0
pa-lg ma o &=l ¥

Using block-multiplication we find
B1Ain =1, By A1 =0, ByAjp+ByAyp =1, B;;Aix+Bi2A»=0.

The first equation implies that A1 is nonsingular, this in turn implies that By =
OAl_l1 = 0 in the second equation, and then the third equation simplifies to
ByyAsy = I. We conclude that also Ass is nonsingular. From the fourth equation
we find

By, =C=-A'A15A5

Conversely, if A1; and Asy are nonsingular then

Afll 7A1711A12A2721 A1 A _ I 0 7
0 A§21 0 Ay 0o I
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and A is nonsingular with the indicated inverse. [

Consider now a triangular matrix.

Lemma 1.22 (Inverse of a triangular matrix)

An upper (lower) triangular matrizc A = [a;;] € C*™ is nonsingular if and only
if the diagonal elements a;;, i = 1,...,n are nonzero. In that case the inverse is
upper (lower) triangular with diagonal elements a:t,i=1,....n.

1

Proof. We use induction on n. The result holds for n = 1. The 1-by-1 matrix
A = [ay1] is nonsingular if and only if a;; # 0 and in that case Al = [aﬁl].
Suppose the result holds for n = k and let A € C++1x(+1) be upper triangular.

We partition A in the form

A {Ak aj ]
0  apy1kt1

and note that A, € C*** is upper triangular. By Lemma 1.21 A is nonsingular
if and only if Ay and (ag41,k+1) are nonsingular and in that case

_ Al c
A ' = |: (]; afl :| )
k+1,k+1

for some ¢ € C™. By the induction hypothesis Ay is nonsingular if and only if the
diagonal elements aq1,...,arr of Ag are nonzero and in that case A,;l is upper
triangular with diagonal elements a_;%, i = 1,...,k. The result for A follows. 0O

(XA

Lemma 1.23 (Product of triangular matrices)

The product C = AB = (c;;) of two upper (lower) triangular matrices A = (a;;)
and B = (b;j) is upper (lower) triangular with diagonal elements c;; = a;;bi; for
all 1.

Proof. Exercise. [0

A matrix is unit triangular if it is triangular with 1’s on the diagonal.

Lemma 1.24 (Unit triangular matrices)
For a unit upper (lower) triangular matric A € C"*":

1. A is nonsingular and the inverse is unit upper(lower) triangular.

2. The product of two unit upper (lower) triangular matrices is unit upper
(lower) triangular.
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Proof. 1. follows from Lemma 1.22, while Lemma 1.23 implies 2. 0O

1.6 Review Questions
1.6.1 Define the second derivative matrix T". Why is it nonsingular?
1.6.2 Is a weakly diagonally dominant matrix nonsingular?

1.6.3 Why do we not use the explicit inverse of T' to solve the linear system
Tx=0>

1.6.4 Show that a strictly diagonally dominant matrix is nonsingular.

1.6.5 Does a tridiagonal matrix always have an LU factorization?
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LU Factorizations

Numerical methods for solving systems of linear equations are often based on
writing a matrix as a product of simpler matrices. Such a factorization is useful
if the corresponding matrix problem for each of the factors is simple to solve, and
extra numerical stability issues are not introduced. Examples of factorizations
were encountered in Chapter 1 and we saw how an LU factorization can be used to
solve certain tridiagonal systems efficiently. Other factorizations based on unitary
matrices will be considered later in this book.

In this chapter we consider the general theory of LU factorizations. We con-
sider some related factorizations called symmetric LU or LDLT, and Cholesky.
The latter can be used for symmetric positive matrices, and we give an introduc-
tion to positive definite and positive semindefinite matrices. We consider a matrix
formulation of Gaussian elimination using Gauss transformations and permutation
matrices leading to the PLU factorization of a matrix.

2.1 Algorithms for triangular systems

Recall that a matrix U is upper triangular if u;; = 0 for ¢ > j, and a matrix L
is lower triangular if /;; = 0 for ¢ < j. If U is upper triangular then U7 is lower
triangular.

A nonsingular triangular linear system Ax = b is easy to solve. By Lemma 1.22
A has nonzero diagonal elements. Consider first the lower triangular case. For
n = 3 the system is

aill 0 0 I b1
a1 az O 2| = | b2
a31  aszy asz| |3 b3

51
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al 0 0 0 0 all 0 0 0 0

a21 Q22 0 0 0 a21 Qa22 0 0 0
0 asy Aass 0 0 s as1 a3z ass 0 0
0 0 a43 Q44 0 0 42 Q43 Q44 0
0 0 0 as4 0455 0 0 as3 As54 Aj55

Figure 2.1. Lower triangular 5 x 5 band matrices: d =1 (left) and d = 2
(right).

From the first equation we find x; = b1/a11. Solving the second equation for zo
we obtain xo = (by — a2121)/ase. Finally the third equation gives x3 = (bs —
a31r1 — as2x2)/ags. This process is known as forward substitution. In general

k—1
T = (bk —Zakvjxj)/akk, k= 1,2,...,71. (21)

J=1

When A is a lower triangular band matrix the number of arithmetic operations
necessary to find & can be reduced. Suppose A is a lower triangular d-banded,
so that ax; = 0 for j & {ly,lx +1,...,k} for k = 1,2,...,n, and where [ :=
max(1, k—d), see Figure 2.1. For a lower triangular d-band matrix the calculation
in (2.1) can be simplified as follows

k-1
T = (bk— Zahja:j)/akk, k=1,2,...,n. (2.2)
J=lk
Note that (2.2) reduces to (2.1) if d = n. Letting A(k,lx : k — 1) xz(ly : k — 1)
denote the sum Z?;llk arjr; we arrive at the following algorithm.

Algorithm 2.1 (forwardsolve (row oriented))
Given a nonsingular lower triangular d-banded matrix A € C**™ and b € C".
An x € C™ is computed so that Az = b.

function x=rforwardsolve (A,b,d)

n=length(b); x=b;

x(1)=b(1) /A(1,1) ;

for k=2:n
lk=max(1,k—d);
x(k)=(b(k)=A(k, 1k :k—1)*x(1k :k—1)) /A(k, k) ;

N o s W N

end

A system Ax = b, where A is upper triangular must be solved by back
substitution or ’bottom-up’. We first find z,, from the last equation and then
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move upwards for the remaining unknowns. For an upper triangular d-banded
matrix this leads to the following algorithm.

Algorithm 2.2 (backsolve (row oriented))
Given a nonsingular upper triangular d-banded matrix A € C"*™ and b € C"™.
An o € C™ is computed so that Az = b.

function x=rbacksolve (A,b,d)

n=length(b); x=b;

x(n)=b(n) /A(n,n)

for k=n-—-1:-1:1
uk=min(n,k+d) ;
x(k)=(b(k)-A(k,k+1:uk)=*x(k+1:uk))/A(k,k);

B I T B B

end

Exercise 2.3 ( Column oriented forward- and backsolve)

The intial ”r” in the names of Algorithms 2.1,2.2 signals that these algorithms
are row oriented. For each k we take the inner product of a part of a row with
the already computed unknowns. In this exercise we develop column oriented
vectorized versions of forward and backward substitution. Consider the system
Ax = b, where A € C™"*" is lower triangular. Suppose after k — 1 steps of the
algorithm we have a reduced system in the form

QL. k 0 e 0 Tk bk
k+1k  Qk41k+l 0 Tha1 br41
Qn,k e Gnxn Tn bn
This system is of order n — k + 1. The unknowns are g, ..., Z,.

a) We see that zj, = by /ay ;, and eliminating zj, from the remaining equations

we obtain a system of order n — k with unknowns xgy1,...,2Z,
kt1,k+1 0 e 0
0 Tht1 br+1 Qk41,k
Ak42,k+1  Ak+42 k42
. = : — Tk :
Tn bn An, Kk

Qn, k41 o OGpxn
Thus at the kth step, k = 1,2,...n we set x, = by /A(k, k) and update b as follows:
bk+1:n)=bk+1:n)—xk)*xAlk+1:n,k).

This leads to the following algorithm.
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Algorithm 2.4 (Forward solve (column oriented))
Given a nonsingular lower triangular d-banded matrix A € C**™ and b € C".
An o € C™ is computed so that Az = b.

function x=cforwardsolve (A,b,d)
x=b; n=length(b);
for k=I1:n-1
x(k)=b(k)/A(k,k); uk=min(n,k+d);
b(k+1:uk)=b(k+1:uk)—-A(k+1:uk,k)*x(k);
end
x(n)=b(n) /A(n,n)

end

® N o oA W N e

b) Suppose now A € C"*™ is nonsingular, upper triangular, d-banded, and
b € C". Justify the following column oriented vectorized algorithms for solving
Az =b.
Algorithm 2.5 (Backsolve (column oriented))
Given a nonsingular upper triangular d-banded matrix A € C"*" and b € C™.
An x € C" is computed so that Ax = b.

1 function x=cbacksolve(A,b,d)

2 x=b; n=length(b);

3 for k=n:—-1:2

4 x(k)=b(k)/A(k,k); lk=max(1l,k—d);

5 b(lk:k—1)=b(lk:k—1)-A(lk :k—1,k)*x(k);
6 end

+ x(1)=b(1) /A(1,1) ;

8 end

Exercise 2.6 (Computing the inverse of a triangular matrix)

Suppose A € C"*"™ is a nonsingular triangular matrix with inverse B = [by, ..., b,].
The kth column b, of B is the solution of the linear systems Ab, = e;. Write
this system as a 2 x 2 triangular block system and explain why we can find by by
solving the linear systems

A(k:n,k:n)bg(k:n) =I(k:n, k), k=1,...,n lower triangular, (2.3)
A(1:k,1:k)b(1:k) = I(1:k, k), k=n,n—1,...,1, upper triangular (2.4)

Is it possible to store the interesting part of by in A as soon as it is computed?

2.2 The LU Factorization

We say that A = LU is an LU factorization of A € C"*" if L € C"*" is
lower triangular (left triangular) and U € C™*" is upper triangular (right
triangular).
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2.2.1 The LU theorem

Consider finding L and U. Equating the 4, j element in A and the product LU,
and noting that /; ; = 0 for j >4 and u; ; = 0 for ¢ > j, we obtain an equation

min(z,5)

A5 = E likukjm Za] = 1a27"'
k=1

s

(2.5)

involving the unknown elements in L and U. This is an underdetermined system
of n? equations in n? +n unknowns. One way to reduce the number of unknowns
is to require that one of the triangular matrices should be unit triangular, i.e.,
have ones on the diagonal. Other scalings of the diagonals are also possible, see
Section 2.6. Choosing U to be unit triangular is sometimes known as a Crout
factorization.

Henry Jensen, 1915-1974 (left), Prescott Durand Crout, 1907-1984. Jensen worked
on LU factorizations. His name is also associated with a very useful inequality (cf.
Theorem 7.37).

For our discussion we will assume that L is unit triangular. Three things can
happen. An LU factorization exists and is unique, it exists, but it is not unique,
or it does not exist. The following 2 x 2 example illustrates this.

Example 2.7 (LU of 2 x 2 matrix)
Let a,b,c,d € C. An LU factorization of A = [‘; g} must satisfy the equations

a bl |1 O fwr wus| | w us3
c d o ll 1 0 U2 - l1u1 llu;g + U2
for the unknowns Iy in L and w1, us,us in U. The equations are

uy =a. uz=>~, lLa=c, uy=d—1Ib.
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These equations do not always have a solution. Indeed, the main problem is the
nonlinear equation lia = c¢. There are three cases

1. a # 0: The matriz has a unique LU factorization with l; = ¢/a.
2. a=0,c#0: No LU factorization exists.

3. a=c=0: The LU factorization exists, but it is not unique. Any value for
l1 can be used.

Of the four matrices

2 -1 0 1 1 1 0 1
P P LI RV R
A1 has a unique LU factorization, As has no LU factorization, A3 has a unique

LU factorization even if it is singular, and A4 has an LU factorization, but it is
not unique.

Example 2.8 (LU of 3 x 3 matrices)

The matrix
1 1 1
A=1]1 1 2
1 1 3
has an LU factorization A = LU, with
1 0 0 1 1 1
L=1|1 1 0of, U=|0 0 1
1 y 1 0 0 2—y

It is not unique since A = LU for any y € C.

To characterize matrices with a unique LU factorization we first give a defi-
nition.

Definition 2.9 (Principal submatrix)
For k=1,...,n the matrices Ay, € Ck*E given by
air -t apl
A=Ak 1:k) =
g1 -+ Qkk

are called the leading principal submatrices of A € C"*". More generally, a
matriz B € C*** is called a principal submatrix of A if B = A(r,r), where
r=[r1,...,m] for some 1 <ry <---<rp <n. Thus,

bij=arr,, 4,5=1,...k
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The determinant of a (leading) principal submatriz is called o (leading) princi-
pal minor.

A principal submatrix is leading if r; = j for j = 1,...,k. Also a principal
submatrix is special in that it uses the same rows and columns of A. For k =1
The only principal submatrices of order k£ = 1 are the diagonal elements of A.

Example 2.10 (Principal submatrices)

The principal submatrices of A = [é § é} are

(], 6], [, (i3], [73]. [§6], A

The leading principal submatrices are
(1, [53], A

In preparation for the main theorem about LU factorization we prove a
simple lemma.

Lemma 2.11 (LU of leading principal sub matrices)

Suppose A = LU is an LU factorization of A € C*"*". For k = 1,...,n let
Ay, Ligg, Uy be the leading principal submatrices of A, L,U, respectively. Then
A = LUy, is an LU factorization of Ay for k=1,...,n.

Proof. For k =1,...,n— 1 we partition A = LU as follows:

A B L 0| |U S
— K k| — | ZIF (K] ki _
A A A R S B 2 (26)

where Fj, N, T, € C=k)x(=k)  Using block multiplication we find Ay =
L Uy, Since L) is unit lower triangular and Uy is upper triangular this is
an LU factorization of Ay, O

The following theorem give a necessary and sufficient condition for existence
of a unique LU factorization.

Theorem 2.12 (LU theorem)
A square matrix A € C™*"™ has a unique LU factorization if and only if the leading
principal submatrices Ay of A are nonsingular for k=1,...,n — 1.

Proof. Suppose Ay is nonsingular for k¥ = 1,...,n — 1. We use induction on
n to show that A has a unique LU factorization. The result is clearly true for
n = 1, since the unique LU factorization of a 1-by-1 matrix is [a11] = [1][a11].
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Suppose that Ajp,_;) has a unique LU factorization Ap,_y) = Ly, 1Up—1, and

that Apy,..., Ap,—q) are nonsingular. By block multiplication
_ A[nfl] b _ L, 0| |U,1 s _
A= { pe an| = | mT 1 0 il = LU, (2.7)

if and only if m,s € C* ! and t € C satisfy b = L,,_1s, ¢ = m"U,,_1, and
ann = mTs +t. Since A[n—1) is nonsingular it follows that L, and U,_1
are nonsingular and therefore m, s, and ¢ are uniquely given. Thus (2.7) gives a
unique LU factorization of A.

Conversely, suppose A has a unique LU factorization A = LU. By Lemma
2.11 Ay = LUy, is an LU factorization of Ay for k= 1,...,n — 1. Suppose
Ajp) is singular for some k < n—1. We will show that this leads to a contradiction.
Let k be the smallest integer so that Ay is singular. Since A(;) is nonsingular for
J <k —1it follows from what we have already shown that Ay = LUy, is the
unique LU factorization of A). The matrix Uy is singular since Ay, is singular
and Ly is nonsingular. By block multiplication in (2.6) we have Cp = MU
or U[j,;] M7} = C¥. This can be written as n — k linear systems for the columns
of M f By assumption M f exists, but since U[T;;] is singular M is not unique,
a contradiction. 0O

A matrix A € C"*" can have an LU factorization even if Ay is singular for
some k < n. By Theorem 2.12 such an LU factorization cannot be unique.

Remark 2.13 (LU of upper triangular matrix)

An LU factorization of an upper triangular matrix A is A = T A so it always
exists even if A has zeros somewhere on the diagonal. By Lemma 1.22, if some
akk s zero then Ay, is singular and the LU factorization cannot be unique. In
particular, for the zero matriz any unit lower triangular matriz can be used as L
in an LU factorization.

Remark 2.14 (PLU factorization)

We have shown that a matriz A € C™*™ has a unique LU factorization if and
only if the leading principle submatrices Ay are nonsingular fork =1,...,n—1.
This condition seems fairly restrictive. However, for a nonsingular matriz A
there always is a permutation of the rows so that the permuted matriz has an LU
factorization. We obtain a factorization of the form PT A = LU or equivalently
A = PLU, where P is a permutation matriz, L is unit lower triangular, and U is
upper triangular. We call this a PLU factorization of A. (Cf. Theorem 2.60).

Exercise 2.15 (Row interchange)

Show that A = [§ 1] has a unique LU factorization. Note that we have only

interchanged rows in Example 2.7.
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Exercise 2.16 (LU of singular matrix)
Find an LU factorization of the singular matriz [11]. Is it unique?

Exercise 2.17 (LU and determinant)
Suppose A has an LU factorization A = LU. Show that det(A,)) = ui1u2z - - - Uk
fork=1,...,n.

Exercise 2.18 (Diagonal elements in U)
Suppose A € C"" and Ay, is nonsingular fork =1,...,n—1. Use Ezercise 2.17
to show that the diagonal elements ugy in the LU factorization are

det(A[k])

=——"— fork=2,...,n. 2.8
det(A[k_l]) f ( )

Uil = a1, Ukk

2.2.2 Operation count

It is useful to have a number which indicates the amount of work an algorithm re-
quires. In this book we measure this by estimating the total number of arithmetic
operations. We count both additions, subtractions, multiplications and divisions,
but not work on indices. As an example it is shown below that the calculation to
find the LU factorization of a full matrix of order n is exactly

2., 1, 1

Npy = 3" T ™ (2.9)

We are only interested in this number when n is large and for such n the term %713

dominates. We therefore regularly ignore lower order terms and use number of
arithmetic operations both for the exact count and for the highest order term.
We also say more loosely that the the number of operations is O(n?®). We will
use the number of operations counted in one of these ways as a measure of the
complexity of an algorithm and say that the complexity of LU factorization
of a full matrix is O(n?®) or more precisely %ng .

We will compare the number of arithmetic operations of many algorithms
with the number of arithmetic operations of LU factorization and define for n € N
the number G,,” as follows:

Definition 2.19 (G, := 2n®)
We define G,, := %n?’.

The complexity of solving a system Ax = b, where A € R"*" is a full
upper or lower triangular matrix is easily shown to be exactly n2. This number
is reduced to n? — n if A has ones on the diagonal.

"It can be shown that the complexity of Gaussian elimination is also equal to Gy,.
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Consider now finding the total number of arithmetic operations, Ny for
LU factorization. Suppose in (2.7) that k := n — 1 and Ly and Uy, are already
computed. To find L and U we have to solve the triangular systems Lis = b,
Ufm = ¢, and then ¢t = ag41 k41 — mTs. Since Ly, is unit lower triangular and
U7 is lower triangular of order k this requires k(k — 1), k2, and 2k operations for
s, m, and t, respecively, a total of k(2k + 1) operations. Taking also Lj and Uy,
into consideration we obtain

n—1 n—1 n—1
2 1 1
_ _ 2 _ = _ _ = - _
NLU—];:1 k(2k—|—1)—2]§:1k —|—k§:1k— 3n(n D(n 2)+2n(n 1)

which equals the number in (2.9).

There is a quick way to arrive at the estimate 2n3/3. We only consider the
arithmetic operations contributing to the leading term (the inner loops). Then we
replace sums by integrals letting the summation indices be continuous variables
and adjust limits of integration in an insightful way to simplify the calculation.
We find

n—1 n—1 n—1 n
New =Y k@2k+1)~ ) 2k = / 2k*dk ~ / 2k*dk = G,,.
k=1 k=1 1 0

We see that LU factorization is an O(n?) process while solving a trian-
gular system requires O(n?) arithmetic operations. Thus, if n = 10° and one
arithmetic operation requires ¢ = 10712 seconds of computing time then cn3
108 seconds ~ 278 hours and cn? = 1 second, giving dramatic differences in
computing time.

Exercise 2.20 (Finite sums of integers)
Use induction on m, or some other method, to show that

1
1+2+-~-+m:§m(m+1), (2.10)
1 1
2422 4. 4 m? = gm(m+2)(m+1), (2.11)
14+34+5+--4+2m—1=m? (2.12)
1
1*2+2*3+3*4+---+(m—1)m:g(m—l)m(m—i—l). (2.13)

Exercise 2.21 (Operations)

To solve an upper triangular linear system by back substitution takes n? arithmetic
operations. Show that the number of arithmetic operations in (2.4) is +n(n+3)(n+
1) ~ 1G,.
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Exercise 2.22 (Multiplying triangular matrices)

Show that the matriz multiplication AB can be done in n(2n*+1) ~ G,, arith-
metic operations when A € R™ ™ is lower triangular and B € R™*™ is upper
triangular. What about BA?

2.3 The Symmetric LU Factorization

We consider next LU factorization of a real symmetric matrix.

Definition 2.23 (Symmetric LU)

Suppose A € R" " A factorization A = LDL", where L is unit lower trian-
gular and D is diagonal is called a symmetric LU factorization or an LDLT
factorization of A.

A matrix which has a symmetric LU factorization must be symmetric since
AT = (LDL™T = LDL" = A.

Example 2.24 (2 x 2 symmetric LU)
Let a,b,c € R. A symmetric LU factorization of A := [‘g ﬂ must satisfy the

equations
a b o 1 0 d1 0 1 l1 . d1 d1 l1
b c|l i 1 0 dof [0 1 - l1dy l%dl +ds

for the unknowns l1 in L and dy,ds in D. The equations are
di=a. lya=b, ds :c—alf.

As in the nonsymmetric case the main problem is the nonlinear equation. Again
there are three cases

1. a # 0: The matriz has a unique symmetric LU factorization with l; = b/a.
2. a=0,b+# 0: No symmetric LU factorization exists.

3. a=b=0: The LU factorization exists, but it is not unique. Any value for
{1 can be used.

Consider the four matrices

2 -1 0 1 1 1 0 0
we[2 ) ae P ae] ] A

Then the symmetric LU factorization is unique for Ay and As, is not unique for
Ay and does not exist for As.
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In view of this example it might come as no surprise that Theorem 2.12
carries over to the symmetric case. Again we start with an lemma.

Lemma 2.25 (Symmetric LU of leading principal sub matrices)

Suppose A = LDLT is a symmetric LU factorization of A € R™"™. For k =
L,...,n let Ay, Ly, Dy be the leading principal submatrices of A, L, D, re-
spectively. Then Ay = L[k]D[k]L[j,;] is a symmetric LU factorization of A for
k=1,...,n.

Proof. For k=1,...,n—1 we partition A = LDLT as follows:

_[Aw Bi] _[Lyy 0] [Dw O] [Ljy Mi] _ T
A_[Ck mrl =0 w0 Bl e N —LDLT, (2.14)

where Fj,, Ny, E;, € R*%7=F_ Block multiplication gives Ap = L[k}D[k]LE",;].
Since Ly is unit lower triangular and Dy is diagonal this is a symmetric LU
factorization of Ap). 0O

Theorem 2.26 (Symmetric LU theorem)
The matric A € R™ ™ has a unique symmetric LU factorization if and only if
A=A" and Ay is nonsingular for k=1,...,n—1.

Proof. If A is nonsingular then D is nonsingular and it can be shown that the
theorem is a simple corollary of the LU theorem. To prove the general case we
repeat the proof of Theorem 2.12 incorporating the necessary changes. Suppose
AT = A and that Aji) is nonsingular for £ =1,...,n — 1. Note that Aﬁ} = Ay
for k =1,...,n. We use induction on n to show that A has a unique symmetric
LU factorization. The result is clearly true for n = 1, since the unique symmetric
LU factorization of a 1-by-1 matrix is [a11] = [1][a11][1]. Suppose that Ap,_y

has a unique symmetric LU factorization A[n_l] = Ln_an_lLZ;_l, and that
Apqy, .-, App—q) are nonsingular. By block multiplication
[Ap-y b] [Lna O] [Dhy O7[L], =
A= [ b ann] @ 1| 0 dpe| | 0T 1] (2.15)

if and only if b = L,,_1D,,_1x and an, = dp, + ' D,_12. Thus we obtain
a symmetric LU factorization of A that is unique since L,,_; and D, _; are
nonsingular.

For the converse we use Lemma 2.25 in the same way as Lemma 2.11 was
used to prove Theorem 2.12. 0O

The number of arithmetic operations for the symmetric LU fartorization is
approximately %Gn, half the number of operations needed for the LU factorization.
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For in the LU factorization we needed to solve two triangular systems to find the
vectors s and m, while only one such system is needed to find  in the symmetric
case (2.15). The work to find d,,,, is O(n) and does not contribute to the highest
order term.

2.4 Block LU factorization

Suppose A € C"*™ is a block matrix of the form

Ay 0 Ay
A= : D, (2.16)
Aml T Amm
where each diagonal block A;; is square. We call the factorization
I Ui, cee Ulm
Ly, I Uan - Usp
a—rv-|*® ST e
Lml e Lm,m—l I Umm

a block LU factorization of A. Here the ith diagonal blocks I and U;; in L
and U have the same size as A;;, the ith diagonal block in A.

The results for elementwise LU factorization carry over to block LU factor-
ization as follows.

Theorem 2.27 (Block LU theorem)
Suppose A € C" "™ is a block matriz of the form (2.16). Then A has a unique block
LU factorization (2.17) if and only if the leading principal block submatrices

Ay - Ay
Ay = :
Ap - Apg

are nonsingular fork=1,...,m — 1.

Proof. Suppose Ay is nonsingular for £ = 1,...,m — 1. Following the proof
in Theorem 2.12 suppose Ay, 1} has a unique block LU factorization Ag,,_1) =
Liy—13Um—1y, and that Agyy, ..., Agy,_1y are nonsingular. Then Ly,,_;) and
U (-1, are nonsingular and

_ Aoy B
A‘[ ct A,
_ [ Lim-1y 0} [U{m—l} L, B

I 0 Ay = CTU L, Ly, B’

(2.18)
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is a block LU factorization of A. It is unique by derivation. Conversely, suppose
A has a unique block LU factorization A = LU. Then as in Lemma 2.11 it is
easily seen that Ay = LUy is the unique block LU factorization of Ay, for
k=1,...,m. The rest of the proof is similar to the proof of Theorem 2.12. O

Remark 2.28 (Comparing LU and block LU)

The number of arithmetic operations for the block LU factorization is the same
as for the ordinary LU factorization. An advantage of the block method is that it
combines many of the operations into matriz operations.

Remark 2.29 (A block LU is not an LU)

Note that (2.17) is not an LU factorization of A since the Uy’s are not upper
triangular in general. To relate the block LU factorization to the usual LU fac-
torization we assume that each Uy has an LU factorization U;; = i”fJ“ Then

A = LU, where L := Ldiag(L;;) and U := diag(i;-l)U, and this is an ordinary
LU factorization of A.

Exercise 2.30 (Making block LU into LU)
Show that L is unit lower triangular and U is upper triangular.

2.5 Positive Definite and Semidefinite Matrices

Symmetric positive definite matrices occur often in scientific computing. In this
section we study some properties of positive definite matrices. We study only real
matrices, but consider both the symmetric and nonsymmetric case.

2.5.1 Definitions and examples

Suppose A € R"*™ is a square matrix. The function f : R™ — R given by
n n
f(x) =27 Ax = Z Z AT
i=1 j=1
is called a quadratic form. We say that A is
(i) positive definite if 7 Az > 0 for all nonzero = € R".
(ii) positive semidefinite if 7 Az > 0 for all z € R™.

(iii) negative (semi)definite if — A is positive (semi)definite.
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(iv) symmetric positive (semi)definite if A is symmetric in addition to being
positive (semi)definite.

(v) symmetric negative (semi)definite if A is symmetric in addition to being
negative (semi)definite.

We observe the following.

e A matrix is positive definite if it is positive semidefinite and in addition

zlAx=0=2=0. (2.19)

e A positive definite matrix must be nonsingular. Indeed, if Az = 0 for some
x € R" then 7 Az = 0 which by (2.19) implies that = = 0.

The zero-matrix is symmetric positive semidefinite, while the unit matrix is
symmetric positive definite.

We considered only real valued vectors & above. For symmetric matrices we
have:

Lemma 2.31 (Quadratic form with = € C")
If A € R™™*" is symmetric positive definite then x* Ax > 0 for all nonzero x € C™.

Proof. Suppose x := y + iz is nonzero with ,y € R" and i := +/—1. Since A is
symmetric we find x* Az = (y —iz)T A(y+iz) = yT Ay +27 Az. This is positive
since A is positive definite and at least one of the vectors y, z is nonzero. 0O

Example 2.32 (2 x 2 positive definite)
The family of matrices

Ald) = B 2;“], aeR

is positive definite for any a € R. Indeed for any nonzero x = [x1,x2]7 € R?
2T Ax = 222 + (2 — a)x120 + azoxy + 22 = 22 + (z1 + 22)% > 0.
Lemma 2.33 (T is symmetric positive definite)

The second derivative matriz T = tridiag(—1,2, —1) € R™*"™ is symmetric positive
definite.
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Proof. Clearly T is symmetric. For any € R"

n—1 n

n
mTT:c =2 E 3312 — E TiTi41 — E Tj—1T4
i=1 i=1 =2

n—1 n—1 n—1
2 2 2 2
:E xi—2g xixi+1+g Tiq + ]+,
i=1 i=1 i=1
n—1

2 2 2
=T + Ty + Z(xi-l—l — JZ@') .
i=1

Thus 2Tz > 0 and if 27Tz = 0 then 1 = z,, = 0 and z; = z;qq for i =
1,...,n — 1 which implies that & = 0. Hence T is positive definite. 0O

Symmetric positive definite matrices is important in nonlinear optimization.

Example 2.34 (Gradient and hessian)
Consider (cf. (C.1)) the gradient V f and hessian H f of a function f: Q C R" —
R

of () 9’ f(m) 9’ f (=)
Ox1 O0x10x1 Tt 0z 0z,
Vix) = eR", Hf(zx)= : : e R,
of (z) 0% f (@) 0% f(x)
Oy O0xp,0x1 '  Oxpdrn,

We assume that f has continuous first and second partial derivatives on €.

Under suitable conditions on the domain Q it is shown in advanced calculus
texts that if Vf(x) = 0 and H f(x) is symmetric positive definite then x is a
local minimum for f. This can be shown using the second-order Taylor expansion
(C.2). Moreover, x is a local mazimum if Vf(x) = 0 and Hf(x) is negative
definite.

Theorem 2.35 (A general criterium)

Let m,n be positive integers. If A € R™ " is (symmetric) positive semidefi-
nite then B := XTAX € R™ ™ js (symmetric) positive semidefinite for any
X e R™ ™. If in addition A is (symmetric) positive definite and X has linearly
independent columns then B is (symmetric) positive definite.

Proof. Let y € R™ and set @ := Xy € R". Then y"By = y" XTAXy =
2T Ax. This is nonnegative if A is positive semidefinite and positive if A is
positive definite and X has linearly independent columns. For then @ is nonzero
if y is nonzero. If A is symmetric then B is symmetric and the statements about
symmetry follows. 0O
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Corollary 2.36 (AT A is symmetric positive semidefinite)

Let
sem

m,n be positive integers. If A € R™™ then AT A is symmetric positive
idefinite. It is symmetric positive definite if and only if A has linearly in-

dependent columns.

Proof. If A” A is symmetric positive definite then zA” Az = ||Az|3 > 0 for all
nonzero  and A has linearly independent columns. Taking A := I and X := Ain
Theorem 2.35 gives B = ATTA = AT A, and we obtain the remaining statements
of the corollary. 0O

2.5

.2 The nonsymmetric case

A positive definite matrix has the following properties:

Theorem 2.37 (The nonsymmetric case)
Suppose A € R™™ is a positive definite matrixz and let B be a principal submatriz.
Then

1.

2
3
4
5

B is positive definite,

. A has a unique LU factorization,

. the real eigenvalues of B are positive,
. det(B) > 0,

- Q4055 > Qi5Q54, fO’I“i 7é J-

Proof.

1

. Suppose the submatrix B = A(r,r) is defined by the rows and columns
r=[r,...,7]T of A. Let X = [e,,,...,e,] € R"*¥. Then B := XTAX,
and B is positive definite by Theorem 2.35.

Since all leading submatrices are nonsingular this follows from the LU The-
orem 2.12.

Suppose (A, x) is an eigenpair of A and that A is real. Since A is real we
can choose x to be real. Multiplying Az = Az by 7 and solving for A we
find \ = Z Az >

. The determinant of B equals the product of its eigenvalues. The eigenvalues
are either real and positive or occur in complex conjugate pairs. The product
of two nonzero complex conjugate numbers is positive.
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Qii Qij
aji ajj

5. The principal submatrix [ ] has a positive determinant.

We note that:

1. Part 5 of Theorem 2.37 implies that all diagonal elements of a positive
definite matrix are positive. Moreover, the greatest element in absolute
value is a diagonal element. This can be used to decide by inspection that
a given matrix cannot be positive definite.

2. A nonsymmetric positive definite matrix can have complex eigenvalues. For
example, the eigenvalues of Afa| in Example 2.32 are positive for a € [1 —

é, 1+ é] and complex for other values of A.

2.5.3 The symmetric case

Theorem 2.37 can be strengthened considerably when A is symmetric positive
definite.

Theorem 2.38 (Symmetric positive definite characterization)
The following statements are equivalent for a symmetric matriz A € R™*"™,

1. A is symmetric positive definite.
2. A has only positive eigenvalues.

3. All leading principal submatrices have a positive determinant.

4. A= BB for a nonsingular B € R"*".

Proof. 1 < 2 is shown in Lemma 2.41 below. We show that 1 = 3 =4 = 1.

1 = 3: This follows from Theorem 2.37

3 = 4: By Lemma 2.42 below A has a unique symmetric LU factorization A =
LDLT with positive diagonal elements in D. But then A = BBT, where B :=
LD'?, with D'? := diag(d)/},...,d)/2,).

4 = 1: This follows from Corollary 2.36. 0O

Exercise 2.39 (Positive definite characterizations)
Show directly that all 4 characterizations in Theorem 2.38 hold for the matriz

Ea

Consider the eigenvalues of a real symmetric positive definite matrix. Note
that such a matrix is Hermitian.
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Lemma 2.40 (Eigenvalues of a Hermitian matrix)
All eigenvalues of a Hermitian matriz are real.

Proof. Suppose A* = A and Az = \x with © # 0. We multiply both sides of
Ax = \x from the left by * and divide by x*x to obtain A = Z f:”. Taking
(" Az)” _ z*A*z _ z*Ax

= = A, and A is

(x*x)* e T

s

complex conjugates we find A = \* =
real. O

Lemma 2.41 (Symmetry and positive eigenvalues)
A matrix A € R™"™™ 4s symmetric positive definite if and only if it is symmetric
and all eigenvalues are positive.

Proof. By Lemma 2.40 all eigenvalues of A are real, and by Theorem 2.37 all
eigenvalues are positive. Suppose conversely that A € R™*"™ is symmetric with
positive eigenvalues A1,...,\,. By the spectral theorem (cf. Corollary 5.23)
we have UT AU = D, where UTU = UU" = I and D = diag(\1,..., \).
Let € R be nonzero and define ¢ := U'z = [c1,...,¢,]T. Then c’c =
2TUUTx = 2Tz so ¢ is nonzero. Since = Ue we find

n
2T Ax = (Ue)TAUc = "'UTAUc = "' Dc = Z )\jc§ >0

j=1

and it follows that A is positive definite. 0O

Lemma 2.42 (Symmetric positve definite and symmetric LU)
A matrix A € R™" s symmetric positive definite if and only if it has a symmetric
LU factorization A = LDL™ with positive diagonal elements in D.

Proof. Suppose A is symmetric positive definite. By Theorem 2.37 the leading
principal submatrices Aj) € R*** are nonsingular for k = 1,...,n — 1, and A
has a unique symmetric LU factorization A = LDL” by Theorem 2.26. The
ith diagonal element in D is positive, since d;; = eiTDei = eiTLflALfTel- =
wiTAwi > 0. Indeed, x; := L_Tei is nonzero since L™7 is nonsingular.

Conversely, suppose A has a symmetric LU factorization A = LDL” with
positive diagonal elements in D. Then A is symmetric, and for any nonzero
y € R" we have 27 Az = 2" LDL "z = y" Dy > 0, since y :== LT #0. 0O
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2.6 The Cholesky Factorization

André-Louis Cholesky, 1875-1918 (left), John von Neumann, 1903-1957 (right).

Lemma 2.42 implies that A is symmetric positive definite if and only if it has
a symmetric LU factorization, and from the proof of 3. implies 4 in that theorem
we can write this in the form A = BB where B is lower triangular matrix with
positive diagonal elements. Such a factorization has a special name.

Definition 2.43 (Cholesky)

A factorization A = LLT where L is lower triangular with positive diagonal
elements is called a Cholesky factorization of A. The matriz L is called a
Cholesky factor.

From the discussion before the definition we have

Theorem 2.44 (Cholesky)
A matric A € R™"™ has a Cholesky factorization if and only if it is symmetric
positive definite. Moreover, the Cholesky factorization is unique.

Proof. We still need to show uniqueness. Suppose LLT = 8§87 are two Cholesky
factorizations of the symmetric positive definite matrix A. Since A is nonsingular
both L and S are nonsingular. Then S™'L = STL™7, where by Lemma 1.22
S1L is lower triangular and ST L~7 is upper triangular, with diagonal elements
lii/sii and s;; /0, respectively. But then both matrices must be equal to the
same diagonal matrix and (2, = s?,. By positivity ¢;; = s;; and we conclude that
S7'L =1 =STL™T which means that L=S. O

A Cholesky factorization can also be written in the equivalent form A =
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RTR, where R = L” is upper triangular with positive diagonal elements. The
matrix A must be symmetric since LL" is symmetric.

Example 2.45 (2 x 2)
The matrizc A = { 2

1 _21] has a symmetric LU- and a Cholesky-factorization
given by

2 1] _[1 o]f2 o[t =i [ v2 0 1[vV2 —1/v2
s 2T gl T lyve varlle var)
Consider computing the Cholesky factorization directly. The equation A =
LLT implies that

n
i = Lijlyj =
=1

The unknown elements in L can be computed row by row or column by column.
Consider the column case. Suppose we have computed the k — 1 first columns of
L. The kth column can then be computed from (2.20). Indeed, letting i = k and
solving for £ we find

D=

min(s,k)
Eijékj, i,k‘ = 1,...,n. (220)

j=1

k—1
1/2
boe = (ank — Y G3) 2, (2.21)
j=1
and similarly for ¢ > k
k—1
lir, = (aik _Zgijzkj)/zkk i=k+1,...,n. (2.22)
j=1

Since A is symmetric positive definite the Cholesky factor L exists, is unique, and
real, and therefore the term under the square root in (2.21) must be positive. We
note however that we can encounter problems in floating point computation if the
term is very small.

It is easily seen that the Cholesky-factorization of an n-by-n matrix based
on (2.21) and (2.22) requires $G,, = n?/3 arithmetic operations. This is essen-
tially the same as for the symmetric LU factorization. The halving of the count
compared to LU factorization is due to the symmetry of A.

If A is d-banded then the same is true for the Cholesky factor.

Lemma 2.46 (Banded Cholesky factor)
Suppose A is symmetric positive definite with Cholesky-factor L. If a;;, = 0 for
i >k+d, then £y, =0 fori>k+d.
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Proof. We show that if L has bandwidth d in its first k—1 columns then column &
also has bandwidth d. The proof then follows by induction on k. Now, if i > k+d,
then a;; = 0, and if L has bandwidth d in its first £ — 1 columns then ¢;; = 0 for
j=1,...,k—1. By (222) {;; =0. O

We obtain formulas for the Cholesky factorization of a symmetric posi-
tive definite band matrix by simply replacing the lower bound j = 1 by j =
max(1,k —d) in (2.21) and (2.22) and letting ¢ run from k& + 1 to min(n, k + d) in
(2.22). The lower triangular matrix L is computed in sparse form. Ounly the lower
triangular part of A is used. This leads to the following algorithm. For a different
algorithm based on outer products, which can also be used for symmetric positive
semidefinite matrices, see Algorithm 2.53.

Algorithm 2.47 (bandcholesky)

function L=bandcholesky (A,d)

%L=bandcholesky (A, d)

n=length (A);

L=sparse(zeros(n,n));

for k=1:n
km=max(1,k—d); kp=min(n,k+d); s=L(k,km:k—1);
L(k, k)=sart (A(k, k)—s 5 ) ;
L(k+1:kp,k)=(A(k+1:kp,k) —...

L(k+1:kp,km:k—1)*s’) /L(k,k);

© 0 N o U A W N e

end

o
o

The leading term in an operation count for a band matrix is O(d*n) . When
d is small this is a considerable saving compared to the count %Gn =n3/3 for a
full matrix.

There is also a banded version of the symmetric LU factorization which re-
quires approximately the same number of arithmetic operations as the Cholesky
factorization. The choice between using a symmetric LU factorization or an LL”
factorization depends on several factors. Usually an LU or a symmetric LU fac-
torization is preferred for matrices with small bandwidth (tridiagonal, pentadi-
agonal), while the LL7 factorization is restricted to symmetric positive definite
matrices and is often used when the bandwidth is larger.

2.7 The Symmetric Positive Semidefinite Case

We start with the following necessary conditions for a matrix to be symmetric
positive semidefinite. It shows that if a diagonal element a;; is zero then all
elements in row ¢ and column ¢ are zero.
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Lemma 2.48 (Criteria symmetric semidefinite)
If A is symmetric positive semidefinite then for all i, j

1. faij| < (ai +aj5)/2,

2. |aij| < /aiag;,

3. max; j|a;;| = max; a;;,

4. a;; = 0= a;; = aj; =0, fized i, all j.

Proof. Part 3 follows from part 1 and part 4 from part 2. Now
0< (aei—i—ﬁej)TA(aei—i—ﬁej) = a2aii+62ajj+2aﬁaij, all 4,7, a, B € R, (2.23)

since A is symmetric positive semidefinite. Taking o = 1, § = +1 we obtain
ai; +a;; £ 2a;; > 0 and this implies part 1. Part 2 follows trivially from part 1 if
ai; = aj; = 0. Suppose one of them, say a;; is nonzero. Note that a;; = e;fFAei >
0. Taking o = —a;j, B = a;; in (2.23) we find

0 S afjaii + aziajj — 20,?]-&1'1‘ = aii(aiiajj — afj).

K2

But then a;a;; — afj > 0 and part 2 follows. O

As an illustration consider the matrices
0 1 1 2 -2 1
S I e |
None of them is positive semidefinite, since neither part 1 nor part 2 hold.

Theorem 2.49 (Positive symmetric semidefinite characterization)
The following is equivalent for a symmetric matriz A € R™*",

1. A is positive semidefinite.
2. A has only nonnegative eigenvalues.
3. A= BBT for some B € R"*".

4. All principal submatrices have a nonnegative determinant.

Proof. The proof of 1 < 2 follows as in the proof of Theorem 2.38. 1. & 3.
follows from Theorem 2.51 while 1. = 4. is a consequence of Theorem 2.37. To
prove 4. = 1. one first shows that eI + A is symmetric positive definite for all
€ > 0 (Cf. page 567 of [24]). But then 7 Az = lim o xT (eI + A)z > 0 for all
xeR" O
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In part 4 of Theorem 2.49 we require nonnegativity of all principal minors,
while only positivity of leading principal minors was required for positive definite
matrices (cf. Theorem 2.38). To see that nonnegativity of the leading principal
minors is not enough consider the matrix A := [8 f)l]. The leading principal

minors are nonnegative, but A is not positive semidefinite.

2.8 Semi-Cholesky factorization of a banded matrix

A symmetric positive semidefinite matrix has a factorization that is similar to the
Cholesky factorization.

Definition 2.50 (Semi-Cholesky factorization)
A factorization A = LLT where L is lower triangular with nonnegative diagonal
elements is called a semi-Cholesky factorization.

Note that a semi-Cholesky factorization of a symmetric positive definite
matrix is necessarily a Cholesky factorization. For if A is positive definite then it
is nonsingular and then L must be nonsingular. Thus the diagonal elements of L
cannot be zero.

Theorem 2.51 (Characterization, semi-Cholesky factorization)
A matriz A € R™*" has a semi-Cholesky factorization A = LL™ if and only if it
is symmetric positive semidefinite.

Proof. If A = LL” is a semi-Cholesky factorization then A is symmetric pos-
itive semidefinite by Corollary 2.36. For the converse we use induction on n. A
positive semidefinite matrix of order one has a semi-Cholesky factorization since
the one and only element in A is nonnegative. Suppose any symmetric positive
semidefinite matrix of order n — 1 has a semi-Cholesky factorization and suppose
A € R™" is symmetric positive semidefinite. We partition A as follows

T

A= [2‘ ‘H ., a€R, veR"! BeRrx(-1), (2.24)

There are two cases. Suppose first a = el Ae; > 0. We claim that C :=
B —vvT /a is symmetric positive semidefinite. C is symmetric. To show that C'is

positive semidefinite we consider any y € R"~! and define 7 := [—~vTy/a,yT] €
R"™. Then " - y
T __.T T | U —v Y/«
0<z Aw—[vy/a,y][v B}[ Y }
T
— 0"y oty |V Y :2)

=—-(v"y)(v"y)/a+y "By =y Cy,
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since (vTy)vTy = (vTy)TvTy = yTvvTy. So C € RP~UX(=1) i symmet-
ric positive semidefinite and by the induction hypothesis it has a semi-Cholesky
factorization C' = Ly L] . The matrix

L7 .= {”g ”Zﬁ . Bi=a, (2.26)

is upper triangular with nonnegtive diagonal elements and

A | R R

is a semi-Cholesky factorization of A.
If @« = 0 then it follows from 4. in Lemma 2.48 that v = 0. Moreover,
B € R=Dx(=1) in (2.24) is positive semidefinite and therefore has a semi-
T
Cholesky factorization B = L1L1T. But then LL”, where L = {8 OL ] is a
1
semi-Cholesky factorization of A. Indeed, L is lower triangular and

r [0 oT][o o] [o o]
LL_[O LlHo LT| [0 B| =4

Recall that a matrix A is d-banded if a;; = 0 for |i — j| > d. A (semi-
)Cholesky factorization preserves bandwidth.

Theorem 2.52 (Bandwidth semi-Cholesy factor)
The semi-Cholesky factor L given by (2.26) has the same bandwidth as A.

Proof. Suppose A € R™" is d-banded. Then v’ = [uT,07] in (2.24), where
u € R?, and therefore C := B —vv” /a differs from B only in the upper left d x d
corner. It follows that C has the same bandwidth as B and A. By induction on
n, C = L1 LT where LT has the same bandwidth as C. But then L in (2.26) has
the same bandwidth as A. 0O
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Algorithm 2.53 (bandsemi-cholesky)

Suppose A is symmetric positive semidefinite. A lower triangular matrix L is
computed so that A = LL”. This is the Cholesky factorization of A if A is
symmetric positive definite and a semi-Cholesky factorization of A otherwise.
The algorithm uses the Matlab command tril.

1 function IL=bandsemicholeskyL (A,d)
2 %L=bandsemicholeskyL (A, d)
3 n=length (A);

4 for k=1:n

5 if A(k,k)>0

6 kp=min(n,k+d) ;

7 A(k,k)=sqrt (A(k,k));

s A(k+1:kp,k)=A(k+1:kp,k) /A(k,k);
9 for j=k-+1:kp

10 A(j:kp,j)=A(j:kp,j)-A(j,k)*A(j:kp,k);
11 end

12 else

13 A(k:kp,k)=zeros (kp—k+1,1);

14 end

15 end

16 L=tril (A);

Consider now implementing an algorithm based on the previous discussion.
Since A is symmetric we only need to use the lower part of A. The first column
of Lis [3,vT/B])T if a > 0. If a = 0 then by 4 in Lemma 2.48 the first column of
A is zero and this is also the first column of L. We obtain

if A(1,1) > 0
A(1,1) = /A(1,1)
A(2:n,1)=A(2:n,1)/A(1,1) (2.27)
forj=2:n
A(jin,j) =A@ :n,j) — A(G, 1) * A(j = n, 1)

Here we store the first column of L in the first column of A and the lower
part of C = B — vv”T /a in the lower part of A(2:n,2:n).

The code can be made more efficient when A is a d-banded matrix. We
simply replace all occurrences of n by min(i + d,n). Continuing the reduction we
arrive at Algorithm 2.53.

In the algorithm we overwrite the lower triangle of A with the elements of
L. Column k of L is zero for those k where ¢, = 0. We reduce round-off noise
by forcing those rows to be zero. In the semidefinite case no update is necessary
and we “do nothing”.
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Figure 2.2. Gaussian elimination

There are many versions of Cholesky factorizations, see [5]. Algorithm 2.47
is based on outer products vv”. An advantage of this formulation is that it can
be extended to symmetric positive semidefinite matrices. However deciding when
a diagonal element is zero is a problem in floating point arithmetic.

2.9 Gaussian Elimination

In this section we take a closer look at Gaussian elimination. We show that if
the conditions of the LU theorem is satisfied then Gaussian elimination without
row interchanges is just a way of computing the LU factorization of the coeffi-
cient matrix. If row interchanges are incorporated then we need to introduce a
matrix permutation matrix P, and obtain a factorization of the form A = PLU.
We obtain this PLU factorization by using a matrix formulation of Gaussian
elimination.

2.9.1 Reduction to upper triangular form

Consider the general n x n case (see Example 1.1 for the 3 by 3 case.). We start
with a nonsingular linear system Ax = b and generate a sequence of equivalent
systems Apx = b, for k = 1,...,n, where Ay := A, by := b, and A has zeros
under the diagonal in its first £k — 1 columns. Thus A,, is upper triangular and the
system A,x = b, can be solved using one of Algorithms 2.2 or 2.5. The process
is illustrated in Figure 2.2.
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The matrix A has the form

roo1 1 1 1 1 7
ag a1 k-1 a1 a1, ai,n
k—1 k—1 k—1 k—1
Op—1k—1 | Y—1k A1, Ak_1n
E E
a ay . a
k.k k,j k,n
A= | . (2.28)
k
a; i a; ; Qi n
k k k
L a‘n,k: an,j Anxn
The process transforming Ay into Aiy1 for k =1,...,n—1 can be described
as follows:
fork=1:n-1
Find ry > k such that a,, , # 0;
Interchange row k and rj of Ag;
fori=k+1:n (2.29)
ko k
Mik = A5,/ Qg
forj=k:n
k+1 _ k ok
aij - aij — mlkakj
Since a1 = af —mypat, =0fori=k+1 n it follows that A will
ik — Yik ik = = ) k+1

have zeros under the diagonal in its first £ columns and the elimination is carried
one step further. The numbers myy in (2.29) are called multipliers. Interchanging
two rows (and/or two columns) during Gaussian elimination is known as pivoting.
The element which is moved to the diagonal position (k, k) is called the pivot
element or pivot for short, and the row containing the pivot is called the pivot
row.

2.9.2 Pivot strategies

The most common pivoting strategy used in the Gaussian elimination process
(2.29) is

|a’,fk_7k| = max{|a§,k\ ck<i<n}

with 7 the smallest such index in case of a tie. This is known as partial pivoting.
The following example illustrating that small pivots should be avoided.
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Example 2.54 (Row pivoting)
Applying Gaussian elimination without row interchanges to the linear system
10~ %21 + 220 = 4

T+ 0 =3
we obtain the upper triangular system

107%2) + 229 = 4
(1—-2x10%2 =3 —4 x 10*

The exact solution is
—39997 4—2ry 20000

T 19999 T TNT 104 T 19999

T2

Suppose we round the result of each arithmetic operation to three digits. The
solutions fl(z1) and fl(x3) computed in this way is

ﬂ(l‘g) = 27 ﬂ(.Z‘l) = O

The computed value 0 of x; is completely wrong. Suppose instead we apply
Gaussian elimination to the same system, but where we have interchanged the
equations. The system is
1 +x9 =3
107 *21 + 220 = 4

and we obtain the upper triangular system

X1+ T = 3
(2—10 Yz =4-3x10"*

Now the solution is computed as follows

~ 39997
©1.9999
In this case rounding each calculation to three digits produces fl(z;) = 1 and

fi(z2) = 2 which is quite satisfactory since it is the exact solution rounded to
three digits.

2

To T, =3 —xo =~ 1.

)

Related to partial pivoting is scaled partial pivoting. Here r; is the
smallest index such that

k
aT‘k,k _

ax{%:k<i<n} Sk 1= max |ag;l.
st se o b 1<j<n
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This can sometimes give more accurate results if the coefficient matrix have co-
efficients of wildly different sizes. Note that the scaling factors s; are computed
using the initial matrix.
It also is possible to interchange both rows and columns. The choice
k

Ay sy o= max{|af’j ck<i,j<n}
with 7, si the smallest such indices in case of a tie, is known as complete piv-
oting. Complete pivoting is known to be more numerically stable than partial

pivoting, but requires a lot of search and is seldom used in practice.

2.9.3 Permutation matrices

Pivoting can be described in terms of permutation matrices.

Definition 2.55 Let the components of p = [ki, ..., kn]|T be a permutation of the
components of [1,2,...,n]T. We call P := I(:,p) = [ek,, €k, --,€k,] € R™*" q
permutation matrix. When discussing Gaussian elimination a permutation p
is sometimes called a pivot vector.

Since PT = I(p,:) it follows that (PTP), ; = e} ey, = 6;;. Thus PTP =1, the
inverse of P is equal to its transpose, and PPT = I as well. If p and P are as in
Definition 2.55 and A € C"*™ then

AP = A(,p), PTA=A(p,)), P'AP=A(p,p). (2.30)

Thus, post-multiplying a matrix A by a permutation matrix results in a permu-
tation of the columns, pre-multiplying by the transpose of a permutation matrix
gives a permutation of the rows, while the transformation P7 AP permutes both
the rows and columns using the same permutation p. In particular, the diagonal
of PTAP is a permutation of the diagonal of A:

diag(PT AP) = diag (A)(p). (2.31)
We will use a particularly simple permutation matrix.

Definition 2.56 (Interchange matrix)
We define a (j,k)-Interchange Matrix I, by interchanging column j and k of
the identity matrix.

Since I, = Iy;, and we obtain the identity by applying I twice, we see
that I ?k = I and an interchange matrix is symmetric and equal to its own inverse.
Pre-multiplying a matrix by an interchange matrix interchanges two rows of the
matrix, post-multiplication interchanges two columns. By (2.31) the diagonal
of I;,Alj;} is almost conserved; only the diagonal elements a;; and ayj are
interchanged.
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2.9.4 Gauss transformations

The elimination process in (2.29) can be interpreted in matrix terms using inter-
change matrices and Gauss transformations.

Definition 2.57 (Gauss transformation)
Suppose for some 1 < k < n that g;, = [0,...,0,gks1.k--->Ink]l € R™ has its
first k components equal to zero and let ey be the k’th unit vector in R™. The
matrix

Gy :=1I—gef

is called a Gauss transformation. The name elementary lower triangular
matrix s also used.

In the 3 by 3 case the Gauss transforms takes the form

1 0 0 1 0 0
G1 =921 1 0 s G2 =10 1 0 5
—g31 0 1 0 —gs2 1

where g, = [0 g21 931]T and g5 = [O 0 ggg]T.

For general n and 1 < k < n a Gauss transformation can be used to zero out
column k under the diagonal in the matrix Ay. Column k in Ay is transformed
into column k of Ay using a matrix M, as follows:

1 .- 0 0 0O -+ 0] -aik—l E -a%,kﬂ -
0o --- 1 0 0O --- 0
0 -~ 0 1 0 0 afr | =1 af, | . (232
o --- 0 —Mk41,k 1 0 CLQJFLIC 0

_() 0 —My ks o --- 1_ i aﬁk i i 0 ]

The transformation matrix M in (2.32) is a Gauss transformation:
M, =T —myel | mp=1[0,...,0, M1k, M k)" - (2.33)
We collect some properties of Gauss transformations that we will need.

Lemma 2.58 (Gausstransformations)
For1<k<nletg,=1[0,...,0,0ks1k,--->9nk|’ €R". Then

1. (I —gpef) ' =I+gef,

k
2. (I—gel) - (I-grel)=T1-3"_gseT,



82 Chapter 2. LU Factorizations

3. I; ;(I — gkeg)Ii’j =1I-— (Ii’jgk)ekT., fork <i,j<n.

Proof. We note that
elg,=0forj=12,..k (2.34)

1. By direct multiplication using (2.34)
(I —grei)I+grer) =1 —gpef +gel —gilefgy)ef = 1.

2. Part 2. clearly holds for £k = 1. Assuming by induction the result for £ — 1
we obtain by (2.34)

k—1
(I—gie])--(I—gpel)=T—-> g;e])I—gef)
J=1

k—1 k—1 k
=13 gje] —gxet +D_g;lejgier =I1-) gsef
j=1 Jj=1 j=1

3. We find I, ;(I — gpel)I;; = I;; — (I, ;g;)(el I ;). Now I, = I and

el'l, ; = el in view of 4,7 > k. Thus Part 3 follows.

It should be noted that the order of the factors in the product in Part 2 of
Lemma 2.58 is important. For example for n = 3

1 0 0|1 0 O 1 0 0
(I+glelT)(I+gze;): g1 1 0] [0 1 0]=1|go1r 1 O
gs1 0 1] |0 g3 1 931 g3z 1
In general,
1 0 0 0
92,1 1 0 0
(I+giel) - (T+g, ref )=| 931 932 L 00 (235
gn1 Gn2 - In,n—1 1

Multiplying the factors in any other order does not give such a nice result.

2.9.5 PLU factorization

We can reformulate the Gaussian elimination process (2.29) in matrix terms. This
leads to a factorization of the coefficient matrix A = PLU, where P is a
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permutation matrix, L is a lower triangular, and U is upper triangular. Without
interchanges the matrix P is the identity and we obtain an LU factorization
A=LU.

The transformation Ay — Agy1 in (2.29) can be written in terms of an
interchange matrix and a Gauss transformation as follows:

A1 =M J Ay, Ji =1,

where we first interchanged row k£ and r; > k in Ay and then introduced zeros
under the diagonal in column £ using

M, =1- mkef , mE=1[0,...,0,Mk41k, - .,rndn,k]T7 T — afk/al,zk.
Applying this repeatedly we obtain
Ay =M, Jp_1- - M5;J. M7 J1A, k=2,...,n. (2.36)
Since J. ' = Jj, and (M)~! = M, we find the factorizations
A=J M{JI.M35 - J_ 1M} Ay, k=2,...,n (2.37)

Gaussian elimination with row pivoting is mathematically well defined on a
nonsingular matrix.

Theorem 2.59 (Gaussian elimination is well defined)
Suppose A € C™" is nonsingular. Then for k =1,2,....,n — 1 we can in (2.29)
find v, > k such that a,, 1, # 0.

Proof. The result holds for £k = 1 since A is nonsingular and therefore cannot
have a zero column. Thus A, is well defined. Suppose for some k& > 2 that aii #0
fori=1,2,...,k — 1. We partition Ay, given by (2.28) in upper block triangular
form

_|Br Cy
)

The matrix By, is upper triangular of order £ — 1 with diagonal elements ail e
aﬁjik_l. Therefore By, is nonsingular, and Ay is nonsingular, since by (2.36)
it is a product of nonsingular matrices. By Lemma 1.21 Ej is nonsingular and
cannot have a zero first column. Thus A, is well defined and the result follows

by induction. 0O

Theorem 2.60 (PLU theorem)
Gaussian elimination on a nonsingular matrix A € C"*™, with row pivoting as
described in (2.29), leads to a factorization A = PLU, where P is a permutation
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matriz, L is lower triangular with ones on the diagonal, and U 1is upper triangular.
More explicitly,
P:J1J2""]n71a Jk::Irk,kv
L=LLy-- Ly,
Lk:I—l—Tkaez, my =Jp_1--Jgrimg, k=1,2....,.n—1,
U=A,.

Proof. By repeated use of Part 3 of Lemma 2.58 we have
Li=Jp 1 JeaM; Jgp1-Jp1, k=1,...,n—1
Using J i = I repeatedly gives for n =4
PLU = (J1J2J3)(L1LaL3)Ay
= (J1J2J3)(JsJ oM J2J3)(Js M3 J3)(M4)A,
=J M{J.M$JI;MTA,.

But then PLU = A by (2.37). Using the same cancellation effect for general n
proves the theorem. 0O

Using Part 2 of Lemma 2.58 we see that the matrix L in Theorem 2.60 has
the form (2.35) with g, = my, k=1,...,n.

Once we have a PLU factorization of A the system Ax = b is solved easily
in three steps. Since PLUx = b we have Pz = b, Ly = z, and Uz = y. With
P = I(:,p) the solution @ can be found from Algorithms 2.1 and 2.2 in two steps.

1. y=rforwardsolve(L,b(p),n);
2. x=rbacksolve(U,y,n);

Exercise 2.61 (Using PLU of A to solve A”x = b)
Suppose we know the PLU factors P,L,U in a PLU factorization A = PLU of
A € C™*". Ezplain how we can solve the system ATz =b economically.

Exercise 2.62 (Using PLU to compute the determinant)
Suppose we know the PLU factors P,L,U in a PLU factorization A = PLU of
A € C"*". Explain how we can use this to compute the determinant of A.

Exercise 2.63 (Using PLU to compute the inverse)

Suppose the factors P, L, U in a PLU factorization of A € R™*" are known. Use
Ezercises 2.21,2.22 to show that it takes approzimately 2G,, arithmetic operations
to compute A~ = UYL PT. Here we have not counted the final multiplication
with PT which amounts to n row interchanges.
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2.9.6 The LU factorization

Consider now the lucky situation where no row interchanges is necessary in Gaus-
sian elimination. In this case (2.29) simplifies to

fork=1:n-1
fori=k+1:n
mik:a?k/allgk (2.39)
forj=k:n
k+1 k

_ ok
ij Qg — Mk

a J

Gaussian elimination without row interchanges is sometimes refered to as
naive Gaussian elimination, and we then have P = I in the PLU factorization.
The PLU theorem then gives:

Theorem 2.64 (LU factorization)
If Gaussian elimination without row interchanges is well defined then we obtain
in (2.39) the LU factorization

1 0 0 o 0 ajy alp aiz 0 aj,
my 10 o] 0 ad ah
2 %, 2
A= | m31 mz2 1 0 0 0 a33 -+ a3, | = LU.
Mp,1 Mp2 - Mpp-1 1 0 0 .. 0 aﬁ’n

(2.40)

Since we get division by zero in (2.39) if af, = 0 for some k < n — 1 it is
important to know when this can happen. We first show:

Theorem 2.65 (Nonzero pivots)
Let A € C™™ and let m; 1, and ai-fj be defined by (2.39).

1. Ifa:",r #Oy r= 1,2,...,k—1, then
a1 ar1
= ailag,Q...aﬁ,k, k=1,2,...,n.

agr - Okk

2. Let 1 <k <mn. Then ay, # 0, r =1,2,...,k, if and only if the leading
principal submatriz Ay, is nonsingular for r =1,2,... k.

Proof.
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1. Since ay.,. # 0,7 =1,2,...,k—1and J, = I in (2.36) we obtain A, = M A,

where M := M, _,--- M. By (2.28) we have

F. G a%,l aik

_ k k _ . . k.k

Ak—|:0 Hk:|, Fy = .. k e Ch".
Ay &

Since Ay, = M A and M is lower triangular we obtain Fy = M3 Ay and
since M ;] has ones on the diagonal

ailagg s CLZJC =det(Fy) = det(M[k]) det(A[k]) = det(A[k].

. Suppose ay.,. # 0, r = 1,2,...,k. By Part 1 det(A)) = a1, ---aj,, r =

L2..., k, so that A[,) is nonsingular for r = 1,2,... k. Conversely, suppose
a; ; = 0 for some ¢ < k. Let i be the smallest integer such that a; ; = 0. We
can then do Gaussian elimination without row interchanges on A to obtain
A;. By Part 1 det(Ay)) = aj; ---aj,; = 0 so that (A) is singular. O

The theorem implies:

Corollary 2.66 (When is naive Gaussian elimination possible?)
In (2.39) we have aﬁk #0 fork=1,...,n—1 if and only if the leading principal
submatrices

ail a1k
Apy =

ar1 ... ALk

of A are nonsingular for k=1,...,n—1.

‘We note that

. The PLU factorization can alternatively be written PTA = LU. Thus,

if A is nonsingular then there exists a permutation of the rows of A so
that the matrix with the rows permuted has an LU factorization. This
means that if we knew the row pivots in advance then we can carry out
Gaussian elimination without row pivoting on the matrix P* A, where PT =
Irn,l,nfl T I'rl,l-

. If the leading principal submatrices A are nonsingular for k =1,...,n—1

then the LU factorization is unique and Gaussian elimination is just one
particular way of computing the LU factorization.
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The calculation in (2.39) reqires 22;11 (n — k)? multiplications, the same
number of subtaractions, and Zz;ll k divisions. So the complexity of Gauss-
sian elimintiation is %nS — %n2 — in. This is exactly the complexity of LU

6
factorization (cf. (2.9)).

Corolary 2.66 holds even if A is singular. Since L is nonsingular the matrix
U is then singular, and since a’,gk # 0 for k =1,...,n — 1 we must have

n J— 3 3
ay,, =0 when A is singular.

To verify the nonsingularity of the leading principal submatrices can be
difficult in practice. We have show that this condition holds for a class of
diagonally dominant matrices and for positive definite matrices.

Exercise 2.67 (Direct proof of Theorem 2.64)
Equation (2.39) implies that my, = (a¥ — ak*l)/a’,ﬁj for k < min(i — 1,5 — 1).

ij ij

Use this to give a proof of Theorem 2.64 by directly showing that (LU);; =
Y peq likug; = a;j. Consider separately the two cases i < j and i > j.

2.10 Review Questions

2.9.1

2.9.2

2.9.3

2.9.4

2.9.5

2.9.6

2.9.7

When is a triangular matrix nonsingular?
Approximately how many arithmetic operatios are needed for

e the multiplication of two square matrices?
e The LU factorization of a matrix?

e the solution of Ax = b, when A is triangular?
What is the content of

e the LU theorem?

e the symmetric LU theorem?
Is AT A symmetric positive definite?

e What class of matrices has a Cholesky factorization?

e What is the bandwidth of the Cholesky factor of a band matrix?

For a symmetric matrix give 3 conditions that are equivalent to positive
definiteness.

What class of matrices has a semi-Cholesky factorization?
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2.9.8 What is the general condition for Gaussian elimination without row inter-
changes to be well defined?

2.9.9 What is a PLU factorization? When does it existt?

2.9.10 What is complete pivoting?



Chapter 3
The Kronecker Product

Leopold Kronecker, 1823-1891 (left), Siméon Denis Poisson, 1781-1840 (right).

Matrices arising from 2D and 3D problems sometimes have a Kronecker
product structure. Identifying a Kronecker structure can be very rewarding since
it simplifies the study of such matrices.

3.1 Test Matrices

In this section we introduce some matrices which we will use to compare various
algorithms in later chapters.

89
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3.1.1 The 2D Poisson problem

Let Q := (0,1)2 = {(2,9) : 0 < 2,y < 1} be the open unit square with boundary
0f). Consider the problem

0%u  O%u
u := 0 on 0N

Here the function f is given and continuous on 2, and we seek a function v =
u(x,y) such that (3.1) holds and which is zero on 9.

Let m be a positive integer. We solve the problem numerically by finding
approximations v; i = u(jh, kh) on a grid of points given by

Q= {(jh,kh) : j,k=0,1,....m+1}, where h=1/(m+1).

The points 2, := {(jh,kh) : j,k=1,...,m} are the interior points, while Qj \ 2,
are the boundary points. The solution is zero at the boundary points. Using the
difference approximation from Chapter 1 for the second derivative we obtain the
following approximations for the partial derivatives

82u(jh, kh) ~ Vj—1,k — 2'Uj’k + V1K 82u(jh, kh) o Uik—1— 2Uj7k + V) k+1
Ox2 h? ’ 0y? - h? '

Inserting this in (3.1) we get the following discrete analog of (3.1)

—Apvjk = fik, (jh,kh) € Qp,

3.2
Vjk = 0, (]h,k‘h) € th, ( )
where f; := f(jh, kh) and
—Vj_1,k + 205k — Vj —Vj k-1t 205 — Uj
—Apvj i = J—1k h;’k gLk | gkl h;’k sy (3.3)
Multiplying both sides of (3.2) by h? we obtain
4vj = V-1 — VjsLk — Vik-1 — Vjksr = B2 fin, (h,kh) € Qn, (3.4)

Uo,k:Um-'rl,kzvj,():vj,m-‘rl:ov ]7k:0a15am+1
The equations in (3.4) define a set of linear equations for the unknowns V :=
[’Ujk] e Rmxm,

Observe that (3.4) can be written as a matrix equation in the form

TV + VT =h*F with h=1/(m+1), (3.5)
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1,17 12 13 13 23 3I3 7 8 9
21 22 23 102 22 3[2 4 5 6
31 32 33 10 21 301 1 2 3
v, in V- matrix v in grid X ingrid

Figure 3.1. Numbering of grid points

where T' = tridiag(—1,2,—1) € R™*™ is the second derivative matrix given by
(1.2) and F = (fjx) = (f(jh,kh)) € R™*™. Indeed, the (j, k) element in TV +

VT is given by
m m
Z Tjvixk+ Z 05,i T ke,
i=1 i=1

and this is precisely the left hand side of (3.4).

To write (3.4) in standard form Az = b we need to order the unknowns
vj 1 in some way. The following operation of vectorization of a matrix gives one
possible ordering.

Definition 3.1 (vec operation)
For any B € R™*™ we define the vector

vec(B) == [bi1, ., b1, D12, - -+ b2y vy b1ny oo oy byt € R
by stacking the columns of B on top of each other.

Let n = m? and x := vec(V) € R™. Note that forming & by stacking the
columns of V' on top of each other means an ordering of the grid points which
for m = 3 is illustrated in Figure 3.1. We call this the natural ordering. The
elements in (3.4) form a 5-point stencil, as shown in Figure 3.2.

To find the matrix A we note that for values of j, k where the 5-point stencil
does not touch the boundary, (3.4) takes the form

42, — i1 — Tig1 — Ti—m — Tigm = by,

where z; = vj; and b; = h? f;. This must be modified close to the boundary. We
obtain the linear system

Az =b, AcR™" beR" n=m? (3.6)

) )
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Vike1 Xitm i
Vj-1,k lek Vj+1,k X4 X, Xigr -1 4 1
Vik- Xi-m -1

Figure 3.2. The 5-point stencil

where = vec(V), b = h?vec(F) with F = (f;1) € R™*™ and A is the Poisson
matrix given by

al—i:4, iil,...,n,
Qit1,; = Giip1 = —1, i=1,....,n—1, i#m2m,...,(m—1)m, (3.7)
Ai+m,i = Qi itm = -1, i=1,...,n—m, '
a;; =0, otherwise.
For m = 3 we have the following matrix
[ 4 -1 0 -1 0 0 0 0 0]
-1 4 -1 0 -1 0 0 O 0
0 -1 4 0 0 —1 0 0 0
-1 0 0 4 -1 0 -1 0 0
A= 0 —1 0 —1 4 -1 0 -1 0
0 0 -1 0 -1 4 0 0 —1
0 0 0 —1 0 0 4 —1 0
0 0 0 0 -1 0 -1 4 -1
| 0 0 0 0 0 -1 0 -1 4

Exercise 3.2 (4 x 4 Poisson matrix)
Write down the Poisson matrix for m = 2 and show that it is strictly diagonally

dominant.

3.1.2 The test matrices

The second derivative matrix T = tridiag(—1, 2,

agonal matrix

T, := tridiag(a, d, a)

—1) is a special case of the tridi-
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© ® N o o s w N o
a
g

0 2 4 6 8 10 0 5 10 15 20 25 0 20 40 60 80 100
nz=33 nz=105 nz =460

Figure 3.3. Band structure of the 2D test matriz, n =9, n =25, n =100

where a,d € R. We call this the 1D test matrix. It is symmetric and strictly
diagonally dominant if |d| > 2|al.

The (2-dimensional) Poisson matrix is a special case of the matrix Ty =
[a;;] € R™*™ with elements

Qi3 = Qd, iZl,.../ﬂ,
Qi i41 = Qi415 = G, izl,...,n—l, i;ém,Qm,...,(m—l)m, (39)
Qi i4+m = Gitm,i = Q, 1= 1, oo, —m, '
a;; = 0, otherwise,

and where a,d are real numbers. We will refer to this matrix as simply the 2D
test matrix. For m = 3 the 2D test matrix looks as follows

2d a 0| a O O] O O O
a 2d a| 0 a 0| 0O O O
0 a 2d| 0 0 a| O 0 O
a 0 0|2d a O] a 0 O
T, = 0 a 0| a 2d a|l 0 a O (3.10)
0 0 a| 0 a 2d| 0 0 a
0 0 O]l a 0O 0{(2d a O
0 0 0] 0 a 0| a 2d a
| 0 0 0] 0 O a| 0O a 24|

The partition into 3 x 3 sub matrices shows that T’ is block tridiagonal.
Properties of T's can be derived from properties of T’y by using properties
of the Kronecker product.
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3.2 The Kronecker Product

Definition 3.3 (Kronecker product)

For any positive integers p,q,r,s we define the Kronecker product of two ma-
trices A € RP*? gnd B € R"™* as a matriz C € RP"™*9 gjven in block form
as

Abiy Abio - Abis

Abyy Abzs -+ Abgg
C= . . . .

Abr,l Abr72 e Abr,s

We denote the Kronecker product of A and B by C = A® B.

This definition of the Kronecker product is known more precisely as the left
Kronecker product. In the literature one often finds the right Kronecker

product which in our notation is given by B ® A.

The Kronecker product u ® v = [uTvl, R uTUT]T of two column vectors

u € RP and v € R" is a column vector of length p x r.
As examples of Kronecker products which are relevant for our discussion, if

d a 0 1 0 0
T:=|a d a and I=(0 1 0
0 a d 0 0 1
then
T, 0 0 dl aI O
T1®I+I®T1: 0 T1 O + CLI dI aI :TQ
0 0o T, 0 al dI

given by (3.10). The same equation holds for any integer m > 2
T @I+I®T) =T, Ti,IcR™™ T,eRMIXm) (3.11)

The sum of two Kronecker products involving the identity matrix is worthy
of a special name.

Definition 3.4 (Kronecker sum)

For positive integersr, s, k, let A € R™*", B € R**% and I}, be the identity matrix
of order k. The sum AR I;+ I,.® B is known as the Kronecker sum of A and
B.

In other words, the 2D test matrix T'5 is the Kronecker sum involving the
1D test matrix T'.
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The following simple arithmetic rules hold for Kronecker products. For
scalars A, u and matrices A, Ay, Ao, B, B1, B5,C of dimensions such that the
operations are defined, we have

(M) ® (uB) = A\u(A® B),
(A +A)®B=A,9B+ A, ® B,
A® (B1+ B;) =A®B1+ A® By,
(A B)C=A® (B®C).

(3.12)

Note however that in general we have A ® B # B ® A, but it can be shown that
there are permutation matrices P, Q such that B® A = P(A ® B)Q, see [14].

Exercise 3.5 (Properties of Kronecker products)
Prove (3.12).

The following mixed product rule is an essential tool for dealing with
Kronecker products and sums.

Lemma 3.6 (Mixed product rule)
Suppose A, B, C, D are rectangular matrices with dimensions so that the products
AC and BD are defined. Then the product (A ® B)(C ® D) is defined and

(A® B)(C ® D) = (AC) @ (BD). (3.13)

Proof. If B ¢ R and D € R*® for some integers 7, s, t, then

Abl,l s Abl,t Cdl,l cee Cdl,s
(A@B)(CoD)=| : E :
Abyy o Abpy Cdin -+ Cdis
Thus for all 4, j

¢

(A® B)(C® D)), ; = AC> bidy; = (AC)(BD);; = ((AC) @ (BD)), ;.
k=1

|

Using the mixed product rule we obtain the following properties of Kronecker
products and sums.

Theorem 3.7 (Properties of Kronecker products)

Suppose for r,s € N that A € R"™" and B € R%® are square matrices with eigen-
pairs (A, uw;) i =1,...,7 and (u;,v;), j =1,...,s. Moreover, let F,V € R"**.
Then
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. (A® B)T = AT @ BT, (this also holds for rectangular matrices).

. If A and B are nonsingular then A ® B is nonsingular. with (A® B)™! =

Al B,

. If A and B are symmetric then AQ B and AQ I + I ® B are symmetric.
(A@B)(UZ®UJ)ZAZ/AJ(ul(X)'U]), i:l,...,r, j=1,...,s,
- (ARI+I,®B)(u;®v;) = (Ai+py)(w;®@v;), i=1,...,r, j=1,...,s,

. If one of A, B is symmetric positive definite and the other is symmetric

positive semidefinite then A @ I + I ® B is symmetric positive definite.

. AVB" =F & (A® B)vec(V) = vec(F),
.AV+VBT=F & (A®I,+1,®B)vec(V)=vec(F).

Before giving the simple proofs of this theorem we present some comments.

. The transpose (or the inverse) of an ordinary matrix product equals the

transpose (or the inverse) of the matrices in reverse order. For Kronecker
products the order is kept.

. The eigenvalues of the Kronecker product (or sum) are the producet (or

sum) of the eigenvalues of the factors. The eigenvectors are the Kronecker
products of the eigenvectors of the factors. In particular, the eigenvalues
of the test matrix T'> are sums of eigenvalues of T;. We will find these
eigenvalues in the next section.

. Since we already know that T' = tridiag(—1,2, —1) is positive definite the

2D Poisson matrix A =T ® I + I ® T is also positive definite.

. The system AV BT = F in part 7 can be solved by first finding W from

AW = F, and then finding V from BVT = W7, This is preferable to
solving the much larger linear system (A ® B) vec(V') = vec(F).

. A fast way to solve the 2D Poisson problem in the form TV + VT = F will

be considered in the next chapter.

Proof.

1. Exercise.

2. By the mixed product rule (A® B)(A™'® B™') = (AA™") @ (BB ') =

I.®I,=1,,"Thus (A ® B) is nonsingular with the indicated inverse.
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3. By 1, (A® B)T = AT ® B = A ® B. Moreover, since then A ® I and

I ® B are symmetric, their sum is symmetric.

4. (A® B)(u; ® vj) = (Au;) ® (Bv;) = (M) ® (v;) = (Aigj) (w; ®@ vy),

for all 4, j, where we used the mixed product rule.

5. (A®Is)(ui®vj) = )\i(ui®vj), and (IT®B)(UZ‘®’U]‘) = uj(ui®vj).The

result now follows by summing these relations.

6. By 1, A® I +1 ® B is symmetric. Moreover, the eigenvalues \; 4 p; are
positive since for all 4, j, both A\; and u; are nonnegative and one of them is

positive. It follows that A ® I + I ® B is symmetric positive definite.

7. We partition V', F', and B by columns as V = [vy,...,vs], F = [f,,...

and BY = [by,...,b,]. Then we have

(A ® B)vec(V) = vec(F)
Abiy -+ Abis | |v1 f1

Absl T Abss Vs fs

<~ Al:Zblj’Uj,...,Zij’Uj] :[fl""’fs]
J

J

& A[Vby,...,Vb]=F & AVBT =F.

8. This follows immediately from (7) as follows

(AR I,+ I, ® B)vec(V) = vec(F)
& (AVIT+1,vB")=F & AV +VB'=F.

For more on Kronecker products see [14].

3.3 Properties of the 1D and 2D Test Matrices

7f8]

Using Theorem 3.7 we can derive properties of the 2D test matrix Ty from those
of T';. We need to determine the eigenpairs of T';. We show that the eigenvectors

are the columns of the sine matrix defined by

gkr 1™
m+1

S = {sin

jk=1

€ R™X™, (3.14)
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For m = 3,
sin 7 sin %Tﬂ sin 3I t 1 t 1
S = [s1, 82,83] = [sin 24” sm% Sm%7T =1 0 -=1|, t:== 7
sin 34” sin %ﬂ sin ‘%‘ t —1 t 2

Lemma 3.8 (Eigenpairs of 1D test matrix)
Suppose T = (tyj)r,; = tridiag(a,d,a) € R™*™ with m > 2, a,d € R, and let
h=1/(m+1).

1. We have T'1s; = \js; for j =1,...,m, where

s; = [sin(jmh),sin(2jmh), ..., sin(mjrh)|T, (3.15)
Aj = d+ 2acos(jmh). (3.16)
2. The eigenvalues are distinct and the eigenvectors are orthogonal
1 1
sl sk = mtl ik ==0ik Jk=1,...,m. (3.17)

2 2h

Proof. We find for 1 <k <m

(T18))k = Ztm sin(ljmh) = a[sin ((k — 1)j7h) + sin ((k + 1)j7h)] + dsin(kjrh)
=1
= 2acos(jmh)sin(kjmh) 4+ dsin(kjmh) = \;sg ;.

This also holds for k£ = 1, m, and part 1 follows. Since jwh = jr/(m +1) € (0,7)
for j =1,...,m and the cosine function is strictly monotone decreasing on (0, )
the eigenvalues are distinct, and since T'; is symmetric it follows from Lemma 3.9
below that the eigenvectors s; are orthogonal. To finish the proof of (3.17) we
compute the square of the Euclidian norm of each s; as follows:

s s; = Zsm (kjmh) = Zsm (kjmh) = %Z 1 — cos( 2kj7rh))
k=0

I 1
:m;_—2k Ocos(%jwh) m;— ,

since the last cosine sum is zero. We show this by summing a geometric series of
complex exponentials. With ¢ = /—1 we find

eQi(m+1)j7rh -1

. . . . _ 2ikjrh _ —
kzzocos(zk‘”h) +zk§j:0sm<2kwh> =D T = —m e =0

and (3.17) follows. O
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Lemma 3.9 (Eigenpairs of a Hermitian matrix)
The eigenvalues of a Hermitian matriz are real. Moreover, eigenvectors corre-
sponding to distinct eigenvalues are orthogonal.

Proof. The first part was shown in Lemma 2.40. Suppose that (A, ) and (i, y)
are two eigenpairs for A with p # A. Multiplying Ax = Ax by y* gives

using that p is real. Since A # p it follows that y*x = 0, which means that  and
y are orthogonal. 0O

It is now easy to find the eigenpairs of the 2D test matrix and determine
when it is positive definite.

Theorem 3.10 (Eigenpairs of 2D test matrix)
For fized m > 2 let Ty be the matriz given by (3.9) and let h =1/(m + 1).

1. We have Tz = Aj ik for j,k=1,...,m, where
Tjr = 8j D Sk, (3.18)
s; = [sin(jmh),sin(2jmh), ..., sin(mjmh)]|7, (3.19)
Nk = 2d + 2acos(jmh) + 2a cos(kmh). (3.20)

2. The eigenvectors are orthogonal

1 .
:cfkscp,q = mdj,pékm Jkpg=1,...,m. (3.21)

3. Ty is symmetric positive definite if d > 0 and d > 2]al.

Proof. By Theorem 3.7 the eigenvalues of Ty = T7 @ I + I ® T'; are sums of
eigenvalues of T'; and the eigenvectors are Kronecker producets of the eigenvectors
of T'1. Part 1 now follows from Lemma 3.8. Using the transpose rule, the mixed
product rule and (3.17) we find for j, k,p,q=1,...,m

_ b
T4k

and part 2 follows. Since T's is symmetric, part 3 will follow if the eigenvalues are
positive. But this is true if d > 0 and d > 2|a|. Thus Ty is positive definite. 0O

(s; ® sk)T(sp ® 8¢) = (sf ®s;)(sp®sy) = (sfsp) ® (s{sq) 85Ok q

Exercise 3.11 (2. derivative matrix is positive definite)
Write down the eigenvalues of T = tridiag(—1,2, —1) using Lemma 3.8 and con-
clude that T is symmetric positive definite.
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Exercise 3.12 (1D test matrix is positive definite?)
Use Lemma 3.8 to show that the matriz T := tridiag(a, d,a) € R™*™ is symmetric
positive definite if d > 0 and d > 2|al.

Exercise 3.13 (Eigenvalues for 2D test matrix of order 4)
For m = 2 the matriz (3.9) is given by

2d a a O

a 2d 0 a
A= a 0 2d a
0 a a 2

Show that A = 2a + 2d is an eigenvalue corresponding to the eigenvector x =
(1,1,1,1)T. Verify that apart from a scaling of the eigenvector this agrees with
(3.20) and (3.19) for j =k =1 and m = 2.

Exercise 3.14 (Nine point scheme for Poisson problem)
Consider the following 9 point difference approximation to the Poisson problem
—Au= f, u=0 on the boundary of the unit square (cf. (3.1))

(@) —(@rv)je = (L)) hk=1,...,m

(b) 0 = Vo,k = Um+1,k = V5,0 = Uj,m+1, j7k:0,1,...,m+1,

(© —@nv)jr = [20056 —4vj1k — dvjk—1 — 4Vj41k — 405041 (3.22)
—Vj—1,k—1 — Vj4+1,k—1 — Vj—1,k+1 — Uj+1,k+1]/(6h2)v

(d) whik = Bfjk+ fimth + fie—1+ fitte + fie]/12.

a) Write down the 4-by-4 system we obtain for m = 2.

b) Find v; for j,k =1,2, if f(z,y) = 2n?sin (7x)sin (7y) and m = 2. Answer:
Uj_’k = 57T2/66

It can be shown that (3.22) defines an O(h*) approzimation to (3.1).

Exercise 3.15 (Matrix equation for nine point scheme)
Consider the nine point difference approximation to (3.1) given by (3.22) in Prob-
lem 3.14.

a) Show that (3.22) is equivalent to the matriz equation
1
TV + VT — 6TVT = h2uF. (3.23)

Here pF has elements (puf);, given by (3.22d).
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b) Show that the standard form of the matriz equation (3.23) is Ax = b, where
A=TRI+I®T - }(T®T, x=vec(V), and b = h*vec(uF).

Exercise 3.16 (Biharmonic equation)
Consider the biharmonic equation

AQu(S,t) Au(s,t)) = f(s,t) (s,t) € Q,
u(s,t) =0, A(u(s t) )O (o) € 00, (3.24)

Here Q) is the open unit square. The condition Au = 0 is called the Navier bound-
ary condition. Moreover, A%u = Uygpe + 2Ugzyy + Uyyyy -

a) Let v =—Au. Show that (3.24) can be written as a system

—Av(s,t) = f(s,t) (s,t) € Q
—Au(s,t) = w(s,t) (s,t) € Q (3.25)
u(s,t) = wv(s,t)=0 (s,t) €.

b) Discretizing, using (3.3), with T = tridiag(—1,2,—1) e R™*™ h =1/(m+1),
and F = (f(jh, kh));nkzl we get two matriz equations

TV + VT =h*F, TU+UT =h*V.
Show that
(TRI+TI®T)vee(V) = h*vee(F), (T ®I+1I®T)vec(U) = h?vec(V).

and hence A = (T @ I + 1 ® T)? is the matriz for the standard form of the
discrete biharmonic equation.

c) Show that with n = m? the vector form and standard form of the systems in
b) can be written

T?U + 2TUT +UT? = h*F and Az =b, (3.26)
where A = T?*@QI+2TRT+IRT? € R™", & = vec(U), and b = h* vec(F).

d) Determine the eigenvalues and eigenvectors of the matriz A in ¢) and show
that it is symmetric positive definite. Also determine the bandwidth of A.

e) Suppose we want to solve the standard form equation Ax = b. We have two
representations for the matriz A, the product one in b) and the one in c).
Which one would you prefer for the basis of an algorithm? Why?
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3.4 Review Questions
3.4.1 Consider the Poisson matrix.

e Write this matrix as a Kronecker sum,

e how are its eigenvalues and eigenvectors related to the second derivative
matrix?

e is it symmetric? positive definite?
3.4.2 What are the eigenpairs of T’y := tridiagonal(a, d, a)?
3.4.3 What are the inverse and transpose of a Kronecker product?

3.4.4 e give an economical general way to solve the linear system (A®B) vec(V') =
vec(F)?

e Same for (A® I, + I, ® B)vec(V) = vec(F).



Chapter 4

Fast Direct Solution of a
Large Linear System

4.1 Algorithms for a Banded Positive Definite
System

In this chapter we present a fast method for solving Ax = b, where A is the
Poisson matrix (3.7). Thus, for n =9

4 -1 0]-1 0 0] 0 0 O

-1 4 —-1] 0 -1 0| 0O 0 O

0 -1 4/ 0 0 -1/ 0 0 0

-1 0 0] 4 -1 0]-1 0 0

A= 0 -1 0|-1 4 -1/ 0 -1 0

0 0 —-1| 0 -1 4| 0 0 -1

0 0 O0|-1 0 o0 4 -1 0

0O 0 0| 0 -1 O0|-1 4 -1

| 0 0 0] 0 0 -1| 0 -1 4 |
[ T+ 2I —I 0
= I T+2I —I |,

I 0 -I T+2I

where T' = tridiag(—1, 2, —1). For the matrix A we know by now that
1. It is symmetric positive definite.
2. It is banded.

3. It is block-tridiagonal.

103
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Figure 4.1. Fill-inn in the Cholesky factor of the Poisson matriz (n = 100).

4. We know the eigenvalues and eigenvectors of A.

5. The eigenvectors are orthogonal.

4.1.1 Cholesky factorization

Since A is symmetric positive definite we can use the Cholesky factorization A =
LL”, with L lower triangular, to solve Az = b. Since A is banded with bandwidth
d = y/n the matrix L has bandwidth d = y/n (cf. Lemma 2.46) and the complexity
of this factorization is O(nd?) = O(n?). We need to store A, and this can be done
in sparse form.

The nonzero elements in L are shown in Figure 4.1 for n = 100. Note that
most of the zeros between the diagonals in A have become nonzero in L. This is
known as fill-inn.

4.1.2 Block LU factorization of a block tridiagonal matrix

The Poisson matrix has a block tridiagonal structure. Consider finding the block
LU factorization of a block tridiagonal matrix. We are looking for a factorization
of the form

D, C,

A, D, C» I E U, C,

Il
—

o

-
S~—"

AnL—Q Drn—l C7YL71
Am-1 Dn
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Here D,,...,D,, and Uq,...,U,, are square matrices while Ay,..., A,,_1,L1,
w.Lp,—1 and C4q, ..., C,_1 can be rectangular.
Using block multiplication the formulas (1.4) generalize to

U1=D1, LkZAkUgl, Uk-l—l:Dk—i-l_Lka; k‘:l,Q,...,m—l. (42)

To solve the system Ax = b we partition b conformaly with A in the form
b" = [b],...,b.]. The formulas for solving Ly = b and Uz = y are as follows:
y; = by, Y, =br — Lp_1Y;_1, k=23,...,m, (4.3)
Ty =U, Yy, x=Uy'(y, — Crxri1), k=m—1,...,2,1. ’
The solution is then 7 = [],... &1 ]. To find L in (4.2) we solve the linear
systems LU, = Aj. Similarly we need to solve a linear system to find xj in

(4.3).

The number of arithmetic operations using block factorizations is O(n?),
asymptotically the same as for Cholesky factorization. However we only need to
store the m x m blocks and using matrix operations can be an advantage.

4.1.3 Other methods

Other methods include
e Tterative methods, (we study this in Chapters 8 and 9),
e multigrid. See [§],

e fast solvers based on diagonalization and the fast Fourier transform. See
Sections 4.2, 4.3.

4.2 A Fast Poisson Solver based on Diagonalization

The algorithm we now derive will only require O(n?/?) arithmetic operations and
we only need to work with matrices of order m. Using the fast Fourier transform
the number of arithmetic operations can be reduced further to O(nlogn).

To start we recall that Ax = b can be written as a matrix equation in the
form (cf. (3.5))

TV +VT =h’F with h=1/(m+1),
where T' = tridiag(—1,2,—1) € R™*™ is the second derivative matrix, V =

(vjr) € R™*™ are the unknowns, and F = (f;r) = (f(jh, kh)) € R™*™ contains
function values.
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Recall that the eigenpairs of T' are given by
TSj:)\ij, j:l,...,m,
s; = [sin (jwh),sin (2j7h), ..., sin (mjmh)]”",
\j =2 —2cos(jmh) = 4sin® (jmh/2), h=1/(m+1),
sT s, = 0ji/(2h) for all j, k.
Let
S:=[s1,....8m] = [sin(jkwh)] [, €R™™, D =diag(A,..., Am). (4.4)
Then

1
TS = [Tsl,...,Tsm] = [)‘1317~-~7)\m3m] = SD7 52 = STSZ ﬁ[

Define X € R™*™ by V = §X S, where V is the solution of TV + VT = h’F.
Then

TV + VT = h*F
VEXS 18X S + SXST = h*F
28 6TSXS? + S2XSTS = h2SFS = 1°G
TE8P o2 px 8% + §2°X S°D = h*G
SN px 4 XD = 4h'G.

Since D is diagonal, the equaltion DX + X D = 4h*Q, is easy to solve. For the
7, k element we find

m

m
(DX + XD)jx =Y djswes+ Y wjeder = Ajajp + M i
=1 =1

so that for all j, k
2y, = 40t gin /(N + M) = hlgn /(05 + 0n), 0= N /4 = sin® (jwh/2).
Thus to find V' we compute
1. G=SFS,
2. xj=hlgjr/(oj+0K), Jk=1,....m,
3. V=58X8.
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We can compute mX,S and the ¢’s without using loops. Using outer products,
element by element division, and raising a matrix element by element to a power
we find

o1

X = h'G/M, where M := [ : ] [1,..,1] +

Om

1

(01 o om ],

i

%])Az.

We now get the following algorithm to solve numerically the Poisson problem
—Au= fonQ=(0,1)2 and u = 0 on 9 using the 5-point scheme, i.e., let m €
N, h=1/(m+1), and F = (f(jh,kh)) € R™*™. We compute V € R(m+2)x(m+2)
using diagonalization of T = tridiag(—1,2, —1) € R™*™,

1
2 7h

S =sin (7h [ . ] [12..m]), o’:sin(?

m

Algorithm 4.1 (Fast Poisson solver)

function V=fastpoisson (F)

%function V=fastpoisson (F)

m=length (F); h=1/(m+1); hv=pixhx(1:m) ’;
sigma=sin (hv/2)."2;

S=sin (hvx(1:m));

G=S*Fx*S;

X=h"4%G./(sigma*ones (1 ,m)+ ones(m,1)*sigma’) ;
V=zeros (m+2,m+2);

V(2:m+1,2:m+1)=S*X«S;

© 0 N o oA W N e

The formulas are fully vectorized. Since the 6th line in Algorithm 4.1 only
requires O(m?) arithmetic operations the complexity of this algorithm is for large
m determined by the 4 m-by-m matrix multiplications and is given by O(4 x
2m?) = O(8n*/?). ® The method is very fast and will be used as a preconditioner
for a more complicated problem in Chapter 9. In 2012 it took about 0.2 seconds
on a laptop to find the 106 unknowns v, on a 1000 x 1000 grid.

4.3 A Fast Poisson Solver based on the discrete
sine and Fourier transforms

In Algorithm 4.1 we need to compute the product of the sine matrix S € R™*™
given by (4.4) and a matrix A € R™*™. Since the matrices are m-by-m this will
normally require O(m?) operations. In this section we show that it is possible to
calculate the products SA and AS in O(m?log, m) operations.

8]t is possible to compute V using only two matrix multiplications and hence reduce the
complexity to O(4n®/2). This is detailed in Problem 4.8.
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We need to discuss certain transforms known as the discrete sine trans-
form, the discrete Fourier transform and the fast Fourier transform. In
addition we have the discrete cosine transform which will not be discussed
here. These transforms are of independent interest. They have applications to
signal processing and image analysis, and are often used when one is dealing with
discrete samples of data on a computer.

4.3.1 The discrete sine transform (DST)

Given v = [v1, ..., 0,7 € R™ we say that the vector w = [wy, ..., w,]T given by

m .
wj = Zsin(nzkfl)vk, j=1....m
k=1

is the discrete sine transform (DST) of v. In matrix form we can write the
DST as the matrix times vector w = Sv, where S is the sine matrix given by
(4.4). We can then identify the matrix B = SA as the DST of A € R™", i.e. as
the DST of the columns of A. The product B = AS can also be interpreted as
a DST. Indeed, since S is symmetric we have B = (SA”)T which means that
B is the transpose of the DST of the rows of A. It follows that we can compute
the unknowns V' in Algorithm 4.1 by carrying out discrete sine transforms on 4
m-by-m matrices in addition to the computation of X.

4.3.2 The discrete Fourier transform (DFT)

Jean Baptiste Joseph Fourier, 1768 - 1830.

The fast computation of the DST is based on its relation to the discrete
Fourier transform (DFT) and the fact that the DFT can be computed by a tech-
nique known as the fast Fourier transform (FFT). To define the DFT let for N € N

wy = exp 2™/N = cos(2r/N) — isin(21/N), (4.5)

where i = /—1 is the imaginary unit. Given y = [y1,...,yn]?7 € RV we say that
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z=[z1,...,2n]T given by
N-1
ZZF‘Ny7 Zj+1:Zw%§yk+1, jZO,...,N—l
k=0

is the discrete Fourier transform (DFT) of y. We can write this as a matrix
times vector product z = Fyy, where the Fourier matrix Fy € CNXN has
elements w%ﬂ j,k=0,1,...,N — 1. For a matrix we say that B = F y A is the
DFT of A.

As an example, since

Wy = exp_Qﬂ'i/4 = COS(’]T/2) — ZSin(ﬂ‘/Q) - _Z
we find wi = (—i)® = -1, wi = (=i)(-1) = i, wi = (-1)* = 1, wf = i* = -1,
wj =143 = —i, and so
1 1 1 1 1 1 1 1
1wy owi Wi | |1 - -1 é
Fa=1, w owh oW 11 -1 (4.6)

The following lemma shows how the discrete sine transform of order m can be
computed from the discrete Fourier transform of order 2m + 2. We recall that for
any complex number w

eiw _ e—iw

sinw = -
21

Lemma 4.2 (Sine transform as Fourier transform)
Given a positive integer m and a vector x € R™. Component k of Sx is equal to
1/2 times component k + 1 of Foy10z where

2T =10,27,0, —2xL] e R 2 2L = [z,,... 20, 21].
In symbols

(Sz), = (F2m+2z)k+1, k=1,....,m.

N | .

Proof. Let w = wopmqg = e 27/ (2m+2) — g=mi/(m+1) We note that

Wik — 677rijk/(m+1)’ w(2m+27j)k — 6727ri67rijk/(m+1) — e'n'ijk/(erl)'
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Component k + 1 of Fa,, 22 is then given by

2m—1 m m

13 ik 2 2—7)k

(Famiaz)itr = )y whzipn =) wuw’t =) w2y
§=0 i=1 =1

Xm:xj (efwijk/(m+1) _ eﬂ'ijk/(erl))

j=1
- —Qiiz-sin IRT N 9i(8,a)
= =~ J m+1 = me k-

Dividing both sides by —2i and noting —1/(2i) = —i/(2i?) = i/2, proves the
lemma. 0O

It follows that we can compute the DST of length m by extracting m com-
ponents from the DFT of length N = 2m + 2.

4.3.3 The fast Fourier transform (FFT)

From a linear algebra viewpoint the fast Fourier transform is a quick way to
compute the matrix- vector product Fyy. Suppose N is even. The key to the
FFT is a connection between F'y and F'/; which makes it possible to compute
the FFT of order N as two FFT’s of order N/2. By repeating this process we
can reduce the number of arithmetic operations to compute a DFT from O(N?)
to O(N logy N).

Suppose N is even. The connection between F'n and F'y/; involves a per-
mutation matrix Py € RV*N given by

PN = [61,63,...,6]\/'_1,62,64,...,eN}7
where the e, = (d, ;) are unit vectors. If A is a matrix with N columns [a1, ..., an]
then
APN = [al,ag, ., AN_1,Q2,Qy4,... ,(J,N]7

i.e. post multiplying A by Py permutes the columns of A so that all the odd-
indexed columns are followed by all the even-indexed columns. For example we
have from (4.6)

1000 11 1 1
001 0 1 -1 =i i

Pi=leresesed=| o | o o| FebPa= |71 |
00 0 1 1 —1| i —i
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where we have indicated a certain block structure of F4P4. These blocks can be
related to the 2-by-2 matrix F'5. We define the diagonal scaling matrix Do by

. 1 0
D, = diag(1l,ws) = { 0 —i } .

Since wy = exp~2™/2 = —1 we find

1 1 1 1
F2:|:1 _1]7 D2F2:[—i i}’

| Fa| DyF,
Fuﬁ—[1%+Dﬂ%].

This result holds in general.

and we see that

Theorem 4.3 (Fast Fourier transform)
If N =2m is even then

F, | D,F,
where
D,, = diag(1,wn,wk, ..., wh ). (4.8)

Proof. Fix integers p,q with 1 < p,q < m and set j :=p—1and k :=q— 1.
Since

W™ =1 2k k

_ mo _ ik . J ik
m ’ Wom = Wiy Wom = 17 (Fm)p,q = Wn> (DmFm)P,q = Wy Wi

we find by considering elements in the four sub-blocks in turn

(FomPam)p.q = W%izk) = wﬁf7

(F2mPam)ptm,g = wgm)(%) = w%+m)k = Wiy,
(F2mP2m)p.g+m = W%gk+1) = w% W%
(FQmPQM)p+m7q+m = Wéjnjm)(zlﬂrl) = %:_nmwg+m)k = _w%mw%'

It follows that the four m-by-m blocks of F'g,, Ps,, have the required structure.
0

Using Theorem 4.3 we can carry out the DFT as a block multiplication. Let
y € R?™ and set w = P}y = [w?, w}]T, where

w1T = [W1,¥35 - Yoam—1), ’sz = [y2, Y4, -, Y2m]-
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Then
Fomy = Fo, Py PJy = Fap Popyw
o Fm ‘ DmFm w1 _ ql + Q2
Fm ‘ _D’mFm wao qi — 4y ’
where

g, = Fhwy, and gy =D, (F,ws).

In order to compute F,,y we need to compute F,,w; and F,,wy. Thus, by
combining two FFT’s of order m we obtain an FFT of order 2m. If n = 2¥ then
this process can be applied recursively as in the following Matlab function:

Algorithm 4.4 (Recursive FFT)

function z=fftrec (y)
%function z=fftrec (y)
y=y (1) ;
n=length (y);
if n==1
Z=Yy;
else
ql=fftrec (y(1:2:n-1))
q2=exp(—2xpixi/n)." (0:n/2—1) .% fftrec (y(2:2:n))
z=[ql+q2; ql—q2];
end

© 0 N A W N =

==
= o

Statement 3 is included so that the input y € R™ can be either a row or
column vector, while the output z is a column vector.

Such a recursive version of FFT is useful for testing purposes, but is much
too slow for large problems. A challenge for FFT code writers is to develop
nonrecursive versions and also to handle efficiently the case where N is not a
power of two. We refer to [32] for further details.

The complexity of the FFT is given by yN logy N for some constant v in-
dependent of N. To show this for the special case when N is a power of two
let x;, be the complexity (the number of arithmetic operations) when N = 2%.
Since we need two FFT’s of order N/2 = 2F~! and a multiplication with the
diagonal matrix Do, it is reasonable to assume that z; = 2x,_1 + ~v2F for
some constant v independent of k. Since xyg = 0 we obtain by induction on k
that zp = vk2*. Indeed, this holds for & = 0 and if 51 = y(k — 1)2¢~! then
ry, = 2w 1 +72F = 2y(k —1)28~! +42F = yk2%. Reasonable implementations of
FFT typically have v ~ 5, see [32].

The efficiency improvement using the FFT to compute the DFT is spec-
tacular for large N. The direct multiplication F yy requires O(8n?) arithmetic
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operations since complex arithmetic is involved. Assuming that the FFT uses
5N log, N arithmetic operations we find for N = 229 ~ 10° the ratio

SN2

——— = 84000.
5N logy N

Thus if the FFT takes one second of computing time and the computing time is
proportional to the number of arithmetic operations then the direct multiplication
would take something like 84000 seconds or 23 hours.

4.3.4 A poisson solver based on the FFT

We now have all the ingredients to compute the matrix products SA and AS
using FFT’s of order 2m + 2 where m is the order of S and A. This can then be
used for quick computation of the exact solution V of the discrete Poisson problem
in Algorithm 4.1. We first compute H = SF using Lemma 4.2 and m FFT’s,
one for each of the m columns of F. We then compute G = HS by m FFT’s,
one for each of the rows of H. After X is determined we compute Z = SX and
V = ZS by another 2m FFT’s. In total the work amounts to 4m FFT’s of order
2m+ 2. Since one FFT requires O(y(2m + 2) logy(2m + 2)) arithmetic operations
the 4m FFT’s amount to

8ym(m + 1) logy(2m + 2) ~ 8ym? logy m = 4ynlog, n,

where n = m? is the size of the linear system Ax = b we would be solving
if Cholesky factorization was used. This should be compared to the O(8n3/2)
arithmetic operations used in Algorithm 4.1 requiring 4 straightforward matrix
multiplications with §. What is faster will depend heavily on the programming
of the FFT and the size of the problem. We refer to [32] for other efficient ways
to implement the DST.

Exercise 4.5 (Fourier matrix)
Show that the Fourier matriz F4 is symmetric, but not Hermitian.

Exercise 4.6 (Sine transform as Fourier transform)
Verify Lemma 4.2 directly when m = 1.

Exercise 4.7 (Explicit solution of the discrete Poisson equation)
Show that the exact solution of the discrete Poisson equation (3.4) can be written
V = (”i,j)?,qj:p where

i . i . k . 1

) sin () sin (555 ) sin (555)

. pT 2 : T 2 nr
p=1r=1k=11[=1 |:S1I1 (m)} + |:SlIl (m)}
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Exercise 4.8 (Improved version of Algorithm 4.1)
Algorithm 4.1 involves multiplying a matriz by S four times. In this problem we
show that it is enough to multiply by S two times. We achieve this by diagonalizing
only the second T in TV + VT = h*F. Let D = diag(\1,...,\n), where \j =
4sin? (jwh/2), j=1,...,m.

(a) Show that

TX + XD =C, where X =V S, and C = h*FS8S.

(b) Show that
(T-I—)\jI)iBj:Cj j:1,...7m, (49)

where X = [x1,...,&m] and C = [e1, ..., ¢p). Thus we can find X by solving m
linear systems, one for each of the columns of X. Recall that a tridiagonal m x m
system can be solved by (1.4) and (1.5) in 8m — 7 arithmetic operations. Give an
algorithm to find X which only requires O(dm?) arithmetic operations for some
constant § independent of m.

(¢) Describe a method to compute V' which only requires O(4m?) = O(4n?/?)
arithmetic operations.

(d) Describe a method based on the fast Fourier transform which requires
O(2ynlogyn) where 7 is the same constant as mentioned at the end of the last
section.

Exercise 4.9 (Fast solution of 9 point scheme)
Consider the equation

1
TV +VT — 6TVT = h?uF,

that was derived in Exercise 3.15 for the 9-point scheme. Define the matriz X by
V =8XS = (x;1) where V is the solution of (3.23). Show that

1
DX + XD — 6DXD = 4h*G, where G = SuF'S,
and that
h*g;k

Tjk = pR— p— where o = sin? ((jﬂ'h)/Q) for i, k=1,2,... . m.
J k= 390k

Show that o; + of, — %O’jO’k > 0 for j,k = 1,2,...,m. Conclude that the

matriz A in Exercise 3.15 b) is symmetric positive definite and that (3.22) always
has a solution V.
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Exercise 4.10 (Algorithm for fast solution of 9 point scheme)

Derive an algorithm for solving (3.22) which for large m requires essentially the
same number of operations as in Algorithm 4.1. (We assume that uF' already has
been formed).

Exercise 4.11 (Fast solution of biharmonic equation)
For the biharmonic problem we derived in Exercise 3.16 the equation

T?U +2TUT + UT? = h*F.

Define the matric X = (x;1) by U = SXS where U is the solution of (3.26).
Show that

D*X +2DXD + XD? = 4h°G, where G = SF'S,
and that

hbg;
Tjk = ﬁ, where 0 = sin? ((jwh)/2) for j,k=1,2,...,m.

Exercise 4.12 (Algorithm for fast solution of biharmonic equation)
Use Ezxercise 4.11 to derive an algorithm

function U=simplefastbiharmonic (F)

which requires only O(6n3/?) operations to find U in Problem 3.16. Here § is
some constant independent of n.

Exercise 4.13 (Check algorithm for fast solution of biharmonic equation)
In Ezercise 4.12 compute the solution U corresponding to F = ones (m,m). For
some small m’s check that you get the same solution obtained by solving the stan-
dard form Az = b in (3.26). You can use x = A\b for solving Ax = b. Use

F (:) to vectorize a matriz and reshape (x,m, m) to turn a vector x € Rm2 nto
an m X m matriz. Use the Matlab command surf (U) for plotting U for, say,
m = 50. Compare the result with Ezercise 4.12 by plotting the difference between
both matrices.

Exercise 4.14 (Fast solution of biharmonic equation using 9 point rule)
Repeat Exercises 3.16, 4.12 and /.13 using the nine point rule (3.22) to solve the
system (3.25).
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4.4 Review Questions
4.4.1 Consider the Poisson matrix.

e What is the bandwidth of its Cholesky factor?

e approximately how many arithmetic operations does it take to find the
Cholesky factor?

e same question for block LU,
e same question for the fast Poisson solver with and without FFT.

4.4.2 What is the discrete sine transform and discrete Fourier transform of a
vector?
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Chapter 5

Matrix Reduction by
Similarity Transformations

A basic problem in numerical linear algebra is to compute eigenvalues and eigen-
vectors of a matrix A. Before attempting to find eigenvalues and eigenvectors of
A (exceptions are made for certain sparse matrices), it should be reduced by sim-
ilarity transformations to a simpler form. The contents of this chapter is mainly
theoretical, but the results are useful in numerical analysis.

5.1 Some Properties of Eigenpairs

We recall (cf. Section 0.7) that (A, x) is an eigenpair for A if Ax = Az and « is
nonzero. The scalar ) is called an eigenvalue and « is said to be an eigenvector.
The set of eigenvalues is called the spectrum of A and is denoted by o(A).
For example, o(I) = {1,...,1} = {1}. The eigenvalues are the roots of the
characteristic polynomial given by ma()) := det(A — \I) for A € C.

5.1.1 Transformations of eigenpairs and trace

The following results will be useful.

Theorem 5.1 (Transformations of eigenpairs)
Suppose (A, x) is an eigenpair for A € C**™. Then

1. If A is nonsingular then (\~', ) is an eigenpair for A",

2. (\*.x) is an eigenpair for A for k e N.

3. If p is a polynomial given by p(t) = ag+ ait+agt® +- - +axt® then (p(\), x)
is an eigenpair for the matriz p(A) := agl + aj A + a3 A® + - - - + a, A",

4. X is an eigenvalue for AT, in fact TAT =TA.

119
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5. X is an eigenvalue for A*, in fact wa«(\) = wa()\) for all A € C.
6. If A=[B G| is block triangular then ma = 7 - Tp.

Proof.
1. Az =z — A 'z =)\"la.

2. We use induction on k. The case k = 1 is trivial, and if A* 1z = \i—1g
then Az = AA* ' = \F"1Ax = Nea.

3. p(A)z =Y a;Ale Y8 oV =ph)a.
4. Using Property 3. of determinants we find for any A € C
Tar(\) = det(A" — A1) = det (A — AI)T) = det(A — M) = ma(N).

Thus AT and A have the same characteristic polynomial and hence the
same eigenvalues.

5. We have 74-(X) = 75(X) = det(A — AXI) = det(A — AI) = w4(A). Thus

Ta(A) =0 ma-(N) =0 and the result follows.
6. By Property 6. of determinants

|B-x C

Ta) =" 0 p =g = det(B =MD det(D = AI) = mp(\) - 7p(\).

There are two important relations between the elements of a matrix A €
C™ ™ and its eigenvalues A1, ..., A,.

Theorem 5.2 (Sums and products of eigenvalues; trace)
For any A € C*™

trace(A) = A1+ A2+ -+ A, det(A) = A2 Ay, (5.1)
where the trace of A € C"*"™ is the sum of its diagonal elements
trace(A) := a1 + aga + -+ + ann.- (5.2)

Proof. We compare two different expansion of m4. On the one hand from (29)
we find
Ta(A) = (=1)" A" + A" e,
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where ¢, 1 = (—1)""!trace(A) and ¢y = m4(0) = det(A). On the other hand
AN =AM =N A = A) = (=1)"N" +dpy A" -+ dy,

where d,,—1 = (=1)""'(A\1 + -+ \p) and dp = A1 -+ A, Since ¢; = d; for all j

we obtain (5.1). 0O

For a 2 x 2 matrix the characteristic equation takes the convenient form
A2 — trace( A)X + det(A) = 0. (5.3)
Thus, if A =[21] then trace(A) = 4, det(A) = 3 so that Ta(\) = A\? — 4\ + 3.

Exercise 5.3 (Eigenvalues of an idempotent matrix)
Let A € 0(A) where A2 = A € C™*". Show that A\ = 0 or A\ = 1. (A matriz is
called idempotent if A*> = A).

Exercise 5.4 (Eigenvalues of an nilpotent matrix)
Let A\ € o(A) where A* = 0 for some k € N. Show that X\ = 0. (A matriz
A € C™™ such that A¥ =0 for some k € N is called nilpotent ).

Exercise 5.5 (Eigenvalues of a unitary matrix)
Let A € 6(A), where A*A = I. Show that [N\ = 1.

Exercise 5.6 (Nonsigular approximation of a singular matrix)

Suppose A € C"*™ is singular. Then we can find eg > 0 such that A + €I is
nonsingular for all € € C with |e| < eg. Hint: det(A) = A2 -+ Ay, where \; are
the eigenvalues of A.

Exercise 5.7 (Companion matrix)
For qo,...,qn_1 € C let p(A) = A" + ¢ 1 A" "L+ +qo be a polynomial of degree
n in A. We derive two matrices that have (—1)™p as its characteristic polynomial.

a) Show that p = (—1)"wa where

—Gn—-1 —Qqn—-2 - —q1 —qo
1 0 ‘e 0 0
A— 0 1 e 0 0
0 0 ‘e 1 0

A is called the companion matrix of f.
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b) Show that p = (—1)"nwp where

0 0 0 —qo
1 0 0 —q1

B=|01 0 —q
00 - 1 —Q4n-1

Thus B can also be regarded as a companion matriz for p.

5.1.2 Similarity transformations

Row operations are used in Gaussian elimination to reduce a matrix to triangular
form, but row operations change the eigenvalues of a matrix. We need a transfor-
mation which can be used to simplify a matrix without changing the eigenvalues.

Definition 5.8 (Similar matrices)

Two matrices A, B € C"*™ are said to be similar if there is a nonsingular matrixz
S e C" ™ such that B = S™'AS. The transformation A — B is called a
similarity transformation. It is called a unitary similarity transformation
if:;S'*S = I and an orthonormal similarity transformation if S € R"*™ and
S*S=1I

Theorem 5.9 (Eigenpairs of similar matrices)

Let B=S"'AS, where S € C"*" is nonsingular with columns s1,...,s,. Then
B and A have the same characteristic polynomial. Moreover, (A, v) is an eigenpair
for B if and only if (A, Sv) is an eigenpair for A.

Proof. By properties of determinants
re(\) = det(ST'AS — \I) = det (S™'(A — \)S)
= det(S™1) det(A — AI)det(S) = det(S™'8) det(A — M) = ma()).
But then A and B have the same characteristic polynomial. Moreover, (S “1AS o=
v if and only if A(Sv) = A(Sv). O
As a corollary we have the following useful result.

Corollary 5.10 (Spectra of AB and BA)
For any A € C™*" and B € C™"™™ the matrices AB and BA have the same
spectrum apart from some extra zero eigenvalues. More precisely,

)\nWAB(A):)\mﬂ'BA()\), A eC.

If m=n then TaAp = TBA.
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Proof. Define block matrices of order n + m by

AB 0 0 o0 I A
E:[B 0]’ F:{B BA]’ S:[o I]’

I -A
0 I
and F' are similar and have the same characteristic polynomial by Theorem 5.9. By

Property 6. of Theorem 5.1 we have 7g(\) = A\"mrap(\) = 7p(A) = X1pa(N).
If m = n we can cancel the X factors. 0O

The matrix S is nonsingular with §™* = . Moreover, ES = SF so E

5.2 Unitary Similarity Transformations

In this section we consider the reduction of a matrix to triangular, or almost
triangular form using unitary similarity transformations, and characterize matrices
with orthonormal eigenvectors.

We start by reviewing some basic facts about matrices with orthonormal
columns.

5.2.1 Unitary and orthonormal and matrices

labelsec:orthmat

Definition 5.11 (Unitary matrix)
A matriz U € C"™™ s said to be unitary if UU = I. A real unitary matriz is
called orthonormal.

Warning: An orthonormal matrix is often called an “orthogonal matrix”
in the literature.

In the following we consider only the complex case. The real case follows
by replacing conjugate transpose ”*” by transpose "T” and C by R. We use the
standard inner product in C" given by (z,y) := y*x. In the real case we have
(x,y) = Ty = yTx. Orthogonality and orthonormality is with respect to the
standard inner product.

Since U*U = I the matrix U is nonsingular, U™' = U* and UU* = I
as well. Moreover, both the columns and rows of a unitary matrix of order n
form orthonormal bases for C". We also note that the product of two unitary
matrices is unitary. Indeed if UTU; = I and U5U4 = I then (U U2)*(U1U3) =
UsUiU,U, = 1.

Theorem 5.12 (Unitary matrix)
The matriz U € C" " is unitary if and only if (Ux,Uy) = (x,y) for all x,y €
C™. In particular, if U is unitary then |[Ux|2 = |x||2 for all x € C™.
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Proof. U U*U =T and x,y € C" then
(Uz,Uy) = (Uy)"(Uz) =y'U'Uzx =y'z = (z,y).

Conversely, if (Uz,Uy) = (x,y) for all ,y € C" then U'U = I since for
Lwj=1,...,n

(U*U)i)j = eZTU*Uej = (Uei)*(Uej) = <U6j, U6i> = <6j,6i> = 6:6]‘ = 5i7j-
The last part of the theorem follows immediately by taking y =ax: 0O

Issai Schur, 1875-1941 (left),John William Strutt (Lord Rayleigh), 1842-1919 (right).

5.2.2 The Schur decomposition

Although not every matrix can be diagonalized it can be brought into triangular
form by a unitary similarity transformation.

Theorem 5.13 (Schur decomposition)
For each A € C™ " there exists a unitary matriz U € C"*™ such that R :=
U™ AU is upper triangular.

The matrices U and R in the Schur decomposition are called Schur factors.

Proof. We use induction on n. For n = 1 the matrix U is the 1 x 1 identity
matrix. Assume that the theorem is true for matrices of order k and suppose
A € C"*" where n:=k + 1. Let (A1,v1) be an eigenpair for A with ||v1]2 = 1.
By Theorem 0.30 we can extend v; to an orthonormal basis {vy,vs,...,v,} for
C™. The matrix V := [vy,...,v,] € C"*™ is unitary, and for the first column of
the product V*AV we find

V*AV61 = V*A’Ul = /\1V*'v1 = )\161.
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It follows that

)\1 x*

VAV:{0 Vi

} , for some M € C*** and x € C*. (5.4)

By the induction hypothesis there is a unitary matrix W, € CF** such that
WiMW/ is upper triangular. Define

1| o*
0| W,

Then W and U are unitary and

W—{ }andU_VW.

U*AU:W*(V"‘AV)W:[1 o HM;’\;/[H(I) o }

0| W; 0 | W,
. )\1 ‘ :I)*Wl
Tl 0| WiMw,

is upper triangular. 0O

If A has complex eigenvalues then U will be complex even if A is real. The
following is a real version of Theorem 5.13.

Theorem 5.14 (Schur form, real eigenvalues)
For each A € R™ "™ with real eigenvalues there exists a matrizc U € R™ ™ with
UTU = I, such that UT AU is upper triangular-.

Proof. Consider the proof of Theorem 5.13. Since A and \; are real the eigen-
vector vy is real and the matrix W is real and WT W = I. By the induction hy-
pothesis V is real and V'V = I. But then also U = VW is real and UTU = I.
O

By using the unitary transformation V' on the n x n matrix A, we obtain a
matrix M of order n — 1. M has the same eigenvalues as A except A\. Thus we
can find another eigenvalue of A by working with a smaller matrix M. This is an
example of a deflation technique which is very useful in numerical work.

Example 5.15 (Deflation example)

The matriz T = [—01 31 —21} has an eigenpair (2,x1), where ®; = [—1,0,1]T.
We can extend x1 to a basis {xi, o, 3} for R3 by defining x5 = [0,1,0]7,
x3 = [1,0,1)T. This is already an orthogonal basis and normalizing we obtain

the orthonormal matrix
1
v
1

(V)

V =

o = O
s osk

0
V2
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We obtain (5.4) with A =2 and

_\/Q )

We can now find the remaining eigenvalues of A from the 2 x 2 matriz M .

2 —ﬁ]

Exercise 5.16 (Schur decomposition example)
Show that a Schur decomposition of A = [ 2] is UT AU = [ ], where U =
Lri1

7Ll

How far can we reduce a real matrix A with some complex eigenvalues by
a real unitary similarity transformation? To study this we note that the complex
eigenvalues of a real matrix occur in conjugate pairs, A = u + v, A\ = u — iv,
where pu, v are real. The real 2 x 2 matrix

M:[ fy H (5.5)

has eigenvalues A = p +iv and X\ = p — iv.

Definition 5.17 (Quasi-triangular matrix)

We say that a matriz is quasi-triangular if it is block triangular with only 1 x 1
and 2 X 2 blocks on the diagonal. Moreover, no 2 x 2 block should have real
eigenvalues.

As an example consider

2
1

R:

O OO =
O Ol k= W

I N W W=~
— N W N Ot

0
0
0

R has three diagonal blocks:

oe[4] mee e[ 2]

By Theorem 5.1 the eigenvalues of R are the union of the eigenvalues of Dy, Dy
and D3. The eigenvalues of D, are 2+¢ and 2—i, while D5 has eigenvalue 1, and D3
has the same eigenvalues as D;. Thus R has one real eigenvalue 1 corresponding to
the 1 x 1 block and complex eigenvalues 2+, 2—i with multiplicity 2 corresponding
to the two 2 x 2 blocks.

Any A € R™™" can be reduced to quasi-triangular form by a real orthonor-
mal similarity transformation. A proof is given in Section 5.7.
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5.2.3 Normal matrices

It is possible to characterize matrices that have a diagonal Schur factorization.

Definition 5.18 (Normal matrix)
A matriz A € C" ™ is said to be normal if AA" = A" A.

Examples of normal matrices are

1. A=A, (Hermitian)
2. A" =-A, (Skew-Hermitian)
3. A*=A"1, (Unitary)
4. A=D. (Diagonal)

The 2. derivative matrix T" in (1.2) and the discrete Poisson matrix (cf.
Lemma 3.10) are examples of normal matrices.

Exercise 5.19 (Skew-Hermitian matrix)
Suppose C = A+ iB, where A, B € R"*"™. Show that C is skew-Hermitian if
and only if AT = —A and BT = B.

Exercise 5.20 (Eigenvalues of a skew-Hermitian matrix)
Show that any eigenvalue of a skew-Hermitian matriz is purely imaginary.

The following theorem says that a matrix has orthonormal eigenpairs if and
only if it is normal.

Theorem 5.21 (Orthonormal eigenpairs characterization)
A matrix A € C"*™ s unitary similar with a diagonal matriz if and only if it is
normal.

Proof. If B=U"AU, with B diagonal, and U*U = I, then

AA*=(UBU")(UB'U*) =UBB*U" and
A*A=(UB*U")(UBU*)=UB*BU".
Now BB* = B*B since B is diagonal, and A is normal.

Suppose A*A = AA*. By Theorem 5.13 we can find U with U*U = I such
that B := U* AU is upper triangular. Since A is normal B is normal. Indeed,

BB"=U"AUU"A"U =U"AA"'U =U"A"AU = B*B.
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The proof is complete if we can show that an upper triangular normal matrix B
must be diagonal. The diagonal elements in E := B*B and F := BB™ are given
by

e = Y bribki = Y _|bwil” and fii = > b = Y [bix|*,
k=1 k=1 k=1 p

The result now follows by equating e;; and f;; for ¢ = 1,2,...,n. In particular for
7 = 1 we have |b11|2 = |b11|2 + |b12|2 + -+ |b1n|2, SO blk =0 for k = 2,3,. Lo, n.
Suppose bjr, =0 for j =1,...,i—1, k=j+1,...,n. Then

i n
ei = 3 bkil” = biil> = Y |bisl* = fis
k=1 k=i

so by =0, k =1i+1,...,n. By induction on the rows we see that B is diagonal.
d

The special cases where A is Hermitian, or real and symmetric, occur often
in applicationals and deserve special attention.

Corollary 5.22 (Spectral theorem, complex form)

Suppose A € C"*" js Hermitian. Then A has real eigenvalues Ay, ..., \,. More-
over, there is a unitary matriz U € C"*™ such that U* AU = diag(\1, ..., \n).
For any such U the columns {u1,...,u,} of U are orthonormal eigenvectors of
A and Au; = N\ju; forj=1,...,n.

Proof. That the eigenvalues are real was shown in Lemma 3.9. The rest follows
from Theorem 5.21. 0O

There is also a real version.

Corollary 5.23 (Spectral theorem (real form))

Suppose A € R™*™ and AT = A. Then A has real eigenvalues Ay, ..., \,. More-
over, there is an orthonormal matriz U € R™*™ such that UT AU = diag(A1, ..., An).
For any such U the columns {u1,...,u,} of U are orthonormal eigenvectors of
A and Au; = A\ju; forj=1,... n.

Proof. Since a real symmetric matrix has real eigenvalues and eigenvectors this
follows from Theorem 5.22. 0O

Example 5.24 The orthonormal diagonalization of A = [_21 _21] is UTAU =

diag(1,3), where U = % [14]
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5.3 Minmax theorems for Hermitian Matrices

There are some useful characterizations of the eigenvalues of a Hermitian matrix.
They are based on the Rayleigh quotient that is a useful tool when studying
eigenpairs.

5.3.1 The Rayleigh quotient

Definition 5.25 (Rayleigh quotient)
For A € C"™ and a nonzero x € C" the number

R(@) = Ra(z) = ZA%

T*T

is called a Rayleigh quotient.
If (A, x) is an eigenpair for A then R(z) = TAZ — ),

T

Equation (5.6) in the following lemma shows that the Rayleigh quotient of
a normal matrix is a convex combination of its eigenvalues.

Lemma 5.26 (Convex combination of the eigenvalues)
Suppose A € C™ " is normal with orthonormal eigenpairs (A\;,u;), j =1,2,...,n
and let © € C™. Then

n n
= biXj, bj=0, Y bi=1, (5.6)

j=1 j=1
where by = |¢;|*/ 327 |eil?, § = 1,...,n, and © = 377, cju; is the eigenvector

expansion of x.

Proof. By orthonormality of the eigenvectors z*x = 71, 370 ¢iuicju; =
Z;’L:1|01|2' Similarly, * Ax = Z?:l Z?:l Cuci\ju; = Z?:l )\‘7‘|Cj|2. and (5.6)
follows with b; = |¢;|2/ > i |ei|?, j = 1,...,n. This is clearly a combination of
nonnegative quantities and a convex combination since Z?:l lej?/ > |eil* = 1.
O

5.3.2 Minmax and maxmin
First we show

Theorem 5.27 (Minmax)

Suppose A € C"*"™ s Hermitian with eigenvalues Ay, ..., \,, ordered so that
AL > > Ay Let 1 <k <n. For any subspace S of C™ of dimension n — k + 1
A < .7

» < max R(z), (5.7)

x#£0
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with equality for S = S := span(w, ..., u,) and © = ug. Here (N\j,u;),1<j<n
are orthonormal eigenpairs for A.

Proof. Let S be any subspace of C™ of dimension n — k + 1 and define &’ :=
span(uy,...,ux). We need to find y € S so that R(y) > A\,. Now S+ & =
{s+s' :5€S8,s €8} is a subspace of C" and by (7)

dim(SN&’) = dim(S) + dim(S") —dim(S+8) > (n—k+1)+k—n=1.

It follows that SNS’ is nonempty. Let y € SNS’ = Z§=1 c;ju; with Z?=1|Cj|2 =1

Defining c¢; = 0 for k + 1 < j < n, we obtain by Lemma 5.26

zesS
x#0

n k k
max R(x) > R(y) = Z)\j\cj\Q = Z)\j\cj\Q > ZAk\cj\Q = Ak,
j=1 j=1 =1
and (5.7) follows. If y € S, say y = Z?:k d;u; with Z?:k|dj|2 = 1 then again
by Lemma 5.26 R(y) = Z;-L:k Ajld;|? < Ay, and since y € S is arbitray we have

max, s R(x) < A\ and equality in (5.7) follows for S = S. Moreover, R(u,) = A.
x#0

There is also a maxmin version of this result.

Theorem 5.28 (Maxmin)
Suppose A € C"*™ js Hermitian with eigenvalues A1, ..., \,, ordered so that
AL > o> A Let 1 <k <n. For any subspace S of C™ of dimension k

> mi
A 2 min R(), (5.8)

x#0
with equality for S = S := span(uy, ..., u;,) and € = uy,. Here (A ,u;),1<j<n

are orthonormal eigenpairs for A.

Proof. The proof is very similar to the proof of Theorem 5.27. We define S’ :=
span(uy, ..., u,) and show that R(y) < Ay for some y € SNS'. It is easy to see
that R(y) > A\ foranyy € S. 0O
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Richard Courant, 1888-1972 (left), Ernst Sigismund Fischer, 1875-1954 (right).

These theorems immediately lead to classical minmax and maxmin charac-
terizations.

Corollary 5.29 (The Courant-Fischer theorem )
Suppose A € C"*™ js Hermitian with eigenvalues Ai,..., A, ordered so that
A > -2 N,. Then

k= min max R(x) = max minR(z), k=1,...,n. (5.9)
dim(8)=n—k+1 €S dim(S)=k €S
x#0 x#0

Using the maxmin Theorem 5.27 we can prove inequalities of eigenvalues
without knowing the eigenvectors and we can get both upper and lower bounds.

Theorem 5.30 (Eigenvalue perturbation for Hermitian matrices)
Let A, B € C™"*™ be Hermitian with eigenvalues oy > g > -+ > «ap and (1 >
By >+ > B,. Then

ap+en < Bp < ap+er, fork=1,...,n, (5.10)

where g1 > €9 > -+ > &, are the eigenvalues of E :== B — A.

Proof. Since F is a sum of Hermitian matrices it is Hermitian and the eigenvalues
are real. Let (aj,u;), 7 = 1,...,n be orthonormal eigenpairs for A and let
S :=span{uy,...,u,}. By Theorem 5.27 we obtain

O < pax Ro(@) < max Ra(@)tpax Re(@) < pox Rale)t s Re(e) = onter,
xz#0 x#0 x#0 x#0 x#0

and this proves the upper inequality. For the lower one we define D := —F and
observe that —e,, is the largest eigenvalue of D. Since A = B+ D it follows from
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the result just proved that ay < S —&,, which is the same as the lower inequality.
a0

In many applications of this result the eigenvalues of the matrix E will be
small and then the theorem states that the eigenvalues of B are close to those of
A. Moreover, it associates a unique eigenvalue of A with each eigenvalue of B.

Exercise 5.31 (Eigenvalue perturbation for Hermitian matrices)
Show that in Theorem 5.30, if E is symmetric positive semidefinite then B; > «;.

Alan Jerome Hoffman, 1924- (left), Helmut Wielandt, 1910-2001 (right).

5.3.3 The Hoffman-Wielandt theorem

We can also give a bound involving all eigenvalues. The following theorem shows
that the eigenvalue problem for a normal matrix is well conditioned.

Theorem 5.32 (Hoffman-Wielandt theorem )

Suppose A, B € C™"*"™ are both normal matrices with eigenvalues A1, ..., \, and
U1y ..oy fy, Tespectively. Then there is a permutation iy,...,i, of 1,2,...,n such
that
n n n
Z|Nz’j - NP < ZZMU — bi|*. (5.11)
j=1 i=1 j=1

For a proof of this theorem see [[28], p. 190]. For a Hermitian matrix we can
use the identity permutation if we order both set of eigenvalues in nonincreasing
or nondecreasing order.

Exercise 5.33 (Hoffman-Wielandt)
Show that (5.11) does not hold for the matrices A := [3§9] and B := [ ' 7'].
Why does this not contradict the Hoffman- Wielandt theorem?
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5.4 The Jordan Form

For any A € C™"*" there is a unitary matrix U such that U* AU = R is upper
triangular. Moreover R is diagonal if A is normal. The following question arises.
How close to a diagonal matrix can we reduce a general matrix by a similarity
transformation? The main result is the Jordan form in Theorem 5.44. For a proof,
see for example [13].

5.4.1 Diagonalizable matrices and linear independence of
eigenvectors

We start by giving a characterization of matrices that are similar to a diagonal
matrix.

Definition 5.34 (Diagonalizable matrix)
A matriz of order n is diagonalizable if it is similar to a diagonal matriz, and
defective if this is not the case.

We have S™' AS = diag(\1, ..., \,) if and only if $* A*S™* = diag(A1, ..., \n),
where §7* := (8*)~! = (§71)*. Thus A is is diagonalizable if and only if A* is
diagonalizable.

Theorem 5.35 (Eigenvectors of diagonalizable matrices)
A matrix of order n is diagonalizable if and only if its eigenvectors form a basis
for C™.

Proof. Let S € C"*" be nonsingular with columns sy, ...,s,. Then

S~tAS = diag(\1,...,\,) & AS = Sdiag(\1,..., \n)
<:>ASZ':)\Z'S7;, 1=1,...,n.

Since S is nonsingular the n columns of are linearly independent and therefore
constitute a basis for C*. 0O

If the eigenvectors vy, ..., v, of a matrix of order n are linearly independent
n : _ n
then any « € C" can be written = 37, ¢;v; for some scalars cq,...,¢,. We

call this an eigenvector expansion of x.
For distinct eigenvalues we have the following result.

Theorem 5.36 (Distinct eigenvalues)
Eigenvectors corresponding to distinct eigenvalues are linearly independent.

Proof. Suppose (\g, k), k = 1,...,m are eigenpairs of A and that A1,...,\,, are
distinct, but «1, ..., x,, are linearly dependent. With m the smallest such positive
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integer we will obtain a contradiction. For some nonzero vector ¢ := [cy, ..., Cp)

we have
m

> ez =0. (5.12)
j=1

Clearly m > 2 since the eigenvectors and ¢ are nonzero. Applying A to (5.12)

we obtain by linearity ZT:l cjAjz; = 0. From this relation we subtract A,
times (5.12) and find Z;’;l ¢;j(Aj — Am)x; = 0. But since A; — A, # 0 for
j=1,...,m—1 and at least one ¢; # 0 for j < m we see that {&1,...,&p_1} is
linearly dependent, contradicting the minimality of m. 0O

Corollary 5.37 (Diagonalizable matrix)
A matriz with distinct eigenvalues is diagonalizable.

Proof. By the previous theorem the eigenvectors are linearly independent. 0O

5.4.2 Algebraic and geometric multiplicity of eigenvalues

A defective matrix must necessarily have one or more multiple eigenvalues, but as
the following example shows this is not sufficient.

Example 5.38 (Two upper triangular matrices)
Consider the 2 matrices of order 3

1 00 1 10
Al =10 1 0 5 A2 =10 1 1
0 0 1 0 0 1
Both matrices are upper triangular and have an eigenvalue X = 1 of multiplicity

3.

1. The eigenvectors of Ay are the linearly independent unit vectors x; = e;,
1=1,2,3. Thus A; is diagonalizable.

2. An eigenvector & = [x1, 19, x3]T of Ay must be a solution of the homogenous
triangular linear system

0 1 0] |z 0
(A—Dx=0o0r |0 0 1| [z2]| = |0
0 0 0] [z3 0

But then o = x3 = 0 and any eigenvector must be a multiple of e;. We
conclude that Aoy is defective.
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Linear independence of eigenvectors depends on the multiplicity of the eigen-
values in a nontrivial way. For multiple eigenvalues we need to distinguish between
two kinds of multiplicities.

Suppose A € C"*™ and

Ta(N) i=det(A = M) = (u = N - (e = N>, s # g, i £ 5, Y ai=n.

i=1
(5.13)
The positive integer a; = a(p;) = aa(p;) is called the multiplicity, or more
precisely the algebraic multiplicity of the eigenvalue p;. The multiplicity of an
eigenvalue is simple (double, triple) if a; is equal to one (two, three).
To define a second kind of multiplicity we consider for each A\ € o(A) the
nullspace
ker(A— M) :={xeC": (A—- M)z =0} (5.14)
of A — AI. The nullspace is a subspace of C" consisting of all eigenvectors of
A corresponding to the eigenvalue A. The dimension of the subspace must be at
least one since A — AT is singular.

Definition 5.39 (Geometric multiplicity)
The geometric multiplicity g = g(\) = ga(\) of an eigenvalue A of A is the
dimension of the nullspace ker(A — \I).

Example 5.40 (Geometric multiplicity)

The n x n identity matriz I has the eigenvalue X = 1 with 7y(\) = (1—=X)™. Since
I — M\ is the zero matriz when X\ = 1, the nullspace of I — M1 is all of n-space
and it follows that a = g = n. On the other hand we saw in Example 5.38 that

the 3 x 3 matric A = [é é ﬂ has the eigenvalue A = 1 with a = 3 and only one

eigenvector. Thus g = 1.

Theorem 5.41 (Geometric multiplicity of similar matrices)
Similar matrices have the same eigenvalues with the same algebraic and geometric
multiplicities.

Proof. Similar matrices have the same characteristic polynomials and only the
invariance of geometric multiplicity needs to be shown. Suppose A € o(A),
dimker(S™'AS — AI) = k, and dimker(A — AI) = ¢. We need to show that
k = 0. Suppose vy, ..., v} is a basis for ker(S§™*AS —AI). Then S™'ASv; = \v;
or ASv; = ASv;, i =1,...,k. But then {Svy,...,Sv;} C ker(A — AI), which
implies that & < ¢. Simiarly, if wi,...,w, is a basis for ker(A — AI) then
{S'wy,...,8 tw,} C ker(S™'AS — AI). which implies that k > ¢. We con-
clude that k=4¢. 0O
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Exercise 5.42 (Find eigenpair example)

Find eigenvalues and eigenvectors of A =

O O =
O N DN
N W W

5.4.3 The Jordan form

Marie Ennemond Camille Jordan, 1838-1922 (left), William Rowan Hamilton, 1805-
1865 (right).

Definition 5.43 (Jordan block)
A Jordan block of order m, denoted J,,(\) is an m X m matriz of the form

A10--00
0A1 - 00
00X 00
Jm(N) :
000-- A1
000 - 0A
A 3 x 3 Jordan block has the form J3(\) = [§ %)\ El)\] Since a Jordan block
is upper triangular A is an eigenvalue of J,,(\) and any eigenvector must be a

multiple of e;. Indeed, if J,,(A\)v = Av for some v = [v1,...,v,] then vy =

-+« = vy, = 0. Thus, the eigenvectors of J,,(\) have algebraic multiplicity m and
geometric multiplicity one.

The Jordan form is a decomposition of a matrix into Jordan blocks.

Theorem 5.44 (The Jordan form of a matrix)
Suppose A € C"*™ has k distinct eigenvalues A1, ..., A\ of algebraic multiplicities
ai,...,ar and geometric multiplicities g1, ..., gx. There is a nonsingular matriz
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S € C™ ™ such that

J:= S8 'AS = diag(U,,...,Uy), with U; € C**% (5.15)

where each U; is block diagonal having g; Jordan blocks along the diagonal
U; = diag(Jom, , (Ni)s- - T, 5, (X)) (5.16)
Here my;1,...,m; g4, are unique integers ordered so that m; 1 > my;2 > -+ > My g,

and a; = Y751, m; ; for all i.

The matrices S and J in (5.15) are called Jordan factors. We also call J
the Jordan form of A. As an example consider the Jordan form
210
021
002
J = diag(U,,U3z) = 21 € R®S. (5.17)
2

31
03

The eigenvalues together with their algebraic and geometric multiplicities can be
read off directly from the Jordan form.
o U, =diag(J3(2),J2(2),J1(2)) and Uz = J2(3).

e 2 is an eigenvalue of algebraic multiplicity 6 and geometric multiplicity 3.

e 3 is an eigenvalue of algebraic multiplicity 2 and geometric multiplicity 1.

Each U; is upper triangular with the eigenvalue A; on the diagonal and
consists of g; Jordan blocks. These Jordan blocks can be taken in any order and
it is customary to refer to any such block diagonal matrix as the Jordan form of
A. Thus in the example the matrix

is also a Jordan form of A. In any Jordan form of this A the sizes of the 4 Jordan
blocks J3(2), J2(2),J1(2), J2(3) are uniquely given.

The columns of S are called principal vectors. They satisfy the matrix
equation AS = SJ. As an example, in (5.17) we have S = [sy,..., sg] and we
find

A81 = 281, A82 = 282 + S, A83 = 233 + S22,
Asy =284, Ass =285+ s4,

AS@ = 286,

As; = 3s7, Asg = 3sg+ sz,
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We see that the first principal vector in each Jordan block is an eigenvector of A.
The remaining principal vectors are not eigenvectors.

Exercise 5.45 (Jordan example)

30 1
For the Jordan form of the matriz A = [:Zl é :ﬂ we have J = [?1) % %}. Find S.
Exercise 5.46 (Big Jordan example)
Find the Jordan form of the matriz
1016 -8 =5 6 1 —3 4
—732-7-1012 2 —6 8
AETEE Y
A= 9|48 -4-1630 14 —1520 | - (5.18)

-3 6 -3 -12 9 24 -9 24
-2 4 -2 -8 6 =2 15 28
-12 -1 -4 3 -1 —6 41

The Jordan form implies

Corollary 5.47 (Geometric multiplicity)
We have

1. The geometric multiplicity of an eigenvalue is always bounded above by the
algebraic multiplicity of the eigenvalue.

2. The number of linearly independent eigenvectors of a matriz equals the sum
of the geometric multiplicities of the eigenvalues.

3. A matrix A € C™™™ has n linearly independent eigenvectors if and only if
the algebraic and geometric multiplicity of all eigenvalues are the same.

Proof.

1. The algebraic multiplicity a; of an eigenvalue A; is equal to the size of the
corresponding U ;. Moreover each U; contains g; Jordan blocks of size m; ; >
1. Thus g; < a;.

2. Since A and J are similar the geometric multiplicities of the eigenvalues of
these matrices are the same, and it is enough to prove statement 2 for the
Jordan factor J. We show this only for the matrix J given by (5.17). The
general case should then be clear. There are only 4 eigenvectors of J, namly
ey, ey, eq, e corresponding to the 4 Jordan blocks. These 4 vectors are
clearly linearly independent. Moreover there are k = 2 distinct eigenvalues
and g1 + g2 =3+ 1=4.

3. Since g; < a; for all i and ), a; = n we have ), g; = n if and only if a; = g¢;
fori=1,... k.
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|

The following lemma and the following exercise is useful when studying pow-
ers of matrices.

Lemma 5.48 (A nilpotent matrix)
We have
(Jm()\)_)\-[)mzo, /\E(C; m € N.

Proof. Let E,, := J,;,(A) — A\I. For m = 4 we find

01 00 0 0 10 0 0 0 1
10 01 0 2 |00 0 1 3 {00 0 0 4
Ei=1o 00 1" F1=]o 0 0 of" Fi= |0 0 0 of F1=0
00 00O 00 00O 0 0 0O
In general, E:n:[gI"a—T]forlgrgm—l, and it follows that E,’ = 0. 0

Exercise 5.49 (Properties of the Jordan form)
Let J be the Jordan form of a matriz A € C**™ as given in Theorem 5.44. Then
forr=0,1,2,..., m=23,..., and any A € C

1. A" =8J"S 1,
2. J" =diag(U7,...,Uy),
3. U; = diag(Jm, ,(N)", ..+, T, )7,

4o TN = (B 4 ML) = S0 = (A =+ By,

Exercise 5.50 (Powers of a Jordan block)
Find J'% and A for the matriz in Exercise 5.45.

5.5 The Minimal Polynomial

Let J be the Jordan form of A given in Theorem 5.44. Since A and J are similar
they have the same characteristic polynomial, and since the Jordan form of A is
upper triangular with the eigenvalues of A on the diagonal we have

k  9i
ma(N) =) =[] — 0™

i=1j=1

The polynomials p;;(A) := (A; — A)™#3 are called the elementary divisors of A.
They divide the characteristic polynomial.
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Definition 5.51 (Minimal polynomial of a matrix)
Suppose A = STS™! is the Jordan canonical form of A. The polynomial

p(A) =

_:1??

(A; — A)™ where m; := max m, j,
1<j<gi

=1

is called the minimal polynomial of A.

Since each factor in p(z) is also a factor in ma(z), we have the factorization
ma(z) = u(z)v(z) for some polynomial v(z).

Exercise 5.52 (Minimal polynomial example)
What is the characteristic polynomial and the minimal polynomial of the matrix

J in (5.17)2

To see in what way the minimal polynomial is minimal, we consider two
matrices defined from the characteristic polynomial 74 and the minimal polyno-
mial. We substitute a matrix for the independent variable in these polynomials
and define

k

kg
=TI =A™, u(A) =[0I - A)™. (5.19)

i=1j=1 i=1

By induction it is easy to see that u(A) and w4 (A) are polynomials in the matrix
A. Moreover, u(A) = Hle()\if — SJSHymi = Su(J)S™!, so that u(A) = 0 if
and only if pu(J) = 0. Since J and Uy, ..., Uy are block diagonal we find

k k
p(I) = [T = J)™ =[] diag (LI = U™, (AT = Ug)™)
=1 =1
k k
= diag ([[LI - U™, ..., [T - U)™) =0,
i=1

i=1
since by Lemma 5.48 and the maximality of m,
NI —U,)" = diag (()\,«I =T, )" (AT — erﬂgr)m’“) =0,r=1,...,k

We have shown that a matrix satisfies its minimal polynomial equation
uw(A) = 0. Moreover, the degree of any polynomial p such that p(A) = 0 is
at least as large as the degree d = Zle m; of the minimal polynomial p. This
follows from the proof since any such polynomial must contain the elementary
divisors (A\; — A)™ for ¢ = 1,...,k. Since the minimal polynomial divides the
characteristic polynomial we obtain as a corollary the Cayley-Hamilton Theo-
rem which says that a matrix satisfies its characteristic equation 74 (A) = 0.
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Exercise 5.53 (Similar matrix polynomials)
Show that p(B) = S~ 'p(A)S for any polynomial p and any similar matrices
B=S"AS.

Exercise 5.54 (Minimal polynomial of a diagonalizable matrix)
What is the minimal polynomial of the unit matriz and more generally of a diag-
onalizable matriz?

5.6 Left Eigenvectors

Definition 5.55 (Left eigenpair)
Suppose A € C"*™ is a square matriz, X\ € C and y € C*. We say that (\,y) is
a left eigenpair for A if y*A = \y* and y is nonzero.

Since A*y = Ay Theorem 5.1 implies that A is an eigenvalue of A, while
a left eigenvector is an eigenvector of A*. Thus left and right eigenvalues are
identical, but left and right eigenvectors are in general different. For an Hermitian
matrix the right and left eigenpairs are the same

Left- and right eigenvectors corresponding to distinct eigenvalues are orthog-
onal.

Theorem 5.56 (Biorthogonality)
Suppose (u,y) and (A, x) are left and right eigenpairs of A € C"*™. If X\ # p
then y*x = 0.

Proof. Using the eigenpair relation in two ways we obtain y* Az = \y*x = py*x
and we conclude that y*x =0. 0O

Right and left eigenvectors corresponding to the same eigenvalue are some-
times orthogonal, sometimes not.

Theorem 5.57 (Simple eigenvalue)
Suppose (N, x) and (\,y) are right and left eigenpairs of A € C*"*™. If X has
algebraic multiplicity one then y*x # 0.

Proof. Assume that ||x||2 = 1. We have (cf. (5.4))

* A z*
VAV = [ o AT } ,
where V is unitary and Ve; = . We show that if y*x = 0 then X is also an
eigenvalue of M contradicting the multiplicity assumption of A. Let u := V*y.
Then 7 7
(VFA'Viu=V* A"y = \V*y = \u,
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so (\,u) is an eigenpair of V*A*V. But then y*x = u*V*Ve;. Suppose that
u*e; =0, i.e., u = [?] for some nonzero v € C"~!. Then

- [ x| o o) | 0 | _ <10
vave= [ ] =[] =3[
and by Theorem 5.1 it follows that A is an eigenvalue of M. O

The case with multiple eigenvalues is more complicated. For example, the
matrix A := [} 1] has one eigenvalue A = 1 of algebraic multiplicity two, one right
eigenvector x = e; and one left eigenvector y = e2. Thus x and y are orthogonal.

Theorem 5.58 (Biorthogonal eigenvector expansion)
If A € C™*" has linearly independent right eigenvectors {x1,...,@,} then there

exists a set of left eigenvectors {y,,..., y,} with yfx; = 0; ;. Conversely, if
A € C™™ has linearly independent left eigenvectors {yy,...,y, } then there exists
a set of right eigenvectors {x1, ... ,x,} with yfxz; = 9§, ;. For any scaling of these

sets we have the eigenvector erpansions

v = Z yj%ij = i zjv Y- (5.20)

. *
j=1 Y;T; k=1 JkTk

Proof. For any right eigenpairs (A1, 1), . .., (An, T, ) and left eigenpairs (A, y;), - . .
(Ansy,) of A we have AX = XD, Y*A = DY", where

X :=[x1,...,xs), Y :=[ys,...,y,], D:=diag(A,...,\n).

If X is nonsingular then X ' A = DX ! and it follows that Y* := X ~! contains
a collection of left eigenvectors such that Y*X = I. Thus the columns of Y
are linearly independent and yjx; = d;;. Similarly, if Y is nonsingular then
AY " =Y "D and it follows that X := Y " contains a collection of linearly
independent right eigenvectors such that Y*X = I. If v = Z?zl cjx; then
yiv = D0 gyl = cyixi, so ¢ = yjv/yjx; for i = 1,...,n and the first
expansion in (5.20) follows. The second expansion follows similarly. 0O

For an Hermitian matrix the right eigenvectors {xi,...,x,} are also left
eigenvectors and (5.20) takes the form

wjv
;. (5.21)

* .
:cja:j

v =

n *

j=1
Exercise 5.59 (Biorthogonal expansion)

Determine right and left eigenpairs for the matriz A := [3 1] and the two expan-
sions in (5.20) for any v € R2.
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Exercise 5.60 (Generalized Rayleigh quotient)

For A € C"*™ and any y, x € C™ with y*x # 0 the quantity R(y,x) = Ra(y,x) :=
yyAmm is called o generalized Rayleigh quotient for A. Show that if (A, x) is
a right eigenpair for A then R(y,x) = X for any y with y*x # 0. Also show that
if (A\,y) is a left eigenpair for A then R(y,x) = A for any x with y*x # 0.

5.7 Proof of the Real Schur Form

In this section we prove the following theorem.

Theorem 5.61 (The real Schur form)
Suppose A € R" ™. Then we can find U € R™ "™ with UTU = I such that
UT AU is quasi-triangular.

Proof. 1If A has only real eigenvalues, Theorem 5.14 gives the result. Suppose
A= p+iv, u,v € R, is an eigenvalue of A with v # 0. Let z = x + iy, =,y € R",
be an eigenvector of A corresponding to A. Since

Az = Az +iy) = (n+w)(x +1y) = px — vy +i(ve + py),
we find by comparing real and imaginary parts
Az = px — vy, Ay =vx + uy. (5.22)

We claim that  and y are linearly independent. First we note that v # 0 implies
x # 0,y # 0. For if x = 0 then (5.22) implies that 0 = —vy, and hence y = 0 as
well, contradicting the nonzeroness of the eigenvector. Similarly, if y = 0 then 0 =
v, again resulting in a zero eigenvector. Suppose y = ax for some «. Replacing
y by ax in (5.22), we find Ax = (4 — av)x and Ax = Ay/a = (u+v/a)x. But
then 4 —av = p+v/a or a® = —1. Since z and y are real, we cannot have both
y = ax and a® = —1. We conclude that = and y are linearly independent.
(5.22) can be written in matrix form as
AX1=XM, X;=[z,yeR"? M=["]. (5.23)

—v

By Theorem 10.12 we can find an orthonormal matrix @ € R™*™ such that
R
QX = [ 0 ]

where R € R?? is upper triangular. Since X has linearly independent columns,
R is nonsingular. Let Q = [g1,¢s, - - -,q,] and define

X: [XlaXQ] = [w7yaq3a"'7qn}'
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We find
QX = [QX,1,Qq;,...,Qq,] = { 10% 17?72 ]

Since R is nonsingular, @X and X are nonsingular. Moreover, using (5.23)

XTAX = [X'AX |, X TAX,) = [X'X M, X 'AX,] = [ M B }

0o C

for some matrices B € R>"~2 C € R""2"2, Now

-1
QAQT:<QX)X‘1AX<QX>‘1=[1§ IO][]\(;I g} {Ro IO]

or

-1
RMR™' RB ] . (5.24)

By Theorem 5.9 the 2 x 2 matrix RM R ™' has the same eigenvalues X and \ as
M. The remaining n—2 eigenvalues of A are the eigenvalues of C.

To complete the proof we use induction on n. The theorem is trivially true
for n = 1 and n = 2. Suppose n > 3 and it holds for matrices of order < n—1.

Let
I, 0
V—[o v}

N AT ~ ~T o
where V¢ R* 2772 V'V =1, , and V CV is quasi-triangular. Let U =
QV. Then U € R"*" UTU = I and UT AU is quasi-triangular. 0

5.8 Conclusions
Consider the eigenpair problem for some classes of matrices A € C™**".

Diagonal Matrices. The eigenpairs are easily determined. Since Ae; = a;;e;
the eigenpairs are (\;, €;), where \; = a;; fori = 1,...,n. Moreover, a(\;) =
g(A;) for all 4, since the eigenvectors of A are linearly independent.

Triangular Matrices Suppose A is upper or lower triangular. Since det(A —
M) = I (ai; — ) the eigenvalues are \; = a;; for i = 1,...,n, the
diagonal elements of A. To determine the eigenvectors can be challenging
as Example 5.40 indicates.

Block Diagonal Matrices Suppose

A = diag(A,, Ay, ..., A,), A; €Cmixmi,
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Here the eigenpair problem reduces to r smaller problems. Let A;X; =
X ;D; define the eigenpairs of A; fori =1,...,r and let X := diag(X1,..., X,),
D := diag(Dq,...,D,). Then the eigenpairs for A are given by

AD = diag(Aq,...,A,)diag(X4,...,X,) = diag(A1 X1,..., 4. X ;)
— diag(X D1, ..., X, D,) = XD.

Block Triangular matrices Matrices Let A1, Aso, ..., A, be the diagonal
blocks of A. By Property 8. of determinants

det(A — AI) = [ [ det(As; — AT)
i=1
and the eigenvalues are found from the eigenvalues of the diagonal blocks.

5.9 Review Questions

5.9.1 Does A and A7 A and A* have the same eigenvalues? What about A* A
and AA*?

5.9.2 Can the geometric multiplicity of an eigenvalue be bigger than the algebraic
multiplicity?

5.9.3 What are the eigenvalues of a diagonal matrix?

5.9.4 What are the Schur factors of a matrix?

5.9.5 What is a quasi-triangular matrix?

5.9.6 Give some classes of normal matrices. Why are normal matrices important?.
5.9.7 State the Courant-Fischer theorem.

5.9.8 State the Hoffman-Wieland theorem for Hermtian matrices.

5.9.9 What is a left eigenvector of a matrix.
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Chapter 6

The Singular Value
Decomposition

The singular value decomposition is useful both for theory and practice. Some of
its applications include solving over-determined equations, principal component
analysis in statistics, numerical determination of the rank of a matrix, algorithms
used in search engines, and the theory of matrices.

We know from Theorem 5.21 that a square matrix A can be diagonalized
by a unitary similarity transformation if and only if it is normal, that is A*A =
AA*. In particular, if A € C™"*" is normal then it has a set of orthonormal
eigenpairs (A1, u1), ..., (An,un). Letting U := [uq,...,u,] € C**™ and D :=
diag(Aq, ..., An) we have the spectral decomposition

A =UDU"*, where U"U = I. (6.1)

6.1 SVD and SVF

The singular value decomposition (SVD) is a generalization of the spectral de-
composition, to any matrix, even a rectangular one. For any m,n € N we say
that D € C™*" is a diagonal matrix if d; ; = 0 for all ¢ # j. A diagonal matrix
is a nonnegative (positive) diagonal matrix if all the diagonal elements d; ;,
¢t =1,...,min(m,n) are nonnegative (positive).

6.1.1 Definition and examples

Definition 6.1 (SVD)

A decomposition of A € C™*™ of the form A = UXV™, where U € C™*™ and
V € C"™™ are unitary, and X € R™*"™ is a nonnegative diagonal matrix, is called
a singular value decomposition (SVD) of A. If A is real, then U and V

147
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are real and orthogonal and an SVD takes the form A = UXVT. The diagonal
elements of ¥ are denoted 01, . .., Orin(m,n), and are called singular values. The
columns uy,..., Uy of U and vy,...,v, of V are called left singular vectors
and right singular vectors, respectively. The SVD is ordered if o1 > 09 >
2 Omin(m,n)- For a fived A € C™ " we define o := 0 for all integers j >
min(m,n).

Example 6.2 (SVD1)
The decomposition

ol - 2B gk e

is both a spectral decomposition and a singular value decomposition. Indeed, A
has eigenpairs (2,[1,1]7) and (0,[1,—1]T) and normalizing the eigenvectors we
obtain a spectral decomposition. Since the elements of the diagonal matriz are
nonnegative this is also a singular value decomposition A = UsV7T withy =D
and V =U.

Example 6.3 (SVD2)

The matriz A = 1 _ﬂ is not normal and therefore does not have a spectral
decomposition. Since it has an eigenvalue zero of algebraic multiplicity 2, but only
one eigenvector [1,1]7 it is defective and cannot be diagonalized by any similarity

transformtation. But

R R R FA I R

is a singular value decomposition.

Example 6.4 (SVD3)

‘ _ 1 [11 48
The matriz A = 5 [48 39

(—=1,[—4,3]T). Normalizing the eigenvectors we obtain the spectral decomposition

L Jir 48] 173 —4][3 0]1[3 4] _ T
A‘%Ls 39}_5{4 3“0 1}5{4 3}_UDU'

] is symmetric with the eigenpairs (3,[3,4]7) and

This is not a singular value decomposition since one of the elements of the diagonal
matriz is negative. A singular value decomposition is given by

111 48] 1[3 —4][3 0]1[3 4] _ T
A_25[48 39]_5{4 3“0 1]5{4 —3}_UEV' (64)
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6.1.2 Existence

Every matrix has a singular value decomposition. To show this we first consider
the matrices A*A and AA™.

Theorem 6.5 (The matrices A*A, AA")
Suppose m,n € N and A € C™*"™. Then

1. The matrices A*A € C"*" and AA* € C™*™ qare Hermitian with nonneg-
ative eigenvalues.

2. The characteristic polynomials of these matrices are closely related:

)\mﬂA*A()\) = \N"Ta4~ ()\), AxeC.

3. Let (\j,vj) be orthonormal eigenpairs for A*A. IfX\; >0, j=1,...,r and
Aj=0,j=r+1,...,n then {Av,..., Av,} is an orthogonal basis for the
column space span(A) := {Ay € C™ : y € C"} and {vyr41,...,V,} S an
orthonormal basis for the nullspace ker(A) := {y € C" : Ay = 0}.

4. Let (X\j,u;) be orthonormal eigenpairs for AA*. If \; >0, j=1,...,7 and
Nj=0,j=r+1,...,m then {A%uy,..., A"u,} is an orthogonal basis for
the column space span(A*) and {t,y1,...,um} is an orthonormal basis for
the nullspace ker(A™).

5. The rank of A equals the number of positive eigenvalues of A*A and AA™.

Proof.

1. Clearly B; := A*A and By := AA™ are Hermitian. If A* Av = \v with
v # 0, then

N v'ATAv || Avl3

>0 (6.5)

vio o3

and the eigenvalues of B; are nonnegative. Similarly, B, has nonnegative
eigenvalues.

2. This follows from Corollary 5.10.

3. By orthonormality of v1,. .., v, we have (Av;)* Avy = U;A*Avk = AU g
= 0,5 # k, showing that Awvy,..., Av, are orthogonal vectors. Moreover,
(6.5) implies that Awvi,..., Av, are nonzero and Av; = 0 for j = r +
1,...,n. In particular, the elements of {Avy,..., Av,.} and {v,41,...,0,}
are linearly independent vectors in span(A) and ker(A), respectively. The
proof will be complete once it is shown that span(A) C span(Awv, ..., Av,)
and ker(A) C span(v,41,...,v,). Suppose & € span(A). Then x = Ay
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for some y € C", Let y = 2;21 cjv; be an eigenvector expansion of y.
Since Av; =0 for j =r+1,...,n we obtain = Ay = Z?:l cjAv; =
> j—1¢jAv; € span(Avy,..., Av,). Finally, if y = 377 ¢ju; € ker(A),
then we have Ay = Z;Zl cjAv; = 0, and ¢; = --- = ¢, = 0 since
Avy, ..., Av, are linearly independent. But then y = Z?’:H_l cjv; €

Span(”r—‘—la cee 7'Un)'

4. Since AA* = B*B with B := A" this follows from part 3 with A = B.

5. By part 1 and 2 A*A and AA* have the same number r of positive eigen-
values and by part 3 and 4 r is the rank of A.

Theorem 6.6 (The matrices A*A, AA" and SVD)
If A = UXV is a singular value decomposition of A € C™*™ and o; := 0 for
j > min(m,n) then

1. A*A =V diag(o?,...,02)V* is a spectral decomposition of A*A.

rYn

2. AA* = U diag(o?,...,02)U" is a spectral decomposition of AA*.

m

3. The columns of U are orthonormal eigenvectors of AA™.
4. The columns of V' are orthonormal eigenvectors of A*A.

5. The rank of A is equal to the number of positive singular values.

Proof. We assume m > n. The case m < n is similar. If A = UXV" =
[w,. .., um]E[v1,...,v,]* is a singular value factorization of A then A*A =
(UZVH*(UEV*) = VEIU*'USZV* = VETZV* and part 1 follows. Part 2
is similar. Since these are spectral decompositions part 3 and 4 follow. Part 5
follows from part 5 of Theorem 6.5. 0O

Theorem 6.7 (Existence of SVD)
Suppose for m,n,r € N that A € C™*"™ has rank r, and that (\j,v;) are or-
thonormal eigenpairs for A* A with \y > -+ X\, > 0= \oy1 = -+-- = \,. Define

1. V:=vy,...,v,] € C"*",

2. ¥ € R™*" 4s a diagonal matriz with diagonal elements o; = \/A; for
j=1,...,min(m,n),
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3. U = [u1,...,uy| € C™, where u; = UIlAUj for j = 1,...,r and
Up g1, ..., Uy S an extension of uy, ..., u, to an orthonormal basis uq, ..., Um
for C™.

Then A = UXV™ is an ordered singular value decomposition of A.

Proof. Let X, U,V be as in the theorem. The vectors uq, ..., u, are orthonormal
since Avy,..., Av, are orthogonal and o; = ||Avj|2 >0, j =1,...,r by (6.5).
But then U and V are unitary and ¥ is a nonnegative diagonal matrix. Moreover,

UX =Uloey,...,00€.,0,...,0] = [o1u1,...,00u,,0,...,0] = [Avy, ..., Av,)].

Thus UX = AV and since V is unitary we find UXV* = AVV™ = A and we
have an ordered SVD of A. O

6.1.3 The singular value factorization

Suppose A = UX V™ is an ordered singular value decomposition of A of rank r.
The matrix ¥ can be partitioned in the form

21 Or,n—r

Om—r,r Om—r,n—r

Y= e R™*", where 3, := diag(o1,...,0,), (6.6)
Thus ¥; contains the r ordered positive singular values on the diagonal. Here, for
k,1 > 0 the symbol 0y ; = [ | denotes the empty matrix if K =0 or [ = 0, and the
zero matrix with k rows and ! columns otherwise.

Using the block partitions

U:[Ul,Ug]Gmem, U, := [uh...,ur], U, := [UT+17...,Um],

6.7
V=[V,Vy]eC"™, Vi:=[vy,...,v.], Vao:i=[Vry1,...,05], (6.7)

we obtain by block multiplication
A=UXV*=U 3,V]. (6.8)

As an example:

ba=sl A6 sl V-sh]ese
1 -1 V2 [l —-1] [0 0] 2|1 1 V2 |1 V2 ’
Definition 6.8 (SVF)

Let m,n,r € N with1 <r < min(m,n). A singular value factorization (SVF)
is a factorization of A € C™*™ of the form A = U131V, where U; € C™*"
and V1 € C"*" have orthonormal columns, and X1 € R"™*" is a diagonal matrix

with positive diagonal elements. We say that the SVF is ordered if the diagonal
elements of X1 are ordered.
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An SVD and an SVF of a matrix A are closely related.

1. Let A have rank r and let A = UXV™ be an ordered SVD of A. Then
A =U;X,V7 is an ordered SVF of A. Moreover, Uy, V1 contain the first
r columns of U, V and ¥, is a diagonal matrix with the positive singular
values on the diagonal.

2. Conversely, suppose A = U13X, V7] is a singular value factorization of A with
Y1 € R™*", Extend U; and V1 in any way to unitary matrices U € C™*"
and V € C" ", and let X be given by (6.6). Then A = UXV™ is an SVD
of A. Moreover, r is uniquely given as the rank of A.

3. If A=[uy,...,u,]diag(oy,...,0.)[v1,...,v,]* is a singular value factoriza-
tion of A then

A= ZJ]"U,J"U;. (69)
j=1

This is known as the outer product form of the SVF.

4. We note that a nonsingular square matrix has full rank and only positive
singular values. Thus the SVD and SVF are the same for a nonsingular
matrix.

Theorem 6.9 (Singular values of a normal matrix)
The singular values of a symmetric positive semidefinite matriz are its eigenvalues.
The singular values of a normal matriz are the absolute values of its eigenvalues.

Proof. If A is normal then by Theorem 5.21, A = UDU™, where U*U = I and
D = diag()\,...,\,) contains the eigenvalues of A. Now A*A = UD*DU™,
and D*D = diag(|A\1]2,...,|\,|?) and by Theorem 6.6 o; = /|\;[> = |);| for
j=1,...,n. If A is symmetric positive semidefinite then the eigenvalues are
nonnegative. 0O

6.1.4 Examples

We use Theorem 6.7 to derive some singular value factorizations and decomposi-
tions.

Example 6.10 (Nonsingular matrix)
Derive the SVF and SVD of the matriz in (6.4). Discussion: Eigenpairs of B :=
ATA =[] %]/25 are given by

sl =[] #[5)=15]
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Taking square roots and normalizing we find o1 = 3, oo = 1, v1 = [3]/5, and
vy = [ %] /5. Thus uy := Avi /oy = [}] /5, uz := Avy /oy = [ 3] /5, and (6.4)
follows. Since A is nonsingular this is both an SVF and an SVD of A.

Example 6.11 (Full column rank)
Find the SVF and SVD of

1 14 2
A= |4 22 € R*2.
16 13
Discussion: FEigenpairs of
1 {52 36
— AT A = —
B=A' A= {36 73}
are found from
3 3 4 4
sl =l =[s]-1a)
3 4

514 -3

uy = Avy /oy = [2,-2,117/3 giving the singular value factorization

[ eme 4

Thus 01 = 2, 03 = 1, and V. = 1 [ } Now u; = Au/oy = [1,2,2]7/3,

3210154—3

For an SVD we also need us which should be orthogonal to w; and us. ug =
[2,1,—2]T is such a vector and normalizing uz we obtain the singular value de-
composition

1 2 2112 0
1 1
A=c|2 2 1ffo1 5[2 _?,)]. (6.10)
2 1 -2] 10 O
Example 6.12 (Full row rank)
Find the SVF and SVD of
114 4 16] _ _ans
Al'w{z 22 13]€R '

Discussion: Since Ay = AT, where A is the matriz in Example 6.11 we can find
an SVF and SVD of Ay by simply transposing the corresponding factorization of
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A. Thus
1 2 2
A =UsVT —ysTpT = L3 A2 00y
54 =3|10 1 0|3
2 1 -2 (6.11)
1(3 4112 o1 1 2 2
o T\T __ TyrrT _ — _
=(U.2,V7) —V1E1U1—5[4 _3] [0 1}3{ 2 =2 1

Example 6.13 (r <n < m)
Find the SVD of

Discussion: Eigenpairs of

T .12 2
poara-|t ]

o[ =sl) mla)=ol]

and we find oy =2, 00 =0, Thusr =1, m=3, n=2 and

are derived from

1 0
1 |1 1
=10 0, ¥=[2], V=— .
0 0 ! H \/5[1 1]

We find wy = Avy /oy = 81/V/2, where s; = [1,1,0]T, and the SVF of A is given
by

1 1 1

A=~ (1) [2]5[1 1].

To find an SVD we need to extend u; to an orthonormal basis for R3. We first
extend s1 to a basis {s1, 82,83} for R3, apply the Gram-Schmidt orthogonalization
process to {s1, S2, 83}, and then normalize. Choosing the basis

a=[i] w=[i]. s=|i]
1 — ol’ 2 — ol’ 3 — il

we find from (26)

T T T

S5 w1 —-1/2 S3 W S3 W2 0
w1 = 81, W9 = 89— T wi = 1/2 , W3 = 83— T 1=~ 2= 10
wi Wi 0 wi wq w; wa 1
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Normalizing the w;’s we obtain u; = wi/||wils = [1/v2,1/v/2,0]7, uy =
wy/||lwslla = [-1/v/2,1/v/2,0]7, and uz = s3/||s3lla = [0,0,1]7. Therefore,
A=UXZVT, where
_[v2-yvzo 3,3 ,_ [2 0} 3,2 by 2.2
[1/0“5 16\/5(1)] ER™, XM:=|00| €RM, V: \/5[1_1} € R*?.
The method we used to find the singular value decomposition in the previous
examples and exercises can be suitable for hand calculation with small matrices,
but it is not appropriate as a basis for a general purpose numerical method. In
particular, the Gram-Schmidt orthogonalization process is not numerically stable,
and forming A* A can lead to extra errors in the computation. Standard computer
implementations of the singular value decomposition ([29] ) first reduces A to
bidiagonal form and then use an adapted version of the QR algorithm where the
matrix A* A is not formed. The QR algorithm is discussed in Chapter 13.

Exercise 6.14 (SVD examples)
Find the singular value decomposition of the following matrices

(a)AH}
1 1
(b) A= |2 2
2 2

Exercise 6.15 (More SVD examples)
Find the singular value decomposition of the following matrices

(a) A = ey the first unit vector in R™.
(b) A =eT the last unit vector in R™.

n

(c) A=[Tg3]

6.2 SVD and the Four Fundamental Subspaces

The singular vectors form orthonormal bases for the four fundamental subspaces
span(A), ker(A), span(A*), and ker(A™).

Theorem 6.16 (Singular vectors and orthonormal bases)
For positive integers m,n let A € C™*™ have rank r and a singular value decom-
position A = |uy,...,up]X|vy,...,v,]* = UXV™. Then the singular vectors
satisfy

Av;=ou;, i=1,...,r, Av;=0,i=r+1,...,n,

. . . . (6.12)
A'u;=ov;, i=1,...,r, A"u; =0, i=r+1,...,m.
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Moreover,
1. {u1,...,u,} is an orthonormal basis for span(A),
2. {tpi1,..., Uy} is an orthonormal basis for ker(A*), (6.13)
3. {v1,...,v.} is an orthonormal basis for span(A™), '
4. {vy41,...,0,} is an orthonormal basis for ker(A).

Proof. If A = UXV™ then AV = UX, or in terms of the block partition
(67) 14[‘/17 V2] = [Ul, Ug] [%1 8] . But then AV1 = UlEl, AV2 = 07 and this
implies the first part of (6.12). Taking conjugate transpose of A = UXV™ gives
A* = VETU* or A*U = V", Using the block partition as before we obtain
the last part of (6.12).

It follows from Theorem 6.5 that {Awi,...,Av,} is an orthogonal basis
for span(A) and {v,;41,...,V;,} is an orthonormal basis for ker(A). Applying
this theorem to AA™ it also follows that {A*uq,..., A%u,} is an orthogonal

basis for span(A*) and {w;41,..., Uy} is an orthonormal basis for ker(A*). By
(6.12) {wy,...,u,} is an orthonormal basis for span(A) and {vy,...,v,} is an
orthonormal basis for span(A*). 0O

Exercise 6.17 (Counting dimensions of fundamental subspaces)
Suppose A € C™*™, Show using SVD that

1. rank(A) = rank(A”").
2. rank(A) + null(A) = n,
3. rank(A) + null(A*) = m,
where null(A) is defined as the dimension of ker(A).

Exercise 6.18 (Rank and nullity relations)
Use Theorem 6.5 to show that for any A € C™*"

1. rank A = rank(A*A) = rank(AA"),
2. null(A*A) =null A, and null(AA*) = null(A").

Exercise 6.19 (Orthonormal bases example)
Let A and B be as in Example 6.11. Give orthonormal bases for span(B) and
ker(B).

Exercise 6.20 (Some spanning sets)
Show for any A € C™*"™ that span(A*A) = span(V1) = span(A*)
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Exercise 6.21 (Singular values and eigenpair of composite matrix)

Let A € C™*"™ with m > n have singular values o1, ...,0,, left singular vectors
Uy, ..., Uy, € C™, and right singular vectors vq,...,v, € C". Show that the
matric
0 A
C:= [A* 0]

has the n + m eigenpairs

{(Ulapl)v SERE) (Unapn)v (io—la ql)a R (70713 qn)7 (Oarn+1)a cey (07rm)}7

where

p; = [UL] q; = [u;z] Ti= [%j}’fori=1,--.7n and j=n+1,...,m.

6.3 A Geometric Interpretation

The singular value decomposition and factorization give insight into the geometry
of a linear transformation. Consider the linear transformation T : R™ — R™
given by Tz := Az where A € R™*". Assume that rank(A) = n. The function
T maps the unit sphere S := {z € R" : ||z]|]2 = 1} onto an ellipsoid € := AS =
{Az:z€ S} inR™

Theorem 6.22 (SVF ellipse)
Suppose A € R™" has rank r = n, and let A = U121V1T be a singular value
factorization of A. Then

. . 2 2
E=U.& whereé'::{y:[yl,...,yn]TGR":%—H-u}-%’zl}.
1 n

Proof. Supose z € S. Now Az = U2, V?Tz = Uy, where y := 2, V7T 2. Since
rank(A) = n it follows that V; = V is square so that V; V1 = I. But then
V11X 'y = z and we obtain

2 1,112 I i Y2
L= zl3 = VaZ i = Byl = 25+ + 25

1 n

This implies that y € E. Finally, € = Az = U121sz = Uy, where y € &
implies that £ =UE. 0O

2 2
The equation 1 = % st Zz describes an ellipsoid in R™ with semiaxes

1 n
of length o; along the unit vectors e; for j = 1,...,n. Since the orthonormal
transformation U,y — @ preserves length, the image £ = AS is a rotated ellipsoid
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X2
Y2

U1

X1

Figure 6.1. The ellipse y7/9+y5 =1 (left) and the rotated ellipse AS (right).

with semiaxes along the left singular vectors u; = Uej, of length 04, 7 =1,...,n.
Since Av; = oju; , for j = 1,...,n the right singular vectors defines points in S
that are mapped onto the semiaxes of £.

Example 6.23 (Ellipse)
Consider the transformation A : R? — R? given by the matriz

111 48
A'_%Ls 39]

in Example 6.10. Recall that o1 =3, 09 =1, u; = [3,4}]T/5 and ugy = [—4,3])T /5.
The ellipses y?/o? +y3 /o2 =1 and & = AS = UE are shown in Figure 6.1.
Since y = Ut x = [3/521 + 4/5x2, —4 /511 + 3/5x2]", the equation for the ellipse
on the right is
(R21+572)° (=571 + 3a2)’
9 1

:]_,

6.4 Determining the Rank of a Matrix Numerically

In many elementary linear algebra courses a version of Gaussian elimination, called
Gauss-Jordan elimination, is used to determine the rank of a matrix. To carry this
out by hand for a large matrix can be a Herculean task and using a computer and
floating point arithmetic the result will not be reliable. Entries, which in the final
result should have been zero, will have nonzero values because of round-off errors.
As an alternative we can use the singular value decomposition to determine rank.
Although success is not at all guaranteed, the result will be more reliable than if
Gauss-Jordan elimination is used.
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By Theorem 6.7 the rank of a matrix is equal to the number of nonzero
singular values and if we have computed the singular values, then all we have to
do is to count the nonzero ones. The problem however is the same as for Gaussian
elimination. Due to round-off errors none of the computed singular values are
likely to be zero.

6.4.1 The Frobenius norm

This commonly occuring matrix norm will be used here in a discussion of how
many of the computed singular values can possibly be considered to be zero. The
Frobenius norm, of a matrix A € C™*"™ is defined by

Al = (30 Jay 22 (6.14)
i=1 j=1

There is a relation between the Frobenius norm of a matrix and its singular
values. First we derive some elementary properties of this norm. A systematic
study of matrix norms is given in the next chapter.

Lemma 6.24 (Frobenius norm properties)

For any m,n € N and any matriz A € C"™*"
1 |A%F = Allr,
2. ||Al% = -1 lla;l3,
3. |lUA|r = ||[AV]||r = ||A||F for any unitary matrices U € C™*™ and
V e Cr*n,
4. |1AB||F < ||AllF||BllF for any B € C™*, k€N,
5. || Ax|2 < ||A|lr||x|2, for all x € C™.
Proof.

LolATE = 325 S @, = 3200, 205 ey = (A%

2. This follows since the Frobenius norm is the Euclidian norm of a vector,
lA]lF := ||[vec(A)]||2, where vec(A) € C™™ is the vector obtained by stacking
the columns of A on top of each other.

3. Recall that if U*U = I then ||Ux|z = ||£l:||2 for all # € C". Applying this
to each column a.; of A we find U A% Zj 1||Ua,j||2 =3 a3 =

| Al|%. Similarly, since VV™* = I we find HAVHF = ||[V*A™ ||l = ||A%||F
Al -

1= ||M



160 Chapter 6. The Singular Value Decomposition

4. Using the Cauchy-Schwarz inequality and 2. we obtain

m k m k
IAB7 =" lalbyl* <D > lla3llbl3 = Al 1B

i=1 j=1 i=1 j=1

5. Since ||v||p = ||v]|2 for a vector this follows by taking k = 1 and B = « in
4.

Theorem 6.25 (Frobenius norm and singular values)
We have ||A||p = \/o? + -+ + 02, where 01, ...,0, are the singular values of A.

Proof. Using Lemma 6.24 we find || A||p i |[U*AV ||p = |Z||r = /03 + -+ 02.
|

6.4.2 Low rank approximation

Suppose m > n > 1 and A € C"™*"™ has an ordered singular value decomposition
A=U[B]V*, where D = diag(o1,...,0,). We choose ¢ >0 and let 1 <r <n
be the smallest integer such that 62, + -+ + 02 < 2. Define A" :=U [B'| V",
where D' := diag(oy,...,0,,0,...,0) € R"™*". By Lemma 6.24

|A = A'llr = U [PP TV = I[PoP lllr = \/or +- -+ 02 <e
Thus, if € is small then A is near a matrix A’ of rank r. This can be used

to determine rank numerically. We choose an r such that \/oZ,, +---+ 02 is

“small”. Then we postulate that rank(A) = r since A is close to a matrix of rank
r.

The following theorem shows that of all m x n matrices of rank r, A’ is
closest to A measured in the Frobenius norm.

Theorem 6.26 (Best low rank approximation)
Suppose A € R™*™ has singular values o1 > -+- > o, > 0. For any r < rank(A)

we have
lA-Allp= min |A=Blr=/o7,+--+op.
BERM XN
rank(B)=r

For the proof of this theorem we refer to p. 322 of [29].
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Exercise 6.27 (Rank example)
Consider the singular value decomposition

03 3 1 _1 _1 1 6 0 0 . .
A-—41*1_%%%% 06 0|3 § 3
=la 1 |7 I 1T ITilooo0l||3F "3 3

03 3 bt t)loools "3 3

(a) Give orthonormal bases for span(A),span(A”), ker(A), ker(A”) andspan(A)*L.
(b) Ezplain why for all matrices B € R*3 of rank one we have |A — B||r > 6.

(¢) Give a matriz Ay of rank one such that ||A — Aq||r = 6.

Exercise 6.28 (Another rank example)
Let A be the n X n matrix that for n = 4 takes the form

1-1-1-1
_ o 1-1-1
A{o 0 11}

0 0 0 1

Thus A is upper triangular with diagonal elements one and all elements above the
diagonal equal to —1. Let B be the matriz obtained from A by changing the (n,1)
element from zero to —22~™.

(a) Show that Bz = 0, where  := [2"=2,2"=3 ... 20 1], Conclude that B is
singular, det(A) = 1, and ||A — B||r = 227™. Thus even if det(A) is not
small the Frobenius norm of A — B is small for large n, and the matriz A
is very close to being singular for large n.

(b) Use Theorem 6.26 to show that the smallest singular vale o, of A is bounded
above by 227 ™.

6.5 The Minmax Theorem for Singular Values and
the Hoffman-Wielandt Theorem

We have a minmax and maxmin characterization for singular values.

Theorem 6.29 (The Courant-Fischer theorem for singular values)
Suppose A € C™*™ has singular values 01,02, ...,0, ordered so that o1 > --- >
on- Then fork=1,....,n
- |Axll; || A,
dim(8)=n—k+1 ;% |zl dim(S)=k ii‘g llz|2

(6.15)
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Proof. Since

|Az|5 _ (Az)*(Az) =z (A"A)z

is the Rayleigh quotient R+ a(x) of A* A, and since the singular values of A are

the nonnegative square roots of the eigenvalues of A* A, the results follow from
the Courant-Fischer Theorem for eigenvalues, see Theorem 5.29. 0O

By taking k = 1 and k = n in (6.15) we obtain for any A € C™*"
| Az||2 _ Az,

n —

(6.16)

01 = max

n ? n :
2 el et [l

This follows since the only subspace of C™ of dimension n is C" itself.
The Hoffman-Wielandt Theorem, see Theorem 5.32, for eigenvalues of Her-
mitian matrices can be written

Dol = NP < A= BlE =)0 Jai; — byl (6.17)
j=1 i=1 j=1

where A, B € C"*" are both Hermitian matrices with eigenvalues A\; > --- > A,
and p1 > -+ > g, respectively.
For singular values we have a similar result, see also Section 11.6.

Theorem 6.30 (Hoffman-Wielandt theorem for singular values)
For any m,n € N and A, B € C™*" we have

n
> 18; = o* < ||A - B 7. (6.18)

Jj=1

where vy > -+ > oy, and By > --- > B, are the singular values of A and B,
respectively.

6.6 Proof of the Hoffman-Wielandt Theorem for
Singular Values

We apply the Hoffman-Wielandt Theorem for eigenvalues to the Hermitian ma-

trices
0o A 0 B

A* 0 B* 0
If C and D has eigenvalues Ay > -+ > A4 and pq > -+ > g, respectively
then

C = { ] and D := { ] € Crminxmin,

m—+n

> N —wl* < C - D3 (6.19)

j=1
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Suppose A has rank r and singular value decomposition UXV™*. We use (6.12)
and determine the eigenpairs of C' as follows.

[ 0 A_ _’U/i_ _ [ A’Ui | o —Oéz"ll/z' o u; i—1

_A* 0_ _’Ui_ - _A*ui_ o _Oéi’Ui = & V; ’ t=5 A

0 Al u; 1 _ -—A'Ui oy o u; i=1 r

14>'< 0 _7’1}1',_ - _A*ui o ;U5 - ' —V; ’ T

[0 Alfu] _[ 0] _[0 =0 % i=r+1 m

|[A* 0| [0| |A'u;| |0] "|O0]’ o e

[0 A]Jo] [Av;] [0 —0 0 1

A o] lv] =07 o] 0w i=r RN
Thus C' has the 2r eigenvalues oy, —aq,...,qp, —a, and m + n — 2r additional
zero eigenvalues. Similarly, if B has rank s then D has the 2s eigenvalues
61, —B1,-..,08s,—Bs and m + n — 2s additional zero eigenvalues. Let

t := max(r, s).

Then
)\12"'2)\m+n:a12 Za ZO :OZ_OétZ' Z—al,
We find Em+"|/\ —u3|2—221 e — B;|* and
0 A - B
IC=DIE=1| 4+ _ g 7 = 1B~ A|%+(B-A)|% = 2B - All3.

But then (6.19) implies Z§=1|ai —Bil* < ||B—-AJj%. Sincet <n and a; = B; =0
fori=t+1,...,n we obtain (6.18).

6.7 Review Questions
6.7.1 Consider an SVD and an SVF of a matrix A.

e What are the singular values of A?

how is the SVD defined?

e how can we find an SVF if we know an SVD?
e how can we find an SVD if we know an SVF?

what are the relations between the singular vectors?

which singular vectors form bases for span(A) and ker(A*)?



164 Chapter 6. The Singular Value Decomposition

6.7.2 How are the Frobenius norm and singular values related?
6.7.3 State the Courant-Fischer theorem for singular values.

6.7.4 State the Hoffman-Wieland theorem for singular values.



Chapter 7
Matrix Norms

To measure the size of a matrix we can use a matrix norm. In this chapter we
initiate a systematic study of matrix norms.

7.1 Matrix Norms

For simplicity we consider only matrix norms on the vector space (C™*™, C). All
results also holds for (R™*™ R).

Definition 7.1 (Matrix norms)
Suppose m,n are positive integers. A function ||-||: C™*™ — R is called a matrix
norm on C™*" if for all A,B € C™*" and all c € C

1. JA|l > 0 with equality if and only if A =0. (positivity)
2. ||cAll = || |A]l. (homogeneity)
3. [[A+ B < || Al + || BY|. (subadditivity)

A matrix norm is simply a vector norm on the finite dimensional vector space
(Cm*n C) of m x n matrices. Adapting Theorem 0.19 to this situation gives

Theorem 7.2 (Matrix norm equivalence)
All matriz norms are equivalent. Thus, if ||-|| and ||-||' are two matriz norms on
C™*™ then there are positive constants p and M such that

pll Al < Al < M||A]

holds for all A € C™*". Moreover, a matrix norm is a continuous function.

165
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Any vector norm ||-||yy on C™" defines a matrix norm on C™*™ given by
[|A]l := ||[vec(A)|lv, where vec(A) € C™" is the vector obtained by stacking the
columns of A on top of each other. In particular, to the p vector norms for
p = 1,2, 00, we have the corresponding sum norm, Frobenius norm, and max
norm defined by

m n m n
lAlls =303 laigl. [Allr = (323 laP)' "%, 4l = maxag|. (7.0
i=1 j=1 ’

i=1 j=1

Ferdinand Georg Frobenius, (1849-1917).

Of these norms the Frobenius norm is the most useful. Some of its properties
were derived in Lemma 6.24 and Theorem 6.25.

7.1.1 Consistent and subordinate matrix norms

Since matrices can be multiplied it is useful to have an analogue of subadditivity
for matrix multiplication. For square matrices the product AB is defined in a
fixed space C"*", while in the rectangular case matrix multiplication combines
matrices in different spaces. The following definition captures this distinction.

Definition 7.3 (Consistent matrix norms)
A matriz norm is called consistent on C"*" if

4. [[AB| < [|A| || B (submultiplicativity)

holds for all A, B € C™"*". A matriz norm is consistent if it is defined on C™*™
for all m,n € N, and 4. holds for all matrices A, B for which the product AB is
defined.

Clearly the three norms in (7.1) are defined for all m,n € N. From Lemma 6.24
it follows that the Frobenius norm is consistent.
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Exercise 7.4 (Consitency of sum norm?)
Show that the sum norm is consistent.

Exercise 7.5 (Consitency of max norm?)
Show that the maz norm is not consistent by considering [11].

Exercise 7.6 (Consitency of modified max norm)

(a) Show that the norm
|l = Vimnl| Al A e Cm
18 a consistent matriz norm.
(b) Show that the constant \/mn can be replaced by m and by n.
For a consistent matrix norm on C"*" we have the inequality
HAk'|| < ||A||* for k € N. (7.2)

When working with norms one often has to bound the vector norm of a
matrix times a vector by the norm of the matrix times the norm of the vector.
This leads to the following definition.

Definition 7.7 (Subordinate matrix norms)
Suppose m,n € N are given, let || || on C™ and || ||g on C™ be vector norms, and let

I I be @ matriz norm on C™*™. We say that the matriz norm || || is subordinate
to the vector norms || || and || |5 if ||Az| < ||A|||Az| for all A € C™*™ and all
xeC" If | || = llg then we say that || || is subordinate to || ||.

By Lemma 6.24 we have ||Az|2 < ||A||r||2, for all & € C". Thus the

Frobenius norm is subordinate to the Euclidian vector norm.
Exercise 7.8 (What is the sum norm subordinate to?)

Show that the sum norm is subordinate to the l1-norm.

Exercise 7.9 (What is the max norm subordinate to?)

(a) Show that the maz norm is subordinate to the oo and 1 norm, i. e., || Ax|| o <
lAllazl|x||1 holds for all A € C™*™ and all x € C™.

(b) Show that if | Allar = lawil, then |[Aeilloc = [[Allarllex]lr-

Az o
[ER

(c) Show that || Allp = maxg.o
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7.1.2 Operator norms

Corresponding to vector norms on C™ and C™ there is an induced matrix norm
on C™*"™ which we call the operator norm. It is possible to consider one vector
norm on C™ and another vector norm on C™, but we treat only the case of one
vector norm defined on C” for all n € NY.

Definition 7.10 (Operator norm)
Let || || be a vector norm defined on C™ for all n € N. For given m,n € N and
A € C™*™ we define

A
IA] = max 1421
z#£0 |||

We call this the operator norm corresponding to the vector norm || ||.

(7.3)

With a risk of confusion we use the same symbol for the operator norm
and the corresponding vector norm. Before we show that the operator norm is a
matrix norm we make some observations.

1. It is enough to take the max over subsets of C". For example

4]l = max | Aa . 7.9
The set

S:={zeC":|z| =1} (7.5)
is the unit sphere in C™ with respect to the vector norm || ||. It is enough to

take the max over this unit sphere since

A
| A :maXHA(i)H = max || Ayl
220 x| =20 I 2] lyll=1

2. The operator norm is subordinate to the corresponding vector norm. Thus,

|Az| < ||A|l||lx]| for all A € C™*™ and x € C". (7.6)

3. We can use max instead of sup in (7.3). This follows by the following com-
pactness argument. The unit sphere S given by (7.5) is bounded. It is also
finite dimensional and closed, and hence compact. Moreover, since the vec-
tor norm || || : § — R is a continuous function, it follows that the function
f:8 — Rgiven by f(x) = || Ax|| is continuous. But then f attains its max
and min and we have

|A]| = [|Az*|| for some z* € S. (7.7)

9In the case of one vector norm || || on C™ and another vector norm || ||g on C* we would
|Az]

define ||A|| := maxz-o Tzl5-
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Lemma 7.11 (The operator norm is a matrix norm)
For any vector norm the operator norm given by (7.3) is a consistent matriz norm.
Moreover, || I|| = 1.

Proof. We use (7.4). In 2. and 3. below we take the max over the unit sphere S
given by (7.5).

1. Nonnegativity is obvious. If ||A| = 0 then ||Ay|| = 0 for each y € C™. In
particular, each column Ae; in A is zero. Hence A = 0.

2. [lcAll = maxg[|cAz|| = maxg|c| [|Az|| = | | A].
3. [[A+ B = max || (A + B)z| < maXmHAmll +maxg || Bz|| = ||A] + | B].
— lAB=| _ lAB=z| _ lABz]|| | Bz|
4. ||[AB|| = maxg+o ”AHT‘P = maxﬁ;f‘o Tl = MaXBa#0 Bz Ja]
xT
< max o Ll mavey 1o UL — | 4] | B].
That ||I|| = 1 for any operator norm follows immediately from the definition. 0O

Since ||I||r = y/n, we see that the Frobenius norm is not an operator norm
for n > 1.

7.1.3 The operator p-norms

Recall that the p or £, vector norms (10) are given by

n
Z 1/p

||m||P = ( _ 1‘xj|p) , P > 17 HwHOO = 121jagxn|xj|
J:

The operator norms || ||, defined from these p-vector norms are used quite fre-
quently for p = 1,2, 00. We define for any 1 < p < oo

IIApr

o [z, "yl

Al = x ([ Ayllp- (7.8)

For p = 1,2, 00 we have explicit expressions for these norms.

Theorem 7.12 (onetwoinfnorms)
For A € C"™*"™ we have

AL := 1I£Ja§XnHAej”1 = 1rgn]agxnz‘ak’j|’ (maz column sum)
IAllz := o1, (largest singular value of A)  (7.9)
Al =  max ||ek All; = max Z\ak,ﬂ. (mazx row sum,)

<k<m 1<k<m



170 Chapter 7. Matrix Norms

The two-norm || Al|2 is also called the spectral norm of A.

Proof. The result for p = 2 follows from the minmax theorem for singular values.

Indeed, by (6.16) we have 01 = maxzo ”l":ﬁ!?

. For p = 1, co we proceed as follows:

(a) We derive a constant K, such that ||Az|, < K, for any € C" with |||/, =
1.

(b) We give an extremal vector y* € C™ with |ly*||, = 1 so that ||Ay*||, = K.
It then follows from (7.8) that ||A|, = [|[Ay*||, = K.

1-norm: Define Ky, ¢ and y* by K; := [|Ae.|1 = maxi<;<,||Aej|/; and y* :=
€., a unit vector. Then ||y*||; = 1 and we obtain

(a)

m n m n n m
Ay =Y D argas] <D0 argllesl =D (D laws|)la| < K.
k=1 j=1 k=1j=1 j=1 k=1
(b) [|Ay*|1 = K.
oo-norm: Define Koo, r and y* by Ko := |el Al1 = maxi<p<m|ef All; and
y*i=[e7? ... e T where arj = |arj|ei97 forj=1,...,n.

() [[Az]loo = maxichem | X5 arjz;| < maxicpem 2oy lang||7)] < Koo

(b) [ Ay*[loc = maxiicm | Yy arje™%| = K.

PR —i0;
The last equality is correct because |Z;.L:1 ap;e”" J‘ < Z;’:l\akﬂ < Ky
with equality for k = r.

Example 7.13 (Compare onetwoinfnorms)
The largest singular value of the matriz A == &[4 4 18], is o1 =2 (¢f. Ezam-
ple 6.12 ). We find

29 37
1Al =72, 1Alz=2, Al = 3.

We observe that the values of these norms do not differ by much.

In some cases the spectral norm is equal to an eigenvalue of the matrix.
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Theorem 7.14 (Spectral norm)
Suppose A € C™" ™ has singular values o1 > o9 > --- > 0, and eigenvalues
A1l > [A2| = -+ > |[Anl|. Then

_ 1

IAlls = o1 and [ A7 > = (7.10)
1

lAllz = A1 and ||A71H2 = if A is symmetric positive definite, (7.11)
1

|All2 = [M| and |AY|2 = EWE if A is normal. (7.12)

—1 . .
For the norms of A~ we assume of course that A is nonsingular.

Proof. Since 1/0,, is the largest singular value of A~', (7.10) follows. By Theorem
6.9 the singular values of a symmetric positive definite matrix (normal matrix) are
equal to the eigenvalues (absolute value of the eigenvalues). This implies (7.11)
and (7.12). 0O

The following result is sometimes useful.

Theorem 7.15 (Spectral norm bound)
For any A € C™*™ we have ||A||3 < [|A]|1]|Allco-

Proof. Let (0%, v) be an eigenpair for A* A corresponding to the largest singular
value o of A. Then

IAZ vl = o®[lv]l = llo*v]ls = A" Av|ly < A" |1 All1 ][]

Observing that ||A*||1 = [|A]lcc by Theorem 7.12 and canceling |[v||; proves the
result. 0O

Exercise 7.16 (Spectral norm)
Let m,n € N and A € C™*". Show that

[Allz =~ m

ax *Ax|.
lzll2=llyll2=1

ly" Az

Exercise 7.17 (Spectral norm of the inverse)
Suppose A € C**™ is nonsingular. Use (7.10) and (6.16) to show that

- z|2
A7 Yy = max I .
472 = mae R
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Exercise 7.18 (p-norm example)
Let
2 -1
Y
Compute || Al|, and ||A™Y|, forp=1,2,00.

7.1.4 Unitary invariant matrix norms

Definition 7.19 (Unitary invariant norm)
A matriz norm || || on C™*"™ is called unitary invariant if |[UAV| = ||A]| for
any A € C"™*™ and any unitary matrices U € C™*™ and V € C**",

When an unitary invariant matrix norm is used, the size of a perturbation
is not increased by a unitary transformation. Thus if U and V are unitary then
U(A+ E)V =UAV + F, where ||F| = || E|.

It follows from Lemma 6.24 that the Frobenius norm is unitary invariant.
We show here that this also holds for the spectral norm. It can be shown that the
spectral norm is the only unitary invariant operator norm, see [13] p. 308.

Theorem 7.20 (Unitary invariant norms)
The Frobenius norm and the spectral norm are unitary invariant. Moreover | A*||Fp =
[AllF and | A7z = [|A]2-

Proof. The results for the Frobenius norm follow from Lemma 6.24. Suppose
A € C™"™ and let U € C™*™ and V € C™*" be unitary. Since the 2-vector
norm is unitary invariant we obtain

[UAlls = max [|UAz[s = max [|Az[ls = A
lzll2=1 lzll2=1

Now A and A* have the same nonzero singular values, and it follows from The-
orem 7.12 that ||A*|l2 = ||All2. Moreover V* is unitary. Using these facts we
find

[AV |2 = [[(AV)*[l2 = [V A%[|2 = [[A%[|2 = [|Al]2.

Exercise 7.21 (Unitary invariance of the spectral norm)
Show that ||V A|2 = || All2 holds even for a rectangular V' as long as V'V = 1.

Exercise 7.22 (||AU]||2 rectangular A)
Find A € R**? and U € R>*! with UTU = T such that ||AU||y < ||A|l2. Thus,
in general, |AU ||2 = ||A|l2 does not hold for a rectangular U even if UU = I.
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Exercise 7.23 (p-norm of diagonal matrix)
Show that ||All, = p(A) := max|\;| (the largest eigenvalue of A), 1 < p < oo,
when A is a diagonal matriz.

Exercise 7.24 (spectral norm of a column vector)
A vector a € C™ can also be considered as a matriz A € C™1.

(a) Show that the spectral matriz norm (2-norm) of A equals the Euclidean vector
norm of a.

(b) Show that ||All, = |lall, for 1 <p < oco.

7.1.5 Absolute and monotone norms

A vector norm on C" is an absolute norm if ||z|| = || |z| || for all x € C". Here
|z| := [|z1],...,|zn]]T, the absolute values of the components of z. Clearly the
vector p norms are absolute norms. We state without proof (see Theorem 5.5.10 of
[13]) that a vector norm on C” is an absolute norm if and only if it is a monotone
norm, i.e.,

lzi| <lwil, i=1,...,n = |lz|| < ||ly||, for all z,y € C".
Absolute and monotone matrix norms are defined as for vector norms.

Exercise 7.25 (Norm of absolute value matrix)
If A € C™ ™ has elements a;j, let |A] € R™*™ be the matriz with elements |a;;]|.

(a) Compute |A| if A= [ 1—1’_1 1_2, } . i=+/—1.

—i
(b) Show that for any A € C™*" || Allr = [ |All[r, [|All, = [ |Al[lp forp = 1, 00.
(¢) Show that for any A € C™*™ ||All2 < |||A]||2-

(d) Find a real symmetric 2 x 2 matriz A such that ||All2 < || |A4] ||2.

The study of matrix norms will be continued in Chapter 8.

7.2 The Condition Number with Respect to
Inversion

Consider the system of two linear equations

X1 + o = 20
r1 + (1 — 10716)1’2 = 20-—10"15
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whose exact solution is z1 = xo = 10. If we replace the second equation by
o1+ (1 4+ 107102y =20 — 10715,

the exact solution changes to 1 = 30, 2 = —10. Here a small change in one of
the coefficients, from 1 —10716 to 141076, changed the exact solution by a large
amount.

A mathematical problem in which the solution is very sensitive to changes
in the data is called ill-conditioned. Such problems can be difficult to solve on
a computer.

In this section we consider what effect a small change (perturbation) in the
data A,b has on the solution  of a linear system Ax = b. Suppose y solves
(A+ E)y = b+e where E is a (small) n X n matrix and e a (small) vector. How
large can y—x be? To measure this we use vector and matrix norms. In this
section || || will denote a vector norm on C™ and also a matrix norm on C™**"
which for any A, B € C"*™ and any « € C" satisfy

IAB|| < [|A[|[|B]| and [[Az| <[ A]|z]

This holds if the matrix norm is the operator norm corresponding to the given
vector norm, but is also satisfied for the Frobenius matrix norm and the Euclidian
vector norm. This follows from Lemma 6.24.

Suppose x and y are vectors in C" that we want to compare. The difference
ly — x| measures the absolute error in y as an approximation to «, while
lly — | /||z| and ||y — x||/||y|| are measures for the relative error.

We consider first a perturbation in the right-hand side b.

Theorem 7.26 (Perturbation in the right-hand side)
Suppose A € C"*™ is nonsingular, b,e € C", b # 0 and Ax = b, Ay = b+e.
Then

1 el sl lel e - g
RS [ SEK@Rp K@=lalia™. (@13

Proof. Subtracting Az = b from Ay = b+e we have A(ly —xz) =eory—x =
A~'e. Combining |y —z| = A7 e < |A7"| |le]l and [|b]| = |Az| < ||A]| |||
we obtain the upper bound in (7.13). Combining |le|| < [|A|||ly — z| and ||z| <
||A7Y|| ||b|| we obtain the lower bound. O

Consider (7.13). |le|/||b|| is a measure of the size of the perturbation e
relative to the size of b. The upper bound says that ||y — z||/|z| in the worst
case can be K(A) = ||A|[|A™"|| times as large as |le|/||bl|. K(A) is called
the condition number with respect to inversion of a matrix, or just the
condition number, if it is clear from the context that we are talking about solving



7.2. The Condition Number with Respect to Inversion 175

linear systems or inverting a matrix. The condition number depends on the matrix
A and on the norm used. If K(A) is large, A is called ill-conditioned (with
respect to inversion). If K(A) is small, A is called well-conditioned (with
respect to inversion). We always have K(A) > 1. For since ||| = ||[Tx| < || I]|]|z||
for any = we have || I]| > 1 and therefore | A| |A™Y| > |AA™Y| = || I]| > 1.

Since all matrix norms are equivalent, the dependence of K(A) on the norm
chosen is less important than the dependence on A. Sometimes one chooses the
spectral norm when discussing properties of the condition number, and the /1,
{, or Frobenius norm when one wishes to compute it or estimate it.

The following explicit expressions for the 2-norm condition number follow
from Theorem 7.14.

Theorem 7.27 (Spectral condition number)

Suppose A € C™"*™ is nonsingular with singular values o1 > o9 > -+ > o, > 0
and eigenvalues |A1| > |Ao| > --- > |An| > 0. Then Ky(A) := ||Al]z]|A7 |2 =
01/0n. Moreover,

A1/ An, if A is symmetric positive definite,

7.14
[Ail/|Anl, if A is normal. ( )

K>(A) = {
It follows that A is ill-conditioned with respect to inversion if and only if
o1/oy is large, or A1/, is large when A is symmetric positive definite.
Suppose we have computed an approximate solution y to Ax = b. The
vector r(y) := Ay — b is called the residual vector, or just the residual. We can
bound —y in term of r.

Theorem 7.28 (Perturbation and residual)
Suppose A € C"*" b e C", A is nonsingular and b # 0. Let r(y) = Ay — b for
anyy € C". If Ax = b then

el _ sl _ o @)l
&A@ ol = el = ATl (7.15)

Proof. We simply take e = r(y) in Theorem 7.26. 0O

If A is well-conditioned, (7.15) says that ||y — x||/||z| ~ ||r(y)|/[/b]|. In
other words, the accuracy in y is about the same order of magnitude as the
residual as long as ||b|| &~ 1. If A is ill-conditioned, anything can happen. We can
for example have an accurate solution even if the residual is large.

Consider next the effect of a perturbation in the coefficient matrix. Suppose
A E € C"*" with A nonsingular. We like to compare the solution x and y of
the systems Az = b and (A + E)y = b. We expect A + E to be nonsingular
if the elements of E are sufficiently small and we need to address this question.
Consider first the case where A = I.
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Theorem 7.29 (Nonsingularity of perturbation of identity)
Suppose B € C"*™ and |B| < 1 for some consistent matriz norm on C"*™,
Then I — B is nonsingular and

1 _ 1
—— < |(I-B)!| < B[

7.16
T 1B] (7.16)

Proof. Suppose I — B is singular. Then (I — B)x = 0 for some nonzero € C",
and x = Bz so that ||z| = || Bz| < ||B||||z|]. But then ||B]| > 1. It follows that
I — B is nonsingular if | BJ| < 1. Next, since

1]l = (I = B)(I = B)™"|| < |lI - BlI(I - B)™|
< (I + IBINIT = B)~H,

and since || I]| > 1, we obtain the lower bound in (7.16):

1 11 .
< < (1 - B)7|. (7.17)
L+ 18] =~ T+ B

Taking norms and using the inverse triangle inequality in
I=I-B(I-B)'=(I-B)'-B(I-B)!
implies
1| = (L = B)~"| =[BT = B)~'|| = (1= | BI)II(T — B)~'||.

If the matrix norm is an operator norm then || I]| = 1 and the upper bound follows.
We show in Section 8.4 that the upper bound also holds for the Frobenius norm,
and more generally for any consistent matrix norm on C"*". O

Theorem 7.30 (Nonsingularity of perturbation)

Suppose A, E € C"*", b € C" with A invertible and b# 0. If r:= |A'E|| < 1
for some matriz norm consistent on C"*" then A+ E is nonsingular. If Ax = b
and (A+ E)y = b then

PR 1E|
o < AT E| < K(A)i— (7.18)
ol 14]
ly - 2| 12|
<2K(A)+—-. 7.19
Tl SNV (7-19)

In (7.19) we have assumed that r < 1/2.
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Proof. Since r < 1 Theorem 7.29 implies that the matrix I — B:= I+ A™'E
is nonsingular and then A + F = A(I + A_lE) is nonsingular. Subtracting
(A+ E)y = b from Az = b gives A(x —y) = Ey or ¢ —y = A" 'Ey. Taking
norms and dividing by ||y|| proves (7.18). Solving  —y = A~ Ey for y we obtain
y={I+A'E) 'x. By (7.16)

]

<IIT+A'E)? <=
Iyl < € )l < T = <

2||].
But then (7.19) follows from (7.18). 0O

In Theorem 7.30 we gave bounds for the relative error in & as an approx-
imation to y and the relative error in y as an approximation to x. |E|/|A]
is a measure for the size of the perturbation E in A relative to the size of A.
The condition number again plays a crucial role. ||y — z||/|y| can be as large
as K(A) times ||E|/||A|l. It can be shown that the upper bound can be at-
tained for any A and any b. In deriving the upper bound we used the inequality
|A'Ey|| < [|[A| | E| |ly||. For a more or less random perturbation E this
is not a severe overestimate for ||[A"'Ey|. In the situation where E is due to
round-off errors (7.18) can give a fairly realistic estimate for ||y — x||/||y]|.

We end this section with a perturbation result for the inverse matrix. Again
the condition number plays an important role.

Theorem 7.31 (Perturbation of inverse matrix)

Suppose A € C™*™ s nonsingular and let ||-|| be a consistent matriz norm on
Cr<". If E € C™™ s so small that 7 := |A"'E|| < 1 then A+ E is nonsingular
and

-1
WA+Erwg”ﬁ4W (7.20)
If r <1/2 then
A+E)t-A"! E
A+ B2 A oL a2)

Proof. We showed in Theorem 7.30 that A + F is nonsingular and since (A +
E)"'=(I+A'E)""A™! we obtain

A~

A+E) Y <|I+A'E) A7 < ———1
(¢ ) <K ) H*1_HA*EH

and (7.20) follows. Since

(A+E)'-A'=(I-A"A+E)(A+E)'=-A"'"E(A+E)™*
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we obtain by (7.20)

B - - _ E| A"
4+ B - a7 < | iBliA -+ By < kBl A

Dividing by ||A™!| and setting r = 1/2 proves (7.21). O

Exercise 7.32 (Sharpness of perturbation bounds)

The upper and lower bounds for ||y — x||/||z| given by (7.13) can be attained for
any matriz A, but only for special choices of b. Suppose y 4 and y 4—1 are vectors
with |y 4ll = |ya-:ll =1 and | Al = Ayl and A7 = A7 y 41

(a) Show that the upper bound in (7.13) is attained if b= Ay, and e =y 1.
(b) Show that the lower bound is attained if b=y, -1 and e = Ay 4.

Exercise 7.33 (Condition number of 2. derivative matrix)
In this exercise we will show that for m > 1
4 1
—(m+1)? = 2/3 < condy(T) < 5(m +1)%, p=1,2,00, (7.22)
™
where T := tridiag(—1,2,—1) € R™™ and cond,(T) := ||T||,|T ", is the p-
norm condition number of T. The p matriz norm is given by (7.8). You will need

the explicit inverse of T' given by (1.10) and the eigenvalues given in Lemma 3.8.
As usual we define h :=1/(m +1).

a) Show that for m >3

1( A2, m odd,
condy (T') = conds(T) = 3 { h=2—1, m even. (7.23)
and that condy (T') = cond(T) = 3 for m = 2.
b) Show that for p =2 and m > 1 we have
— o2 (T 2 (Th
conds(T) = cot ( 5 ) = 1/tan ( 5 )
c) Show the bounds
4, 2 4,

Hint: For the upper bound use the inequality tanx > x valid for 0 < x < 7/2.
For the lower bound we use the inequality cot® z > m% — % for x > 0. This
can be derived for 0 < x < 7 by first showing that the second derivative of
cot? x is positive and then use Taylor’s theorem.

d) Show (7.22).
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7.3 Proof that the p-Norms are Norms
We want to show

Theorem 7.34 (The p vector norms are norms)
Let for 1 <p<oo and x € C"

1/p
el = Z\ 2 )'77, @l = max [z

Then for all1 <p < oo, x,y € C" and alla € C

1. ||z||, > 0 with equality if and only if € = 0. (positivity)
2. |laz|, = |al ||| (homogeneity)
3. e +yllp <Mzl + |yllp- (subadditivity)

Positivity and homogeneity follows immediately. To show the subadditivity
we need some elementary properties of convex functions.

Definition 7.35 (Convex function)
Let I C R be an interval. A function f: 1 — R is convex if

F(L=XNz1 4+ Azz) < (1= A)f(z1) + Af(22) (7.25)
for all x1,x9 € I with x1 < x5 and all X € [0,1]. The sum 2?21 Aja; is called a
convex combination of z1,...,z, if \; >0 forj=1,...,n and 3°5_; \; = 1.

The convexity condition is illustrated in Figure 7.1.

Lemma 7.36 (A sufficient condition for convexity)
If f € C?[a,b] and f"(z) > 0 for x € [a,b] then f is convez.

Proof. We recall the formula for linear interpolation with remainder, (cf a book
on numerical methods) For any a < z7 < x < xg < b there is a ¢ € [z1, z2] such
that

fla) = 2 flan) + o faa) + (o — )@ = 2)1(0)2
= (L= Nf () + A () + (a2 = 2)PAA = D" ()/2, A= —

Since A € [0,1] the remainder term is not positive. Moreover,

Xro — X xr — T
T = r1 + xo = (1 = Nz + Axg
T2 — T1 T2 —T1
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(1= X)f(z1) + Af(x2)

Figure 7.1. A convex function.

so that (7.25) holds, and f is convex. O

The following inequality is elementary, but can be used to prove many non-
trivial inequalities.

Theorem 7.37 (Jensen’s inequality)
Suppose I € R is an interval and f : I — R is convex. Then for alln € N, all
Aoy Ap with X\; >0 forj=1,....n cde;.L:l)\j =1, and all z1,...,2p €1

Z)\zj Si

Proof. We use induction on n. The result is trivial for n = 1. Let n > 2, assume
the inequality holds for n — 1, and let Aj;,2; for j = 1,...,n be given as in the
theorem. Since n > 2 we have \; < 1 for at least one 7 so assume without loss
of generality that Ay < 1, and define u := }77_, ﬁ—i\lzj Since Y27 oA =1—X\
this is a convex combination of n — 1 terms and the induction hypothesis implies
that f(u) < >0, 1i—;\lf(z]) But then by the convexity of f

FO T Nz) = FOuz + (1= A)u) < M fz) + (1= M) f(u) < SN f(z)
j=1 =

and the inequality holds for n. O
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Corollary 7.38 (Weighted geometric/arithmetic mean inequality)

Suppose Z?Zl Aja; is a convex combination of nonnegative numbers ay,...,any.
Then
n
A1 A2 An )
ajtay? - -ant < Ajaj, (7.26)

where 0° := 0.

Proof. The result is trivial if one or more of the a;’s are zero so assume a; > 0
for all j. Consider the function f : (0,00) given by f(z) = —logx. Since f"(z) =
1/2% > 0 for x € (0,00), this function is convex. By Jensen’s inequality

—log (Z )\jaj) < — Z Ajlog(a;) = —log (ai\1 .. ~a2”)
j=1 j=1

or log (ai‘l e a;\L") <log ( Z;.lzl Aj aj). The inequality follows since exp(log z) = =
for > 0 and the exponential function is monotone increasing. O

Taking A\; = % for all j in (7.26) we obtain the classical geometric/arith-
metic mean inequality

1 n
(a1a2~~~an)% < EZaj. (7.27)
j=1

Corollary 7.39 (Hélder’s inequality)
Forx,ycC" and 1 <p <o

n

11
> lzjysl < lelpllyllq, where -~ + = =1.
= P g

Proof. We leave the proof for p = 1 and p = oo as an exercise so assume
1 < p < oo. For any a,b > 0 the weighted arithmetic/geometric mean inequality

implies that
11 1 1 1
arbi < —a+ —b, where — + — =1. (7.28)
b q p q
If © = 0 or y = O there is nothing to prove so assume that both & and y are

nonzero. Using 7.28 on each term we obtain

1
A A
jay3;] = ( _
|a:||p||y||qZ 9 Z i) i) <22 Glel * ol

Jj=1
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and the proof of the inequality is complete. 0O

Corollary 7.40 (Minkowski’s inequality)
Forxz,yeC"and 1 <p< o0

12+ yllp < ll2llp + lyllp-

Proof. We leave the proof for p = 1 and p = oo as an exercise so assume
1 < p < oo. We write

n n n
e +yllh = o +yslP <Y Jaglleg +yP 7+ lyslles + oy,

j=1 j=1 j=1
We apply Holder’s inequality with exponent p and ¢ to each sum. In view of the
relation (p — 1)q = p the result is
|z +ylly < llllplz +yl2/ + llyllpllz + yl5/* = (), + [yl e+ yl5

and canceling the common factor, the inequality follows. 0O

It is possible to characterize the p-noms that are derived from an inner
product. We start with the following identity.

Theorem 7.41 (Parallelogram identity)
For all x,y in a real or complex inner product space

e+ ylI* + [l — ylI* = 2]l + 2[ly|*. (7.29)

Proof. We set a = £1 in (22) and add the two equations. 0O

Theorem 7.42 (When is a norm an inner product norm?)

To a given norm on a real or complex vector space V there exists an inner product
on V such that {(x,x) = ||z||? if and only if the parallelogram identity (7.29) holds
forallx,yeV.

Proof. If (x,x) = ||z then Theorem 7.41 shows that the parallelogram identity
holds. For the converse we prove the real case and leave the complex case as an
exercise. Suppose (7.29) holds for all @,y in the real vector space V. We show
that

(le+yll> = lz—yl*), xz,yecV (7.30)

> =

<$,y> =
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defines an inner product on V. Clearly 1. and 2. in Definition 0.20 hold. The
hard part is to show 3. We need to show that

<w7 Z> + <y7 Z> = <w+y7 Z>’ w7y7'z 6 V? (7‘31)
(ax,y) = alx,y), a€R, x,yel. (7.32)
Now

(7.30)
N, z) +4(y,2) = II%'JrZIIQ*IICC*ZHQJerHzIIZ*IIZJ*AZH2

. r+y B w+y Yy—x
Tty T — sc—|—y y—x
+l(z+=57) - ||2—||< ) -5
(7.29) $+y y r+y Yy—x
2|z + ||2+2|| I —2||z——||2—2||—||2
2 2 2
(720) 8<w+y7z>7
or
Tty

(,2) + (y,2) = 2( Z), @y, z €V

In particular, since y = 0 implies (y,z) = 0 we obtain (x,z) = 2(3,z) for all
@,z € V. This means that 2(2}¥ 2) = (x + y, 2) for all ,y,z € V and (7.31)
follows.

We first show (7.32) when a = n is a positive integer. By induction

(na,y) = (n— Dz +2,9) "2 (n— Do, y) + (@,y) =nl,y).  (7.33)

If m,n € N then
33 (7.33)
m2<aw,y> =" mnz,y) = mni{z,y),

implying that (7.32) holds for positive rational numbers
n n
(—zy)=—(z,y).
Nov if a > 0 there is a sequence {a,} of positive rational numbers converging to
a. For each n
(7.30) 1
an(@,y) = (an,y) =" L (lan® + yl* = lanz — y||?).
Taking limits and using continuity of norms we obtain a{x,y) = (ax,y). This
also holds for ¢ = 0. Finally, if a < 0 then (—a) > 0 and from what we just
showed

(). y) = (~a)z.9) 2 L(l-aw + yl? ~ |-az — y|?) = ~(az,y).
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so (7.32) also holds for negative a. [0

Corollary 7.43 (Are the p-norms inner product norms?)
For the p vector norms on V =R"™ orV =C", 1 < p < 00, n > 2, there is an
inner product on V such that (x,x) = ||z|2 for all x €V if and only if p = 2.

Proof. For p = 2 the p-norm is the Euclidian norm which corresponds to the
standard inner product. If p # 2 then the parallelogram identity (7.29) does not
hold for say « :=e; and y :=ey. 0O

Exercise 7.44 (When is a complex norm an inner product norm?)
Given a vector norm in a complex vector space V, and suppose (7.29) holds for
all x,y Show that

1 . . . :
(@, y) = (= + ylI? = llz = yl* +illz + iyl* - illz - iyl?), (7.34)

defines an inner product on V, where i = \/—1. The identity (7.34) is called the
polarization identity.!?

Exercise 7.45 (p norm for p =1 and p = c0)
Show that ||-||p is a vector norm in R™ for p=1, p = co.

Exercise 7.46 (The p- norm unit sphere)
The set
Sp={z eR": [lz], =1}
is called the unit sphere in R™ with respect to p. Draw S, for p = 1,2,00 for
n = 2.

Exercise 7.47 (Sharpness of p-norm inequalitiy)

For p>1, and any x € C" we have ||| < |||, < n'/?||x|o0 (cf. (14)).
Produce a vector x; such that ||z)]|c = |||, and another vector x,, such

that ||z, = n'/?||x,||,00. Thus, these inequalities are sharp.

Exercise 7.48 (p-norm inequalitiies for arbitrary p)
If1 < g <p<oo then
lzllp < [lzllq < nl/q_l/pr”;ﬁ zecCm

Hint: For the rightmost inequality use Jensen’s inequality Cf. Theorem 7.37 with
f(2) = 2P/9 and z; = |x;|9. For the left inequality consider first y; = x;/||%|| oo,
i=1,2,...,n.

10Hint: We have (x,y) = s(x,y) + is(x, iy), where s(z,y) := %(Hm +yl? = |z — yl?).
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7.4 Review Questions
7.4.1]

e What is a consistent matrix norm?

e what is a subordinate matrix norm?

e is an operator norm consistent?

e why is the Frobenius norm not an operator norm?
e what is the spectral norm of a matrix?

e how do we compute || Al/co?

e what is the spectral condition number of a symmetric positive definte
matrix?

7.4.2 Why is ||A|2 < ||A||r for any matrix A?

7.4.3 What is the spectral norm of the inverse of a normal matrix?
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Iterative Methods for Large
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Chapter 8

The Classical Iterative
Methods

Gaussian elimination and Cholesky factorization are direct methods. In absence
of rounding errors they find the exact solution using a finite number of arithmetic
operations. In an iterative method we start with an approximation xy to the
exact solution x and then compute a sequence {x} such that hopefully x; — «.
Iterative methods are mainly used for large sparse systems, i.e., where many of
the elements in the coefficient matrix are zero. The main advantages of iterative
methods are reduced storage requirements and ease of implementation. In an
iterative method the main work in each iteration is a matrix times vector multi-
plication, an operation which often does not need storing the matrix, not even in
sparse form.

In this chapter we consider the classical iterative methods of Richardson,
Jacobi, Gauss-Seidel and an accelerated version of Gauss-Seidel’s method called
successive overrelaxation (SOR). David Young developed in his thesis a beautiful
theory describing the convergence rate of SOR, see [35].

We give the main points of this theory specialized to the discrete Poisson
matrix. With a careful choice of an acceleration parameter the amount of work
using SOR on the discrete Poisson problem is the same as for the fast Poisson
solver without FFT (cf. Algorithm 4.1). Moreover, SOR is not restricted to
constant coefficient methods on a rectangle. However, to obtain fast convergence
using SOR it is necessary to have a good estimate for an acceleration parameter.

For convergence we study convergence of powers of matrices.

189
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8.1 Classical Iterative Methods; Component Form

We start with an example showing how a linear system can be solved using an
iterative method.

Example 8.1 (Iterative methods on a special 2 x 2 matrix)

Solving for the diagonal elements the linear system [_21 31] [Y] = [}] can be writ-
ten in component form as y = (2 4+ 1)/2 and z = (y + 1)/2. Starting with
Yo, 20 we generate two sequences {yp} and {zx} using the difference equations
Yet1 = (2 +1)/2 and zr41 = (yr + 1)/2. This is known as Jacobi’s method. If
Yo = 20 = 0 then we find y1 = z1 = 1/2 and in general y, = 2z = 1 — 27 for
k = 0,1,2,3,.... The iteration converges to the evact solution [1,1]T, and the
error is halved in each iteration.

We can improve the convergence rate by using the most current approxima-
tion in each iteration. This leads to Gauss-Seidel’s method: yr+1 = (21 +1)/2 and
Zk+1 = (Y1 +1)/2. If yo = 20 = 0 then we find yy = 1/2, 21 = 3/4, yo = 7/8,
2y = 15/16, and in general yp =1 —2-47% and 2z, =1 —47% for k =1,2,3,....
The error is now reduced by a factor 4 in each iteration.

Consider the general case. Suppose A € C"*" is nonsingular and b € C". Suppose
we know an approximation xy = [xx(1),...,xx(n)]? to the exact solution = of
Ax =b.

Lewis Fry Richardson, 1881-1953 (left),Carl Gustav Jacob Jacobi, 1804-1851 (right).
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Philipp Ludwig von Seidel, 1821-1896 (left), David M. Young Jr., 1923-2008 (right)

In Richardson’s method (R method) we pick a positive parameter «
and compute a new approximation by adding a multiple of the residual vector
T = b— A:Dk:

Tpi1(1) = 2 (i) + arg (i), v =b; — Za”$k , fori=1,2,...,n. (81)

Richardson considered the simplest case a = 1. The parameter « is added to get
faster convergence.

For the other methods we need to assume that A has nonzero diagonal
elements. Solving the ith equation of Ax = b for x(i), we obtain a fixed-point
form of Az =b

n

= Za,” Z aijac(j) + bl)/a”, 1=1,2,...,n. (82)

Jj=i+1

1. In Jacobi’s method (J method) we substitute xj, into the right hand side
of (8.2) and compute a new approximation by

g1 (i Zaz]wk Z aijzi(j) +b;) /ag, fori=1,2,...,n
Jj=t1+1
(8.3)

2. Gauss-Seidel’s method (GS method) is a modification of Jacobi’s method,
where we use the new xj11(7) immediately after it has been computed.

Tpr1(d Zazgmk+1 Z azymk )+ bi )/alla fori=1,2,.
Jj=i1+1

(8.4)
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3. The Successive overrelaxation method (SOR method) is obtained by
introducing an acceleration parameter 0 < w < 2 in the GS method. We
write (i) = wx(i) + (1 — w)x(i) and this leads to the method

T (i Za”azkH Z aijTr(§)+bi)/ai+(1—w)zr(i). (8.5)

Jj=i+1

The SOR method reduces to the Gauss-Seidel method for w = 1. Denoting
the right hand side of (8.4) by x’; we can write (8.5) as xpy1 = wx]’ | +
(1 — w)xk, and we see that xi11 is located on the straight line passing
through the two points miil and xg. The restriction 0 < w < 2 is necessary
for convergence (cf. Theorem 8.14). Normally, the best results are obtained
for the relaxation parameter w in the range 1 < w < 2 and then x4 is
computed by linear extrapolation, i.e., it is not located between mzil and
.

4. We mention also briefly the symmetric successive overrelaxation method
SSOR. One iteration in SSOR consists of two SOR sweeps. A forward SOR
sweep (8.5), computing an approximation denoted x4/, instead of xxy1,
is followed by a back SOR sweep computing

@py1(i) = w( Zawmkﬂp Z @ij®ri1(§)+0i) fasi+(1—w) i1 /2(i)
j=i+1

(8.6)
in the order i =n,n — 1,...1. The method is slower and more complicated
than the SOR method. Its main use is as a symmetric preconditioner. For
if A is symmetric then SSOR combines the two SOR steps in such a way
that the resulting iteration matrix is similar to a symmetric matrix. We
will not discuss this method any further here and refer to Section 9.6 for an
alternative example of a preconditioner.

We will refer to the R, J, GS and SOR methods as the classical (iteration)
methods. The R method will be discussed later, see Section 8.3.1.

8.1.1 The discrete Poisson system

Consider the classical methods applied to the discrete Poisson matrix A € R?*"
given by (3.7). Let n = m? and set h = 1/(m + 1). In component form the linear
system Ax = b can be written (cf. (3.4))

47}(17]) - ’U('L—l,j) - ’U(7’+17]) - ’U(’L,]—l) - v(Z7]+1) = hzfi,ja 7’7.] = 17 cee,Mm,
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with homogenous boundary conditions also given in (3.4). Solving for v(i,j) we
obtain the fixed point form

v(i,j) = (v(i=1,j)+v(i+1, j)+o(i, j=1)+o(i, j+1)+ei;) /4, ey = fij/(m+1)%
(8.7)
The R, J, GS , and SOR methods takes the form

R :vpy1(i,§) = vi(i, §) + a(vi(i—1, ) + v (i, j—1) + vi(i+1, 5)
+ (i, j+1) — dvi(i 5) + (i, )
J v (i, §) = (vk(i—1,5) + v (i, j—1) + ve(i+1, j) + vi(i, j+1)
+e(i,]))/4
GS i V411, §) = (Vrg1(i—1,5) + Vg1 (i, j—1) + v (i+1, j) + vi (i, j+1)
+e(i,§))/4
SOR : vj41(i, ) = w(veg1(i—1,§) + V41 (5,5 — 1) +vp(i + 1, 5) + vi(i, j + 1)
+e(i, 7)) /4 + (1 — w)vg(i, j).

(8.8)
We note that

e For a =1/4 the R and J methods in (8.8) are identical.

e For a general system the R and J methods are identical if A is constant and
nonzero on the diagonal and « is chosen as the inverse of this constant. See
Exercise 8.2.

e For the discrete Poisson problem the choice & = 1/4 in the J method is
optimal in a way to become clear in Section 8.3.1.

e For GS and SOR we have used the natural ordering, i.e., (i1,71) < (i2, j2)
if and only if j; < jo and iy < iy if j; = js. For the J method any ordering
can be used.

Exercise 8.2 (Richardson and Jacobi)
Show that if a;; = d # 0 for all i then Richardson’s method with o := 1/d is the
same as Jacobi’s method.

In Algorithm 8.3 we give a Matlab program to test the convergence of Ja-
cobi’s method on the discrete Poisson problem. We carry out Jacobi iterations
on the linear system (8.7) with F = (f;;) € R™*™, starting with Vo = 0 €
R(m+2)x(m+2)  The output is the number of iterations k, to obtain [|[V*) —
U|| s = max; j|vij —ugj| < tol. Here [u;;] € ROMH2)X(m+2) ig the ”exact” solution
of (8.7) computed using the fast Poisson solver in Algorithm 4.1. We set k = K +1
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k100 | k2500 | K10 000 | K40 000 | K160 000

J | 385 | 8386
GS 194 | 4194
SOR 35 164 324 645 1286

Table 8.1. The number of iterations k, to solve the discrete Poisson
problem with n unknowns using the methods of Jacobi, Gauss-Seidel, and SOR
(see text) with a tolerance 1075,

if convergence is not obtained in K iterations. In Table 8.1 we show the output
k =k, from this algorithm using F = ones(m,m) for m = 10,50, K = 10%, and
tol = 1078, We also show the number of iterations for Gauss-Seidel and SOR with
a value of w known as the optimal acceleration parameter w* := 2/(1+sin( T ).
We will derive this value later.

Algorithm 8.3 (Jacobi)

1 function k=jdp (F,K, tol)

2 m=length (F); U=fastpoisson (F); V=zeros(m+2m+2); E=F/(m+1)"2;
3 for k=1:K

4 V(2m+1,2m+1)=(V(1:m,2:m+1)+V(3:m+2,2:m+1) ...

5 +V(2:m+1,1:m)+V(2:m+1,3:m+2)+E) /4;

6 if max(max(abs(V-U)))<tol, return

7 end

s end

9 k=K+1;

For the GS and SOR methods we have used Algorithm 8.4. This is the analog
of Algorithm 8.3 using SOR instead of J to solve the discrete Poisson problem. w
is an acceleration parameter with 0 < w < 2. For w = 1 we obtain Gauss-Seidel’s
method.
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Algorithm 8.4 (SOR)

© ® N O g oA W N

function k=sordp (F,K,w, tol)

m=length (F); U=fastpoisson (F); V=zeros(m+2m+2); E=F/(m+1)"2;

for k=1:K
for j=2mt1
for 1i=2:m+1
V(i DB —1,5 —1)) fA+(T—w) #V(i ) 5
end
end
if max(max(abs(V-U)))<tol, return
end
end
k=K+1;

We make several remarks about these programs and the results in Table 8.1.

. The rate (speed) of convergence is quite different for the four methods. The
R, J and GS methods converge, but rather slowly. The R method with
a = 1/4 and the J method needs about twice as many iterations as the
GS method. The improvement using the SOR method with optimal w is
spectacular.

. We show in Section 8.3.4 that the number of iterations k,, for a size n problem
is k, = O(n) for the J and GS method and k, = O(y/n) for SOR with
optimal w. The choice of tol will only influence the constants multiplying n

or y/n.

. From (8.8) it follows that each iteration requires O(n) arithmetic operations.
Thus the number of arithmetic operations to achieve a given tolerance is
O(ky, x n). Therefore the number of arithmetic operations for the J and GS
method is O(n?), while it is only O(n3/2) for the SOR method with optimal
w. Asymptotically, for J and GS this is the same as using banded Cholesky,
while SOR competes with the fast method (without FFT).

. We do not need to store the coeflicient matrix so the storage requirements
for these methods on the discrete Poisson problem is O(n), asymptotically
the same as for the fast methods.

. Jacobi’s method has the advantage that it can be easily parallelized.

8.2 Classical lterative Methods; Matrix Form

To study convergence we need matrix formulations of the classical methods.
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8.2.1 Fixed-point form

In general we can construct an iterative method by choosing a nonsingular matrix
M and write Az = b in the equivalent form M ' Ax = M ~'b. This system can
be written & = ¢ — M ~'Ax + M ~'b, and we obtain Az = b in a fixed-point
form

t=Gr+c, G=I-M"'A, c=M"b (8.9)

For a general G € C™*" and ¢ € C" a solution of * = Ga + c is called a
fixed-point. The fixed-point is unique if I — G is nonsingular.
The corresponding iterative method is given by

Ty 1 = Gz + c. (8.10)

This is known as a fixed-point iteration. Starting with x( this defines a se-
quence {xx} of vectors in C"™. If limg_,o, &x = @ for some x € C™ then x is a
fixed point since

= lim x4 = lim (Gxy +¢) =G lim xp +c= Gz +c.
k—o0 k—o0 k—o00

8.2.2 The preconditioning and splitting matrix

Different choices of M in (8.9) lead to different iterative methods. The matrix
M can be interpreted in two ways. It is a preconditioning matrix since a good
choice of M can lead to a preconditioned system M ' Az = M ~1'b with smaller
condition number. It is also known as a splitting matrix, since if we split A in
the form A = M + (A — M) then Az = b can be written Mx = (M — A)x + b,
and this leads to the iterative method

Milfk+1 = (M — A):Bk + b (811)

which is equivalent to (8.9).

8.2.3 The splitting matrices for the classical methods

We now derive M for the classical methods. For J, GS and SOR it is convenient
to write A as a sum of three matrices, A = D — Ap — AR, where —Ap, D,
and — AR are the lower, diagonal, and upper part of A, respectively. Thus D :=
diag(alla ce ann)v

0 0 —a12 -+  —ain
—a21 0
AL = . . . s AR =
. T T 0 —ap—1,n
—0Qn,1 T —Op,n—1 0 0

(8.12)
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Theorem 8.5 (Splitting matrices for R, J, and SOR)
The splitting and iteration matrices for the R, J and SOR methods are given by

MR:OzilI, M;=D, Mw:wilD—AL,

. . . (8.13)
GR:I—OéA, G]:I—D A, Gw:I—(w_D—AL)_A.

We obtain the matrices M1 and G1 for the GS method by letting w =1 in M|,
and G,

Proof. To find M we write the methods in the form (8.11). The formulas for G
then follows immediately from (8.9).
The matrix form of the R method is @1 = x +a(b— Azy) or a lxp ) =
a I — A)zy, + b, and the formulas for M and G follows. The equation
Ax = b can be written Dz — Apx — Agrx = b or Dx = Arx + Agx + b. This
leads to
J: Dxyyq = Apxp + Agxy + b, or
M jxp 1 = (AL + Agr)xp + b,
SOR: Dxjy1 =w(Apxpy1 + Agzi + b) + (1 —w)Day, or
Mwwarl = (AR + (w_l — 1)D)$k + b.

(8.14)

Example 8.6 (Splitting matrices)

For the system
2 1) |z |1
-1 2| |z |1

we find
0 0 2 0 0 1
o R R R F
" My=p=*> % mMo—w'D-a,-|* 0
A w =W L=1 1 2wt

The iteration matric G, = I — M;lA 1s given by

_ |1 0 w/2 0 2 —1] 1—w w/2
G, = [() 1} N [w2/4 w/Q} {1 2] - L’(l —w)/2 1 w+w2/4} . (8.15)
For the J and GS method we have

G,=I-D'A= {1(/)2 l(ﬂ , Gy = [8 };ﬂ . (8.16)
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We could have derived these matrices directly from the component form of the
iteration. For example, for the GS method we have the component form

1 1 1 1
zpi1(1) = iwk@) T Tp41(2) = §$k+1(1) o
Substituting the value of xp11(1) from the first equation into the second equation

we find

T (2) = 3(5a4(2) + ) + 5 = gEk(@) + 5.
Thus
o = [mkﬂ(l)} _ [0 1/2} {wk(l)] N [1/2]  Ghia e
LT a1 (2)] (00 1/4] |2k(2) 3/4| — TR TE

8.3 Convergence

Definition 8.7 (Convergence of x;; := Gz + ¢)
We say that the iterative method xy11 = Gz + ¢ converges if the sequence
{x} converges for any starting vector x.

We have the following necessary and sufficient condition for convergence:

Theorem 8.8 (Convergence of an iterative method)
The iterative method x1 = Gxg + ¢ converges if and only if limg_, GF =o.

Proof. We subtract * = Gx + ¢ from x11 = Gz + c¢. The vector ¢ cancels
and we obtain x;11 — « = G(xy — x). By induction on k

zp—x=G"(xo—x), k=0,1,2,... (8.17)

Clearly &, — x — 0 if G* — 0. The converse follows by choosing @o — & = ej,
the jth unit vector for j=1,...,n. 0O

Theorem 8.9 (Sufficient condition for convergence)
If |G|l < 1 for some consistent matriz norm on C" ™, then the iteration xy1 =
Gz + ¢ converges.

Proof. We have
|z — 2| = |G*(@o — @) || < IG*[llz0 — 2|l < |G|*|@o — x| = 0, Kk — oc.

|
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A necessary and sufficient condition for convergence involves the eigenvalues
of G. We define the spectral radius of a matrix A € C"*" as the maximum
absolute value of its eigenvalues.

A) = Al 8.18
p(A) ;glf}i;)' | (8.18)

Theorem 8.10 (When does an iterative method converge?)
Suppose G € C"*" and ¢ € C". The iteration xp+1 = Gy, + ¢ converges if and
only if p(G) < 1.

We will prove this theorem using Theorem 8.27 in Section 8.4.

8.3.1 Convergence of Richardson’s method.
Recall that Richardson’s method can be written in the form
Tl =Tk +arg, Tp=b— Axy. (8.19)

We will assume that « is real. If all eigenvalues of A have positive real parts
then then the R method converges provided « is positive and sufficiently small.
We show this result for positive eigenvalues and leave the more general case to
Exercise 8.13.

Theorem 8.11 (Convergence of Richardson’s method)
If A has positive eigenvalues then the R method converges if and only if 0 < a <
2/p(A). Moreover,

: * * 2 * Anfw,x - )\mzn k—1
m{inG(a):G(a ), of = SIS and p(G(a*)) = SV w
(8.20)

where Apmaz and Apin are the largest and smallest eigenvalue of A and k =

Proof. The eigenvalues of G(a) = I —aA are pj(a) =1—a);, j=1,...,n. We
have max; p1; < 1 if and only if & > 0 and min; u; =1 — ap(A) > —1 if and only
if « < 2/p(A). The method converges if and only if p(G(«)) < 1 which from what
we have shown is equivalent to 0 < a < 2/p(A). Since 1 — a* A\ pin = @ Anaz — 1
we have we have

* * _/\max_>\min_fi_1

p(G(a )) =l-e )\mln B A’ma;v +Amln B H+1
Now G(a) > G(a*), for if 0 < a < o* then from what we showed p(G(a))
1— apin > 1= a*Apin = p(G(a*)), and if a* < a < 2/p(A) then —p(G(a))
1 — @Amaz < 1= @ Apae = —p(G(a*)), and again p(G(a)) > p(G(a*)). O

IN IV
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Corollary 8.12 (Rate of convergence for the R method)

Suppose A is symmetric positive definite with largest and smallest eigenvalue A qz
and Amin, respectively. Richardson’s method with acceleration parameter o =
s .. converges. More precisely
k—1
K+

where Kk := A\maz/Amin 18 the spectral condition number of A.

k
|zr — |2 < ( ) lleo —xll2, k=0,1,2,... (8.21)

Proof. The spectral norm || ||5 is consistent and therefore ||z —z||2 < ||G/(a*)|5]|20—
x||2. But for a symmetric positive definite matrix the spectral norm is equal to
the spectral radius and the result follows form (8.20). O

Exercise 8.13 (Convergence of the R-method when eigenvalues have positive real |
Suppose all eigenvalues \; of A have positive real parts u; for j = 1,...,n

and that a is real. Show that the R method converges if and only if 0 < a <

ming (2u;/|A;]%).

8.3.2 Convergence of SOR

The condition w € (0,2) is necessary for convergence of the SOR method.

Theorem 8.14 (Necessay condition for convergence of SOR)
Suppose A € C"*™ js nonsingular with nonzero diagonal elements. If the SOR
method applied to A converges then w € (0,2).

Proof. We have (cf. (8.14)) Dxji1 = w(Ap@r1 + Agzy +b) + (1 — w)Daxy,
or 41 = w(Lepr + Ry, + Dilb) + (1 — w)xy, where L := D 'Ap and
R:= D 'Ag. Thus (I —~wL)x};; = (WR+ (1 —w)I)xy+D b so the following
form of the iteration matrix is obtained

G, =TI —-wL) ' (WR+ (1-w)). (8.22)

We next compute the determinant of G,,. Since I — wL is lower triangular with
ones on the diagonal, the same holds for the inverse by Lemma 1.22, and therefore
the determinant of this matrix is equal to one. The matrix wR+ (1 —w)I is upper
triangular with 1 —w on the diagonal and therefore its determinant equals (1—w)™.
It follows that det(G) = (1 —w)™. Since the determinant of a matrix equals the
product of its eigenvalues we must have |A\| > |1 — w| for at least one eigenvalue A
of G, and we conclude that p(G,) > |w — 1|. But then p(G,) > 1 if w is not in
the interval (0,2) and by Theorem 8.10 SOR diverges. 0O

The SOR method always converges for a symmetric positive definite matrix.
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Theorem 8.15 (SOR on positive definite matrix)

SOR converges for a symmetric positive definite matriz A € R™ "™ if and only
if 0 < w < 2. In particular, Gauss-Seidel’s method converges for a symmetric
positive definite matriz.

Proof. By Theorem 8.14 convergence implies 0 < w < 2. Suppose now 0 < w < 2
and let (A, ) be an eigenpair for G,. Note that A and  can be complex. We
need to show that |A\| < 1. The following identity will be shown below:

w2 —-w) 1= M2z*Dz = (1 - |\*)z* Az, (8.23)

where D := diag(aq1, ..., ann). Now x* Az and * Dz are positive for all nonzero
x € C" since a positive definite matrix has positive diagonal elements a;; =
el'Ae; > 0. It follows that the left hand side of (8.23) is nonnegative and then
the right hand side must be nonnegative as well. This implies |A| < 1. It remains
to show that we cannot have A = 1. By (8.13) the eigenpair equation G, = Az
can be written x — (W'D — Ar) Az = Az or

Az = (w'D-AL)y, y:=(1-N=x. (8.24)

Now Ax # 0 implies that A # 1.

To prove equation (8.23) consider the matrix E := w™'D + Ag — D. Since
Ar—-D=—Ap — Awefind By = (v 'D— A — Ay 2V Az — Ay = Az
Observe that (w™'D — Ap)* = w™!D — AR so that by (8.24)

(Az)*y +y*(\Az) =y*(w'D - Ap)y + y*"Ey = y*(2w™! — 1)Dy

=w 2 —-w)1 - \?z*Dz.
Since (Az)* =x*A, y := (1 — ANz and y* = (1 — \)z* this also equals
(Az)*y +y* (NAz) = (1 - Nx* Az + A1 — Nz* Az = (1 — |\*)z* Az,

and (8.23) follows. O

Exercise 8.16 (Examle: GS converges, J diverges)
Show (by finding its eigenvalues) that the matrix

1 a a
a 1 a
a a 1

is symmetric positive definite for —1/2 < a < 1. Thus, GS converges for these
values of a. Show that the J method does not converge for 1/2 < a < 1.
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Exercise 8.17 (Divergence example for J and GS)
Show that both Jacobi’s method and Gauss-Seidel’s method diverge for A = [31%].

Exercise 8.18 (Strictly diagonally dominance; The J method)
Show that the J method converges if lai;| > 3, ,;|ai;| fori=1,...,n.

Exercise 8.19 (Strictly diagonally dominance; The GS method)

Consider the GS method. Suppose r := max; r; < 1, where r; = Zj# “Z”‘l Show
using induction on i that |€x+1(j)| < rllexllco for 7 = 1,...,i. Conclude that

Gauss-Seidel’s method is convergent when A is strictly diagonally dominant.

8.3.3 Convergence of the classical methods for the discrete
Poisson matrix

We know the eigenvalues of the discrete Poisson matrix A given by (3.7) and we
can use this to estimate the number of iterations necessary to achieve a given
accuracy for the various methods.

Recall that by (3.20) the eigenvalues A;; of A are

Ajx =4 —2cos(jwh) —2cos (krh), j,k=1,...,m,h=1/(m+1).

It follows that the largest and smallest eigenvalue of A, and the spectral condition
number k of A, are given by

9 cos? w m

>\maac = 8COS2 w, )\mzn = 8sin w, KR = Sin2 w, w = m (825)

Consider first the J method. The matrix G; = I — D" 'A =T — A/4 has
eigenvalues
1 1 . 1 )
ik =1— ZAj’k =3 cos(jmh) + 3 cos(kmh), 4, k=1,...,m. (8.26)
It follows that p(G ) = cos(wh) < 1. Since G is symmetric it is normal, and the
spectral norm is equal to the spectral radios (cf. Theorem 7.14). We obtain

s — |2 < [|G))||5 ||z — |2 = cos®(nh)||xo — |2, k=0,1,2,... (8.27)

The R method given by xyy1 = @k + arg with o = 2/(A ez + Amin) = 1/4
is the same as the J-method so (8.27) holds in this case as well. This also follows
from Corollary 8.12 with « given by (8.25).

For the SOR method it is possible to explicitly determine p(G,,) for any
w € (0,2). The following result will be shown in Section 8.3.2.
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Figure 8.1. p(G,) with w € [0,2] for n = 100, (lower curve) and n =
2500 (upper curve).

Theorem 8.20 (The spectral radius of SOR matrix)
Consider the SOR iteration (8.8), with the natural ordering. The spectral radius
of Gy, is

1 (w5+ V(wpB)? —4(w — 1))2, for 0 < w < w*,

p(Gu) =4 (8.28)
w—1, for w* <w <2,
where 8 := p(G ) = cos(wh) and
* 2
S vy A 1. (8.29)
Moreover,
PG) > p(Gur) for w € (0,2)\ {u'}. (8:30)

A plot of p(G,,) as a function of w € (0, 2) is shown in Figure 8.1 for n = 100
(lower curve) and n = 2500 (upper curve). As w increases the spectral radius of
G, decreases monotonically to the minimum w*. Then it increases linearly to the
value one for w = 2. We call w* the optimal relaxation parameter.

For the discrete Poisson problem we have 8 = cos(wh) and it follows from
(8.28),(8.29) that

- 2
1+ sin(mh)’

w*

1 —sin(mh) h:;. (8.31)

Gw* = *71*77
i ) =w 1+ sin(7h) m+1
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n=100 n=2500 klOO k2500
J | 0.959493 | 0.998103 | 446 | 9703

GS | 0.920627 | 0.99621 | 223 | 4852
SOR | 0.56039 | 0.88402 32 150

Table 8.2. Spectral radia for Gy, G1, Gy~ and the smallest integer k,
such that p(G)*» <1078,

Letting w = 1 in (8.28) we find p(G1) = % = p(G;)? = cos?(wh) for the
GS method. Thus, for the discrete Poisson problem the J method needs twice as
many iterations as the GS method for a given accuracy.

The values of p(Gy), p(G1), and p(G.») = w* — 1 are shown in Table 8.2
for n = 100 and n = 2500. We also show the smallest integer k,, such that
p(G)F» < 1078, This is an estimate for the number of iteration needed to obtain
an accuracy of 107%. These values are comparable to the exact values given in
Table 8.1.

8.3.4 Number of iterations

Consider next the rate of convergence of the iteration x;11 = Gz + c. We
like to know how fast the iterative method converges. Suppose || || is a matrix
norm that is subordinate to a vector norm also denoted by || ||. Recall that
x), —x = G*(xo — x). For k sufficiently large

k
lzr — 2l < [1G*[l[lzo — || ~ p(G)*||lazo — |-

For the last formula we apply Theorem 8.30 which says that limg_,||G*['/* =

p(G). For Jacobi’s method and the spectral norm we have ||G%|l2 = p(G)* (cf.
(8.27)).
For fast convergence we should use a G with small spectral radius.

Lemma 8.22 (Number of iterations)
Suppose p(G) = 1—n for some 0 <n <1, | || a consistent matriz norm on C**",

and let s € N. Then loa(1
Ezsoi(n (8.32)

is an estimate for the smallest number of iterations k so that p(G)* < 107%.

Proof. The estimate k is an approximate solution of the equation p(G)* = 10~.
Thus, since —log(1 —n) ~ 7 when 7 is small
slog (10)  slog(10)

log(1 —n) n




8.3. Convergence 205

|
The following estimates are obtained. They agree with those we found nu-
merically in Section 8.1.1.
e R and J: p(G;) = cos(wh) =1 —n, n =1 —cos(nh) = 372h* + O(h*) =
L;/n + O(n=?). Thus

21og(1
_ 2log(10)s |

kn
7'('2

e GS: p(G4) = cos®(rh) = 1—n, n = 1—cos?(rh) = sin? th = ©2h? +O(h?) =
72 /n+ O(n=?). Thus

- log(10)s

-1
e SOR: p(Gy) = %ﬁ:’;g =1 —27h+ O(h?). Thus,
- log(1
o = B0 4 00 172) = o).

2

Exercise 8.23 (Convergence example for fix point iteration)
Consider for a € C

st 4 R PR 1 R F B

Starting with xo = 0 show by induction
xzp(l) =xp(2) =1—a*, k>0,

and conclude that the iteration converges to the fived-point © = [1,1]T for |a| < 1
and diverges for |a| > 1. Show that p(G) = 1 —n with n =1 — |a|. Compute the
estimate (8.32) for the rate of convergence for a = 0.9 and s = 16 and compare
with the true number of iterations determined from |a|F < 10716,

Exercise 8.24 (Estimate in Lemma 8.22 can be exact)

Consider the iteration in Example 8.6. Show that p(G ;) = 1/2. Then show that
xi(1) = x,(2) = 1—27% for k > 0. Thus the estimate in Lemma 8.22 is exvact in
this case.

We note that
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1. The convergence depends on the behavior of the powers G* as k increases.
The matrix M should be chosen so that all elements in G* converge quickly
to zero and such that the linear system (8.11) is easy to solve for xji.
These are conflicting demands. M should be an approximation to A to
obtain a G with small elements, but then (8.11) might not be easy to solve
for @p41.

2. The convergence limy o ||G¥||'/* = p(G) can be quite slow (cf. Exer-

cise 8.25).

Exercise 8.25 (Slow spectral radius convergence)
The convergence limy_, || A*||'/* = p(A) can be quite slow. Consider

Xa0-- 00
0OXa- 00

A 00X 00 RPXn

= . . S .
000 Xa
000 0AX

If I\ = p(A) < 1 then limy_ 0o A¥ = 0 for any a € R. We show below that the
(1,n) element of A* is given by f(k) := (nfl)a"’l)\k””“l fork>n—1.

(a) Pick an n, e.g. n =5, and make a plot of f(k) for A = 0.9, a = 10, and
n—1<k <200. Your program should also compute maxy, f(k). Use your
program to determine how large k must be before f(k) < 1078.

(b) We can determine the elements of A¥ explicitly for any k. Let E := (A —
M) /a. Show by induction that EF = [g I"O—’“] for1 <k <n-—1 and that
E"=0.

(c) We have A" = (aE + \)F = Zgnzi%{k’nfl} (’;)aj)\k*jEj and conclude that

the (1,n) element is given by f(k) for k >n — 1.

8.3.5 Stopping the iteration

In Algorithms 8.3 and 8.4 we had access to the exact solution and could stop the
iteration when the error was sufficiently small in the infinity norm. The decision
when to stop is obviously more complicated when the exact solution is not known.
One possibility is to choose a vector norm, keep track of ||xr+1 — @k, and stop
when this number is sufficiently small. The following result indicates that ||z —x||
can be quite large if |G| is close to one.

Lemma 8.26 (Be careful when stopping)
Suppose ||G|| < 1 for some consistent matriz norm on C™*™ which is subordinate
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to a vector norm also denoted by || ||. If xx = Gxr—1 + ¢ and x = Gz +c. Then

1-||G
fox = oxal = b o el k1. (5.33)

Proof. We find

[ox — 2l = [G(zr—1 — 2)|| <[|G]ll[er—1 — ]
= |Glllzi-1 — 2 + @ — 2| < |Gl (|lZpe1 — @] + [l — 2[]).

Thus (1 — ||G|)||xx — x| < [|G||||@r-1 — @& | which implies (8.33). O

Another possibility is to stop when the residual vector r, := b — Axy, is
sufficiently small in some norm. To use the residual vector for stopping it is
convenient to write the iterative method (8.10) in an alternative form. If M is the
splitting matrix of the method then by (8.11) we have Mz 1 = Mx, — Axy +b.
This leads to

Tp41 = T + M_l’l“k, r, =b— Axy. (8.34)

Testing on r; works fine if A is well conditioned, but Theorem 7.28 shows
that the relative error in the solution can be much larger than the relative error
in 7 if A is ill-conditioned.

8.4 Powers of a matrix

Let A € C™*™ be a square matrix. In this section we consider the special matrix
sequence {Ak} of powers of A. We want to know when this sequence converges
to the zero matrix. Such a sequence occurs in iterative methods (cf. (8.17)),
in Markov processes in statistics, in the converge of geometric series of matrices
(Neumann series cf. Section 8.4.2) and in many other applications.

8.4.1 The spectral radius
In this section we show the following theorem.

Theorem 8.27 (When is limg_, AF = 07?)
For any A € C™*" we have

lim A* =0 < p(A) <1,
k—o0

where p(A) is the spectral radius of A given by (8.18).

Clearly p(A) < 1 is a necessary condition for limj_,., A¥ = 0. For if (\, x)
is an eigenpair of A with [A| > 1 and ||«||2 = 1 then A¥z = M2, and this implies
| Ay > || A x|y = [[\ex||2 = |AF, and it follows that A does not tend to zero.
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The sufficiency condition is harder to show. We construct a consistent matrix
norm on C™*™ such that ||A]| < 1 and then use Theorems 8.8 and 8.9.
We start with

Theorem 8.28 (Any consistent norm majorizes the spectral radius)
For any matriz norm ||-|| that is consistent on C™*™ and any A € C**™ we have
p(A) < [|A].

Proof. Let (A, x) be an eigenpair for A and define X := [z, ..., x] € C"*". Then
AX = AX, which implies [A| || X || = [|AX || = ||AX|| < ||A]| || X||- Since || X || # 0
we obtain |A| < ||4]. O

The next theorem shows that if p(A) < 1 then ||A|| < 1 for some consistent
matrix norm on C™*", thus completing the proof of Theorem 8.27.

Theorem 8.29 (The spectral radius can be approximated by a norm)
Let A € C"*™ and e > 0 be given. There is a consistent matriz norm ||-|| on C**™
such that p(A) < || Al < p(A) + e

Proof. Let A have eigenvalues A1,...,A,. By the Schur Triangulation Theo-
rem 5.13 there is a unitary matrix U and an upper triangular matrix R = [r;;]
such that U*AU = R. For t > 0 we define D, := diag(t,t?,...,t") € R™" and
note that the (4,) element in D, RD; ! is given by t'=Ir;; for all i,j. For n =3

A1 t71T12 t727"13
D,RD;'= |0 Xo  tlrog
0 0 A3
For each B € C™"*™ and t > 0 we use the one norm to define the matrix norm
|B|; := ||D;U*BUD;"||;. We leave it as an exercise to show that | ||; is a
consistent matrix norm on C"*". We define ||B|| := || B|+, where ¢ is chosen so

large that the sum of the absolute values of all off-diagonal elements in D; RD; !
is less than e. Then

n
|4l =1DU AUD s = IDRD s = max 3 |(DRD;),
< max (|[A\j| +¢€) = p(A) +e.

1<j<n

A consistent matrix norm of a matrix can be much larger than the spectral
radius. However the following result holds.
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Theorem 8.30 (Spectral radius convergence)

For any consistent matriz norm ||| on C**™ and any A € C**™ we have
lim || A*|| Y% = p(A). (8.35)
k—oo

Proof. By Theorems 5.1 and 8.28 we obtain p(A)F = p(A*) < || A¥| for any k €
N so that p(A) < ||A"||'/%. Let e > 0 and consider the matrix B := (p(A)+¢) "' A.
Then p(B) = p(A)/(p(A) + €) < 1 and ||B*|| = 0 by Theorem 8.27 as k — oo.
Choose N € N such that | B¥|| < 1 for all k > N. Then for k > N

IA*|| = [[(p(A) + O)F B¥|| = (p(A) + €)"|B*| < (p(A) + €)".

We have shown that p(A) < ||A*||'/* < p(A) + € for k > N. Since € is arbitrary
the result follows. 0O

Exercise 8.31 (A special norm)
Show that || B||; := |D;U*BUD; ||, defined in the proof of Theorem 8.29 is a
consistent matriz norm on C"*™.

8.4.2 Neumann series

Carl Neumann., 1832-1925. He studied potential theory. The Neumann boundary
conditions are named after him.

Let B be a square matrix. In this section we consider the Neumann series
leio B which is a matrix analogue of a geometric series of numbers.

Consider an infinite series Y -, Ay of matrices in C"*". We say that the
series converges if the sequence of partial sums {S,,} given by S,, = >/" , A
converges. The series converges if and only if {S,,} is a Cauchy sequence, i.e. to
each € > 0 there exists an integer N so that ||S; — S,,|| < e for all l >m > N.

Theorem 8.32 (Neumann series)
Suppose B € C"*™. Then

1. The series S o o B¥ converges if and only if p(B) < 1.
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2. If p(B) < 1 then (I — B) is nonsingular and (I — B)~' =332 B".

3. If | B|| < 1 for some consistent matriz norm ||-|| on C**™ then

I-B) < ——. (3.36)
1B
Proof.

1. Suppose p(B) < 1. We show that S, := Y ;" , B is a Cauchy sequence
and hence convergent. Let ¢ > 0. By Theorem 8.29 there is a consistent
matrix norm ||| on C"*™ such that || B]|| < 1. Then for I > m

~ Bi< S (Bl sk - 1Bl

S-Sl =1 S0 BHI< S IBIF< BT S IBIF = (2
k=m+1 k=m+1 k=0
But then {S,,} is a Cauchy sequence provided N is such that % <e.
Conversely, suppose (A, x) is an eigenpair for B with |A| > 1. We find
Smx = Y, B'z = (X]L,\¥)z. Since A\¥ does not tend to zero the
series > 7o (A" is not convergent and therefore {S,,z} and hence {S,,}
does not converge.

2. We have

m
(> B"YI-B)=I+B+---+B"—(B+---+B"™)=T1-B""". (8.37)
k=0
Since p(B) < 1 we conclude that B™™ — 0 and hence taking limits in
(8.37) we obtain (7, Bk) (I — B) = I which completes the proof of 2.
3. By 2 [[(I - B)™Y| = |72 BM| < 3% BIF = 57
0

Exercise 8.33 (When is A + FE nonsingular?)
Suppose A € C"*™ is nonsingular and E € C"*". Show that A+ E is nonsingular
if and only if p(A™'E) < 1.

8.5 The Optimal SOR Parameter w

The following analysis is only carried out for the discrete Poisson matrix. It also
holds for the averaging matrix given by (3.9). A more general theory is presented
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in [35]. We will compare the eigenpair equations for G ; and G,. It is convenient
to write these equations using the matrix formulation TV 4+ VT = h2F. If
G jv = pv is an eigenpair of G ; then

Z(Uifl}j + Vij—1 + Vit1,j + Ui7j+1) = [U;,j, i,j=1,...,m, (838)

where V :=vec(v) e R™*™ and v; ; =0if i € {0,m+ 1} or j € {0,m + 1}.
Suppose (A, w) is an eigenpair for G,,. By (8.22) (I — wL) ' (wR+ (1 —
w)I)w = \w or
(WR+ MwL)w = (A4 w— 1w, (8.39)

where l; ;—m = 7ii+m = 1/4 for all 4, and all other elements in L and R are equal
to zero. Let w = vec(W'), where W € C™*™. Then (8.39) can be written

w
Z()\wi—l,j +Aw; jo1 + Wir1j + wijr1) = (A +w = Dw g, (8.40)

where w; ; =01ifi € {0,m+ 1} or j € {0,m + 1}.

Theorem 8.34 (The optimal w)
Consider the SOR method applied to the discrete Poisson matriz (3.9), where we
use the natural ordering. Moreover, assume w € (0, 2).

1. If X # 0 is an eigenvalue of G, then

W= % (8.41)
is an eigenvalue of G ;.
2. If u is an eigenvalue of G; and X\ satisfies the equation
A2 =X+ w—1 (8.42)

then X\ is an eigenvalue of G.,.

Proof. Suppose (A, w) is an eigenpair for G,,. We claim that (i, v) is an eigenpair
for G 7, where yu is given by (8.41) and v = (V) with v; j = A~/ 2q,; - Tndeed,
replacing w; ; by A7)/2y; . in (8.40) and cancelling the common factor A\(7+7)/2
we obtain

w _
7 Wit Vi1 Vi i) = A 2N+ w— 1.

But then At )
w —
GJ'U = (L + R)'U = W’U = /,L’U.
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For the converse let (u,v) be an eigenpair for G; and let et A be a solution of
(8.42). We define as before v =: vec(V), W = vec(W) with w; j := A\(i+3)/2q, .
Inserting this in (8.38) and canceling A~(“+7)/2 we obtain

1
Z<>\1/2 i—1,5 +)\ 1/2 Wy, 5 +>\ 1/2 Wi41,5 +>\ 1/2 (o j+1) HWw; 5.
Multiplying by wA!/2 we obtain

w
Z()\wi—l,j +Aw; o1+ Wit + Wi j41) = W,U)\l/zwi,ja

Thus, if wp!/?2A/2 = X +w — 1 then by (8.40) (\,w) is an eigenpair for G,,. O

Proof of Theorem 8.20
Combining statement 1 and 2 in Theorem 8.34 we see that p(G.) = |A(p)|, where
A(p) is an eigenvalue of G, Satlsfymg (8.42) for some eigenvalue p of G ;. The
eigenvalues of G are % 5 cos(jmh) + 3 L cos(kmh), j,k = 1,...,m, so u is real and
both p and —p are elgenvalues Thus, to compute p(G,,) it is enough to consider

(8.42) for a positive eigenvalue p of G ;. Solving (8.42) for A = A(u) gives

Ap) = i(wu + /(wp)? — 4(w — 1))2. (8.43)
Both roots (i) are eigenvalues of G,,. The discriminant
d(w) = (wp)? — 4(w —1).
is strictly decreasing on (0, 2) since
d'(w) = 2(wp? —2) < 2(w—2) <0.

Moreover d(0) = 4 > 0 and d(2) = 4u® — 4 < 0. As a function of w, A\() changes
from real to complex when d(w) = 0. The root in (0,2) is

1- V12 2
w=&(u) =2 — . (8.44)
1 1+ /1— 2

In the complex case we find

A = 3 (@m? + 4w - 1)~ @) =w -1, () <w<2

In the real case both roots of (8.43) are positive and the larger one is

AMp) = i(w,u +/(wp)? — 4(w — 1))2, 0<w< o). (8.45)
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Both A(u) and &(p) are strictly increasing as functions of p. It follows that |A(u)]
is maximized for y = p(Gy) =: B and for this value of 1 we obtain (8.28) for
0<w<oB) =w

Evidently p(G,) = w — 1 is strictly increasing in w* < w < 2. Equation
(8.30) will follow if we can show that p(G.,) is strictly decreasing in 0 < w < w*.
By differentiation

_ By (WB)2 —4(w — 1) +wp? — 2
VWB)Z—4w-1)

Since f%(w?B? — 4w + 4) < (2 — wB?)? the numerator is negative and the strict
decrease of p(G,) in 0 < w < w* follows.

4 (wp+ V@B 4 1)

8.6 Review Questions

8.6.1 Consider a matrix A € C™*" with nonzero diagonal elements.

Define the J and GS method in component form,

Do they always converge?
e Give a necessary and sufficient condition that A™ — 0.

e Is there a matrix norm || || consistent on C"*™ such that ||A|| < p(A)?
8.6.2 What is a Neumann series? when does it converge?

8.6.3 How do we define convergence of a fixed point iteration ;1 = Gy + ¢?
When does it converge?

8.6.4 Define Richardson’s method.
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Chapter 9

The Conjugate Gradient
Method

-
Magnus Rudolph Hestenes, 1906-1991 (left), Eduard L. Stiefel, 1909-1978 (right).

The conjugate gradient method was published by Hestenes and Stiefel
in 1952, [11] as a direct method for solving linear systems. Today its main use is
as an iterative method for solving large sparse linear systems. On a test problem
we show that it performs as well as the SOR method with optimal acceleration
parameter, and we do not have to estimate any such parameter. However the
conjugate gradient method is restricted to symmetric positive definite systems. We
also consider the mathematical formulation of the preconditioned conjugate
gradient method. It is used to speed up convergence of the conjugate gradient
method and we study this on a partial differential equation example.

The conjugate gradient method can also be used for minimization and is
related to a method known as steepest descent. This method and the conjugate
gradient method are both minimization methods and iterative methods for solving
linear equations.

Throughout this chapter A € R™*™ will be a symmetric positive definite
matrix. Thus, AT = A and y” Ay > 0 for all nonzero y € R™”. We recall that A
has positive eigenvalues and that the spectral (2-norm) condition number of A is

given by k := i‘\"“_”” , where A0z and A4, are the largest and smallest eigenvalue

215
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Figure 9.1. Level curves for Q(x,y) given by (9.2). Also shown is a
steepest descent iteration (left) and a conjugate gradient iteration (right) to find
the minimum of Q. (c¢f Examples 9.3,9.6)

of A.

9.1 Quadratic Minimization and Steepest Descent

We start by discussing some aspect of quadratic minimization and its relation to
solving linear systems.

Consider for A € R ™ and b € R" the quadratic function @ : R® — R
given by

Qy) == %yTAy ~-b'y. (9.1)

As an example, some level curves of

L 1 2 —1 X ) 2
Qw,y) =5 [z ] {_1 9 ] M =zt —ay+y (9:2)
are shown in Figure 9.1. The level curves are ellipses and the graph of @) is a
paraboloid (cf. Exercise 9.1).
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Exercise 9.1 (Paraboloid)

Let A =UDU? be the spectral decomposition of A, i.e., U is orthonormal and
D = diag(\1, ..., \,) is diagonal. Define new varables v = [vy, ..., v,|T = Uy,
and set ¢ :=U"b=[c1,...,cn|T. Show that

n

Qy) = % D oNur =Y ey
j=1

j=1
Minimizing a quadratic function is equivalent to solving a linear system.

Lemma 9.2 (Quadratic function)

A wvector x € R™ minimizes Q given by (9.1) if and only if Ax = b. Moreover,

the residual r(y) :== b — Ay at any y € R™ is equal to the negative gradient, i. e.,
T

r(y) = —VQ(y), where V := {3%17 e agn]

Proof. Expanding Q(y + ¢h) := (y + eh)T A(y +eh) — b” (y + eh) we find for
any y,h € R" and ¢ € R

Q(y+eh) =Q(y) —ehr(y) + %82hTAh, where 7(y) :==b— Ay.  (9.3)

If y==x, ¢ =1, and Az = b then (9.3) simplifies to Q(z + h) = Q(z) + 1h" Ah,
and since A is symmetric positive definite Q(x + h) > Q(«) for all nonzero
h € R™. It follows that @ is the unique minimum of . Conversely, if Ax # b
and h := r(z), then by (9.3), Q(z + ch) — Q(x) = —e(h'r(z) — %shTAh) <0
for € > 0 sufficiently small. Thus & does not minimize Q. By (9.3) for y € R"

52-Qlw) = lim ~ (Qly + =) - Qly)

1 1
= lim ~ <—sefr(y)) + 2a2eiTAei> =—el'r(y), i=1,...,n,

e—0 ¢

showing that r(y) = -VQ(y). O

A general class of minimization algorithms for @ and solution algorithms for
a linear system is given as follows:
1. Choose xy € R™.

2. For k=0,1,2,...

Choose a “search direction” py,
Choose a “step length” oy, (9.4)

Compute Tp41 = Tk + appy,.
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We would like to generate a sequence {xy} that converges quickly to the minimum
x of Q.
For a fixed direction p;, we say that oy is optimal if Q(xy11) is as small as
possible, i.e.
Q(zx+1) = Q@k + aupy) = min Q(zx + apy).

By (9.3) we have Q(zx + apy) = Q(zi) — apirr + 50°pl Ap,,, where ), =
b— Axy. Since pl Ap,, > 0 we find a minimum a4, by solving %Q(azk +ap,) = 0.
It follows that the optimal oy, is uniquely given by

Pk
p}prk

Qg = (9.5)

In the method of Steepest descent, also known as the Gradient method
we choose p, = 7 the negative gradient, and the optimal aj. Starting from xg
we compute for £k =0,1,2...

T
TeTk
T

T, ATy

Tyl = T + ( )’I“k. (9.6)

This is similer to Richardson’s method (8.19), but in that method we used
a constant step length. Computationally, a step in the steepest descent iteration
canbe organizedd as follows

t, = Ary,

ap = (rime)/(rity),

(9.7)
Tpt1 = Tk + ATk,

Tk+1 =Tk — aktk.

Here, and in general, the following updating of the residual is used:

T+l = b— A:I}k+1 =b— A(mk -+ akpk) =Tk — Oéktk, tk = Apk' (98)

Example 9.3 (Steepest descent iteration)
Suppose Q(z,y) is given by (9.2). Starting with xg = [-1,—1/2] and rq =
—Axy = [3/2,0]T we find

1 _ _
t0:3[711/2:|, 0[025, w1:—41[§], 7'1:3*41[(1)]

t1:3*4_1[_21], oq:%, w2=—4_1[1}2], 7“2:3*4_1[162],
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and in general for k> 1
top_o =3 x4 7" [711/2] . @op1 = —47F[L], rop1 =3x47F[9]

tor1 =3x47F [, o =—4""[ )], roa=3x47F[12].

Since ay, = 1/2 is constant for all k the methods of Richardson, Jacobi and steepest
descent are the same on this simple problem. See the left part of Figure 9.1. The
rate of convergence is determined from ||xji1ll2/]|2;|| = |rj+1ll2/l7ll2 = 1/2 for
all j.

Exercise 9.4 (Steepest descent iteration)
Verify the numbers in Example 9.3.

9.2 The Conjugate Gradient Method

In the steepest descent method the choice p, = 7; implies that the last two
gradients are orthogonal. Indeed, by (9.8), r{, vy = (r) — . Ary) ' p, = 0 since
ay, = —kr

P Ap,,
are orthogonal'!. We achieve this by using A-orthogonal search directions
i.e., pZTApj =0 for all 7 # j.

and A is symmetric. In the conjugate gradient method all gradients

9.2.1 Derivation of the method

As in the steepest descent method we choose a starting vector ®y € R”. If

rg = b— Axy = 0 then xg is the exact solution and we are finished, otherwise we

initially make a steepest descent step. It follows that r1ry = 0 and p, := 7.
For the general case we define for j > 0

=1 .7
I S (9.9)
’l"f’l"j
Tjp1 =T+ ap; Q= Pl Ap,’ (9.10)
Tiv1 =Tj — a;Ap;. (9.11)

We note that

1. p; is computed by the Gram-Schmidt orthogonalization process applied to

the residuals 7, ...,r; using the A-inner product. The search directions
are therefore A-orthogonal and nonzero as long as the residuals are linearly
independent.

111t is this property that has given the method its name.
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2. Equation (9.11) follows from (9.8).

3. It can be shown that the step length «; is optimal for all j (cf. Exercise
9.9)).

Lemma 9.5 (The residuals are orthogonal)

Suppose that for some k > 0 that x; is well defined, r; # 0, and rIr; = 0
fori,7 = 0,1,...,k, i # j. Then xpy1 is well defined and r{_Hrj = 0 for
ji=0,1,...,k.

Proof. Since the residuals r; are orthogonal and nonzero for j < k, they are
linearly independent, and it follows form the Gram-Schmidt Theorem 0.29 that
Py, is nonzero and p{Api =0 for i < k. But then 1 and ri; are well defined.
Now

T (9.11) T
Ty = (T —axApg) T
-1
@9 rTp ozkp E
- kT3 k T
— Apz
pzABi =0

rfrj fakpprj =0, ;57=0,1,...,k.

That the final expression is equal to zero follows by orthogonality and A-ortogonality
for 7 < k and by the definition of oy for j = k. This completes the proof. O

The expression (9.9) for p, can be greatly simplified. All terms except the
last one vanish, since by orthogonality of the residuals

T ap, P2 T (MY g 0,1, -2
@

For the last term with k =5 — 1

T T T
T 1 APy (9.11) 1 (Pht1 — Tk) (9.10) Th+1T k41

T

Br i= — =
pl Ap, axpi Apy, rir),

(9.12)

To summarize, in the conjugate gradient method we start with g, p; =
ro = b — Az and then generate a sequence of vectors {x;} as follows:

For £k =0,1,2,...

T
TeTk

Tpy1 = T + Py, Q= , (9.13)

g p}prk

Tk+1 =Tk — OzkApk, (914)
'I"T Tk+1

Pit1 = Tk+1 + BkPrs  Br = k% (9.15)

TeTk
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The residuals and search directions are orthogonal and A-orthogonal, respectively.
The conjugate gradient method is also a direct method. Since dimR"™ = n
the n + 1 residuals rg, ..., r, cannot all be nonzero and for orthogonal residuals
we find the exact solution in at most n iterations.
For computation we organize the iterations as follows for £k =0,1,2,...

t, = Apy,

ay = (ri7y)/(Pi tr),
Tkt+1 = Tk + Py,
Ti+1 = Tk — it

B = (Pl i)/ (P Te),
Diy1 = Thy1 + BrPy-

(9.16)

Example 9.6 (Conjugate gradient iteration)
Consider (9.16) applied to the positive definite linear system | % 5'] [21] = [9].

Starting as in Example 9.8 with xq = [:1}2] we find py =19 = [362] and then

to=[_35], a=1/2, @1 = [:}f;‘] , ori=[s%], Bo=1/4, p = [gm ,
t, = [998}, 051:2/37 2132:0, ro = 0.

Thus x5 is the exact solution as illustrated in the right part of Figure 9.1.

Exercise 9.7 (Conjugate gradient iteration, IT)
Do one iteration with the conjugate gradient method when xy = 0. (Answer:

T = (%) b.)

Exercise 9.8 (Conjugate gradient iteration, IIT)
Do two conjugate gradient iterations for the system

2 -1 Ti| _ 0
-1 2 | |z2| |3
starting with &y = 0.

Exercise 9.9 (The cg step length is optimal)
Show that the step length oy, in the conjugate gradient method is optimal'?.

12Hint: use induction on k to show that P =Tk + Zf;& ay, ;7T for some constants ay ;.
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Exercise 9.10 (Starting value in cg)

Show that the conjugate gradient method (9.16) for Ax = b starting with xg is
the same as applying the method to the system Ay = ry := b— Axq starting with
yo = 0.13

9.2.2 The conjugate gradient algorithm

In this section we give numerical examples and discuss implementation.

The formulas in (9.16) form a basis for an algorithm.
Algorithm 9.11 (Conjugate gradient iteration)
The symmetric positive definite linear system Ax = b is solved by the conjugate
gradient method. « is a starting vector for the iteration. The iteration is
stopped when ||rg||2/||b|]2 < tol or k > itmax. K is the number of iterations
used.

1 function [x,K]=cg(A,b,x, tol ,itmax)
2 r=b—Axx; p=r; rhoO=b’xb; rho=r’xr;
3 for k=0:itmax

4 if sqrt(rho/rho0)<= tol
5 K=k; return
6 end

7 t=Axp; a=rho/(p’xt);
8 X=xt+a*p; r=r—axt;

9 rhos=rho; rho=r’xr;
10 p=r+(rho/rhos)*p;

11 end

12 K=itmax+1;

The work involved in each iteration is
1. one matrix times vector (¢ = Ap),
2. two inner products ((p’t and r7r),

3. three vector-plus-scalar-times-vector (x = x + ap, r = r — at and p =
r + (rho/rhos)p),

The dominating part is the computation of t = Ap.

9.2.3 Numerical example

We test the conjugate gradient method on two examples. For a similar test for
the steepest descent method see Exercise 9.17. Consider the matrix given by the

13Hint: The conjugate gradient method for Ay = rg can be written Y1 = Y + Vg,
T

T
Si Sk L _ L . Sk+15k+1
a7 Aqy.’ Sk+1 = Sk — VkAdk, Qi1 = Sk+1 t+ 0kqy, Ok = T Tee Show that

Y, = T — X0, S, = Tk, and q, = py, for k=0,1,2....

T =
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n | 2500 | 10 000 | 40 000 | 1 000 00O | 4 000 000
K 19 18 18 16 15

Table 9.12. The number of iterations K for the averaging problem on a
Vn X /n grid for various n

Kronecker sum T's := T1 ® I + I ® Ty where Ty = tridiag,,(a,d,a). We recall
that this matrix is symmetric positive definite if d > 0 and d > 2|a|. We set
h=1/(m+1)and f=[1,...,1]T € R™.

We consider two problems.

1. a=1/9,d =5/18, the Averaging matrix.

2. a = —1, d = 2, the Poisson matrix.

9.2.4 Implementation issues

Note that for our test problems T3 only has O(5n) nonzero elements. Therefore,
taking advantage of the sparseness of Ty we can compute ¢t in Algorithm 9.11
in O(n) arithmetic operations. With such an implementation the total number
of arithmetic operations in one iteration is O(n). We also note that it is not
necessary to store the matrix T's.

To use the Conjugate Gradient Algorithm on the test matrix for large n
it is advantageous to use a matrix equation formulation. We define matrices
V,R,P,B, T € R™™ by & = vec(V), r = vec(R), p = vec(P), t = vec(T),
and h2f = vec(B). Then Tox = h?f <= TV + VT, = B, and t = Top <
T=T,P+ PT,.

This leads to the following algorithm for testing the conjugate gradient al-
gorithm on the matrix

A = tridiag,, (a,d,a) ® I, + I, ® tridiag, , (a,d, a) € RM)*(m*)
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n 2 500 | 10 000 | 40 000 | 160 000
K 94 188 370 735
K/yn | 188 1.88 1.85 1.84

Table 9.14. The number of iterations K for the Poisson problem on a
V/n x \/n grid for various n

Algorithm 9.13 (Testing conjugate gradient)

function [V,K|]=cgtest (m,a,d, tol,itmax)

1
2 R=ones (m) /(m+1) " 2; rho=sum(sum(R.*R)); rhoO=rho; P=R;
3 V=zeros (m,m); Tl=sparse(tridiagonal(a,d,a,m));

4 for k=I1:itmax

5 if sqrt(rho/rho0)<= tol

6 K=k; return

7 end

8 T=T1xP+P%T1;

9 a=rho /sum(sum(P.*T)); V=V+axP; R=R—axT;

10 rhos=rho; rho=sum(sum(R.*R)); P=R+(rho/rhos)xP;
11 end

12 K=itmax+1;

For both the averaging- and Poison matrix we use tol = 1075.

For the averaging matrix we obtain the values in Table 9.12.

The convergence is quite rapid. It appears that the number of iterations
can be bounded independently of n, and therefore we solve the problem in O(n)
operations. This is the best we can do for a problem with n unknowns.

Consider next the Poisson problem. In in Table 9.14 we list K, the required

number of iterations, and K/+/n.

The results show that K is much smaller than n and appears to be propor-
tional to y/n. This is the same speed as for SOR and we don’t have to estimate

any acceleration parameter.
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9.3 Convergence

Leonid Vitaliyevich Kantorovich, 1912-1986 (left), Aleksey Nikolaevich Krylov, 1863-
1945 (center), Pafnuty Lvovich Chebyshev, 1821-1894 (right)

9.3.1 The A-norm

The convergence analysis for both steepest descent and conjugate gradients is
in terms of a special inner product. We define the A-inner product and the
corresponding A-norm by

(x,y) =x" Ay, |yla:=VyTAy, =zyeR", (9.17)

Exercise 9.15 (The A-inner product)
Show that if A is symmetric positive definite then the A-inner product is indeed
an inner product.

9.3.2 The Main Theorem

The following theorem gives upper bounds for the A-norm of the error in both
methods.

Theorem 9.16 (Error bound for steepest descent and conjugate gradients)

Suppose A is symmetric positive definite. For the A-norms of the errors in the
steepest descent method (9.6) the following upper bounds hold

k
~ 1
|z~ zella _ (" <e R ks>, (9.18)
[lz — xol|a k+1

while for the conjugate gradient method we have

k
— —1 3
2 =2l o (VE <2 v k>0 (9.19)
[lz — xol|a VE+1
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Here k = conda(A) = Apaz/Amin 1S the spectral condition number of A, and
Amaz and Apmin are the largest and smallest eigenvalue of A, respectively.

Theorem 9.16 implies

k—1
r+1
r—1

positive definite matrix. The convergence can be slow when £ is close to

one, and this happens even for a moderately ill-conditioned A.

1. Since < 1 the steepest descent method always converges for a symmetric

2. The rate of convergence for the conjugate gradient method appears to be
determined by the square root of the spectral condition number. This is is
much better than the estimate for the steepest descent method. Especially
for problems with large condition numbers.

3. The proofs of the estimates in (9.18) and (9.19) are quite different. This is
in spite of their similar appearance.

9.3.3 The number of iterations for the model problems

Consider the test matrix
T, = tridiag,, (a,d, a) ® I, + I, ® tridiag,, (a,d, a) € R(™)* (%),
The eigenvalues were given in (3.20) as
Nje = 2d + 2acos(jmh) + 2acos(kmwh), j k=1,...,m. (9.20)

For the averaging problem given by d = 5/18, a = 1/9, the largest and smallest
eigenvalue of T’y are given by \,qz = g + %cos (rh) and Apin = g 2 cos (mh).

9
Thus
_ 5+4cos(rh)

5 —4cos(rh)
and the condition number is bounded independently of n. It follows from (9.19)
that the number of iterations can be bounded independently of the size n of the

problem, and this is in agreement with what we observed in Table 9.12.
For the Poisson problem we have by (8.25) the condition number

KA <9,

_cos(mh/2) 2 2
and Vip = o) S S VT

Amaz  cos?(mh/2)
Kp = = 3
Amin  sin®(mwh/2)

Thus, (see also Exercise 7.33) we solve the discrete Poisson problem in O(n3/2)
arithmetic operations using the conjugate gradient method. This is the same as
for the SOR method and for the fast method without the FFT. In comparison the
Cholesky Algorithm requires O(n?) arithmetic operations both for the averaging
and the Poisson problem.
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Exercise 9.17 (Program code for testing steepest descent)

Write a function K=sdtest(m,a,d,tol,itmaz) to test the Steepest descent method on
the matriz Ty. Make the analogues of Table 9.12 and Table 9.14. For Table 9.14
it is enough to test for say n = 100,400, 1600, 2500, and tabulate K/n instead of
K/+\/n in the last row. Conclude that the upper bound (9.18) is realistic. Compare
also with the number of iterations for the J and GS method in Table 8.1.

Exercise 9.18 (Using cg to solve normal equations)

Consider solving the linear system AT Az = ATb by using the conjugate gradient
method. Here A € R™", b € R™ and AT A is positive definite!*. Explain why
only the following modifications in Algorithm 9.11 are necessary

1. r=A’(b-A*z); p=r;
2. a=rho/(t’*t);
3. r=r-a*A’*;

Note that the condition number of the normal equations is condy(A)?, the square
of the condition number of A.

9.4 Proof of the Convergence Estimates

9.4.1 Convergence proof for steepest descent

For the proof of (9.18) the following inequality will be used.

Theorem 9.19 (Kantorovich inequality)

For any symmetric positive definite matriz A € R™*™

(y"Ay)(y" A y) _ (M +m)
(y"y)? T 4Mm

where M := Aoz and m := Apin are the largest and smallest eigenvalue of A,
respectively.

1<

y#0, yeR", (9.21)

Proof. For j =1,...,n let (A\;,u;) be orthonormal eigenpairs of A and y € R™.
By Theorem 5.1 ()\ ,u;) are eigenpairs for A~ 1 Lety = Z?Zl cju; be the
corresponding elgenvector expansion of y. By orthonormality, (cf. (5.6))

a:_yAy Zt)\“ :_yA Y ZA (9.22)
=1 i=1

14This system known as the normal equations appears in linear least squares problems and
will be considered in this context in Chapter 11.
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where

) n
ti:fizzza i=1,...,n and Ztizl. (9.23)
Zj:lcj j

Thus a and b are convex combinations of the eigenvalues of A and A™', respec-
tively. Let ¢ be a positive constant to be chosen later. By the geometric/arithmetic
mean inequality (7.27) and (9.22)

n

Vab = \/(ac)(b/c) < (ac+b/c)/2 = ;Z ti(Nic+1/(Nic)) = th)\c

=1

where f : [mc, Mc] — R is given by f(z) := 2+ 1/z. By (9.23)

MSE max  f(z).

2 me<z<Mc

Since f € C? and f” is positive it follows from Lemma 7.36 that f is a convex
function. But a convex function takes it maximum at one of the endpoints of the
range (cf. Exercise 9.20) and we obtain

Vab < %max{ f(me), f(Mc)}. (9.24)

Choosing ¢ := 1/vVmM we find f(mc) = =,/ /2 M+m . By (9.24)

vVmM
we obtain

@TAyXyrA”y):ab<(Nf+mV
(y"y)? T AMm
the upper bound in (9.21). For the lower bound we use the Cauchy-Schwarz
inequality as follows

1: Z <Zn:t)\ 1/275/)\ 1/2> Zt)\ iti/)\i):ab.
i=1 i=1

Exercise 9.20 (Maximum of a convex function)
Show that if f : [a,b] = R is conver then max,<y<p f(x) < max{f(a), f(b)}.

Proof of (9.18)
Let €j :=x —x;, j =0,1,..., where Ax = b. It is enough to show that

2 —1\?2
||ek+1|2\A < <"€ ) . k=0,1,2,..., (9.25)
llex Kl
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k
for then |lex|la < ("—_1) ller—1] <--- < (Z—jr}) leo]]- It follows from (9.6) that

Kk+1
r%rk
€ =€ — QpTE, Q= .
k+1 k ETk k T Ar,
We find
HekH?A = EzAEk = ’I"gAil’l”k,
lex+1lla = (er — anri)” Aler — agry)
T, \2
T
= egAGk — QOzkrgAek + air{Ark = ||€k||2A — %
'r'k Tk
Combining these and using Kantorovich inequality
2
ll€r+1l% —1— (rire)? <1_ AAminAmaz _ (’i - 1)
||€kH?4 ’I"TA’I"]g ’I"TA_l'f'k - (Amzn + /\m,ar)z k+1
k k
and (9.25) is proved.
The inequality
-1
z 1 <e T for z>1 (9.26)
T

follows from the familiar series expansion of the exponential function. Indeed,
with y = 1/, using 2¢/k! = 2, k = 1,2, and 2F/k! < 2 for k > 2, we find

o0 k o0
e’ =e 7};} ol <1+2;y 771—3;733—1

and (9.26) follows. O

9.4.2 Krylov spaces and the best approximatetion property

For the convergence analysis of the conjugate gradient method certain subspaces
of of R™ called Krylov spaces play a central role. In fact the iterates in the
conjugate gradient method are best approximation of the solution from these
subspaces using the A-norm to measure the error.

The Krylov spaces are defined by Wy = {0} and

Wy = span(rg, Arg, A%rq,..., A" lrg), k=123, .
They are nested subspaces
WoCcW,CcWyC---CW, CR"
with dim(Wy) < k for all ¥ > 0. Moreover, If v € Wy, then Av € Wy ;.
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Lemma 9.21 (Krylov space)
For the iterates in the conjugate gradient method we have

x — xg € Wy, Tk, Dk GWk+1, k=0,1,..., (927)

and
riw=piAw =0, we W, (9.28)

Proof. (9.27) clearly holds for k = 0 since p, = r¢. Suppose it holds for some

k > 0. Then ryy1 = 7 — apAp, € Wyio and by p,y = 71 + Bipy, €

Wirio and @1 — @ (5.10) zp — xo + app, € Wiy, Thus (9.27) follows by

induction. Since any w € Wy is a linear combination of {rg,r1,...,75—1} and
also {py,P1,---,Pr_1}, (9.28) follows. O

Theorem 9.22 (Best approximation property)
Suppose Ax = b, where A € R"™"™ is symmetric positive definite and {xy} is
generated by the conjugate gradient method (cf. (9.13)). Then

- = min [|@ — zo — w|a. 2
&~ @xlla = min o - @ - w]a (9.29)

Proof. Fix k, let w € Wy, and v := x, — g — w,. By (9.27) u € W;, and then
(9.28) implies that ru = 0. Since (z — zx)T Au = rlu we find

|z —xo —wl} = (x —xp +u) A(x — ), + u)
= (x—xp)Ax — ) + 2rfu+ ul Au

= |l —@rlh + llulh > llz — 2l
Taking square roots the result follows. 0O

If £p = O then (9.29) says that a; is the element in Wy that is closest
to the solution « in the A-norm. More generally, if g # 0 then *x — x; =
(x — o) — (x, — o) and @, — x¢ is the element in Wy, that is closest to & — xp in
the A-norm. This is the orthogonal projection of @ — xg into Wy, see Figure 9.2.

Recall that to each polynomial p(t) := Z;'n:o a;t™ there corresponds a matrix
polynomial p(A) := apl +a1A+---+a,, A™. Moreover, if (A\;,u;) are eigenpairs
of A then (p(\;),u;) are eigenpairs of p(A) for j =1,...,n.

Lemma 9.23 (Krylov space and polynomials)
Suppose Ax = b where A € R™*"™ is symmetric positive definite with orthonormal
eigenpairs (A\j,u;), j = 1,2,...,n, and let ro := b — Az for some xo € R".
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r — X

r — Tk

L — Lo
Wy

Figure 9.2. The orthogonal projection of * — xy into Wy.

To each w € Wy, there corresponds a polynomial P(t) := Zf;é a;jt*=1 such that
w = P(A)rg. Moreover, if ro = Z;’:l oju; then

n
| — o —w||% =
j=1

a
A

<o

Q)Y QW) i=1—tP(1). (9.30)
Proof. If w € Wy, then w = agrg + a1Arg +--- + ap_1 AF1ry for some scalars
ag,...,ax—1. But then w = P(A)ry. We find

A(lx —xg—w) = A(x —xg — P(A)rg) =rog — AP(A)ro = Q(A)ry,

and so ||z — o — w||} = ¢’ A" 'e, where ¢ = Q(A)ry. Using the eigenvector
expansion for ry we obtain

Q) u;. (9.31)

C:ZUjQ()\j)Uj, Ailc:Zai N
j=1 i=1

Now (9.30) follows by the orthonormality of the eigenvectors. 0O
We will use the following theorem to estimate the rate of convergence.

Theorem 9.24 (cg and best polynomial approximation)
Suppose [a,b] with 0 < a < b is an interval containing all the eigenvalues of A.
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Then in the conjugate gradient method

||z — x| a

= 32
[ — ol QI(“)%? nax |Q()]; 9.32)
QO 1

where Il denotes the class of univariate polynomials of degree < k with real
coefficients.

Proof. With the notation in Lemma 9.23 we find ||z — 0|} = roA 'ro =

o2
Z?:l A

w e Wy

N

Therefore, by the best approximation property and (9.30), for any

e

n 2
[l — 2|4 < [lz — @0 — wl[ < max x Q= Zi = max |Q(z)]*||z — zol[%.
— )\j a<z<b

where @ € Iy and @Q(0) = 1. Minimizing over such polynomials @ and taking
square roots the result follows. 0O

In the next section we use properties of the Chebyshev polynomials to show
that

||z — zx||a : 2
< min max  |Q(x)] = (9.33)
- v Y 1k
o=zl =GB, .25 90 = T

where kK = A\jaz/Amin 18 the spectral condition number of A. Ignoring the second
term in the denominator this implies the first inequality in (9.19). The second
inequality follows from (9.26).

Exercise 9.25 (Krylov space and cg iterations)
Consider the linear system Ax = b where

2 -1 0 4
A=| -1 2 =1 |, and b= 0
0 -1 2 0
a) Determine the vectors defining the Krylov spaces for k < 3 taking as initial
4 8 20
approzimation & = 0. Answer: [b, Ab, A’b]=| 0 —4 —16
0 O 4

b) Carry out three CG-iterations on Ax = b. Answer:

0 2 83 3
[150,(1:1,322,(1:3} = 0 0 4/3 2 5
0 0 0 1
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4 0 0 0
[7"0,1"1,7"2,7‘3] = 0 2 0 0 ,
0 0 4/3 0
8§ 0 0
[Apo, Ap,, Apy] = | -4 3 0,
0 —2 16/9
4 1 4/9 0
[Po:P1, P23l = | 0 2 8/9 0 |,
0 0 12/9 0
c¢) Verify that
o dim(Wy) =k fork=0,1,2,3.
e x3 is the exact solution of Ax =b.
® 1y,...,Tr_1 15 an orthogonal basis for Wy, for k =1,2,3.

® Dy, ...,Dr_1 s an A-orthogonal basis for Wy, for k =1,2,3.

{|rr€} is monotonically decreasing.

o {|x) — xe} is monotonically decreasing.

9.4.3 Chebyshev polynomials

The proof of the estimate (9.33) for the error in the conjugate gradient method
is based on an extremal property of the Chebyshev polynomials. Suppose a < b,
¢ & [a,b] and k € N. Consider the set Sy, of all polynomials @ of degree < k such
that Q(c) = 1. For any continuous function f on [a,b] we define

1 loe = max |f(x)]
We want to find a polynomial @* € Sy such that
s
1Rl = 20in [|Ql]oc-

We will show that Q* is uniquely given as a suitably shifted and normalized
version of the Chebyshev poynomial. The Chebyshev polynomial T}, of degree
n can be defined recursively by

Toir(t) = 2T, (t) — To1(t), n>1, teR,

starting with Tp(t) = 1 and Ty (t) = t. Thus Ty(t) = 2t> — 1, T3(t) = 4¢3 — 3t etc.
In general T, is a polynomial of degree n.
There are some convenient closed form expressions for 7;,.
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Lemma 9.26 (Closed forms of Chebyshev polynomials)
Forn >0

1. T, (t) = cos (narccos t) fort € [—1,1],
2. T,(t) =4 [(t+ V2 —1)" + (t+ V2 —1) "] for |t| > 1.

Proof. 1. With P, (t) = cos (narccost) we have P, (t) = cosn¢, where ¢t = cos ¢.
Therefore,

Poy1(t) + Po—1(t) =cos(n+ 1)¢ + cos (n — 1) = 2cos ¢ cosng = 2t P, (1),

and it follows that P, satisfies the same recurrence relation as T,,. Since Py = T
and P; = T we have P, = T,, for all n > 0.

2. Fix t with |¢| > 1 and let x,, := T,,(¢) for n > 0. The recurrence relation
for the Chebyshev polynomials can then be written

Tpt1 — 2txy + 1 =0 for n > 1, with zo = 1,21 = ¢. (9.34)

To solve this difference equation we insert z,, = 2" into (9.34) and obtain 2"+ —

2tz 4+ 2" 1 =0 or 22 — 2tz + 1 = 0. The roots of this equation are

A=t VE—1, m=t—P2—1=(t+ V1)

Now 2], 25 and more generally ¢; 2] +c22% are solutions of (9.34) for any constants
c1 and c3. We find these constants from the initial conditions zg = ¢; + ¢ = 1
and 11 = ¢121 + co20 = t. Since z1 + 29 = 2t the solution is ¢ = ¢g = % |

We show that the unique solution to our minimization problem is

_ Tr(u(z)) _ b+a—2x.

Q" (z) = m7 u(x) b—a (9.35)

Clearly Q* € Sk.

Theorem 9.27 (A minimal norm problem)
Suppose a < b, ¢ & [a,b] and k € N. If Q € S, and Q # Q* then |Q|loc > |Q*||oo-

Proof. Recall that a nonzero polynomial p of degree k can have at most k zeros.
If p(z) = p'(2) = 0, we say that p has a double zero at z. Counting such a zero
as two zeros it is still true that a nonzero polynomial of degree k has at most k
Z€ros.

|Q*| takes on its maximum 1/|Tj(u(c))| at the k + 1 points po, ..., g in
[a,b] such that u(p;) = cos(in/k) for i = 0,1,...,k. Suppose @ € Sj; and that
|Q] < 1|Q*||- We have to show that @ = Q*. Let f = Q — Q*. We show that f
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-1 /TS(c)

Qao ,
ey, Q ) '

1 /T3 (c)

Figure 9.3. This is an illustration of the proof of Theorem 9.27 for
k=3. f=Q — QF has a double zero at p1 and one zero between ps and us.

has at least k zeros in [a, b]. Since f is a polynomial of degree < k and f(c) = 0,
this means that f = 0 or equivalently @ = Q™.
Consider I; = [pj_1, ;] for a fixed j. Let

oj = fuj—1)f(ug)-

We have o; < 0. For if say Q*(p;) > 0 then

Q1) < 1Qlloe < N1Q7 oo = Q7 (115)

so that f(u;) <0. Moreover,

—Qpj-1) <|Qllo < 1@ lo0 = —Q"(1j-1)-

Thus f(p;—1) > 0 and It follows that o; < 0. Similarly, o; < 0 if Q*(x;) < 0.

If 0; <0, f must have a zero in I; since it is continuous. Suppose o; = 0.
Then f(uj—1) = 0 or f(u;) = 0. If f(u;) = 0 then Q(u;) = Q*(n;). But
then p; is a maximum or minimum both for @ and Q*. If u; € (a,b) then
Q' (pj) = Q*'(uj) = 0. Thus f(u;) = f'(p;) = 0, and f has a double zero at
w;. We can count this as one zero for I; and one for ;1. If u; = b, we still
have a zero in I;. Similarly, if f(p;—1) = 0, a double zero of f at u;_, appears if
pj—1 € (a,b). We count this as one zero for I;_; and one for I;.

In this way we associate one zero of f for each of the k intervals I;, j =
1,2,..., k. We conclude that f has at least k zeros in [a,b]. O
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Exercise 9.28 (Another explicit formula for the Chebyshev polynomial)

Show that
T, (t) = cosh(narccosh t) for |t| > 1,

where arccosh is the inverse function of coshz := (e* +e~%)/2.

Theorem 9.27 with a, and b, the smallest and largest eigenvalue of A, and
¢ = 0 implies that the minimizing polynomial in (9.33) is given by

b+a—2z b+a
(@) =T —p—— ) /T : 9.36
Q" (x) k( s )/k(ba) (9.36)
By Lemma 9.26
b4+a— 2z
Zax, | T ( “b—a )’—If;atgllTk(tn—l. (9.37)

Moreover with ¢t = (b+ a)/(b — a) we have

1
t+Vt2—1= ﬁfl, Kk =1b/a.

Thus again by Lemma 9.26 we find

n(52e) = (255 =5 (55 + ()

and (9.33) follows.

(9.38)

9.4.4 Monotonicity of the error

The error analysis for the conjugate gradient method is based on the A-norm. We
end this chapter by considering the Euclidian norm of the error, and show that it
is strictly decreasing.

Theorem 9.29 (The error in cg is strictly decreasing)
Let in the conjugate gradient method m be the smallest integer such that r,,41 = 0.
For k < m we have ||€xt1]l2 < |€kll2. More precisely,

I3
el — llewal = 2552 Clenls +lleesa %)
klIlA

where €; = x —x; and Ax =b..
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Proof. For j <m
€ =Tm41 —Lj =Ty — Ly + AmPy, = Tm—1 — Lj + O —1DPp—1 + APy, =

so that

— E . S _d ot 9.39
L a;P;, &% z“ A ; ( )

By (9.39) and A-orthogonality

m (TT’I"')2
) 1
lejla = €jAe; = Zcﬂp Ap, =Y (9.40)
Py D; Ap;
By (9.15) and Lemma 9.21
P?Pk = (ri + /Bi—lpi—l)Tpk = ﬁi—lpiT—lpk = =01 Bk(pgpk)v
and since B;_1 -+ B = (rI'r;)/(rfry) we obtain
T
rlr; .
PPy = ——DPLDp ik (9.41)
Tk Tk
Since
lerlls = [lerss + hsr — @kl = [lert1 + arpyll3,
we obtain

lecll3 — llenrill3 =ax (2P£€k+1 + akpr p)

m m
(9:39)
= Z ap! .+ arpipy) = (D + Y )] py
i=k+1 i=k i=k+1
m m T T T
(9.41)( TLTk r;ry T;Tv T
= + ) DL Pi
2
9.40
020 Pulz (1,12 4 ey 2).
(2815

and the Theorem is proved. 0O

9.5 Preconditioning

For problems Ax = b of size n, where both n and conds(A) are large, it is often
possible to improve the performance of the conjugate gradient method by using a
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technique known as preconditioning. Instead of Az = b we consider an equiva-
lent system BAx = Bb, where B is nonsingular and condy(BA) is smaller than
condy(A). The matrix B will in many cases be the inverse of another matrix,
B = M~'. We cannot use CG on BAx = Bb directly since BA in general is
not symmetric even if both A and B are. But if B (and hence M) is symmet-
ric positive definite then we can apply CG to a symmetrized system and then
transform the recurrence formulas to an iterative method for the original system
Ax = b. This iterative method is known as the preconditioned conjugate
gradient method. We shall see that the convergence properties of this method
is determined by the eigenvalues of BA.

Suppose B is symmetric positive definite. By Theorem 2.38 there is a non-
singular matrix C' such that B = CTC. (C is only needed for the derivation and
will not appear in the final formulas). Now

BAz = Bb = CT(CACT)C Tz =C"Cb = (CACT )y =Cb, & z=C"y.

We have 3 linear systems

Ax =b (9.42)
BAx = Bb (9.43)
(CACT)yy=0Cb, & x=C"y. (9.44)

Note that (9.42) and (9.44) are symmetric positive definite linear systems. In
addition to being symmetric positive definite the matrix CACT is similar to
BA. Indeed,

c’(cach)c™' = BA.
Thus CAC” and BA have the same eigenvalues. Therefore if we apply the con-
jugate gradient method to (9.44) then the rate of convergence will be determined
by the eigenvalues of BA.
We apply the conjugate gradient method to (CACT)y = Cb. Denoting the

search direction by g; and the residual by zp = Cb — C'AC'Ty,C we obtain the
following from (9.13), (9.14), and (9.15).

Y1 = Yp T Gy, O = zfzk/qf(CACT)qk,
2pr1 =z — a(CACT)q,,

Qi1 = 2kt + Bry, Bk = 24412841/ %1 2k
With

Ty = CTyk’ Py = Cqu, S 1= CTzk, T = C’*lzk (9.45)
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this can be transformed into

Tpt1 = T + Py, o = 78%1” (9.46)
R ™ TP :
Tk+1 = Tk — A APy, (9.47)
Skt1 = Sk — . BApy, (9.48)
Sk Th+1
Pri1 = Sk+1 + BrPrs B = W (9.49)

Here x;, will be an approximation to the solution @ of Ax = b, r, = b— Axy,
is the residual in the original system, and s; = Bb— B Az, is the residual in the
preconditioned system. This follows since by (9.45)

ry=C 2, =b-C 'CAC"y, =b— Ax,,

and s, = CTz, = CTCr, = Br,. We start with ro = b — Axy, py = so =
Brg and obtain the following preconditioned conjugate gradient algorithm for
determining approximations xj; to the solution of a symmetric positive definite
system Ax = b.

Algorithm 9.30 (Preconditioned conjugate gradient )

The symmetric positive definite linear system Ax = b is solved by the pre-
conditioned conjugate gradient method on the system BAx = Bb, where B
is symmetric positive definite . @ is a starting vector for the iteration. The
iteration is stopped when ||rk||2/||b]|2 < tol or k > itmax. K is the number of
iterations used.

1 function [x,K]=pcg(A,B,b,x,tol ,itmax)
2 r=b—Axx; p=Bx*r; s=p; rho=s’sr; rho0O=b’xb;
3 for k=0:itmax

4 if sqrt(rho/rho0)<= tol

5 K=k; return

6 end

7 t=Axp; a=rho/(p’*t);
8 x=x+ax*p; r=r—axt;

9 w=Bx*t; s=s—axw;

10 rhos=rho; rho=s’xr;
11 p=r+(rho/rhos)*p;

12 end

13 K=itmax+1;

Appart from the calculation of p this algorithm is quite similar to Algo-
rithm 9.11. The main additional work is contained in w = B xt. We’ll discuss
this further in connection with an example. There the inverse of B is known and
we have to solve a linear system to find w.

We have the following convergence result for this algorithm.
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Theorem 9.31 (Error bound preconditioned cg)

Suppose we apply a symmetric positive definite preconditioner B to the symmet-
ric positive definite system Ax = b. Then the quantities xy computed in Algo-
rithm 9.30 satisfy the following bound:

|z — zx||a <2(ﬁ—1
|l —xolla = \Vr+1

where &K = Amaz/Amin 1S the ratio of the largest and smallest eigenvalue of BA.

k
) , for k>0,

Proof. Since Algorithm 9.30 is equivalent to solving (9.44) by the conjugate
gradient method Theorem 9.16 implies that

k

- —1

lly — yillcacr <2 <\/E ) Cfor k>0,
Iy — Yollcac VE+1

where y;, is the conjugate gradient approximation to the solution y of (9.44) and

% is the ratio of the largest and smallest eigenvalue of CAC”. Since BA and
CACT are similar this is the same as the « in the theorem. By (9.45) we have

ly — kachCT =(y— yk)T(CACT)(y )
= (C"(y—yp)"ACT (y — yp)) = llz — @x[%

and the proof is complete. 0O

We conclude that B should satisty the following requirements for a problem
of size n:

1. The eigenvalues of BA should be located in a narrow interval. Preferably
one should be able to bound the length of the interval independently of n.

2. The evaluation of Bz for a given vector @ should not be expensive in storage
and arithmetic operations, ideally O(n) for both.

9.6 Preconditioning Example
9.6.1 A variable coefficient problem

Consider the problem

— g (@) §E) — Hclxy)fs) = fley) (z,y) €2=1(0,1)
’ ’ K u(x?y) = 0 (x,y) € O0. (9:50)

Here 2 is the open unit square while 92 is the boundary of Q. The functions f
and ¢ are given and we seek a function u = u(z,y) such that (9.50) holds. We
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assume that ¢ and f are defined and continuous on 2 and that ¢(z,y) > 0 for all
(z,y) € . The problem (9.50) reduces to the Poisson problem in the special case
where ¢(x,y) =1 for (z,y) € Q.

As for the Poisson problem we solve (9.50) numerically on a grid of points

{(jh,kh): 4, k=0,1,...,m+ 1}, where h=1/(m+1),

and where m is a positive integer. Let (x,y) be one of the interior grid points.
For univariate functions f, g we use the central difference approximations

o (10 500) ~ (£0+ ) gate w12~ = ) gate = 5))/n

~ (F(e+ ot +1) = 9(0) ~ 1t = §)o(0) -l - m) ) /17
to obtain

Q(C@) Gt Wit e = k) = o1k (Vk — V1)
Oz \ 9z’ik "~ h?

and
o, Ou, €t (Vi1 = Vi) = ¢ p_ 1 (Vjk — Vjk—1)
87/(687/)]?’“ - h? ’
where ¢, = c(ph,qh) and v;, ~ u(jh,kh). With these approximations the
discrete analog of (9.50) turns out to be

_(th)j7k = h2fj,k L k=1,....m (9 51)
virg = 0 j=0m+1lallkor k=0,m+1allj, ’
where
—(Prv)ie = (G +¢ 1 p+¢1n+Cr1)vk
TG k=1 k-1 T G L gUj—1,k — G L pUi+1k T Cjpp L V5 k41
(9.52)

and f;r = f(jh, kh).

As before we let V' = (v;) € R™™ and F = (fjx) € R™*™. The
corresponding linear system can be written Ax = b where = vec(V), b =
h2vec(F), and the n-by-n coefficient matrix A is given by

Qi = Cjg—1 TG L T C e T C gl 1=12,000m
@il = Qi1 = —Cj 41 s tmodm # 0
Qitm,i = Qiitm = —Cj, g4 1, 1=1,2...,.n—m
a;; = 0 otherwise,

(9.53)
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where (j;, k;) with 1 < j;,k; < m is determined uniquely from the equation
i=gi+(ki—1)mifori=1,...,n. If ¢(x,y) =1 for all (z,y) € Q we recover the
Poisson matrix.

In general we cannot write A as a Kronecker sum. But we can show that A
is symmetric and it is positive definite as long as the function c is positive on 2.

Theorem 9.32 (Positive definite matrix)
If c(z,y) > 0 for (x,y) € Q then the matrix A given by (9.53) is symmetric
positive definite.

Proof.
To each x € R™ there corresponds a matrix V. € R™*™ gsuch that =z =
vec(V). We claim that

m m m m
T o 2 2
Az =" i (vine —vik) DD e (vrn —vk) ", (9.54)
j=1k=0 k=1;=0
where vg = Umt1,k = Vj,0 = Vjm41 = 0for j,k=0,1,...,m+1. Since Cirdk and

ikt correspond to values of ¢ in Q for the values of j, k in the sums it follows

that they are positive and from (9.54) we see that 7 Ax > 0 for all z € R".
Moreover if T Ax = 0 then all quadratic factors are zero and Vjk+1 = Vjk for
k=0,1,...,mand j =1,...,m. Now vj0 = vjmy1 = 0 implies that V' = 0 and
hence x = 0. Thus A is symmetric positive definite.

It remains to prove (9.54). From the connection between (9.52) and (9.53)
we have

m m
xl Ax = Z Z —(Ppv); kvjk

m m
:E g Cip 102 4 1,02 e 02 e, 102
3 k—3 "5k —5,k"5k J+35,kY5k J.k+3 ik
= G k— 3 Vik—1V5k T Cj k4L V5 kUj k+1

T G- kY- 1kVik Cj+;,kvj,kvj+1,k>-

Using the homogenous boundary conditions we obtain
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j=1k=1
m m
E E cjk_,vjk 1V k = E E Cjk+é’l)jk+1’l)]k,
J=1k=1 7J=1k=0
m m
St = Y e
j=1k=1 k=1 3=0
m m
E E CJ %kv],kvjk— E E CJJF k'l)]+1kvjk
j=1k=1 k=15=0

It follows that

2T _ 2 s
Az = E E Ci k4t j,k + Vj k1 — 20j,k0j,+1)
j=1k=0
m m
2 2
+ Cj+%,k<vj,lc + 0741k — 2055041,k
k=1 j=0

and (9.54) follows. O

9.6.2 Applying preconditioning

Consider solving Ax = b, where A is given by (9.53) and b € R™. Since A is
positive definite it is nonsingular and the system has a unique solution z € R™.
Moreover we can use either Cholesky factorization or the block tridiagonal solver
to find @. Since the bandwidth of A is m = y/n both of these methods require
O(n?) arithmetic operations for large n.

If we choose c(z,y) =1 in (9.50), we get the Poisson problem. With this in
mind, we may think of the coefficient matrix A, arising from the discretization
of the Poisson problem as an approximation to the matrix (9.53). This suggests
using B= A, ! the inverse of the discrete Poisson matrix as a preconditioner for
the system (9.51).

Consider Algorithm 9.30. With this preconditioner the calculation w = Bt
takes the form A,wj = .

In Section 4.2 we developed a Simple fast Poisson Solver, Cf. Algorithm 4.1.
This method can be utilized to solve A,w = t.

Consider the specific problem where

c(z,y) = e and f(z,y) = 1.
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n 2500 | 10000 | 22500 | 40000 | 62500
K 222 472 728 986 | 1246
K/\/n | 4.44 4.72 4.85 4.93 4.98
Kpre 22 23 23 23 23

Table 9.33. The number of iterations K (no preconditioning) and Ky,
(with preconditioning) for the problem (9.50) using the discrete Poisson problem
as a preconditioner.

We have used Algorithm 9.11 (conjugate gradient without preconditioning),
and Algorithm 9.30 (conjugate gradient with preconditioning) to solve the problem
(9.50). We used xo = 0 and € = 108, The results are shown in Table 9.33.

Without preconditioning the number of iterations still seems to be more or
less proportional to y/n although the convergence is slower than for the constant
coefficient problem. Using preconditioning speeds up the convergence consider-
ably. The number of iterations appears to be bounded independently of n.

Using a preconditioner increases the work in each iteration. For the present
example the number of arithmetic operations in each iteration changes from O(n)
without preconditioning to O(n?/?) or O(nlog,n) with preconditioning. This is
not a large increase and both the number of iterations and the computing time is
reduced significantly.

Let us finally show that the number k = A40/Amin Which determines the
rate of convergence for the preconditioned conjugate gradient method applied to
(9.50) can be bounded independently of n.

Theorem 9.34 (Eigevalues of preconditioned matrix)
Suppose 0 < ¢y < c(z,y) < ¢1 for all (x,y) € [0,1]2. For the eigenvalues of the
matric BA = A;lA just described we have

Proof.
Suppose A;lAsc = Az for some © € R™\ {0}. Then Ax = AA,z. Multi-
plying this by 27 and solving for A we find

xT Az

A= ——7—.
T Apx

We computed T Az in (9.54) and we obtain ? A,z by setting all the ¢’s there
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equal to one

CCTApx = ZZ (Ui,j—i-l — Ui,j) + Z (vi+1,j - vm-) .
=0

i=1 j=0 j=1i

Thus 7 A,z > 0 and bounding all the ¢’s in (9.54) from below by ¢y and above
by ¢1 we find
co(zT Apr) <2 Az < ¢ (T Apz)

which implies that ¢y < A < ¢ for all eigenvalues A of BA = A; LA. 0

Using c(z,y) = e~**¥ as above, we find co = e "2 and ¢; = 1. Thus k < €2 &~
7.4, a quite acceptable matrix condition number which explains the convergence
results from our numerical experiment.

0.7 Review Questions

9.7.1 Does the steepest descent and conjugate gradient method always converge?
9.7.2 What kind of orthogonalities occur in the conjugate gradient method?
9.7.3 What is a Krylow space?

9.7.4 What is a convex function?

9.7.5 How do SOR and conjugate gradient compare?
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Chapter 10

Orthonormal and Unitary
Transformations

Alston Scott Householder, 1904-1993 (left), James Hardy Wilkinson, 1919-1986 (right).
Householder and Wilkinson are two of the founders of modern numerical analysis and scien-
tific computing.

Gauss transformations, (cf. Theorem 2.60, the PLU theorem) are used in
Gaussian elimination to reduce a matrix to triangular form. These are not the
only kind of transformations that can be used for such a task. In this chapter we
study how transformations by orthonormal and unitary matrices can be used to
reduce a square matrix to upper triangular form and more generally a rectangular
matrix to upper triangular (also called upper trapezoidal) form. This lead to
a decomposition of the matrix known as a QR decomposition and a reduced
form which we refer to as a QR factorization. The QR decomposition and
factorization will be used in later chapters to solve least squares- and eigenvalue
problems.

It cannot be repeated too often that orthonormal transformations have the
advantage that they preserve the Euclidian norm of a vector, and the spectral
norm and Frobenius norm of a matrix, see Lemma 6.24 and Theorem 7.20. This
means that when an orthonormal transformation is applied to an inaccurate vector
or matrix then the error will not grow. Thus in general an orthonormal transfor-
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“mirror”

Figure 10.1. The Householder transformation in Exercise 10.2
mation is numerically stable.

10.1 The Householder Transformation

Definition 10.1 (Householder transformation)
A matriz H € C"*™ of the form

H :=1—uu", whereu € C" and u*u =2

is called o« Householder transformation. The name elementary reflector is
also used.
2
In the real case and for n = 2 we find H = [ 1;;;11 71“1:22 } A Householder
- — W2
transformation is Hermitian and unitary. Indeed, H* = (I — uu*)* = H and

H*H=H?=I—-uu)(I—uu")=1I-2uu*+u(uu)u* =1I.

In the real case H is symmetric and orthonormal.
There are several ways to represent a Householder transformation. House-
holder used I — 2uu™*, where u*u = 1. For any nonzero v € R” the matrix
vv*
H:=1-2—

" (10.1)

is a Householder transformation. Indeed, H = I — uu*, where u := \@m has

length v/2. Moreover, if ¢,y € R” with ||z||2 = ||y||2 and v := & — y # 0, then
Hzx =y (Cf. Exercise 10.2).
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Exercise 10.2 (Reflector)
Suppose x,y € R™ with |||z = ||y|l2 and v :=x —y # 0.

(a) Show that Hx := (I — Zi)w =y. 5.

vTv
(b) Let M := {w € R" : wlv = 0} and P := I — % Show that Px =

(x+y)/2 € M. Thusy is the reflected image of x, where M is the "mirror”.
See Figure 10.1.

(c) Determine the matrices H, P and the “mirror” M when x := [1,0,1]T and
y:=[-1,0,1]7.

A main use of Householder transformations is to produce zeros in vectors.

Theorem 10.3 (Zeros in vectors)
Suppose x € C" is nonzero and define p € C and z,u € C" by

w1/lw1|, if 21 #0, _ z+e;
= ., L,z:=px/|x U= —. 10.2
{1, otherwise. pa/ll]l2 V1i+2z ( )
Then u*u = 2, x = p||x|l2z and

Hzx = (I —uu*)x =ae;, a:=—p|z|s. (10.3)
Proof. Since |p| = 1 we have p||z|22 = |p|*?x = x. Moreover, |z||z = 1 and

z1 = |z1|/||z||2 is real so that u*u = (ZJ’E&Z(I”“) = 2221 — 2. Finally,

. * (2" +ei)z
Hz = 2 — (wa)u = pllalla(z — (w2)w) = plela(z — E 25 1 o))

1+Zl
= pllzll2(z — (2 + 1)) = —pl|z|2e1 = ae;.

The formulas in Theorem 10.3 are implemented in the following algorithm
adapted from [26]. To any given & € C™ a number a and a vector u with w*u = 2
is computed so that (I — uu*)x = ae;.

15Hint: Show first that v v = 2vTx
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Algorithm 10.4 (Generate a Householder transformation)

function [u,a]=housegen (x)
a=norm (x) ;
if a==0
u=x; u(l)=sqrt(2); return;

end
if x(1)=

r=1;
else

=x(1)/abs(x(1));

© 0 N O A W N

end
u=conj(r)x*x/a;
u(l)=u(l)+1;
u=u/sqrt (u(l));
a=rx*a;

end

P S S N S
L O )

Note that

e If £ = 0 then any u with |Julls = v/2 can be used in the Householder
transformation. In the algorithm we use u = V/2e; in this case.

e In Theorem 10.3 the first component of z is z; = |z1|/[|z||2 > 0. Since
|z]]2 = 1 we have 1 < 1+ 2z; < 2. It follows that u is well defined and we
avoid cancelation error when computing 1 + 2.

Exercise 10.5 (What does algorithm housegen do when = = e;7?)
Determine H in Algorithm 10.4 when © = e;.

Householder transformations can also be used to zero out only the lower part
of a vector. Suppose ' := [y, z]7, where y € C*¥, z € C"% for some 1 < k < n.
The command [@,a] := housegen(z) defines a Householder transformation H =

I— 44" so that Hz = ae;. With u” := [0, 4]T € C" we see that u*u = 4" 4 = 2,
and

|y . « (I 0 0 . |I 0
Hm—[ael},whereH.—I—uu—[o I]—M[o u]—{o il

defines a Householder transformation that produces zeros in the lower part of .

Exercise 10.6 (Examples of Householder transformations)

If x,y € R™ with ||:c||2 = |lyll2 and v := & —y # 0 then it follows from Ezxer-
cise 10.2 that (I 2’”’ )a: =1y. Use this to construct a Householder transforma-
tion H such that Hm =y in the following cases.
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va=|1] w=]0)

2 0
byz=|2]|, y=1|3
1 0

Exercise 10.7 (2 x 2 Householder transformation)
Show that a real 2 X 2 Householder transformation can be written in the form

H_ { —cos¢ sing }

sing cos¢

Find Hzx if = [cos ¢,sin ¢]7.

10.2 Householder Triangulation

We say that a matrix R € C"™*" is upper trapezoidal, if r; ; = 0 for j < ¢ and
1 =1,2,...,m. Upper trapezoidal matrices corresponding to m < n, m = n, and
m > n look as follows:

r T x T r T x

r r T x

0 0 =z = =z 0 =z =z

O‘Szi’OOazz’oox
0 0 0 =z 0 0 O

In this section we consider a method for bringing a matrix to upper trapezoidal
form using Householder transformations. We treat the cases m > n and m <
n separately and consider first m > n. We describe how to find a sequence
H.,...,H, of Householder transformations such that

An-l—l =H,H, - -HA= |:I(z)1:| =R,

and where R, is upper triangular. We define

A1;:A’ Ak+1:HkAka k:1,2,...,n.
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Suppose Ay is upper trapezoidal in its first £k —1 columns (which is true for k = 1)

o1 1 1 1 1 q
ar; a3, k-1 ay .k T ay T a1 n
k—1 k—1 k—1 k—1
Op—1k—1 | Y1k " Q14 77 Op 14
13 13
ak‘,k e ak,j e ak7n
A= ) ) )
; ; : 10.4
ak ak . ak (104)
i,k 1,9 7,m
k k k
L Ak m,j Amm
| By Cy
0 D, |’

Let Hy := I — w0y, be a Householder transformation that maps the first

column [a?k,...,a%k]T of D} to a multiple of eq, ﬂk(Dkel) = ape;. Using
Algorithm 10.4 we have [y, ay] = housegen(Dye;). Then Hy, := [Iko_l ng} is a

Householder transformation and

— _[Brx  Ck | _ [Bryr Ci
A1 = Hp Ay = {0 ﬁkDJ = { 0 Dyl

where By, € CF*F is upper triangular and Dy € Clm—k)x(n=k) Thys Agi1
is upper trapezoidal in its first k£ columns and the reduction has been carried one
step further. At the end R:= A, ;1 = [%1 }, where R, is upper triangular.

The process can also be applied to A € C™*" if m < n. In this case m — 1
Householder transformations will suffice and H,,,_1 - - - H1 A is upper trapezoidal.

In an algorithm we can store most of the vectors 4y, = [ugg, - . -, umk]T and
Ay in A. However, the elements uy; and a; = 74 have to compete for the
diagonal in A. For m =4 and n = 3 the two possibilities look as follows:

U1 T2 Ti13 T11 Ti2 T3
U21 U2 T2 U1 T2 T2
A= 31 or A= 3
U1 U3z U33 Uzr U3z2 733
Uq1  Uq2  U43 Ug1  Ug2  U43

Whatever alternative is chosen, if the looser is needed, it has to be stored in a
separate vector. In the following algorithm we store a; = 7% in A. We also
apply the Householder transformations to a second matrix B. The algorithm can
then be used to solve linear systems and least squares problems with one or more
right hand sides, or to compute the product of the Householder transformations
by choosing B = 1.
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Algorithm 10.8 (Householder triangulation)

Suppose A € C™*" B € C™*" and let s := min(n,m — 1). The algorithm
uses housegen to compute Householder transformations H, ..., H such that
R=H, - --H; A is upper trapezoidal and C = H, --- H, B. If B is the empty
matrix then C' is the empty matrix with m rows and 0 columns.

1 function [R,C] = housetriang(A,B)

2 [m,n]=size(A); r=size(B,2); A=[A,B];

3 for k=1:min(n,m—1)

4 [v,A(k,k)]=housegen (A(k:m,k));

5 C=A(k:m,k+1:nt+r); A(k:m,k+1:ntr)=C—vx*(v’xC);
6 end

7 R=triu(A(:,1:n)); C=A(:,n+1lintr);

Here v = i, and we have used H,C = (I — vv*)C = C — v(v*C) for
the update. The Matlab command triu extracts the upper triangular part of A
putting zeros in rows n +1,...,m.

10.2.1 Solving linear systems using unitary transformations

Consider now the linear system Ax = b, where A is square. Using Algorithm 10.8
we obtain an upper triangular system Rx = c¢ that is nonsingular if A is non-
singular. Thus, it can be solved by back substitution and we have a method for
solving linear systems that is an alternative to Gaussian elimination. The two
methods are similar since they both reduce A to upper triangular form using
certain transformations and they both work for nonsingular systems.

Which method is better? Here is a short discussion.

e Advantages with Householder:

— Row interchanges are not necessary, but see [5].

— Numerically stable.
e Advantages with Gauss

— Half the number of arithmetic operations compared to Householder.
— Row interchanges are often not necessary.

— Usually stable (but no guarantee).

Linear systems can be constructed where Gaussian elimination will fail nu-
merically even if row interchanges are used, see [34]. On the other hand the
transformations used in Householder triangulation are unitary so the method is
quite stable. So why is Gaussian elimination more popular than Householder tri-
angulation? One reason is that the number of arithmetic operations in (10.5)
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when m = n is 4n3/3 = 2G,,, which is twice the number for Gaussian elimina-
tion. We show this below. Numerical stability can be a problem with Gaussian
elimination, but years and years of experience shows that it works well for most
practical problems and pivoting is often not necessary. Also Gaussian elimination
often wins for banded and sparse problems.

10.2.2 The number of arithmetic operations

The bulk of the work in Algorithm 10.8 is the computation of C — v * (vT * C)
for each k. In the real case it can be determined from the following lemma.

Lemma 10.9 (Updating a Householder transformation)
Suppose A € R™ " u € R™ and v € R™. The computation of A —u(u® A) and
A — (Av)vT both cost approzimately 4mn arithmetic operations.

Proof. It costs 2mn arithmetic operations to compute w” := uT A, mn arith-
metic operations to compute W = uw? and mn arithmetic operations for the
final subtraction A — W, a total of 4mn arithmetic operations. Taking the trans-
pose we obtain the same count for A — (Av)v?. O

Since in Algorithm 10.8, C e C(m—k+Ux(n+r=k) and m > n the cost of
computing the update C —v* (v *C) is 4(m—k)(n+r —k) arithmetic operations.
This implies that the work in Algorithm 10.8 can be estimated as

/n 4(m —k)(n+r —k)dk = 2m(n +r)* — %(n+r)3. (10.5)
0

For m = n and r = 0 this gives 4n3/3 for the number of arithmetic operations to
bring a matrix A € R™*™ to upper triangular form using Householder transform-
tions.

10.3 The QR Decomposition and QR Factorization

Gaussian elimination without row interchanges results in an LU factorization
A = LU of A € R""™. Consider Householder triangulation of A. Applying
Algorithm 10.8 gives R = H,,_1--- H1 A implying the factorization A = QR,
where @ = H; --- H,,_; is orthonormal and R is upper triangular. This is known
as a QR-factorization of A.

10.3.1 Existence

For a rectangular matrix we define the following.
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Definition 10.10 (QR decomposition)
Let A € C™*" with m,n € N. We say that A = QR is a QR decomposition
of A if Q € C™™ is square and unitary and R is upper trapezoidal. If m > n
then R takes the form
R,
R =
|:Om—n,n:|
where Ry € C™"*™ s upper triangular and 0,,_,, , is the zero matriz with m —n
rows and n columns. For m > n we call A = Q,R; a QR factorization of A if
Q, € C"™*" has orthonormal columns and Ry € C"*™ is upper triangular.

Suppose m > n. A QR factorization is obtained from a QR decomposition
A = QR by simply using the first n columns of @ and the first n rows of R.
Indeed, if we partition Q as [Q;,Q,] and R = [%1], where Q, € R™*"™ and
R, € R"" then A = Q,R; is a QR factorization of A. On the other hand
a QR factorization A = Q,R; of A can be turned into a QR decomposition
by extending the set of columns {qy,...,q,} of @, into an orthonormal basis
{a1,---.9,:4,41:---,4,,} for R and adding m —n rows of zeros to R;. We then
obtain the QR decomposition A = QR, where Q = [q4,...,q,,] and R = [%1 ]

Example 10.11 (QR decomposition and factorization)
An example of a QR decomposition is

1 3 1 1 1 -1 -1 2 2 3
1 3 71 111 1 1 1 0 4 5
A=11 1 4T3t 1 1 1] %o o ¢ = 9B
1 -1 2 1 -1 1 -1 00 0

while a QR factorization A = QR is obtained by dropping the last column of Q
and the last row of R, so that

111_1 2 23
A== x [0 4 5| =Q,Ry.
201 -1 -1 00 o

1 -1 1

Consider existence and uniqueness.

Theorem 10.12 (Existence of QR decomposition)
Any matrix A € C™*" with m,n € N has a QR decomposition.

Proof. The function housegen (x) returns a Householder transformation for
any & € C™. Thus with B = I in Algorithm 10.8 we obtain a QR decomposition
A = QR, where Q = C* = H,---H,, is unitary. Thus a QR decomposition
always exists. 0O
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Theorem 10.13 (Uniqueness of QR factorization)
If m > n and A is real then the QR factorization is unique if A has linearly
independent columns and R has positive diagonal elements.

Proof. Let A = Q, R, be a QR factorization of A. Note that ATA = RTQ{QlRl =
RlTRl. Since AT A is symmetric positive definite the matrix R, is nonsingular,
and if its diagonal elements are positive this is the Cholesky factorization of AT A.
Since the Cholesky factorization is unique it follows that R, is unique and since
necessarily Q; = ARfl, it must also be unique. 0O

Example 10.14 (QR decomposition and factorization)

Consider finding the QR decomposition and factorization of the matric A =
[31 _21] using the method of the uniqueness proof of Theorem 10.12. We find
B := ATA = [_54 *54}. The Cholesky factorization of B = RT R is given by
R = % (53], Now R = ﬁ[gé] s0Q=AR' = \}5 [ 23], Since A is
square A = QR is both the QR decomposition and QR factorization of A.

The QR factorization can be used to prove a classical determinant inequality.

Theorem 10.15 (Hadamard’s inequality)
For any A =lay,...,a,] € C"™™ we have

|det(A)] < HH%II» (10.6)

Equality holds if and only if A has a zero column or the columns of A are orthog-
onal.

Proof. Let A = QR be a QR factorization of A. Since

1 = det(I) = det(Q°Q) = det(Q") det(@Q) = det(Q)" det(Q) = |det(Q)

we have |det(Q)| = 1. Let R = [ry,...,7,]. Then (A*A);; = |la;|3 = (R"R);; =
73, and

|det(A)| = |det(QR)| = |det(R)| = [[Irs| < TTlirsll2 = [T llaslle-
j=1 j=1 j=1

The inequality is proved. We clearly have equality if A has a zero column, for
then both sides of (10.6) are zero. Suppose the columns are nonzero. We have
equality if and only if r;; = ||7||2 for j = 1,...,n. This happens if and only if R
is diagonal. But then A*A = R* R is diagonal, which means that the columns of
A are orthogonal. O
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Exercise 10.16 (QR decomposition)

1 2 1 1 1 1 2 2
1 2 1 1 -1 -1 0 2
A= 1 0|’ Q=3 1 -1 -1 1]’ R= 0 0
1 0 1 -1 1 -1 0 0

Show that Q is orthonormal and that QR is a QR decomposition of A. Find a
QR factorization of A.

Exercise 10.17 (Householder triangulation)

a) Let
1 0 1
A=| -2 -1 0
2 2 1

Find Householder transformations Hi, Hy € R3*3 such that HoH 1 A is
upper triangular.

b) Find the QR factorization of A, when R has positive diagonal elements.

10.3.2 QR and Gram-Schmidt

The Gram-Schmidt orthogonalization of the columns of A can be used to find the
QR factorization of A.

Theorem 10.18 (QR and Gram-Schmidt)
Suppose A =€ R™*™ has rank n and let vy, ..., v, be the result of applying Gram

Schmidt to the columns ay,...,a, of A, i.e.,

! a]Tv,; ,
vi=ai, v;=a;— ——v;, forj=2,...,n (10.7)

i=1 Vi Vi

Let v

Q:l::[q7"’7q ]7 q': k ) j:17"‘7nand
' S (511
[Nvill2 aq a;@ll agflth a;‘h ]
0 vl @a3qy -+ a@,_1qs a,dqds

0 valla - af_lqg a?;‘]:a (10.8)
R1 = . . . .

[vn-1ll2 alq,
0 [vnll2 |
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Then A = QR is the unique QR factorization of A.

Proof. Let Q; and Ry be given by (10.8). The matrix @, is well defined and
has orthonormal columns, since {qy,...,q, } is an orthonormal basis for span(A)
by Theorem 0.29. By (10.7)

j—1 -1
= a)v; z .

a; =v;+ E mm:rjjqj—k E q;rij = QRiej, j=1,...,n.
i=1

(2 i=1

Clearly R; has positive diagonal elements and the factorization is unique. 0O

Example 10.19 (QR using Gram-Schmidt)
Consider finding the QR decomposition and factorization of the matricx A =

[31 _21] = |a1,a2] using Gram-Schmidt. Using (10.7) we find v1 = a; and
QTU
vy = ag — v%’vivl = 3[3]. Thus Q = [qy,q,), where q; = %[31] and

L [4]. By (10.8) we find

Q2:\/g
I 1 |5 —4
R =R= HUIHQ a2q1:| |: :|
' { 0 Juallz] 510 3

and this agrees with what we found in Example 10.14.

Exercise 10.20 (QR using Gram-Schmidt, IT)
Construct Q, and Ry in Example 10.11 using Gram-Schmidt orthogonalization.

Warning. The Gram-Schmidt orthogonalization process should not be used
to compute the QR factorization numerically. The columns of @, computed in
floating point arithmetic using Gram-Schmidt orthogonalization will often be far
from orthogonal. There is a modified version of Gram-Schmidt which behaves
better numerically, see [2]. Here we only considered Householder transformations
(cf. Algorithm 10.8).

10.4 Givens Rotations

In some applications, the matrix we want to triangulate has a special structure.
Suppose for example that A € R™*™ is square and upper Hessenberg as illustrated
by a Wilkinson diagram for n =4

A:

oo 8 8
o8 &8 8
8 8 8 8
8 8 8 8
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0
y=RX

Figure 10.2. A plane rotation.

Only one element in each column needs to be annihilated and a full Householder
transformation will be inefficient. In this case we can use a simpler transformation.

Definition 10.21 (Givens rotation, plane rotation)
A plane rotation (also called a Given’s rotation) is a matriz P € R%? of the
form

P .= {C 8}7 where ¢ + 5% = 1.
s ¢

A plane rotation is orthonormal and there is a unique angle 6 € [0,27) such
that ¢ = cosf and s = sinf. Moreover, the identity matrix is a plane rotation
corresponding to § = 0.

Exercise 10.22 (Plane rotation)
Show that if € = [7.3%] then Px = {:z?j((g:z;} . Thus P rotates a vector x in

the plane an angle 0 clockwise. See Figure 10.2.

Suppose

T I1 L2
T = [ 1] #£0, c:=—, s§:= o T= lz||2-

szl 1 Tol| |71 :} 2 + 23 _|r
r |—Xo2 T1 T2 T 0 0 ’
and we have introduced a zero in &. We can take P = I when o = 0.
For an n-vector x € R” and 1 < i < j < n we define a rotation in the

i,j-plane as a matrix P;; = (pr;) € R™™"™ by pi = i except for positions
it, 77,17, ji, which are given by

{p” piﬁ} - [C S} , where ¢ + 5% = 1.
pji pij] |78 ¢

Then
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Thus, for n =4,
c s 0 O c 0 s O 1 0 0
—s ¢ 0 0 0 1 0 O 0 s ¢ O
Prz=1y o1 0|" P8~ |5 0 ¢col” P20 s ¢ 0
0 0 0 1 0 0 0 1 0 0 01

Karl Adolf Hessenberg, 1904-1959 (left), James Wallace Givens, Jr, 1910-1993 (right)

Premultiplying a matrix by a rotation in the i, j-plane changes only rows
1 and j of the matrix, while postmultiplying the matrix by such a rotation only
changes column ¢ and j. In particular, if B = P;; A and C = AP;; then B(k,:
)= A(k,:), C(:,k) = A(:, k) for all k #i,j and

P I I v I TR R=TE) S P pYoe | B

—-s ¢ —-s ¢
(10.9)
An upper Hessenberg matrix A € R™*™ can be transformed to upper trian-
gular form using rotations P; ;4 for i =1,...,n — 1. For n = 4 the process can

be illustrated as follows.

T11 712 T13 T14 T11 712 T13 T14 T11 T12 T13 T14
PAZ 0 =z = = 133 0 792 T23 To4 134 0 792 T23 T24
0 =z z= = 0 0 z =z 0 0 rzzras |-

T X T
I I
A= 0z x
00 0 0 = = 0 0 = =« 0 0 0 7y

8888

For an algorithm see Exercise 10.23.

Exercise 10.23 (Solving upper Hessenberg system using roations)

Let A € R™ ™ be upper Hessenberg and nonsingular, and let b € R™. The fol-
lowing algorithm solves the linear system Ax = b using rotations Py 1 for
k=1,....,n—1. It uses the back solve algorithm 2.2. Determine the number of
arithmetic operations of this algorithm.
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Algorithm 10.24 (Upper Hessenberg linear system)

© ® N O g oA W N

=
= o

function x=rothesstri(A,b)
n=length (A); A=[A b];
for k=1:n—1
r=norm ([A(k, k) ,A(k+1,k)]) ;
if r>0
c=A(k,k)/r; s=A(k+1,k)/r;
A([k k+1],k+1:n+1)=[c s;—s c|*A([k k+1],k+1:n+1);
end
A(k,k)=r; A(k+1,k)=0;
end
x=backsolve (A(:,1:n) ,A(:,n+1),n);

10.5 Review Questions
10.5.1 What is a Householder transformation?

10.5.2 Why are they good for numerical work?

10.5.3 What are the main differences between solving a linear system by Gaussian

elimination and Householder transformations?

10.5.4 What are the differences between a QR decomposition and a QR factor-

ization?

10.5.5 Does any matrix have a QR decomposition?

10.5.6 What is a Givens transformation?



264 Chapter 10. Orthonormal and Unitary Transformations




Chapter 11

Least Squares

Consider the linear system Az = b of m equations in n unknowns. It is overde-
termined, if m > n, square, if m = n, and underdetermined, if m < n. In either
case the system can only be solved approximately if b ¢ span(A). One way to
solve Az = b approximately is to select a vector norm ||-||, say a p-norm, and look
for & € C™ which minimizes ||Az — b||. The use of the one and co norm can be
formulated as linear programming problems, while the Euclidian norm leads to a
linear system. Only this norm is considered here.

Definition 11.1 (Least squares problem)
Suppose m,n € N, A € C™*" and b € C™. To find x € C" that minimizes
E:C" — R given by

E(z) := || Az - b|3,

is called the least squares problem. A minimizer x is called a least squares
solution.

Since the square root function is monotone, minimizing E(x) or 1/ E(x) is equiv-
alent.

One way to solve the least squares problem is to write F as a quadratic
function and set partial derivatives equal to zero. If A and b have real components
we find

E(x) := (Az —b)T(Ax — b) = " Bx — 2c"z + p,
where
B=A"A, c=A"b, p=0b"b.

By Lemma 9.2 all minimums are solutions of the linear system Bx = c or

ATAxz = AT

265
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known as the normal equations. The coefficient matrix is symmetric positive
semidefinite. If it is positive definite then the least square problem has a unique
solution. By Corollary 2.36 AT A is positive definite if and only if A has linearly
independent columns. In particular, m > n is necessary for a unique solution.

11.1 Numerical Examples

Example 11.2 (Average)
Consider the least squares problem defined by

=1 1 1
xr1=1, A= |1|, x=[x], b= |1],
T =2 1 2

We find
|Az — b2 = (1 — 1)* + (21 — 1)* + (z1 — 2)* = 327 — 821 + 6.

Setting the first derivative with respect to x1 equal to zero we obtain 6x1—8 =0 or
x1 = 4/3, the average of by, ba,bs. The second derivative is positive and 1 = 4/3
is a global minimum. The normal equation is 3z = 4.

Example 11.3 (Input/output model)
Suppose we have a simple input/output model. To every input u € R™ we obtain
an output y € R. Assuming we have a linear relation

n
Y= u'z = E Ui,
i=1
between u and y, how can we determine x?

Performing m > n experiments we obtain a table of values

’U,‘Ul"U,Q“’U,m
vyl [ | | ym

We would like to find x such that

ulT Y1
ug Y2

Ax = . T = . =b
uh, Ym

We can estimate x by solving the least squares problem min||Ax — b||3.
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11.2 Curve Fitting

Given

o size: 1 <n < m,

o sites: S :={t1,t2,...,tm} C la,b],

e y-values: y = [y1,¥2,---,Ym]T € R™,

e functions: ¢; : [a,b] = R, j=1,...,n.
Find a function (curve fit) p : [a,b] — R given by p := Z?Zl xj¢; such that
p(ty) =y for k=1,...,m.

An example is shown in Figure 11.1. Here ¢1(t) = 1 and ¢5(t) =t and p is
a straight line (linear regression).

Y

Figure 11.1. A least squares fit to data.

The curve fitting problem can be defined from an overdetermined linear
system:

p(t1) p1(t1) - Pu(tr) | [m (i
= Az = =1 =0 (11.1)
p(tm) ¢1 (tm) T ¢n(tm) Tn Ym
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Then we find x € R™ as a solution of the corresponding least squares problem
given by

E(x) = Az - b3 =" (D wjeite) — i)™ (11.2)
k=1 j=1

Typical examples of functions ¢; are polynomials, trigonometric functions, expo-
nential functions, or splines.

In (11.2) one can also include weights wy > 0 for k = 1, ..., m and minimize
m n 9
E(@) =Y wk( Y wi(te) = vr)
k=1 j=1

If yi is an accurate observation, we can choose a large weight wy. This will force
p(tr) — yx to be small. Similarly, a small wy, will allow p(t;) — yx to be large. If an
estimate for the standard deviation dyx in vy is known for each k, we can choose
wr = 1/(6yx)?, k = 1,2,...,m. For simplicity we will assume in the following
that wy, = 1 for all k.

Lemma 11.4 (Curve fitting)
Let A be given by (11.1). The matriz AT A is symmetric positive definite if and
only if {¢1,...,¢Pn} is linearly independent on S, i.e.,

p(tr) ::ij¢j(tk)20, k=1,....m = x;=---=2x, =0. (11.3)
j=1

Proof. A is positive definite if and only if A has linearly independent columns.

Since (Ax), = Z?Zl zj¢i(ty), k=1,...,m this is equivalent to (11.3). 0O

Example 11.5 (Straight line fit)
Consider m > n = 2,¢1(t) = 1, and ¢2(t) = t. The normal equations can be

written
s s )= L) o

Here k ranges from 1 to m in the sums. Recall that a nonzero polynomial of degree
at most n has at most n roots. Therefore, by the Lemma 11.4, this 2 X 2 system
is symmetric positive definite if and only if there are at least 2 distinct sites ty.

With the data
t 1.0 ‘ 2.0 ‘ 3.0 ‘ 4.0

|
y|31]18[10]0.1

. 4 10) [z1] [ 6
the normal equations (11.4) become [10 30] [HUJ = [10.1} The data and the

least squares polynomial p(t) = w1 + xot = 3.95 — 0.98t are shown in Figure 11.1.
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Example 11.6 (Ill conditioning and the Hilbert matrix)

The normal equations can be extremely ill-conditioned. Consider the curve fitting
problem using the polynomials ¢;(t) := =1, for j =1,...,n and equidistant sites
ty, = (k—=1)/(m —1) for k = 1,...,m. The normal equations are B,x = ¢,,
where for n =3

mo Yty Y tF T > Uk
Bsz:= | Yt Ytz St} ro | = Ztkyk
Yt Yt Yty T3 >tk

B, is symmetric positive definite if at least n of the t’s are distinct, However
B,, is extremely ill-conditioned even for moderate n. Indeed, Bn ~ H,, where
H, € R"™" is the Hilbert Matrix with i,j element 1/(i —|— j—1). Thus for
n=3

H; =

Lol =
[ 00| 00| =
(SN

The elements of %Bn are related to Riemann sums approximations to the elements
of H,. In fact,

m E—1 i+j—2 T 1
ZtlJr] 2 —_— Z _— ~ / x1+3_2dx = = hz je
m—1 0 1+7—1 ’

Ic 1

The elements of H, ' are determined in Ezercise 0.51. We find K1(Hg) ~ 3-107.
It appears that %Bn and hence B, is ill-conditioned for moderate n at least if
m 1is large. The cure for this problem is to use a different basis for polynomials.
Orthogonal polynomials are an excellent choice. Another possibility is to use the
shifted power basis (t — 1)1, j =1,...,n, for a suitable t, see Evercise 11.8.

Exercise 11.7 (Straight line fit (linear regression))
Suppose (t;,y;)™, are m points in the plane. We consider the over-determined
systems

i) =1 = wn (ii) zi14+tize = wn
T = Y2 r1+toxs = Yo
1 = Ym 1 +tpTa = Ym

a) Find the normal equations for (i) and the least squares solution.

b) Find the normal equations for (ii) and give a geometric interpretation of the
least squares solution.
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Exercise 11.8 (Straight line fit using shifted power form)
Related to (ii) in Fxercise 11.7 we have the overdetermined system

(lii) $1+(ti—£)l‘2:yi, 1=1,2,...,m,
where t = (t; + -+ + t)/m.

a) Find the normal equations for (iii) and give a geometric interpretation of the
least squares solution.

b) Fit a straight line to the points (t;,y;): (998.5,1), (999.5,1.9), (1000.5,3.1)
and (1001.5,3.5) using a). Draw a sketch of the solution.

Exercise 11.9 (Fitting a circle to points)

In this problem we derive an algorithm to fit a circle (t —c1)? + (y — c2)? = 2 to
m > 3 given points (t;,y;)", in the (t,y)-plane. We obtain the overdetermined
system

(t1761)2+(yi762)2:7’2, 1=1,...,m, (11.5)

of m equations in the three unknowns cy,co and r. This system is nonlinear, but
it can be solved from the linear system

ti$1+yi$2+$3:ﬁ?+y$, t=1,...,m, (11.6)
and then setting c; = x1/2, ca = x2/2 and r* = ¢ + 3 + x3.

a) Derive (11.6) from (11.5). Explain how we can find c1,ca,7 once [x1, T2, x3)
is determined.

b) Formulate (11.6) as a linear least squares problem for suitable A and b.
¢) Does the matriz A in b) have linearly independent columns?

d) Use (11.6) to find the circle passing through the three points (1,4),(3,2),(1,0).

11.3 Least Squares and Singular Value
Decomposition and Factorization

The singular value decomposition and factorization can be used to characterize all
solution of the least squares problems. We first consider orthogonal projections.
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by

Figure 11.2. The orthogonal projection of b into S.

11.3.1 Sum of subspaces and orthogonal projections

Suppose S and T are subspaces of R™ or C" endowed with an inner product (, ).
The following subsets are subspaces of R™ or C™.

o Theset S+ T :={s+t:secSandt e T} is called the sum of S and 7.
e If SNT = {0} then S + 7 is called a direct sum and denoted S & T.

o If (s,t) =0 foralls € Sandt € 7 then § + T is called an orthogonal
L
sum and denoted S®T.

Every @ € S® T can be decomposed uniquely in the form & = s+ ¢, where s € S
and t € T. For if ® = 81 +t; = s + to for 81,85 € S and t1,t; € T, then
81 — 8o = to — t1 and it follows that s; — so and t2 — ¢ belong to both S and T
and hence to SN7T. But then 81 — 8o =t5 —t; =050 81 = 85 and ty = t;.

An orthogonal sum is a direct sum. For if b € SN7T then b is orthogonal to

itself, (b, b) = 0, which implies that b = 0. Thus, every b € SGJ}_ST can be written
uniquely as b = by + by, where by € S and by € 7. The vectors by and by are
called the orthogonal projections of b into S and 7. For any s € S we have
(b—by,s) = (ba,s) =0, see Figure 11.2.

Consider a singular value decomposition of A and the corresponding singular
value factorization:

A=UXV" =[U,,U,j [21 O] [Vl

0 0 V;:| :U121V1<, Elzdiag(al,...7ar),
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where A has rank r so that o7 > -+ > 0, > 0 and Uy = [uy,...,u,], V1 =
[v1,...,v,]. We recall (cf. Theorem 6.16)

e the set of columns of U; is an orthonormal basis for the column space
span(A),

e the set of columns of Uy is an orthonormal basis for the null space ker(A™),

Theorem 11.10 (Orthogonal projection and least squares solution)
Let A€ C™*™ be C™, S:=span(A) and T :=ker(A"). f A=U121V7 isa
singular value factorization of A then:

1
1. C™ = S®T is an orthogonal decomposition of C™ with respect to the
usual inner product (s,t) = t*s.

2. The orthogonal projection by of b into S is

by =U,Ub= AA'b, where AT := V,'UT € C™™, (11.7)

3. x € C™ is a solution of the least squares problem if and only if Ax = by. In
particular the least squares problem always has a solution.

Proof. By block multiplication b = UU*b = [U1,U, [g*} b = by + by, where

by = U Uib € S and by = U U3b € T. Since U5U; = 0 it follows that
(by,b2) = b3b; = 0 implying Part 1. Moreover, b; is the orthogonal projection
into S. Since ViV = I we find

AATD = (U, VH)(ViZ'UDb=UUb=b,

and Part 2 follows. For any € C" we have Az — by € S and b5(Ax — by) =
so by Pythagoras

16— Az[)3 = [[(br — Az) + bo||3 = [[b1 — Az||3 + [[b2]3 > [|bll3.

We obtain the minimum value ||bz||2 of ||b — Az||3 if and only if Az = b;. Since
by € span(A) we can always find such an « and existence follows. 0O

Example 11.11 (Projections and least squares solutions)
We have the singular value factorization (cf. Example 6.13)

1
1| [2]
0

[1 1].

-
Sl

1 1
A=1(1 1| =
0 0
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We then find
1 J1],1, 1 111 1 0 1
T = e P _ = _ LT
i S TRICRH 2
Thus,
1 1 1 1 1 0 by (bl+b2)/2
bi=UUb=o 1| [110b=2|1 1 0] b = AATb = |(by +by)/2
0 0 0 0 [bs 0

Moreover, the set of all least quares solutions is

b1 + b
2

{xeR?*: Ax=b} ={z1, 20 ER: 2z + x5 = }. (11.8)

Theorem 11.12 (Uniqueness)
The least squares solution is unique if and only if A has linearly independent
columns.

Proof. By what we just showed any solution x of the least squares problem
satisfies Ax = by. There is a unique such @« if and only if rank(A) =n. O

It follows that only square or overdetermined systems can have unique solu-
tions.

Theorem 11.13 (Characterization)
The following is equivalent:

1. x is a least squares solution,
2. ¢ = ATb+ z for some z € C" with Az = 0,
3. A" Ax = A™b (normal equations).

Proof.

1. = 2. Le @ be a least squares solution, i.e., Az = by. If z := & — ATb then
Az=Arx - AAb=b, - by =0and z = ATb + 2.

2. = 3.If x = ATb + z with Az = 0 then
A*Ax = A"A(ATb+ 2z) = A*(AATb + Az) = A*b, = A™D.

The last equality follows since b = by + by and b, € ker(A™).



274 Chapter 11. Least Squares

3. = 1.If A"Ax = A™b then A" (Ax —b) = A*(Ax — b;) = 0. But then
Az — by € span(A) Nker(A*) and Az — b; = 0. It follows that z is a least
squares solution.

Example 11.14 (Least squares solutions)
Consider the least squares solutions  in (11.8). Since ker(A) = {[Z,] : z € R}
it follows from Part 2 of Theorem 11.13 that

b1 by+b

111 1 0 z bitbs 4

e R ] R S e
b3 4

The normal equations take the form

AT Az — |2 2| 71| 2 ATp— | T2
2 2 T2 ’

Thus we obtain (11.8).

11.3.2 The generalized inverse

Consider the matrix AT := V121_1UT in (11.7). If A is square and nonsingu-
lar then ATA = AAT = I and A" is the usual inverse of A. Thus A’ is a
generalization of the usual inverse. The matrix AT satisfies Properties (1)- (4)
in Exercise 11.15 and these properties define AT uniquely (cf. Exercise 11.16).
The unique matrix B satisfying Properties (1)- (4) in Exercise 11.15 is called the
generalized inverse or pseudo inverse of A and denoted A'. Tt follows that
Al = V12I1U1‘ for any singular value factorization U;X, V] of A. We show in
Exercise 11.18 that if A has linearly independent columns then

Al =(A"A)1A" (11.9)
Exercise 11.15 (The generalized inverse)

Show that B := V1%, U7 satisfies (1) ABA = A, (2) BAB = B, (3) (BA)* =
BA, and (4) (AB)* = AB.

Exercise 11.16 (Uniqueness of generalized inverse)
Given A € C™*" and suppose B,C € C™*™ satisfy

ABA = A (1) ACA = A,
BAB = B (2) CAC = C,
(AB)* = AB (3) (AC)" = AC,
(BA* = BA (4 (CA = CA.
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Verify the following proof that B = C.

B=(BA)B=(A")B*B=(A*C*)A*B*B = CA(A*B*)B
= CA(BAB) = (C)AB = C(AC)AB = CC*A*(AB)
= CC*(A*B*A*) = C(C*A*) = CAC = C.

Exercise 11.17 (Verify that a matrix is a generalized inverse)
Show that the matrices A = F ﬂ and B = % [119] satisfy the azioms in Ezer-
00

cise 11.15. Thus we can conclude that B = A" without computing the singular
value decomposition of A.

Exercise 11.18 (Linearly independent columns and generalized inverse)

Suppose A € C™*™ has linearly independent columns. Show that A* A is nonsin-
gular and AT = (A*A)~YA*. If A has linearly independent rows, then show that
AA* is nonsingular and AT = A*(AA*)~L,

Exercise 11.19 (The generalized inverse of a vector)
Show that u! = (u*w) " *u* if u € C™' is nonzero.

Exercise 11.20 (The generalized inverse of an outer product)
If A = uv* where u € C™, v € C" are nonzero, show that

1
Al = —A% = vl

Exercise 11.21 (The generalized inverse of a diagonal matrix)
Show that diag(Ay, ..., A\y)t = diag(Al, ... Al) where

)\Tf 1/)\1‘; A #0
P 0 A; = 0.

Exercise 11.22 (Properties of the generalized inverse)
Suppose A € C™*™. Show that

a) (A7) = (AT)".

b) (AN = A.

o) (aA)t=1AT a0
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Exercise 11.23 (The generalized inverse of a product)
Suppose k,m,n € N, A € C™*", B € C"**. Suppose A has linearly independent
columns and B has linearly independent rows.

a) Show that (AB)' = BTA". Hint: Let E = AF, F = BTA". Show by using
A'A = BB' = I that F is the generalized inverse of E.

b) Find A € R, B € R>! such that (AB)! # BTAT.

Exercise 11.24 (The generalized inverse of the conjugate transpose)
Show that A* = AT if and only if all singular values of A are either zero or one.

Exercise 11.25 (Linearly independent columns)
Show that if A has rank n then A(A*A)~tA*b is the projection of b into span(A).
(Cf. Ezercise 11.18.)

Exercise 11.26 (Analysis of the general linear system)
Consider the linear system Ax = b where A € C™"*" has rank r > 0 and b € C".

Let
" | % 0
UAV—[ 0 0}

represent the singular value decomposition of A.

a) Letc=lc1,...,co]T =Ub and y = [y1,...,yn]T = V*'x. Show that Ax = b

if and only if
1 0 e
o o|Y™“

b) Show that Ax = b has a solution x if and only if ¢,11 = =c¢, =0.

¢) Deduce that a linear system Ax = b has either no solution, one solution or
infinitely many solutions.

Exercise 11.27 (Fredholm’s alternative)
For any A € C™*™ b € C" show that one and only one of the following systems
has a solution

(1) Axz=0b, (2) A'y=0, y"b#0.

In other words either b € span(A), or we can find y € ker(A™) such that y*b # 0.
This is called Fredholm’s alternative.
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11.4 Numerical Solution

We assume that m > n, A € R™*" and b € R™. Numerical methods can be
based on normal equations, QR factorization, or Singular Value Factorization.
We discuss each of these approaches in turn. Another possibility is to use an
iterative method like the conjugate gradient method (cf. Exercise 9.18).

11.4.1 Normal equations

Suppose A has linearly independent columns. The coefficient matrix B := ATA
in the normal equations is symmetric positive definite, and we can solve these
equations using the Cholesky factorization of B. Consider forming the normal
equations. We can use either a column oriented (inner product)- or a row oriented
(outer product) approach.

1. inner product: (AT A);; =1, aranj, i,5=1,...,n,
(ATb)Z = Z;nzl ak,ibk)a t=1,...,n,

a1 ag1
2. outer product: ATA =330 | ¢ | fagt - agn], ATO=30 0| | bre

Afen Afn

The outer product form is suitable for large problems since it uses only one pass
through the data importing one row of A at a time from some separate storage.

Consider the number of operations to find the least squares solution. We
need 2m arithmetic operations for each inner product. Since B is symmetric we
only need to compute n(n + 1)/2 such inner products. It follows that B can be
computed in approximately mn? arithmetic operations. In conclusion the number
of operations are mn? to find B, 2mn to find ATb, n®/3 to find R, n? to solve
R"y = c and n? to solve Rz = y. If m ~ n it takes 4n® = 2@, arithmetic
operations. If m is much bigger than n the number of operations is approximately
mn?, the work to compute B.

A problem with the normal equations approach is that the linear system can
be poorly conditioned. In fact the 2-norm condition number of B := AT A is the
square of the condition number of A. This follows, since the eigenvalues of B are
the square of the singular values of A so that

Ky (B) = % _ (‘71)2 = K,(A)>

On

If A is ill-conditioned, this could make the normal equations approach problem-
atic. One difficulty which can be encountered is that the computed AT A might
not be positive definite. See Problem 11.36 for an example.
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11.4.2 QR factorization

Gene Golub, 1932-2007. He pioneered use of the QR factorization to solve least
square problems.

Suppose A € R™*"™ has rank n and let b € R™. The QR factorization can be
used to solve the least squares problem. Suppose A = QR is a QR factorization
of A. Since @, has orthonormal columns we find

ATA=R{QTQ,R, =R{R,, A"b=R]Q'b.
Since A has rank n the matrix R? is nonsingular and can be canceled. Thus
A"Az=A"b= Riz=ci, ¢ :=Qb.

We can use Householder transformations or Givens rotations to find R; and e;.
Consider using the Householder triangulation algorithm Algorithm 10.8. We find
R =Q7A and ¢ = QTb, where A = QR is the QR decomposition of A. The
matrices Ry and ¢; are located in the first n rows of R and ¢. Using also Al-
gorithm 2.2 we have the following method to solve the full rank least squares
problem.

1. [R,c]l=housetriang(A,Db).

2. x=rbacksolve(R(l:n,1:n),c(l:n),n).

Example 11.28 (Solution using QR factorization)
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Consider the least squares problem with

1 3 1 1
1 3 1
A= 1 —1 —4 and b = 1
1 -1 2 1

This is the matriz in FExample 10.11. The least squares solution x is found by
solving the system

2 2 3| (=1 1 1 1 1 1 1
0 4 5| [z2]| = 3 1 1 -1 -1 x 1
0 0 6| [z 1 -1 -1 1 1

and we find z = [1,0,0]7.

Using Householder triangulation is a useful alternative to normal equations
for solving full rank least squares problems. It can even be extended to rank defi-
cient problems, see [2]. The 2 norm condition number for the system Ryjx = ¢; is
K>(Ry) = K2(Q,R;1) = K2(A), and as discussed in the previous section this is the
square root of Ko (ATA), the condition number for the normal equations. Thus
if A is mildly ill-conditioned the normal equations can be quite ill-conditioned
and solving the normal equations can give inaccurate results. On the other hand
Algorithm 10.8 is quite stable.

But using Householder transformations requires more work. The leading
term in the number of arithmetic operations in Algorithm 10.8 is approximately
2mn? — 2n3/3, (cf. (10.5) while the number of arithmetic operations needed to
form the normal equations, taking advantage of symmetry is approximately mn?.
Thus for m much larger than n using Householder triangulation requires twice
as many arithmetic operations as the approach based on the normal equations.
Also, Householder triangulation have problems taking advantage of the structure
in sparse problems.

11.4.3 Singular value factorization
This method can be used even if A does not have full rank. By Theorem 11.13
z=Ab+z,

where AT is the generalized inverse of A, is a least squares solution for any z €
ker(A). If A has linearly independent columns then ker(A) = {0} and = = A'b
is the unique solution.

When rank(A) is less than the number of columns of A then ker(A) # {0},
and we have a choice of z. One possible choice is z = 0 giving the solution A'b.
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Theorem 11.29 (Minimal solution)
The least squares solution with minimal Euclidian norm is € = A'b corresponding
to z =0.

Proof. Suppose © = A'b + z, with z € ker(A). Recall that if the right singular
vectors of A are partitioned as [vy,...,Vr, Vpi1,...,0,] = [V, V2], then V5 is
a basis for ker(A). Moreover, V5V = 0 since V' has orthonormal columns. If
A" =V 37U and z € ker(A) then z = Vyy for some y € C"~" and we obtain

2*ATb = y* ViV ZTUb = 0.

Thus z and A'b are orthogonal so that by Pythagoras ||z||3 = |AT6 + z|3 =
|ATB||3 + ||2]12 > ||AT|]2 with equality for z =0. 0O

Using MATLAB a least squares solution can be found using x=A\b if A has
full rank.For rank deficient problems the function x=1scov (A, b) finds a least
squares solution with a maximal number of zeros in .

Example 11.30 (Rank deficient least squares solution)
For A as in Evample 11.1 with b = [1,1]7 1scov gives the solution [1,0]T
corresponding to z = [1/2,—1/2]. The minimal norm solution is [1/2,1/2].

11.5 Perturbation Theory for Least Squares

In this section we consider what effect small changes in the data A, b have on the
solution @ of the least squares problem min||Ax — b||2.

If A has linearly independent columns then we can write the least squares
solution @ (the solution of A*Ax = A*b) as

z=Ab=A"b,, AT :=(A"A)'A"

where by is the orthogonal projection of b into the column space span(A).

11.5.1 Perturbing the right hand side
Let us now consider the effect of a perturbation in b on x.

Theorem 11.31 (Perturbing the right hand side)

Suppose A € C™*"™ has linearly independent columns, and let bje € C™. Let
x,y € C" be the solutions of min||Ax — bl|y and min||Ay — b — e|2. Finally, let
b1, ey be the orthogonal projections of b and e into span(A). If by # 0, we have
for any operator norm

lleall

L fleall _ lly —=|
1ba]]”

K(A) [[ouf) =zl —

K(A) K(A) = ||A]||AT. (11.10)
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span(A)

Figure 11.3. Graphical interpretation of the bounds in Theorem 11.51.

Proof. Subtracting @ = A'b; from y = ATb; + A'e; we have y — x = Afe;.
Thus 1y — al = | ATer]| < [|AT[les]l. Moreover, b1 = Azl < Al
Therefore ||y — x| /||| < ||A|||[A"|||le1]|/||b1]| proving the rightmost inequality.
From A(x —y) = e; and & = A'b; we obtain the leftmost inequality. 0O

(11.10) is analogous to the bound (7.13) for linear systems. We see that
the number K(A) = ||A||||AT| generalizes the condition number ||Al|||A™"| for
a square matrix. The main difference between (11.10) and (7.13) is however that
le]l/||b]] in (7.13) has been replaced by |le1||/||b1]], the orthogonal projections of e
and b into span(A). If b lies almost entirely in ker(A™*), i.e. ||b]|/||b1]| is large, then
lle1|l/|Ib1]] can be much larger than ||e||/||b||. This is illustrated in Figure 11.3. If
b is almost orthogonal to span(A), ||e1]|/]|b1|| will normally be much larger than

llel| /110l
Example 11.32 (Perturbing the right hand side)

Suppose
11 1074 1076
A=|0 11|, b= 0 , e= 0
0 0 1 0

For this example we can compute K(A) by finding A" explicitly. Indeed,

1 1}, (ATA)' = [2 ‘1}, Al = (ATA) AT = F -1 0}

T A —
AA_{12 -1 1 0 1 0

Thus Koo (A) = || Al|so||AT||ec = 2-2 = 4 is quite small.
Consider now the projections by and e;. We find AAT = [é g (8)} . Hence

by = AATb =[107%,0,0]", and e = AATe=[10"°,0,0]".
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Thus ||e1]loo/||b1]lcc = 1072 and (11.10) takes the form

110*2 < M <4-1072
4 2|
To werify the bounds we compute the solutions as € = A'b = [107%,0]7 and

y=AT(b+e)=[10"*41076,0]T. Hence

_ -6
o~ yloe _10°° _ s
[E1PS 10-*
Exercise 11.33 (Condition number)
Let
1 2 by
A=1|1 11|, b= b
11 by

a) Determine the projections by and by of b on span(A) and ker(AT).
b) Compute K(A) = || Alj2]|A||,.

For each A we can find b and e so that we have equality in the upper bound
in (11.10). The lower bound is best possible in a similar way.

Exercise 11.34 (Equality in perturbation bound)

a) Let A € C™*™. Show that we have equality to the right in (11.10) if b = Ay 4,
e1 = yar where Ay, = Al [|ATy 4]l = AT

b) Show that we have equality to the left if we switch b and e in a).
c) Let A be as in Example 11.32. Find extremal b and e when the loo norm is
used.

11.5.2 Perturbing the matrix

The analysis of the effects of a perturbation E in A is quite difficult. The following
result is stated without proof, see [20, p. 51]. For other estimates see [2] and [28].

Theorem 11.35 (Perturbing the matrix)

Suppose A, E € C™*™ m > n, where A has linearly independent columns and
o :=1—|E|2]|AT|2 > 0. Then A + E has linearly independent columns. Let
b = by + by € C™ where by and by are the orthogonal projections into span(A)
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and ker(A*) respectively. Suppose by # 0. Let x and y be the solutions of
min||Ax — b||2 and min||(A + E)y — b||s. Then

lz—ylla _ 1 1E]]2 [B2]2

el =IO T

(11.11) says that the relative error in y as an approximation to x can be

at most K (1 + BK)/« times as large as the size ||E|2/||All2 of the relative per-

turbation in A. 8 will be small if b lies almost entirely in span(A), and we have

approximately p < LK||E|2/||All2. This corresponds to the estimate (7.19) for

linear systems. If 3 is not small, the term LK?28|E|2/|| A2 will dominate. In

other words, the condition number is roughly K (A) if 3 is small and K(A)?3 if

B is not small. Note that (3 is large if b is almost orthogonal to span(A) and that
by = b— Ax is the residual of x.

p= K = |All2| AT2. (11.11)

Exercise 11.36 (Problem using normal equations)
Consider the least squares problems where

1 1 2
A=1|1 1 , b=]31], eeR.
1 1+e 2

a) Find the normal equations and the exact least squares solution.

b) Suppose € is small and we replace the (2,2) entry 3+2e+€2 in AT A by 3+2e.
(This will be done in a computer if € < \J/u, u being the round-off unit).
For example, if u = 10716 then /u = 1078, Solve ATAx = ATb for x
and compare with the © found in a). (We will get a much more accurate
result using the QR factorization or the singular value decomposition on this
problem,).

11.6 Perturbation Theory for Singular Values

In this section we consider what effect a small change in the matrix A has on the
singular values.

We recall the Hoffman-Wielandt Theorem for singular values, Theorem 6.30.
If A, B € R™*" are rectangular matrices with singular values oy > ap > -+ > ay,
and By > 2 > -+ > 3, then

n
> lay =B <llA- Bl
j=1
This shows that the singular values of a matrix are well conditioned. Changing
the Frobenius norm of a matrix by small amount only changes the singular values
by a small amount.
Using the 2-norm we have a similar result.
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Theorem 11.37 (Perturbation of singular values)
Let A, B € R™*" be rectangular matrices with singular values oy > ag > -+ > ay,
and 61 Z ﬁ2 Z Z ﬁn- Then

laj — Bj| < |[|A—Bla, forj=1,2,...,n. (11.12)

Proof. Fix j and let S be the n — j + 1 dimensional subspace for which the
minimum in Theorem 6.29 is obtained for A. Then

I(B+(A-B)al, _  |Bal., [(A-Bl,

< B+ A-B]2.

2 EE 265 ol ' zes el

By symmetry we obtain 5; < o + ||A — B||2 and the proof is complete. O
The following result is an analogue of Theorem 7.31.
Theorem 11.38 (Generalized inverse when perturbing the matrix)

Let A,E € R™*" have singular values oy > -+ > oy, and €; > -+ > €,. If
|AT||2|| E|l2 < 1 then

1. rank(A + E) > rank(A),

AT, _
2. A+ B)ll2 < 4181 = &

where r is the rank of A.

Proof. Suppose A has rank r and let B := A + E have singular values 51 >
-+~ > f,. In terms of singular values the inequality || AT||2[ E||2 < 1 can be written
€1/a, < 1or a, > €. By Theorem 11.37 we have «, — 8, < €1, which implies
Br > a,.—e1 > 0, and this shows that rank(A+ E) > r. To prove 2., the inequality
By > a, — €1 implies that

L S V. | AT
/BT' oo — € 1 _el/ar 1-— ||ATH2||EH2

11.7 Review Questions

11.7.1 Do the normal equations always have a solution?

11.7.2 When is the least squares solution unique?
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11.7.3 Express the general least squares solution in terms of the generalized in-
verse.

11.7.4 Consider perturbing the right-hand side in a linear equation and a least
squares problem. What is the main difference in the perturbation inequali-
ties?

11.7.5 Why does one often prefer using QR factorization instead of normal equa-
tions for solving least squares problems.

11.7.6 What is an orthogonal sum?

11.7.7 How is an orthogonal projection defined?
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Chapter 12

Numerical Eigenvalue
Problems

12.1 Eigenpars

Eigenpairs have applications in quantum mechanics, differential equations, elas-
ticity in mechanics, etc, etc. Typical computational problems involve

e Finding one or a few of the eigenvalues.
e Finding one or a few of the eigenpairs.
e Finding all eigenvalues.

e Finding all eigenpairs.

In this and the next chapter we consider some numerical methods for finding
one or more of the eigenvalues and eigenvectors of a matrix A € C"*". Maybe
the first method which comes to mind is to form the characteristic polynomial 74
of A, and then use a polynomial root finder, like Newton’s method to determine
one or several of the eigenvalues.

It turns out that this is not suitable as an all purpose method. One reason is
that a small change in one of the coefficients of w4 () can lead to a large change in
the roots of the polynomial. For example, if w4 () :) = A6 and g(\) = A6 —10716
then the roots of 7 4 are all equal to zero, while the roots of g are \; = 10~ 1e27/16,
7 =1,...,16. The roots of ¢ have absolute value 0.1 and a perturbation in one of
the polynomial coefficients of magnitude 10716 has led to an error in the roots of
approximately 0.1. The situation can be somewhat remedied by representing the
polynomials using a different basis.

We will see that for many matrices the eigenvalues are less sensitive to per-
turbations in the elements of the matrix. In this text we will only consider methods

289
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which work directly with the matrix.

12.2 Gerschgorin’s Theorem

The following theorem is useful for locating eigenvalues of an arbitrary square
matrix.

Theorem 12.1 (Gerschgorin’s circle theorem )
Suppose A € C"*™. Define fori=1,2,...,n
n
Ri={ze€C:lz—ay| <r}, ri:= Z laijl,

Jj=1
J#i

Ci={zeC:lz—ayl<¢}, =) layl.
=
Then any eigenvalue of A lies in RN C where R = Ry URs U --- U R, and
C=CiUCyU---UC,.

Proof. Suppose (A, x) is an eigenpair for A. We claim that A € R;, where
i is such that |z;| = |[z|~. Indeed, Az = Az implies that }_, a;;z; = Az; or
AN—ay)z; = Zj# a;jx;. Dividing by x; and taking absolute values we find

IN—aiil = 1Y agw /o] < gz /e <7
J#i J#i
since |x;/x;| <1 for all j. Thus A € R;.
Since A is also an eigenvalue of AT, it must be in one of the row disks of
AT . But these are the column disks Cj of A. Hence A € Cj for some j. 0O

The set R; is a subset of the complex plane consisting of all points inside a
circle with center at a;; and radius r;, c.f. Figure 12.1. R; is called a (Gerschgorin)
row disk.

An eigenvalue A lies in the union of the row disks Rj,..., R, and also in
the union of the column disks C4,...,C,. If A is Hermitian then R; = C; for
i = 1,2,...,n. Moreover, in this case the eigenvalues of A are real, and the

Gerschgorin disks can be taken to be intervals on the real line.

Example 12.2 (Gerschgorin)
Let T = tridiag(—1,2,—1) € R™*™ be the second derivative matriz. Since A is
Hermitian we have R; = C; for all i and the eigenvalues are real. We find

Ri=Rn={z€R:|z2-2|<1}, and R, ={z € R: 22| <2}, i=2,3,...,m—1.
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Imaginary axis

ri

Real axis

Figure 12.1. The Gerschgorin disk R;.

We conclude that A € [0,4] for any eigenvalue X of T. To check this, we recall
that by Lemma 3.8 the eigenvalues of T are given by

) 2
. Jm .
Aj=4 —_— =12,...,m.
y {sm2< )] , ]  2,...,m

m+1
2
When m is large the smallest eigenvalue 4 {sin m} is very close to zero and
2
the largest eigenvalue 4 {sin %} is very close to 4. Thus Gerschgorin’s theo-

rem gives a remarkably good estimate for large m.
Sometimes some of the Gerschgorin disks are distinct and we have

Corollary 12.3 (Disjoint Gerschgorin disks)
If p of the Gerschgorin row disks are disjoint from the others, the union of these
disks contains precisely p eigenvalues. The same result holds for the column disks.

Proof. Consider a family of matrices
A(t):=D+t(A—-D), D :=diag(ai1,...,ann), te<]0,1].

We have A(0) = D and A(1) = A. As a function of ¢, every eigenvalue of A(t)
is a continuous function of ¢. This follows from Theorem 12.8, see Exercise 12.5.
The row disks R;(t) of A(t) have radius proportional to ¢, indeed

n

Ri(t)={z€C:|z—au| <tri}, ri:=  |ayl.

=L
J#i
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Clearly 0 < t; < ta < 1 implies R;(t1) C R;(t2) and R;(1) is a row disk of A
for all i. Suppose |Ji_; R;, (1) are disjoint from the other disks of A and set
RP(t) == Uy, Ri(t) for t € [0,1]. Now RP(0) contains only the p eigenvalues
Qiy iy ooy, Of A(0) = D. As t increases from zero to one the set RP(t) is
disjoint from the other row disks of A and by the continuity of the eigenvalues

cannot loose or gain eigenvalues. It follows that RP(1) must contain p eigenvalues
of A. O

1 € €
Example 12.4 Consider the matrizc A = {63 2 532}, where |e;| <107 all i. By
€5 €6

Corollary 12.3 the eigenvalues A1, A2, A3 of A are distinct and satisfy |\; — j| <
2x 107 forj =1,2,3.

Exercise 12.5 (Continuity of eigenvalues)

Suppose ti,ta € [0,1] and that p is an eigenvalue of A(ts). Show, using Theo-
rem 12.8 with A = A(t1) and E = A(te) — A(t1), that A(t1) has an eigenvalue
A such that

A —pu| <Otz — tl)l/", where C' < 2(||D||2 +]A- D||2).

Thus, as a function of t, every eigenvalue of A(t) is a continuous function of t.

Semyon Aranovich Gershgorin, 1901-1933 (left), Jacques Salomon Hadamard, 1865-
1963 (right).

Exercise 12.6 (Nonsingularity using Gerschgorin)
Consider the matrix

4 1 00
1 410
A= 01 4 1
00 1 4

Show using Gerschgorin’s theorem that A is nonsingular.
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Exercise 12.7 (Gerschgorin, strictly diagonally dominant matrix)
Show using Gerschgorin,s theorem that a strictly diagonally dominant matriz A
(laiil > 32,4 laij| for all i) is nonsingular.

12.3 Perturbation of Eigenvalues

In this section we study the following problem. Given matrices A, E € C"*",
where we think of E as a pertubation of A. By how much do the eigenvalues of
A and A + F differ? Not surprisingly this problem is more complicated than the
corresponding problem for linear systems.

We illustrate this by considering two examples. Suppose Ay := 0 is the zero
matrix. If A € 0(Ag + E) = o(E), then |A| < ||E||oc by Theorem 8.28, and any
zero eigenvalue of Ay is perturbed by at most || E||e. On the other hand consider
for € > 0 the matrices

010 0 0 0 00 0 0

0 0 1 0 0 0 0 O 0 0
A=t SH A Pi| = eener

0 00 0 1 0 00 0 0

0 0 O 0 0 e 00 0 0

The characteristic polynomial of Ay + E is w(A) := (—=1)"(A\" — €), and the zero
eigenvalues of A; are perturbed by the amount |\ = ||E||<1,é" Thus, for n = 16,
a perturbation of say ¢ = 107!¢ gives a change in eigenvalue of 0.1.

The following theorem shows that a dependence ||E |54 is the worst that

can happen.

Theorem 12.8 (Elsner’s theorem(1985))
Suppose A, E € C"*". To every 1 € 0(A + E) there is a X € 0(A) such that

1-1/n
=N < KB, K=(lAl+ A+ EBl) " (21
Proof. Suppose A has eigenvalues \q,..., A, and let A\; be one which is closest
to p. Let wy with |lui]] = 1 be an eigenvector corresponding to u, and extend

u; to an orthonormal basis {uq,...,u,} of C". Note that

[(uI — A)urllz = [(A+ E)uy — Auyllz = |[Euy|l2 < [|E2,

n

[T110aT = Ayl < [T lnd + 11 Awsla) < (1A + E) 2 + [ A]1)"

=2
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Using this and Hadamard’s inequality (10.6) we find

=M™ < [TIi = Ml = [det(ul — A)] = |det (I — Afus, .. u,])]

j=1

< [[(ud = A ||> [T 11T — A)usllz < [|E|2(|(A + E)2 + [|All2)"

Jj=2

The result follows by taking nth roots in this inequality. 0O

It follows from this theorem that the eigenvalues depend continuously on the
elements of the matrix. The factor ||EH;/ " shows that this dependence is almost,
but not quite, differentiable. As an example, the eigenvalues of the matrix [!{]
are 1 & /e and this expression is not differentiable at € = 0.

Recall that a matrix is nondefective if the eigenvectors form a basis for C™.
For nondefective matrices we can get rid of the annoying exponent 1/n in || E||2.

For a more general discussion than in the following theorem see [28].

Theorem 12.9 (Absolute errors)

Suppose A € C™*™ has linearly independent eigenvectors {x1,...,x,} and let
X = [x1,...,2,] be the eigenvector matriz. To any u € C and x € C" with
lzll, =1 we can find an eigenvalue \ of A such that

A —pl < Kp(X)l7llp, 1<p<oo, (12.2)

where r := Ax — px and K,(X) := || X||, | X |l,. If for some E € C™*" it
holds that (p, ) is an eigenpair for A + E, then we can find an eigenvalue X of
A such that

A —pl S Kp(X)|Ellp, 1<p<oo, (12.3)

Proof. If u € 0(A) then we can take A = p and (12.2), (12.3) hold trivially. So
assume p ¢ o(A). Since A is nondefective it can be diagonalized, we have A =
XDX !, where D = diag(\y,...,\,) and (A\j, ;) are the eigenpairs of A for
j=1,...,n. Define Dy :== D—pul. Then D' = diag (M —p) 7, ..., (An—p)7})
exists and

XD{'X v = (X(D—pD)X ) ' = (A= puI) Y (A - pl)z = .
Using this and Lemma 12.11 below we obtain

ol _ Ky(X)| ]
1=|z|, = |IXD'X 'r||, < |D7',K,(X =P
llll, = | 1 rlp, < D7 |[pKp(X)7llp min, [, — 4]

But then (12.2) follows. If (A + E)x = px then 0 = Ax — yx + Ex = r + Ex.
But then |7, = [[-Ez|, < | E||p. Inserting this in (12.2) proves (12.3). O
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The equation (12.3) shows that for a nondefective matrix the absolute error
can be magnified by at most K,(X), the condition number of the eigenvector
matrix with respect to inversion. If K,(X) is small then a small perturbation
changes the eigenvalues by small amounts.

Even if we get rid of the exponent 1/n, the equation (12.3) illustrates that
it can be difficult or sometimes impossible to compute accurate eigenvalues and
eigenvectors of matrices with almost linearly dependent eigenvectors. On the other
hand the eigenvalue problem for normal matrices is better conditioned. Indeed,
if A is normal then it has a set of orthonormal eigenvectors and the eigenvector
matrix is unitary. If we restrict attention to the 2-norm then K5(X) = 1 and
(12.3) implies the following result.

Theorem 12.10 (Perturbations, normal matrix)
Suppose A € C™*"™ is normal and let p be an eigenvalue of A + E for some
E € C"*™. Then we can find an eigenvalue X of A such that | A — p| < || E||2.

For an even stronger result for Hermitian matrices see Corollary 5.30. We
conclude that the situation for the absolute error in an eigenvalue of a Hermitian
matrix is quite satisfactory. Small perturbations in the elements are not magnified
in the eigenvalues.

In the proof of Theorem 12.9 we used that the p-norm of a diagonal matrix
is equal to its spectral radius.

Lemma 12.11 (p-norm of a diagonal matrix)
If A =diag(\1,..., ) is a diagonal matriz then |A|, = p(A) for 1 <p < co.

Proof. For p = co the proof is left as an exercise. For any * € C™ and p < oo we
have

1Az, = Iz, Aozl Tl = (O Ple P) VP < p(A)l|]),-

j=1

Thus ||Al|, = maxgo ”HAmﬂp < p(A). But from Theorem 8.28 we have p(A) <

[|A|l, and the proof is complete. 0O

Exercise 12.12 (co-norm of a diagonal matrix)
Give a direct proof that || Al|ec = p(A) if A is diagonal.

For the accuracy of an eigenvalue of small magnitude we are interested in
the size of the relative error.
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Theorem 12.13 (Relative errors)
Suppose in Theorem 12.9 that A € C"*™ is nonsingular. To any u € C and
x € C" with ||z||, =1, we can find an eigenvalue \ of A such that

A ; m K, (X)K,(A) H;Hp . 1<p<oo, (12.4)
|Al | Allp

where r .= Az — px. If for some E € C"*"™ it holds that (i, x) is an eigenpair
for A+ E, then we can find an eigenvalue A of A such that
A —
B

E|,
IE]l, 1<p<o0 (12.5)

S KP(X)||A71EHP S KP(X)KP(A) ||A|| ’ = = )
p

Proof. Applying Theorem 8.28 to A~' we have for any A € o(A)

Kp(A)
1Al

1 _
N <A 1||p:

and (12.4) follows from (12.2). To prove (12.5) we define the matrices B :=

pA~land F:= —A'E. If (Aj, ) are the eigenpairs for A then ()’\—L,a:) are the
J

eigenpairs for B for j = 1,...,n. Since (u,x) is an eigenpair for A + E we find

(B+F-Iz=pA"'"-AT"'E-Tlx=A""(ul — (E+ A))z = 0.

Thus (1, x) is an eigenpair for B + F. Applying Theorem 12.9 to this eigenvalue
we can find A € o(A) such that |& — 1| < K,(X)||F|, = K,(X)||A™"E||, which
proves the first estimate in (12.5). The second inequality in (12.5) follows from
the submultiplicativity of the p-norm. 0O

12.4 Unitary Similarity Transformation of a Matrix
into Upper Hessenberg Form

Before attempting to find eigenvalues and eigenvectors of a matrix (exceptions
are made for certain sparse matrices), it is often advantageous to reduce it by
similarity transformations to a simpler form. Orthogonal or unitary similarity
transformations are particularly important since they are insensitive to noise in
the elements of the matrix. In this section we show how this reduction can be
carried out.

Recall that a matrix A € C"*™ is upper Hessenberg if a; ; = 0 for j =
1,2,...,i—2,i=3,4,...,n. We will reduce A € C"*" to upper Hessenberg form
by unitary similarity transformations. Let A; = A and define Ax11 = Hy A Hy,
for k = 1,2,...,n — 2. Here Hj is a Householder transformation chosen to
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introduce zeros in the elements of column k of A under the subdiagonal. The
final matrix A,,_; will be upper Hessenberg.

If A; = A is Hermitian, the matrix A, _; will be Hermitian and tridiagonal.
For if A, = Ay, then

w1 = (HL A HR) = HLALH), = Ay

Since A,,_; is upper Hessenberg and Hermitian, it must be tridiagonal.
To describe the reduction to upper Hessenberg or tridiagonal form in more
detail we partition Ay as follows

| By Cy
e[z

Suppose Bj, € CF* is upper Hessenberg, and the first k¥ — 1 columns of D), €
Cn=k* are zero, i.e. Dy =10,0,...,0,d;]. Let Vi =TI —viv; € CFnF he a
Householder transformation such that Vdi = are;. Define

The matrix H is a Householder transformation, and we find

_ _ Ik 0 Bk Ck Ik 0
A’““H’“A’“H’“{o Vk][Dk Ek][o Vk}

_ By, Ci.Vi

T | VD, ViELV, |

Now VD, = [VkO, ..., V0, dek] = (0, ..., 0, ozkel). Moreover, the matrix
By is not affected by the H, transformation. Therefore the upper left (k+ 1) x
(k4 1) corner of Ay is upper Hessenberg and the reduction is carried one step
further. The reduction stops with A, _1 which is upper Hessenberg.

To find Ag41 we use Algorithm 10.4 to find vy and ay. We store vy, in the
kth column of a matrix L as L(k+ 1 : n,k) = vg. This leads to the following
algorithm.
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Algorithm 12.14 (Householder reduction to Hessenberg form) This
algorithm uses Householder similarity transformations to reduce a matrix
A € C™™ to upper Hessenberg form. The reduced matrix B is tridiagonal if
A is symmetric. Details of the transformations are stored in a lower triangular
matrix L. The elements of L can be used to assemble a unitary matrix @ such
that B = Q" AQ. Algorithm 10.4 is used in each step of the reduction.

1 function [L,B] = hesshousegen (A)

2 n=length (A); L=zeros(n,n); B=A;

3 for k=1:n—-2

4 [v,B(k+1,k)]=housegen (B(k+1:n,k));

5 L(k+1:n,k)=v; B(k+2:n,k)=zeros(n—-k—1,1);

6 C=B(k+1:n,k+1:n); B(k+1lin,k+1:n)=C—vx*(v’%C);
7 C=B(1l:n,k+1:n); B(l:n,k+1:n)=C—(Cxkv)=*v’;

s end

Exercise 12.15 (Number of arithmetic operations, Hessenberg reduction)

Show that the number of arithmetic operations for Algorithm 12.1/ is %n‘g =5G,.

We can use the output of Algorithm 12.14 to assemble the matrix Q € R™*"
such that @ is orthonormal and Q* AQ is upper Hessenberg. We need to compute

the product Q = HiHy---H,_5, where H;, = {I 0 T:| and v, € R*7F.

0 I-v,vy
Since v € R* ! and v,_» € R? it is most economical to assemble the product
from right to left. We compute

Q. =TandQ,=H;,Q, . fork=n—-2n-3,...,1.

Suppose Q. ; has the form [I(f ,})k }, where Uy, € R* %7~k Then

| Iy 0 I, 0] |Ig 0
Qk o {0 I— vk'ug} * [0 U/j o [0 Uk — ’U;@(’UEUIC)} '
This leads to the following algorithm.
Algorithm 12.16 (Assemble Householder transformations)
Suppose [L,B] = hesshousegen (A) is the output of Algorithm 12.14. This
algorithm assembles an orthonormal matrix @ from the columns of L such that
B = Q" AQ is upper Hessenberg.

function Q = accumulateQ (L)
n=length (L); Q=eye(n);
for k=n—-2:—-1:1
v=L(k+1:n,k); C=Q(k+1:n,k+1:n);
Q(k+1:n,k+1:n)=C—vx*(v’*C);
end

o oA W N =
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Exercise 12.17 (Assemble Householder transformations)

Show that the number of arithmetic operations required by Algorithm 12.16 is
3n® = 2G,.

Exercise 12.18 (Tridiagonalize a symmetric matrix)

If A is real and symmetric we can modify Algorithm 12.14 as follows. To find
Ajyy1 from Ay we have to compute Vi E Vi where Ey, is symmetric. Dropping
subscripts we have to compute a product of the form G = (I —vvT)E(I —vvT).
Let w := Ev, 8 := 3v"w and z := w — fv. Show that G = E — vz — zv™.
Since G is symmetric, only the sub- or superdiagonal elements of G need to be
computed. Computing G in this way, it can be shown that we need O(4n3/3)
operations to tridiagonalize a symmetric matriz by orthonormal similarity trans-
formations. This is less than half the work to reduce a nonsymmetric matriz to
upper Hessenberg form. We refer to [27] for a detailed algorithm.

12.5 Computing a Selected Eigenvalue of a
Symmetric Matrix

Let A € R™ ™ be symmetric with eigenvalues Ay > Ao > --- > \,,. In this section
we consider a method to compute an approximation to the mth eigenvalue )\, for
some 1 < m < n. Using Householder similarity transformations as outlined in the
previous section we can assume that A is symmetric and tridiagonal.

di ¢
c1 dy e

A= . (12.6)

Cp—2 dnfl Cpn—1
Cp—1 dn

Suppose one of the off-diagonal elements is equal to zero, say ¢; = 0. We then
have A = [‘%1 XZ ], where

di < div1  Cit1
c1 da C2 Ci+1 di+2 Ci42
A1: T T T andAQZ
Ci—o di—1 Ci—1 Cn—2 dpn—1 Cp—1
ci—1  d; Ch—1 dp

Thus A is block diagonal and each diagonal block is tridiagonal. By 6. of Theo-
rem 5.1 we can split the eigenvalue problem into two smaller problems involving
A; and As. We assume that this reduction has been carried out so that A is
irreducible, i.e., ¢; #0 fori=1,...,n— 1.
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We first show that irreducibility implies that the eigenvalues are distinct.

Lemma 12.19 (Distinct eigevalues of a tridiagonal matrix)
An irreducible, tridiagonal and symmetric matric A € R™™™ has n real and dis-
tinct eigenvalues.

Proof. Let A be given by (12.6). By Theorem 5.23 the eigenvalues are real.
Define for € R the polynomial py(x) := det(axI — Ay) for k =1,...,n, where
Ay, is the upper left k x k corner of A (the leading principal submatrix of order k).
The eigenvalues of A are the roots of the polynomial p,. Using the last column
to expand for k > 2 the determinant pyy1(z) we find

Pri1(z) = (@ — dyy1)pr() — pr—1(). (12.7)

Since p1(z) =  — dy and pa(x) = (z — da)(x — d1) — c? this also holds for k = 0,1
if we define p_1(x) = 0 and pg(x) = 1. For M sufficiently large we have

po(—M) >0, pa(d1) <0, po(+M)>0.

Since py is continuous there are y; € (—M, d;) and ys € (d1, M) such that pa(y;) =
p2(y2) = 0. It follows that the root d; of p; separates the roots of pa, so y; and
yo must be distinct. Consider next

p3(x) = (x — d3)pa(x) — c3p1(2) = (¢ — dg)(x — y1)(x — y2) — S (x — dn).
Since y; < dy < y2 we have for M sufficiently large
p3(—=M) <0, pa(y1) >0, pa(ye) <0, ps(+M)>0.

Thus the roots x1,z9,x3 of ps are separated by the roots yi,ys of pa. In the
general case suppose for k > 2 that the roots z1,...,25_1 of px_1 separate the
roots 1, ..., Yk of px. Choose M so that yo := —M < y1, Yygy1 := M > yi. Then

Yo <y1 <z <Yz <22 < Zk—1 < Yk < Yko1-
We claim that for M sufficiently large
Pea1(y;) = (1) ppa (y;)| # 0, for j=0,1,...,k+1.
This holds for j =0,k + 1, and for j = 1,...,k since
Per1(y;) = —cipr—1(y;) = =i (y; — 21) -~ (Y5 — z1—1)-

It follows that the roots z1,...,zgy1 are separated by the roots yi,...,yx of pg
and by induction the roots of p,, (the eigenvalues of A) are distinct. O
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12.5.1 The inertia theorem

We say that two matrices A, B € C"*™ are congruent if A = E*BE for some
nonsingular matrix E € C"*". By Theorem 5.21 a Hermitian matrix A is both
congruent and similar to a diagonal matrix D, U*AU = D where U is uni-
tary. The eigenvalues of A are the diagonal elements of D. Let w(A), ((A) and
v(A) denote the number of positive, zero and negative eigenvalues of A. If A is
Hermitian then all eigenvalues are real and w(A) + ((A) + v(A) = n.

Theorem 12.20 (Sylvester’s inertia theorem )
If A,B € C™*™ are Hermitian and congruent then m(A) = w(B), ((A) = {(B)
and v(A) = v(B).

Proof. Suppose A = E*BE, where E is nonsingular. Assume first that A and
B are diagonal matrices. Suppose 7(A) = k and 7(B) = m < k. We shall show
that this leads to a contradiction. Let E; be the upper left m x k corner of E.
Since m < k, we can find a nonzero x such that F;xz = 0 (cf. Lemma 0.32). Let
yT' =[x7,071 e C", and z = [21,...,2,]7 = Ey. Then z; =0 fori =1,2,...,m.
If A has positive eigenvalues \1,...,\; and B has eigenvalues p1, ..., ,, where
w; <0 for i > m + 1 then

n k
Y Ay = Alyil> =D Al > 0.
=1 =1

But

yv'Ay=y*E*"BEy = 2z*Bz = Z wilzi|? <0,

1=m-+1

a contradiction.

We conclude that 7(A) = m(B) if A and B are diagonal. Moreover, v(A) =
m(—A) =7(—B) =v(B)and ((A) =n—7n(A)—v(A) = n—n(B)—v(B) = ((B).
This completes the proof for diagonal matrices.

Let in the general case U and U be unitary matrices such that U7 AU, =
D, and U3BU; = Dy where Dy and D, are diagonal matrices. Since A =
E*BE, we find D; = F*DyF where F = U3EU; is nonsingular. Thus D; and
D5 are congruent diagonal matrices. But since A and D, B and D4 have the
same eigenvalues, we find 7(A) = n(D1) = n(D3z) = m(B). Similar results hold
for ( and v. O

Corollary 12.21 (Counting eigenvalues using the LDLT factorization)
Suppose A = tridiag(c;, d;, ¢;) € R™*™ is symmetric and that « € R is such that
A —al has an symmetric LU factorization, i.e. A—al = LDL" where L is unit
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lower triangular and D is diagonal. Then the number of eigenvalues of A strictly
less than a equals the number of negative diagonal elements in D. The diagonal
elements dy(a),...,dp(a) in D can be computed recursively as follows

di(a) =dy —a, dp(a) =dy, —a—ci_y/dp_1(a), k=2,3,...,n. (12.8)

Proof. Since the diagonal elements in R in an LU factorization equal the
diagonal elements in D in an LDL” factorization we see that the formulas in
(12.8) follows immediately from (1.4). Since L is nonsingular, A — aI and D are
congruent. By the previous theorem v(A — al) = v(D), the number of negative
diagonal elements in D. If Ax = Ax then (A —al)r = (A — @)z, and A — a is
an eigenvalue of A — «aI. But then v(A — al) equals the number of eigenvalues
of A which are less than «. 0O

Exercise 12.22 (Counitng eigenvalues)
Consider the matriz in Exercise 12.6. Determine the number of eigenvalues greater
than 4.5.

Exercise 12.23 (Overflow in LDLT factorization)

Let form € N
10 1 0 0 7
1 10 1 :
A, = 0 . . 0 c RMX".
1 10 1
0 1 10 |

a) Let dy, be the diagonal elements of D in a symmetric factorization of A,. Show
that 5++/24 < dj, < 10, k = 1,2,...,n.

b) Show that D,, := det(A,) > (5++v24)". Give ng € N such that your computer
gives an overflow when D, is computed in floating point arithmetic.

Exercise 12.24 (Simultaneous diagonalization)
(Simultaneous diagonalization of two symmetric matrices by a congruence trans-
formation). Let A,B € R"™™ ™ where AT = A and B is symmetric positive
definite. Let B = UT DU where U is orthonormal and D = diag(dy,...,d,).
Let A= D™ '2UAUTD™'/* where

D™V? = diag (dy /7, d;\/?).

’'n
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a) Show that A is symmetric.

Let A = UTﬁU where U is orthonormal and D is diagonal. Set E = UTD_1/2UT.
b) Show that E is nonsingular and that ETAE=D, E"BE=1.

For a more general result see Theorem 10.1 in [17].

12.5.2 Approximating )\,

Corollary 12.21 can be used to determine the mth eigenvalue of A, where Ay >
A2 > -+ > A,. Using Gerschgorin’s theorem we first find an interval [a, b], such
that (a,b) contains the eigenvalues of A. Let for = € [a, D]

p(x) :=#{k:dp(x) >0for k=1,...,n}

be the number of eigenvalues of A which are strictly greater than x. Clearly
pla) = n, p(b) = 0. Choosing a tolerance € and using bisection we proceed as
follows:

h=b—aq;

for j=1:iditmazx
c=(a+b)/2
ifb—a<epsxh

A= (a+b)/2; return (12.9)

end
k= p(c);
if k>ma=celseb=c

end

We generate a sequence {[a;, b;]} of intervals, each containing A, and b; —
a; =279(b— a).

As it stands this method will fail if in (12.8) one of the dj(«) is zero. One
possibility is to replace such a di(«) by a suitable small number, say dx = cren,
where € is the Machine epsilon, typically 2 x 10716 for Matlab. This replacement
is done if |dg ()| < |0k

Exercise 12.25 (Program code for one eigenvalue)

Suppose A = tridiag(c, d, ¢) is symmetric and tridiagonal with elements dy, ..., d,

on the diagonal and cq,...,cn—1 on the neighboring subdiagonals. Let A1 > Ao >
- > A\, be the eigenvalues of A. We shall write a program to compute one

eigenvalue \p, for a given m using bisection and the method outlined in (12.9).
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a) Write a function k=count (c,d, x) which for given x counts the number
of eigenvalues of A strictly greater than x. Use the replacement described
above if one of the d;(x) is close to zero.

b) Write a function lambda=findeigv(c,d,m) which first estimates an
interval (a,b] containing all eigenvalues of A and then generates a sequence
{(a;,b;]} of intervals each containing A,. Iterate untilb; —a; < (b—a)enr,
where ey is Matlab’s machine epsilon eps. Typically epr = 2.22 x 10716,

c) Test the program on T = tridiag(—1,2,—1) of size 100. Compare the exact
value of \s with your result and the result obtained by using Matlab’s built-in
function eig.

Exercise 12.26 (Determinant of upper Hessenberg matrix)
Suppose A € C"*" is upper Hessenberg and x € C. We will study two algorithms
to compute f(x) = det(A —zI).

a) Show that Gaussian elimination without pivoting requires O(n?) arithmetic
operations.

b) Show that the number of arithmetic operations is the same if partial pivoting
is used.

c) Estimate the number of arithmetic operations if Given’s rotations are used.

d) Compare the two methods discussing advantages and disadvantages.

12.6 Review Questions
12.6.1 Suppose A, E € C"*". To every u € 0(A+ E) there is a A € 0(A) which

is in some sense close to p.
e What is the general result (Elsner’s theorem)?
e what if A is non defective?
e what if A is normal?

e what if A is Hermitian?
12.6.2 Can Gerschgorin’s theorem be used to check if a matrix is nonsingular?

12.6.3 How many arithmetic operation does it take to reduce a matrix by sim-
ilarity transformations to upper Hessenberg form by Householder transfor-
mations?

12.6.4 Give a condition ensuring that a tridiagonal symmetric matrix has real
and distinct eigenvalues:
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12.6.5 What is the content of Sylvester’s inertia theorem?

12.6.6 Give an application of this theorem.
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Chapter 13

The QR Algorithm

The QR algorithm is a method to find all eigenvalues and eigenvectors of a matrix.
It is related to a simpler method called the power method and we start studying
this method and its variants.

13.1 The Power Method and its variants

These methods can be used to compute a single eigenpair of a matrix. They also
play a role in the QR algorithm.

13.1.1 The power method

The power method in its basic form is a technique to compute the eigenvector
corresponding to the largest (in absolute value) eigenvalue of a matrix A € C"*".
As a by product we can also find the corresponding eigenvalue. We define a
sequence {zy} of vectors in C" by

2 =AFzg= Az, 1, k=1,2,.... (13.1)

Example 13.1 (Power method)
Let
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It follows that 2z /3% converges to the eigenvector [1,—1] corresponding to the
dominant eigenvalue X = 3. The sequence of Rayleigh quotients {z} Az )z} z}
will converge to the dominant eigenvalue A = 3.

To understand better what happens we expand zq in terms of the eigenvectors

111 111
z0:§ 1 —&—5 1 = C1V1 + CoV2.

Since A* has eigenpairs ()\f,vj), ji=1,2 we find
Zr = cl)\’f'vl + 02)\’2“1)2 = cl3kvl + Cglk’l)g.

Thus 37 %z, = c1v1 + 3 *cavy — c1v1. Since 1 % 0 the result is convergence to
the dominant eigenvector.

Let A € C™*™ have eigenpairs (A;,v;), j =1,...,n with [A] > |Ag| > --- >
| Anl-
Given zg € C™ we assume that

(@) Al > [Aef = [As] =2 -+ = |l
(ii) 2w #0 (13.2)

(#i1) A has linearly independent eigenvectors.

The first assumption means that A has a dominant eigenvalue \; of algebraic
multiplicity one. The second assumption says that zy has a component in the
direction v;. The third assumption is not necessary, but is included in order to
simplify the analysis.

To see what happens let zg = c1v1 +co2v2 + - - - + ¢, v, Where by assumption
(1) of (13.2) we have ¢; # 0. Since A*v; = /\?vj for all j we see that

zk = Moy Fe\sve + - F e e, E=0,1,2,.... (13.3)

Dividing by A} we find

A2\ F An\*
:C1’01+Cg(f> U2+'~'+Cn(7) v,, k=0,1,2,.... (134)
A1 A1

Zk
AY
Assumption (i) of (13.2) implies that (A\;/A1)* — 0 as k — oo for all j > 2 and
we obtain 2z
Jim = (13.5)
the dominant eigenvector of A. It can be shown that this also holds for defective
matrices as long as (i) and (i¢) of (13.2) hold, see for example page 58 of [27].
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In practice we need to scale the iterates z; somehow and we normally do
not know A;. Instead we choose a norm on C", set ¢y = zo/||z¢| and generate
for K =1,2,... unit vectors as follows:

(Z) Yp = Axp 1
(1) 2n =yl (136)

Lemma 13.2 (Convergence of the power method)
Suppose (13.2) holds. Then

. NI
lim (—) o = — .
dm () % = el Toul

1 V1

In particular, if A1 > 0 and ¢; > 0 then the sequence {xy} will converge to the
eigenvector uy := v1/||v1]| of unit length.

Proof. By induction on k it follows that @, = zj/||zk| for all £ > 0, where z;, =
A¥z,. Indeed, this holds for k = 1, and if it holds for k — 1 then Y, = Axp_1 =
Azpr/|zr-1ll = z&/l|lzk—1] and . = (z1/||ze-1l))(1zk-1l/ze])) = 2/l 2]-
But then

>

k k
: c (A2 v 2n
Zk Cl)\]f 1)1—‘1-01( 1) V2 + +c1(>\1) Un
T = N , k=0,1,2,...,
A

= = k k
[EZA |Cl)\1| ||'v1+§—f(%> U2+...+@(7n) ’UnH

and this implies the lemma. 0O

Suppose we know an approximate eigenvector u of A, but not the corre-
sponding eigenvalue pu. One way of estimating p is to minimize the Euclidian
norm of the residual r(\) := Au — Au.

Theorem 13.3 (The Rayleigh quotient minimizes the residual)
Let A € C"*" u € C"\ {0}, and let p: C — R be given by p(A) = || Au — \u|2.
Then p is minimized when \ := “qu“, the Rayleigh quotient for A.

Proof. Assume u*u = 1 and extend u to an orthonormal basis {u, U} for C™.
Then U*u = 0 and

u* (Au - \u) = wAu — lutu | [uTAu— A
U~ T \U'Au—-—\XU*u| | U'Au |-

By unitary invariance of the Euclidian norm

p(N)? = |u" Au — AP + |[U” Aull3,
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and p has a global minimum at A = u*Aw. 0O

Exercise 13.4 (Orthogonal vectors)
Show that w and Au — Au are orthogonal when A\ =

u” Ay
u*u

Using Rayleigh quotients we can incorporate the calculation of the eigenvalue
into the power iteration. We can then compute the residual and stop the iteration
when the residual is sufficiently small. But what does it mean to be sufficiently
small? Recall that if A is nonsingular with a nonsingular eigenvector matrix X
and (u, w) is an approximate eigenpair with ||u|2 = 1, then by (12.4) we can find
an eigenvalue A of A such that

A — p
RY

Au — pu
< KQ(X)K2(A)””A”2”2

Thus if the relative residual is small and both A and X are well conditioned then
the relative error in the eigenvalue will be small.

This discussion leads to the power method with Rayleigh quotient compu-
tation. Given A € C"*" a starting vector z € C", a maximum number K of
iterations, and a convergence tolerance tol. The power method combined with
a Rayleigh quotient estimate for the eigenvalue is used to compute a dominant
eigenpair (I,x) of A with ||z||2 = 1. The integer it returns the number of itera-
tions needed in order for || Az — lz||2/||AllF < tol. If no such eigenpair is found
in K iterations the value it = K + 1 is returned.

Algorithm 13.5 (The power method)

1 function [1,x,it]=powerit(A,z,K, tol)
2 af=norm(A,’ fro’); x=z/norm(z);

3 for k=1:K

4 y=Axx; l=x’x*y;

5 if norm(y—1lxx)/af<tol

6 it=k; x=y/morm(y); return

7 end

s x=y/nom(y);

9 end

10 it=K+1;

Example 13.6 (Power method)
We try powerit on the three matrices

1 2 17 04 12
Ar = {3 4]’ Az = [0.15 2.2]’ “”dAS_[s 4]'
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In each case we start with the random vector z = [0.6602,0.3420] and tol = 1076,
For A, we get convergence in 7 iterations, for As it takes 174 iterations, and for
A3 we do not get convergence.

The matriz As does not have a dominant eigenvalue since the two eigenval-
ues are complex conjugate of each other. Thus the basic condition (i) of (13.2) is
not satisfied and the power method diverges. The enormous difference in the rate
of convergence for Ay and As can be explained by looking at (13.4). The rate of
convergence depends on the ratio % If this ratio is small then the convergence
is fast, while it can be quite slow if the ratio is close to one. The eigenvalues of
A1 are \y = 5.3723 and Ay = —0.3723 giving a quite small ratio of 0.07 and the
convergence is fast. On the other hand the eigenvalues of Ay are Ay = 2 and

A2 = 1.9 and the corresponding ratio is 0.95 resulting in slow convergence.

A variant of the power method is the shifted power method In this method
we choose a number s and apply the power method to the matrix A — sI. The
number s is called a shift since it shifts an eigenvalue A of A to A — s of A — sI.
Sometimes the convergence can be faster if the shift is chosen intelligently. For
example, if we apply the shifted power method to A, in Example 13.6 with shift
1.8, then with the same starting vector and tol as above, we get convergence in
17 iterations instead of 174 for the unshifted algorithm.

13.1.2 The inverse power method

Another variant of the power method with Rayleigh quotient is the inverse power
method. This method can be used to determine any eigenpair (A, ) of A as long
as A\ has algebraic multiplicity one. In the inverse power method we apply the
power method to the inverse matrix (A — sI)~!, where s is a shift. If A has
eigenvalues A1, ..., \, in no particular order then (A — sI)~! has eigenvalues

pa(s) = (M =) pa(s) = Qo —8)7H o pa(s) = (An —5) 7

Suppose A; is a simple eigenvalue of A. Then lim,_, », |11 (s)| = oo, while lim,_,», p;(s) =
(Aj = A1)7! < oo for j = 2,...,n. Hence, by choosing s sufficiently close to A
the inverse power method will converge to that eigenvalue.

For the inverse power method (13.6) is replaced by

(i) (A—sly, =z,

(i) 2n =yl (137)

Note that we solve the linear system rather than computing the inverse matrix.
Normally the PLU factorization of A — sI is precomputed in order to speed up
the computation.
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13.1.3 Rayleigh quotient iteration

A variant of the inverse power method is known simply as Rayleigh quotient
iteration. In this method we change the shift from iteration to iteration, using
the previous Rayleigh quotient si_; as the current shift. In each iteration we need
to compute the following quantities

(i) (A=sp—1l)y, = xp-1,
(i) =k = yi/llygll
(ii1) sy = ¢ Axy,
(iv) T = A.’Bk — SkL.

We can avoid the calculation of Az, in (i4) and (iv). Let

L YrTh—1 T
PR = T, Wy = .
YiYk ykll2
Then
*A (A — s T g
o= YAYE Yi( Skt We _ g .
YrYk YrYk YrYx
A — (51 L
e = Axy — SpTp — Y — (Sk—1 + pr)Yy _ Tk—1~ PkYr _ Wk — PRTE.
1Y ll2 Y ll2

Another problem is that the linear system in i) becomes closer and closer to
singular as s, converges to the eigenvalue. Thus the system becomes more and
more ill-conditioned and we can expect large errors in the computed y,. This is
indeed true, but we are lucky. Most of the error occurs in the direction of the
eigenvector and this error disappears when we normalize y,, in ¢). Miraculously,
the normalized eigenvector will be quite accurate.

Given an approximation (s,z) to an eigenpair (A, v) of a matrix A € C**"™.
The following algorithm computes a hopefully better approximation to (A, v) by
doing one Rayleigh quotient iteration. The length nr of the new residual is also
returned
Algorithm 13.7 (Rayleigh quotient iteration)

function [x,s,nr]=rayleighit (A,x,s)
n=length (x);

y=(A-sxeye(n,n))\x;

yn=norm(y) ;

w=x/yn;

x=y/yn;

rho=x’"#*w;

s=s+rho;

nr=norm (w—rhox*x) ;

© 0 N o U A W N e
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k 1 2 3 1 5
]l 1.0e+000 | 7.7¢-002 | 1.6e-004 | 8.2¢-010 | 2.0e-020
|s— M| | 3.7¢-001 | -1.2¢-002 | -2.9¢-005 | -1.4¢-010 | -2.2¢-016

Table 13.9. Quadratic convergence of Rayleigh quotient iteration.

Since the shift changes from iteration to iteration the computation of y in
rayleighit will require O(n?®) arithmetic operations for a full matrix. For such
a matrix it might pay to reduce it to a upper Hessenberg form or tridiagonal
form before starting the iteration. However, if we have a good approximation to
an eigenpair then only a few iterations are necessary to obtain close to machine
accuracy.

If Rayleigh quotient iteration converges the convergence will be quadratic
and sometimes even cubic. We illustrate this with an example.

Example 13.8 (Rayleigh quotient iteration)

The smallest eigenvalue of the matriv A = [13] is Ay = (5 — v/33)/2 ~ —0.37.
Starting with € = [1,1]7 and s = 0 rayleighit converges to this eigenvalue
and corresponding eigenvector. In Table 13.9 we show the rate of convergence by
iterating rayleighit & times. The errors are approzximately squared in each
iteration indicating quadratic convergence.

13.2 The basic QR Algorithm

The QR algorithm is an iterative method to compute all eigenvalues and eigen-
vectors of a matrix A € C"*". The matrix is reduced to triangular form by
a sequence of unitary similarity transformations computed from the QR factor-
ization of A. Recall that for a square matrix the QR factorization and the QR
decomposition are the same. If A = QR is a QR factorization then Q € C™**"™ is
unitary, @*Q = I and R € C™*™ is upper triangular.

The basic QR algorithm takes the following form:

A=A

fork=1,2,...
QR = A, (QR factorization of Ayg) (13.8)
A = RpQ,.

end

The determination of the QR factorization of Ay and the computation of
R;Q),. is called a QR step. It is not at all clear that a QR step does anything
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useful. At this point, since Ry = Q} Ay we find

Ak+1 = Rka = QZAka, (13'9)

S0 Agy1 is unitary similar to Ag. By induction Agy; is unitary similar to A.
Thus, each Ay has the same eigenvalues as A. We shall see that the basic QR
algorithm is related to the power method.

Here are two examples to illustrate what happens.

Example 13.10 (QR iteration; real eigenvalues)
We start with

w-a-t Y-l 2l oo

and obtain
115 4 2 -1 114 3 2.8 0.6
AQ_R1Q1_5[0 3}*[1 2] _5[3 6} - [0.6 1.2]
Continuing we find

A | 2997 —0.074 A~ | 30000  —0.0001
47 1-0.074  1.0027 | 101 _0.0001  1.0000

Aig is almost diagonal and contains approximations to the eigenvalues Ay = 3
and Ao =1 on the diagonal.

Example 13.11 (QR iteration; complex eigenvalues)
Applying the QR iteration (13.8) to the matriz

0.9501 0.8913 0.8214 0.9218
0.2311 0.7621 0.4447 0.7382
0.6068 0.4565 0.6154 0.1763
0.4860 0.0185 0.7919 0.4057

AIZA:

we obtain
2.323 | 0.047223  —0.39232 | —0.65056
As — —2.1le—10| 0.13029 0.36125 | 0.15946
M7 —41e—10| —0.58622  0.052576 | —0.25774
1.2e —14 | 3.3¢e—05 —1.1e—05| 0.22746
This matriz is almost quasi-triangular and estimates for the eigenvalues A1, ..., \q

of A can now easily be determined from the diagonal blocks of A14. The 1x1 blocks
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give us two real eigenvalues A1 ~ 2.323 and Ay = 0.2275. The middle 2x2 block has
complez eigenvalues resulting in Ay ~ 0.0914 4+ 0.45867 and A3 ~ 0.0914 — 0.45863.
From Gerschgorin’s circle theorem 12.1 and Corollary 12.3 it follows that the
approximations to the real eigenvalues are quite accurate. We would also expect
the complex eigenvalues to have small absolute errors.

These two examples illustrate what happens in general. The sequence (Ag)g
converges to the triangular Schur form (Cf. Theorem 5.13) if all the eigenvalues
are real or the quasi-triangular Schur form (Cf. Definition 5.17) if some of the
eigenvalues are complex.

13.2.1 Relation to the power method

Let us show that the basic QR algorithm is related to the power method. We
obtain the QR factorization of the powers A* as follows:

Theorem 13.12 (QR and power) o
For k=1,2,3,..., the QR factorization of AF s AF = Q. Ry, where

Q. =Q, -Q, and R, := Ry --- Ry, (13.10)

and Q4, ..., Qy, Ri,..., Ry are the matrices generated by the basic QR algorithm
(13.8).

Proof. By (13.9)

Ap=Q 1 Ak-1Qp 1 = Q4 1Q)_2Ak—2Q) Q1 = = QZfIAQk—l'
o - (13.11)
The proof is by induction on k. Clearly Q,R; = Q, Ry = A;. Suppose Q;,_; R;_1 =
A" for some k > 2. Since Q, Ry, = Ay and using (13.11)

QkRk = Qkfl(QkRk)kal = quAkkal = (Qkflézfl)AQkflefl = Ak-
O

Since Ry, is upper triangular, its first column is a multiple of e; so that

. o - B . 1,
AFe, = Q, Rye; = rﬁ)lel or qgk) = Qe = mAkel.

T11

Since ||(j§k) 2 =1 the first column of Q, is the result of applying the normalized
power iteration (13.6) to the starting vector g = e;. If this iteration converges we
conclude that the first column of Qk must converge to a dominant eigenvector of
A. It can be shown that the first column of A must then converge to Aje;, where
A1 is a dominant eigenvalue of A. This is clearly what happens in Examples 13.10
and 13.11. Indeed, what is observed in practice is that the sequence (QZAQk) k
converges to a (quasi-triangular) Schur form of A.
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9633 P, T T TT P, T T xTT . T T TT

_ T XTTT T T TT T T TT

A= 00 4 00z x 4 Oxxx 4 Ozzaxz|-
00 000« 000« 00xx

Figure 13.1. Post multiplication in a QR step.

13.2.2 Invariance of the Hessenberg form

One QR step requires O(n?) arithmetic operations for a matrix A of order n. By
an initial reduction of A to upper Hessenberg form H using Algorithm 12.14, the
cost of a QR step can be reduced to O(n?). Consider a QR step on H;. We first
determine plane rotations P; ;1,i=1,...,n—1sothat Py,_q, - PioH; = R;
is upper triangular. The details were described in Section 10.4. Thus H; = Q, R,
where @, = P7,--- P, _,,, is a QR factorization of H;. To finish the QR step we
compute R1Q; = R P} ,--- P, _,,. This postmultiplication step is illustrated
by the Wilkinson diagram in Figure 13.1.

The postmultiplication by P; ;41 introduces a nonzero in position (i + 1, 1)
leaving the other elements marked by a zero in Figure 13.1 unchanged. Thus
the final matrix RP] 5--- P}, _, , is upper Hessenberg and a QR step leaves the
Hessenberg form invariant.

In conclusion, to compute Ay from Ay requires O(n?) arithmetic opera-
tions if Ay is upper Hessenberg and O(n) arithmetic operations if Ay, is tridiago-
nal.

n

13.2.3 Deflation

If a subdiagonal element a;11,; of an upper Hessenberg matrix A is equal to zero,
then the eigenvalues of A are the union of the eigenvalues of the two smaller
matrices A(1:4,1:4¢) and A(i+1:n,i+1:n). Thus if during the iteration the
(i +1,4) element of Ay is sufficiently small then we can continue the iteration on
the two smaller submatrices separately.

| <e.

To see what effect this can have on the eigenvalues of A suppose \al Y1

Let Ay == Ay — agi)l ;€i+1€! be the matrix obtained from Ay by setting the
(i + 1,17) element equal to zero. Since Ay = Qk_lAQk_l we have

N - % - k
A, =Q, (A+E)Q, ,, E= Qk 1(a z+)1 i€i+1€; )Qk 1

Since Q),_, is unitary, | E||r = [[a), ;esr1eT | r = ), | < e and setting a'f), , =

0 amounts to a perturbation in the orlglnal A of at most €. For how to chose ¢
see the discussion on page 94-95 in [27].

This deflation occurs often in practice and can with a proper implementation
reduce the computation time considerably. It should be noted that to find the
eigenvectors of the original matrix one has to continue with some care, see [27].
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13.3 The Shifted QR Algorithms

Like in the inverse power method it is possible to speed up the convergence by
introducing shifts. The explicitly shifted QR algorithm works as follows:

A=A

for k=1,2,...
Choose a shift sy
QR = Ar —si1 (QR factorization of Ay — sI)
App = RpQy, + 511

end

Since Ry, = Q. (A — siI) we find

Api1 = Qp(Ar — 51 1)Qy + 511 = Q1 ALQ,

and Agy1 and Ay are unitary similar.

The shifted QR algorithm is related to the power method with shift, cf.
Theorem 13.12 and also the inverse power method. In fact the last column of @, is
the result of one iteration of the inverse power method to A™ with shift sj. Indeed,
since A — spI = QL Ry we have (A — s I)* = R; Q) and (A — s,.1)*Q,. = R;,.
Thus, since Ry, is lower triangular with n, n element ?;‘2 we find (A—s,1)*Q e, =
RZen = Fﬁ[ﬁ? e,, from which the conclusion follows.

The shift s, := el Ape,, is called the Rayleigh quotient shift, while the
eigenvalue of the lower right 2 x 2 corner of Ay closest to the n,n element of Ay
is called theWilkinson shift. This shift can be used to find complex eigenvalues
of a real matrix. The convergence is very fast and at least quadratic both for the
Rayleigh quotient shift and the Wilkinson shift.

By doing two QR iterations at a time it is possible to find both real and com-
plex eigenvalues without using complex arithmetic. The corresponding algorithm
is called the implicitly shifted QR algorithm

After having computed the eigenvalues we can compute the eigenvectors in
steps. First we find the eigenvectors of the triangular or quasi-triangular matrix.
We then compute the eigenvectors of the upper Hessenberg matrix and finally we
get the eigenvectors of A.

Practical experience indicates that only O(n) iterations are needed to find
all eigenvalues of A. Thus both the explicit- and implicit shift QR algorithms are
normally O(n?) algorithms.

For further remarks and detailed algorithms see [27].
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13.4 A Convergence Theorem

There is no theorem which proves convergence of the QR algorithm in general. The
following theorem shows convergence of the basic QR algorithm under somewhat
restrictive assumptions.

Theorem 13.13 (Convergence of basis QR)
Suppose in the basic QR algorithm (13.8) that

1. A € R™™ can be diagonalized, X TAX = A := diag(A1, ..., An).
2. The eigenvalues A1, ..., Ay, are real with |A1] > |A2| > -+ > |Ap| > 0.

3. The inverse of the eigenvector matriz has an LU factorization X ' = LR.

Let Qk =Q,...Qy for k> 1. Then there is a dzagonal matriz Dy, with diagonal
elements +1 such that Qka — Q, where QT AQ is triangular and Q is the
Q-factor in the QR factorization of the eigenvector matriz X .

Proof. In this proof we assume that every QR factorization has an R with
positive diagonal elements so that the factorization is unique. Let X = QR be
the QR factorization of X. We observe that QT AQ is upper triangular. For since
X 'AX = A we have R"'Q"AQR = A so that Q" AQ = RAR™" is upper
triangular. Since A1 = QzAQk, it is enough to show that Qka — Q for
some diagonal matrix D} with diagonal elements +£1.

We define the nonsingular matrices

. 01 On
F):= RA"LA"R™' = Q,R), G :=R,RA*R, D, := dlag(|6 B ﬁ)’
where d1, ..., d, are the diagonal elements in the upper triangular matrix G and

F, = QkRk is the QR factorization of F'x. Then

A" = XA*X' = QRA*LR = Q(RA*LA "R ')(RA*R)
— QF,(RA"R) = QQ,.R,(RA"R) = (QQ,.D;")(DxGy),

and this is the QR factorization of A*. Indeed, QQ, D & !is a product of orthonor-
mal matrices and therefore orthonormal. Moreover DkG’k is a product of upper
triangular matrices and therefore upper triangular. Note that Dy, is chosen so that
this matrix has positive diagonal elements. By Theorem 13.12 Ak Q kRk is also
the QR factorization of A*, and we must have Qk = QQk k Lor Qka = QQk
The theorem will follow if we can show that Q g — L
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The matrix A¥LA™" is lower triangular with elements (%)kl” on and under
the diagonal. Thus for n =3

1 0 0
AFLATF = | (22)Fly, 1 0
(3)Fla1 (32)klse 1

By Assumption 2. it follows that A"LA™" — I, and hence F;, — I. Since
R:Rk is the Cholesky factorization of F}{ F, it follows that RZRk — I. By the
continuity of the Cholesky factorization it holds R;, — I and hence R,:l — I.
But then Qk = FkR,;l — 1. 0O

>f‘>/>f
& =

1

Exercise 13.14 (QR convergence detail)
A L1
Use Theorem 7.31 to show that Ry, — I implies R;, — I.

13.5 Review Questions
13.5.1 What is the main use of the power method?

13.5.2 Can the QR method be used to find all eigenvectors of a matrix?
13.5.3 Can the power method be used to find an eigenvalue?

13.5.4 Do the power method converge to an eigenvector corresponding to a com-
plex eigenvalue?

13.5.5 What is the inverse power method?
13.5.6 Give a relation between the QR algorithm and the power method.

13.5.7 How can we make the basic QR algorithm converge faster?
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Appendix A
Determinants

The first systematic treatment of determinants was given by Cauchy in 1812. He
adopted the word “determinant”. The first use of determinants was made by
Leibniz in 1693 in a letter to De L’Hospital. By the beginning of the 20th century
the theory of determinants filled four volumes of almost 2000 pages (Muir, 1906—
1923. Historic references can be found in this work). The main use of determinants
in this text will be to study the characteristic polynomial of a matrix.

In this section we prove the elementary properties of determinants that we
need.

A.1 Permutations

For n € N, let N,, = {1,2,...,n}. A permutation is a function o : N,, — N,
which is one-to-one and onto. That is, {c(1),0(2),...,0(n)} is a rearrangement
of {1,2,...,n}. If n = 2, there are two permutations {1,2} and {2,1}, while
for n = 3 we have six permutations {1, 2,3}, {1, 3,2}, {2,1,3}, {2,3,1}, {3,1,2}
and {3,2,1}. We denote the set of all permutations on N,, by S,,. There are n!
elements in S,,.

If 0,7 are two permutations in S,,, we can define their product o7 as

ot ={o(7(1)),0(7(2)),...,0(r(n))}.

For example if 0 = {1,3,2} and 7 = {3,2,1}, then o7 = {0(3),0(2),0(1)} =
{2,3,1}, while 70 = {7(1),7(3),7(2)} = {3,1,2}. Thus in general o7 # 70. It
is easily shown that the product of two permutations o, 7 is a permutation, i.e.
o1 : N,, — N, is one-to-one and onto.

The permutation € = {1,2,...,n} is called the identity permutation in S,.

323
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We have €0 = oe = o for all o € 5,,.

Since each o € S,, is one-to-one and onto, it has a unique inverse ¢~ !. To
define 0=1(j) for j € N,,, we find the unique i such that (i) = j. Then c~1(j) = i.
We have 0~ 'o = 00! = €. As an example, if o = {2,3,1} then o=! = {3,1,2},
and 07 lo =001 ={1,2,3} =e.

With each o € S,, we can associate a + or — sign. We define

ign(o) = g(a)
Sign(o) = o)

where
n

9(0) = [ [(e(i) = o(1))(0 (i) = (2)) - -- (0 (i) — o (i~1)).

i=2
For example if e = {1,2,3,4} and o = {4, 3, 1,2}, then

gle) = (2-1)(3—1)(3—2)(4—1)(4—2)(4—3) = 11- 2! - 31 > 0,
g(o) = (3-4)(1-4)(1-3)(2-4)(2-3)(2—-1)
= (—=1)(=3)(=2)(=2)(=1) -1 = —11-2!. 31 < 0.

Thus sign(e) = +1 and sign(o) = —1.

g(0o) contains one positive factor (2—1) and five negative ones. The negative
factors are called inversions. The number of inversions equals the number of times
a bigger integer precedes a smaller one in o. That is, in {4,3,1,2} 4 precedes 3,
1 and 2 ( three inversions corresponding to the negative factors (3—4), (1—4) and
(2—4) in g(0)), and 3 precedes 1 and 2 ((1—-3) and (2—3) in g(o)). This makes it
possible to compute sign(o) without actually writing down g(o).

In general, the sign function has the following properties

1. sign(e) = 1.
2. sign(oT) = sign(o)sign(r) for o,7 € Sy,.
3. sign(oc~!) = sign(o) for o € S,,.

Since all factors in g(e) are positive, we have g(e) = |g(€)| and sign(e) = 1. This
proves 1. To prove 2 we first note that for any S,

(o)
g(e

<

sign(o) =

~—

Since g(o) and g(e) contain the same factors apart from signs and g(e) > 0, we
have |g(o)| = g(¢). Now

dan(or) — 907) _ 907 o) _glor)

g(e) g(t) gle)  g(7)
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We have to show that g(o7)/g(7) = g(0)/g(e). We write g(c)/g(e) in the form

1—

29 It raticd) = 20220,
=2 j=1

=]
Now

glor) _ [li—s(o(r(i)) — o(r(1))) -+~ (o(7 (i) — o(r (i~ T 1r
g(7) [l (7 (@) = 7(1)) -+ (7(8) = 7(i=1)) 1_[2]1_[1 ’

7 is a permutation so g(o)/g(€) and g(o7)/g(7) contain the same factors. More-
over, the sign of the factors are the same since r(i,j) = r(j,i) for all i # j.
Thus g(0)/g(e) = g(o7)/g(T), and 2 is proved. Finally, 3 follows from 1 and 2;
1 = sign(e) = sign(oo~!) = sign(o)sign(c~!) so that o and o~! have the same
sign.

Example A.1 (Properties of permutations)
It can be shown that p(o1) = (po)T for p,o,7 € Sy, i.e. multiplication of permu-
tations is associative. (In fact, we have

1. Multiplication is associative.
2. There exists an identity permutation e.
3. Bvery permutation has an inverse.

Thus the set S, of permutations is a group with respect to multiplication. S, is
called the symmetric group of degree n).

A.2 Basic Properties of Determinants

For any A € C™*™ the determinant of A is defined the number

det(A Z sign(0)ay(1),100(2),2 ** * Go(n),n- (A.1)
ocS,
This sum ranges of all n! permutations of {1,2,...,n}. We also denote the deter-

minant by (Cayley, 1841)

aix aiz -+ Qip
Q21 Q22 - A2p

Gpl  ap2 T Gpn
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From the definition we have

a1l a2

= aii1G22 — G21012.
a21 A22

The first term on the right corresponds to the identity permutation € given by
€(i) =i, 1 = 1,2. The second term comes from the permutation o = {2,1}. For
n=3

aip a2 ais
a21 Gg22 (23 = Q11022033 — 411032023 — (21012033
azi1 asz ass
+ a21032a13 + a31012023 — A31022013-

The following is a list of properties of determinants.

1. Triangular matrix The determinant of a triangular matrix is the product
of the diagonal elements. det(A) = aj1a22 - - - apnyp- In particular det(I) = 1.

2. Transpose det(AT) = det(A).
3. Homogeneity For any §; € C,i=1,2,...,n, we have

det ( [B1a1, B2a2,. .., Bnan)] ) = BBz Bndet ([a1,a2,...,an)]).
4. Permutation of columns If 7 € S,, then

det(B) := det[(ar(1), @r(2), - - @r(n))] = sign(r) det[(a1, as, ..., a,)].
5. Additivity

det ( [al, e, ap—_1,a + a%,akﬂ, .. .,an] )
=det ([a1,...,a,]) +det ([a1,....a}...,a,]).

6. Singular matrix det(A4) = 0 if and only if A is singular.

7. Product rule If A, B € C"*" then det(AB) = det(A) det(B).
8. Block triangular If A is block triangular with diagonal blocks B and C

then det(A) = det(B) det(C).
Proof.

1. If 0 # €, we can find distinct integers ¢ and j such that o (i) > ¢ and o(j) < j.
But then a,(;),; = 0 if A is upper triangular and a,(;); = 0 if A is lower
triangular. Hence

det(A) = Sign(€>ae(1),1ae(2),2 T Qe(p),n = G1,1042,2 " Ann-

Since the identity matrix is triangular with all diagonal elements equal to
one, we have that det(I) = 1.
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. By definition of AT and the det-function

det(AT) = Z Sign(a)al,a(l)aQ,U(Q) ©Qpo(n)-
€Sy

Consider an element a; (;). If o(i) = j then
Qi,o(i) = Ao=1(j),4-

Since o(1),0(2),...,0(n) ranges through {1,2,...,n}, we obtain

det(AT) - ZUESn Sign(o—)aafl(l),laoﬁl(2),2 CQo-1(n)n

= ZUGSn sign(a‘l)a071(1)71a071(2)72 T Qo—1(n)n
nglesn Sign(gfl)ag,l(1))1(10,1(2),2 CGo-1(n)n
det(A).

This follows immediately from the definition of det[(51a1, f2a2,. .., fran)].
‘We have

det(B) = Z Sign(o)aa(l),r(l)aa(Z),T(Z) © Qo (n),r(n)-
ocESy,

Fix i in {1,2,...,n}. Let k = o(i) and m = 7(i). Then 77*(m) = i and
o(77t(m)) = k. Hence

aa(i),T(i) = Qk,m = aa’rfl(m),m-

Moreover, sign(o) = sign(7)sign(o7~1). Thus

det(B) = sign(T) Z sign(aril)amfl(1)’1aUT71(2)’2 ©Qor—1(n),n-
oES,

But as o ranges over S,,, ot~ ! also ranges over S,. Hence
det(B) = sign(7) det[(a1, az,...,a,)].

This follows at once from the definition.

. We observe that the determinant of a matrix is equal to the product of the

eigenvalues and that a matrix is singular if and only if zero is an eigenvalue
(cf. Theorems 5.2, 0.54). But then the result follows.

To better understand the general proof, we do the 2 X 2 case first. Let
A= (al,ag), B = (bl,bg). Then

AB = (Aby, Aby) = (b1,1a1 + bz 1a2,b1 2a1 + b2 2a2).
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Using the additivity, we obtain

det(AB) = det(bmal,bl,gal) +det(b271a2,b172a1)
—+ det(bl,lal, b272a2) —+ det(bQ,lag, bgygag).

Next we have by homogeneity

det(AB) = b1’1b1’2 det(ah (11) + b2’1b1’2 det(ag, al)
+ bl)lb272 det(al, a.g) + b271b272 det(ag, ag).

Property 6 implies that det(a;, a1) = det(az, as) = 0. Using Property 4, we
obtain det(aq,a;) = —det(a1, az) and

det(AB) = (b171b272 — b271b1,2) det(al, 0,2) = det(B) det(A)

The proof for n > 2 follows the n = 2 case step by step. Let C =
(e1,¢2,...,¢,) = AB. Then

C; = Abz = bLial + bg,iag + -+ bn,ian, = 1, 2, ey

Using the additivity, we obtain

n

det AB zn: zn: s Z det[(bihlail,biz’gaiz, ey bimnain)].
1=1ip=1

in=1
Next we have by homogeneity

n

det AB Zn: Xn: cee Z bi171b12,2 s bin,n det[(ail,aiz, cee a,-n)].
i1=112=1

in=1

Property 6 implies that det{(a;,,...,a;, )] = 0 if any two of the indices
i1,...,4, are equal. Therefore we only get a contribution to the sum when-
ever iy, ...,i, is a permutation of {1,2,...,n}. Thus

det(AB) = Y bo()1 - bo(m)n det[(@o(1), - - Go(m)].
oES,

By Property 4 we obtain

det(AB) = Z sign(7)bo(1),1 - bo(n),n det](a@y, . .., an)].
oceSy

According to the definition of det(B) this is equal to det(B) det(A).
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8. Suppose A is block upper triangular. Let
Spp={0€8,:00) <k if i<k, and o(i) > k+1 if i > k+1}.
We claim that a,(1),1 - Gy(n),n = 0 if ¢ € Sy, because if o(i) > k for some
i <k then a,(;),; = 0 since it lies in the zero part of A. If o(i) < k for some

i > k+1, we must have o(j) > k for some j < k to make “room” for (i),
and a,(;),; = 0. It follows that

det(A) = Z sign(0)ay(1),1 " " * Ao (n)m-

0ESn &

(i) = oi) i=1,....k D A N

PU=V % i=k+1,...n, T\ (i) i=k+1,...,n

If 0 € Sk, p and 7 will be permutations. Moreover, o = p7. Define p and 7
in Sy, and S,,_j, respectively by p(i) = p(i), i =1,...,k, and 7(i) = 7(i+k)—k

fori=1,...,n—k. As o ranges over S, j, p and 7 will take on all values in
Sk and S, respectively. Since sign(p) = sign(p) and sign(7) = sign(7), we
find
sign(o) = sign(p)sign(r) = sign(p)sign(7).
Then
det(A) = > cs, 2ores, , Sign(p)sign(7)bsny,1 -+ bak) kdr (1)1 di(n—k)n—k

= det(B)det(D).

A.3 The Adjoint Matrix and Cofactor Expansion

We start with a useful formula for the solution of a linear system.
Let A;(b) denote the matrix obtained from A by replacing the jth column
of A by b. For example,

1 2 3 3 2 1 3
A=lg 4] b= 6]’ A1(b) = |g 1}’ Az(b)b 6|’
. 1 0 |71 | 0 o 1 T
I= 0 110 == | I(x) o 1 Iy(x) = 0 1o
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Theorem A.2 (Cramer’s rule (1750))
Suppose A € C™*™ with det(A) # 0 and b € C". Let ® = [x1,2,...,2,]7 be the
unique solution of Ax =b. Then

_ det(A;(b))

= j=1,2,...,n.
xj det(A) I .7 » < 7n

Proof. Since 1 = det(I) = det(AA™"') = det(A)det(A™") we have det(A™') =
1/det(A). Then

det(A; (b))

der(A) ~ det(A™"A;(b))

= det([A_lal, e ,14_10,]‘,17 A_lb, A_laj+1, ey A_lan])
=det([e1,...,ej_1,x, €541, ... 7en]) = xj,

where we used Property 8 for the last equality. 0O

Let A; ; denote the submatrix of A obtained by deleting the ith row and
jth column of A. For example,

1
A= 4
7

Ay =

Definition A.3 (Cofactor and Adjoint)

For A € C"*™ and 1 < i,j < n the determinant det(A;;) is called the cofactor
of a;j. The matriz adj(A) € C™ ™ with elements (—1)"77 det(A; ;) is called the
adjoint of A.

Theorem A.4 (The inverse as an adjoint)
If A € C™*" is nonsingular then

1
ATl = dj(A).
det(a) 1A
roof. et A°" = |T1,...,Ty], Where &, = |[T14,...,Tnj|" . e equation
Proof. Let A™! = | ], wh i = [z ;7. Th i

AA~! = I implies that Ax;=ejfor j=1,...,n and by Cramer’s rule

o det(Al(ej))

YT T det(A)

= (=1)"J i=1,2,....n.
( ) det(A)’j )~ 7n
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For the last equality we first interchange the first and th column of A;(e;). By
Property 4 it follows that det(A;(e;)) = (—1)"! det ([ej, Al A1, @y, -y an]).
We then interchange row j and row 1. Using Property 8 we obtain

det(Al-(ej)) = (71)i+j72 det(Aﬂ) = (71)i+j det(AJZ)

Corollary A.5 (The adjoint and the inverse)
For any A € C™™*™ we have

A adj(A) = adj(A)A = det(A)I. (A.2)

Proof. If A is nonsingular then (A.2) follows from Theorem A.4. We simply
multiply by A from the left and from the right. Suppose next that A is singular

with m zero eigenvalues \1,..., )\, and nonzero eigenvalues Ap11,...,A,. We
define €y := min,, y1<j<n|A;|. For any € € (0,¢p) the matrix A + eI has nonzero
eigenvalues €,...,€, \py41 + €,..., A, + € and hence is nonsingular. By what we

have proved
(A+el)adj(A+el)= adj(A+el)(A+el)=det(A+el)l. (A.3)
Since the elements in A 4+ eI and adj(A + eI) depend continuously on € we can

take limits in (A.3) to obtain (A.2). O

Corollary A.6 (Cofactor expansion)
For any A € C™"™*™ we have

det(A) = "(~1)"ay; det(Ay) fori=1,...,n, (A.4)
j=1

det(A) = (=1)"ay; det(Ay) forj=1,...,n. (A.5)
=1

Proof. By (A.2) we have A adj(A) = det(A)I. But then det(A) = el Aadj(A)e; =
Z?:l(—l)”jaij det(A;;) which is (A.4). Applying this row expansion to A” we
find det(A”) = > i1 (=1)""7a;; det(A; ;). Switching the roles of i and j proves
(A5). O
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A.4 Computing Determinants

A determinant of an n-by-n matrix computed from the definition can contain up
to n! terms and we need other methods to compute determinants.

A matrix can be reduced to upper triangular form using elementary row
operations. We can then use Property 1. to compute the determinant. The
elementary operations using either rows or columns are

1. Interchanging two rows(columns).
2. Multiply a row(column) by a scalar a.
3. Add a constant multiple of one row(column) to another row(column).

Let B be the result of performing an elementary operation on A. For the three
elementary operations the numbers det(A) and det(B) are related as follows.

1. det(B) = — det(A) (from Property 4.)
2. det(B) = adet(A) (from Property 3.)
3. det(B) = det(A)(from Properties 5., 7.)

It follows from Property 2. that it is enough to show this for column operations.
The proof of 1. and 2. are immediate. For 3. suppose we add « times column k
to column ¢ for some k # ¢. Then using Properties 5. and 7. we find

det(B) = det ( [al, cey Q1,05+ aag, Q.. .,an] )
> det(A) + det ( [al, ey @1, A, G, - .,an] ) z det(A)

A.5 Some Useful Determinant Formulas

Suppose A € C™*™ and suppose for an integer r < min{m, n} that i = {i1,..., i}
and j = {j1,...,jr} are integers with 1 < iy <ip < - - < i, <mand 1< j <
Jo < -+ < jr. Welet

Aiy,jr 0 Qig g,
A(i, ) =
Qipgr 0 Qi gy
be the submatrix of A consisting of rows 41, ...,%, and columns ji,...,J.. The

following formula bears a strong resemblance to the formula for matrix multipli-
cation.

Theorem A.7 (Cauchy-Binet formula)
Let A € C™*P B € CP*™ and C = AB. Suppose 1 < r < min{m,n,p} and let
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t={i1,...,ir} and j = {j1,...,Jr} be integers with 1 < i1 <is < --- < i, <m
and 1< j; <jo<---<j.<n. Then
det (C(i,5)) = > _ det (A(i, k)) det (B(k, 7)), (A.6)
k

where we sum over all k ={ky,... k-} with 1 <k <kg <--- <k, <p.
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Appendix B
Computer Arithmetic

B.1 Absolute and Relative Errors

Suppose a and b are real or complex scalars. If b is an approximation to a then
there are different ways of measuring the error in b.

Definition B.1 (Absolute error)

The absolute error in b as an approzimation to a is the number € := |a — b|. The
number e := b — a s called the error in b as an approximation to a. This is what
we have to add to a to get b.

Note that the absolute error is symmetric in a and b, so that € is also the
absolute error in a as an approximation to b

Definition B.2 (Relative error) If a # 0 then the relative error in b as an
approximation to a is defined by

b —al
p=pp = :
|al

We say that a and b agree to approzimately —log,q p digits.

As an example, if a := 31415.9265 and b := 31415.8951, then p = 0.999493
107% and @ and b agree to approximately 6 digits.

We have b = a(1 + r) for some r if and only if p = |r|.

We can also consider the relative error p, := |a — b|/|b| in a as an approxi-
mation to b.

Lemma B.3 (Relative errors)
Ifa,b# 0 and py, <1 then po < pp/(1 = pp)-

335
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Proof. Since |a|py = |b — a| > |a|] — |b| we obtain [b] > |a| — |a — b] = (1 — pp)]al-
Then

_lb—al _ _fb—a _ _m
o= < = .
0] (L=po)lal  1—ps

If py is small then p, is small and it does not matter wether we choose p, or
pp to discuss relative error.

B.2 Floating Point Numbers

We shall assume that the reader is familiar with different number systems (binary,
octal, decimal, hexadecimal) and how to convert from one number system to
another. We use (x)g to indicate a number written to the base 5. If no parenthesis
and subscript are used, the base 10 is understood. For instance,

(100), = 4,
(0.1)5 = 0.5,
0.1 = (0.1)30 = (0.0001100110011001 . . .)5.

In general,
T = (emCm—1---co-drda...dp)g

means
r=> B+ dif™', 0<c,di<B-1.
i=0 i=1

We can move the decimal point by adding an exponent:
y=x- 567

for example
(0.1)10 = (1.100110011001 .. .)5 - 274,

We turn now to a description of the floating-point numbers. We will only
describe a standard system, namely the binary IEEE floating-point standard.
Although it is not used by all systems, it has been widely adopted and is used in
MATLAB. For a more complete introduction to the subject see [12],[26].

We denote the real numbers which are represented in our computer by F.
The set F are characterized by three integers t, and e,e. We define

e =271, machine epsilon, (B.1)
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Figure B.1. Distribution of some positive floating-point numbers

and

F :={0} US UN, where
N = N+ UN_, N+ = UE:ENG, N_ = —_/\/‘_,'_7
Nei={(Ldidy -+ dp)2} % 2° = {1, 1+ epr, 1 + 2epr, ..., 2 — epr} % 2°,

S =8,US., S;:={em,2en,3€ep,..., 1 —ep} 2% S_:=-85;.

(B.2)

Example B.4 (Floating numbers)
Suppose t :==2,e=3 and e := —2. Then epy = 1/4 and we find

1 5 3 7 1537 5337
N*Q*{Zaﬁagaﬁ}a Nil*{iagvzag}, NO*{17135;171}7
5 7
Nl = {2a 5737 5}, NQ = {475)6)7}’ N3 = {87 10712714}7
1 1 3 3 1 1
S+_{T67§7T6}7 7_{_1767_§’_E}.

The position of some of these sets on the real line is shown in Figure B.1

1. The elements of A are called normalized (floating-point) numbers.
They consists of three parts, the sign +1 or -1, the mantissa (1.d1ds - - - d;)a,
and the exponent part 2°.

2. the elements in Ay has the sign +1 indicated by the bit ¢ = 0 and the
elements in N_ has the sign bit & = 1. Thus the sign of a number is (—1)°.
The standard system has two zeros +0 and —0.

3. The mantissa is a number between 1 and 2. It consists of £t 41 binary digits.
4. The number e in the exponent part is restricted to the range e < e < e.
5. The positive normalized numbers are located in the interval [ry,, ras], where

T'm = 297 ™M = (2 - GM) * 2€' (B3)
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10.

11.

12.

The elements in S are called subnormal or denormalized. As for nor-
malized numbers they consists of three parts, but the mantissa is less than
one in size. The main use of subnormal numbers is to soften the effect of
underflow. If a number is in the range (0, (1 —e€pr/2) % 22), then it is rounded
to the nearest subnormal number or to zero.

Two additional symbols ”Inf” and ”NaN” are used for special purposes.
The symbol Inf is used to represent numbers outside the interval [—rps, 7]
(overflow), and results of arithmetic operations of the form x/0, where
x € N. Inf has a sign, +Inf and -Inf.

The symbol NalN stands for "not a number”. a NaN results from illegal
operations of the form 0/0, 0 * Inf, Inf/Inf, Inf — Inf and so on.

The choices of ¢, €, and e are to some extent determined by the architecture
of the computer. A floating-point number, say x, occupies n := 1+ 7+ ¢
bits, where 1 bit is used for the sign, 7 bits for the exponent, and ¢ bits for
the fractional part of the mantissa.

T t

frac

0‘ exp ‘

Here c =0ifx >0and o =1 if < 0, and exp € {0,1,2,3,...,27 — 1} is
an integer. The integer frac is the fractional part dids - - - d; of the mantissa.
The value of a normalized number in the standard system is

x = (—1)7  (1frac)y * 29P~% where b:= 277! — 1. (B.4)

The integer b is called the bias.

To explain the choice of b we note that the extreme values exp = 0 and
exp = 27 — 1 are used for special purposes. The value exp = 0 is used for
the number zero and the subnormal numbers, while exp = 27 — 1 is used
for Inf and NaN. Since 2b = 27 — 2, the remaining numbers of exp, i.e.,
exp € {1,2,...,27 — 2} correspond to e in the set {1 —b,2—b,...,b}. Thus
in a standard system we have

e=b:=2""1-1.

e=1-b, (B.5)

The most common choices of 7 and ¢ are shown in the following table

— 21—b

precision | T t b T'm ™™

half

5

10

15

6.1 x 1075

6.6 x 10%

single

8

23

127

1.2 x 1038

3.4 x 108

double

11

52

1023

2.2 x 107308

1.8 x 10308

quad

15

112

16383

3.4 x 1071932

1.2 x 10%932
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Here b is given by (B.5) and rj; by (B.3) The various lines correspond to
a normalized number occupying half a word of 32 bits, one word (single
precision), two words (double precision), and 4 words (quad precision).

B.3 Rounding and Arithmetic Operations

The standard system is a closed system. Every z € R has a representation as
either a floating-point number, or Inf or NaN, and every arithmetic operation
produces a result. We denote the computer representation of a real number = by

fi(x).

B.3.1 Rounding

To represent a real number x there are three cases.

Inf, if £ > 7,
fi(z) = ¢ —Inf, if ez < —ry,

round to zero, otherwise.

To represent a real number with || < rp; the system chooses a machine number
fi(z) closest to x. This is known as rounding. When z is midway between two
numbers in F we can either choose the one of larger magnitude (round away
from zero), or pick the one with a zero last bit (round to zero). The standard
system uses round to zero. As an example, if x = 1+ €3;/2, then z is midway
between 1 and 1+ epr. Therefore fl(z) = 1 + €5 if round away from zero is used,
while fl(x) = 1 if x is rounded to zero. This is because the machine representation
of 1 has frac = 0.
The following lemma gives a bound for the relative error in rounding.

Theorem B.5 (Relative error in rounding)
If rp, < x| < rp then

1
filw) = 2(1+0), (0] Sunr = gew =271

Proof. Suppose 2¢ < z < 2¢*1. Then fi(x) € {1,1+enr, 14+ 2€nr,...,2—€pr} %2°.
These numbers are uniformly spaced with spacing ep;+2¢ and therefore |fl(z)—z| <
%6M2e < %eM * |z|. The proof for a negative z is similar. 0O

The number wuy; is called the rounding unit.



340 Appendix B. Computer Arithmetic

B.3.2 Arithmetic operations

Suppose z,y € N. In a standard system we have
fi(zoy) =(zoy)(1+6), [6]<unm, oc{+ — %/} (B.6)

where wuy; is the rounding unit of the system. This means that the computed
value is as good as the rounded exact answer. This is usually achieved by using
one or several extra digits known as guard digits in the calculation.

B.4 Backward Rounding-Error Analysis

The computed sum of two numbers o, as € N satisfy fl(ajoas) = (a1+a2)(146),
where |0 < upz, the rounding unit. If we write this as fl(a; oas) = &1 + G, where
a; = a;(1 +6) for i = 1,2, we see that the computed sum is the exact sum of
two numbers which approximate the exact summands with small relative error,
|0] < upr. The error in the addition has been boomeranged back on the data
a1, g, and in this context we call § the backward error. A similar interpretation
is valid for the other arithmetic operations —, %, /, NE and we assume it also holds
for the elementary functions sin, cos, exp, log and so on.
Suppose more generally we want to compute the value of an expression ¢(ay,
.,ay,) Here a1,...,a, € N are given data, and we are using the arithmetic
operations, and implementations of the standard elementary functions, in the
computation. A backward error analysis consists of showing that the computed
result is obtained as the exact result of using data B := [B1,...3,]7 instead of
o :=|ag,...,q,]. In symbols

(b(ozl,...,an) = (b(,Bl,...,,Bn).

If we can show that the relative error in 8 as an approximation to a is O(upy)
either componentwise or norm-wise in some norm, then we say that the algorithm
to compute ¢(aq,...,a,) is backward stable. Normally the constant K in the
O(upr) term will grow with n. Typically K = p(n) for some polynomial p is
acceptable, while an exponential growth of K can be problematic.

B.4.1 Computing a sum

We illustrate this discussion by computing the backward error in the sum of n
numbers s := aj + -+ + a,, where a; € N for all i. We have the following
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algorithm.
1=
fork=2:n
sg = f(sp_1 + ag)
end
S:= s,

Using a standard system we obtain for n = 3

So = ﬂ(a1 + ag) = 041(1 + (52) + a2(1 + 62),
S3 = ﬁ(SQ + 043) = 82(1 + 53) + O[g(l + (53) = a1(1 + 771) + 0[2(1 + 772) + 043(1 + 7]3),
m=mnm=1+0)1+6d), n3=1+0d), [&<um.

In general, with §; := 0,
§=Y ai(l+m). mi=Q+06)...(1+6), |6 <un, i=1,...,n (B7)
=1

With ¢(aq,...,a,) = a1 + -+ + ay, this shows that

§=d(a1,...,an) = d(B1,...,Bn), Bi=ai(l+mn). (B.8)
The following lemma gives a convenient bound on the 7 factors.

Lemma B.6 (Bound on factors)
Suppose for integers k,m with 0 < m <k and k > 1 that

(14+61) - (14 0m) .
1 = ;165 < , =1,...,k.

If kups < ﬁ then
Ink| < ku)yy, where u)y; := 1.1upy. (B.9)

Proof. We first show that

Up

kuy <a<l=|n| <k " (B.10)

1

For convenience we use u := uys in the proof. Since u < 1 we have 1/(1 —u) =
1+u+u?/(1—u)>1+uand we obtain

(1 —w)™ <1+nk§7(1+u)m <(1—u)~"

(1*U)kﬁm— 1—apm =



342 Appendix B. Computer Arithmetic

The proof of (B.10) will be complete if we can show that
l—ku<(Q—uw)* (1T—-uw)™*<14kd.
The first inequality is an easy induction on k. If it holds for k, then
Q- =0 -w)*1l—u)> 1 -ku)(l—u)=1—(k+1Du+ku®>>1—(k+1)u.
The second inequality is a consequence of the first,
ku < k

U
14+ —— =1+ ku'.
1—ku — Jr1—04 + R

1-—uw)™<Q—ku) =1+
Letting o = & in (B.10) we obtain (B.9). O

The number u}; := 1.1lup, corresponding to a = 1/11, is called the ad-
justed rounding unit . In the literature many values of « can be found. [26]
uses o = 1/10 giving u,; = 1.12uy,, while in [12] the value o = 0.01 can be found.
In the classical work [34] one finds 1/(1 — «) = 1.06.

Let us return to the backward error (B.8) in a sum of n numbers. Since
01 = 0 we see that

Im| < (n— D)y, |mil < (n—i+uy, fori=2,...,n.

or more simply
[ni| < (n— 1))y, fori=1,...,n. (B.11)

This shows that the algorithm for computing a sum is backward stable.

The bounds from a backward rounding-error analysis can be used together
with a condition number to bound the actual error in the computed result. To see
this for the sum, we subtract the exact sum s = a3 + - - - + «, from the computed
sum S =a1(14+n1) 4+ + an(l+n,), to get

|5 = sl =lawm + -+ anin] < (Joa| + -+ + |an])(n — 1uy,.
Thus the relative error in the computed sum of n numbers is bounded as follows

S—s 7|a1|++|an|

< k(n — 1Dy, where & :=
| < w(n— Lyuy alttlo

(B.12)

This bound shows that the backward error can be magnified by at most x. The
number k is called the condition number for the sum.

The condition number measures how much a relative error in each of the
components in a sum can be magnified in the final sum. The backward error
shows how large these relative perturbations can be in the actual algorithm we
used to compute the sum. Using backward error analysis and condition number
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separates the process of estimating the error in the final result into two distinct
jobs.

A problem where small relative changes in the data leads to large relative
changes in the exact result is called ill conditioned. We see that computing a
sum can be ill-conditioned if the exact value of the sum is close to zero and some
of the individual terms have large absolute values with opposite signs.

B.4.2 Computing an inner product

Computing an inner product p := a3y + - - - + a7y, is also backward stable using
the standard algorithm

p1 = fl(a1m)
fork=2:n

pr = A(pr—1 + ()
end

ﬁ::pn

For a backward error analysis of this algorithm we only need to modify (B.7)
slightly. All we have to do is to add terms fl(apyg) = apyi(1 + 7x) to the terms
of the sum. The result is

P=Y onm@+m), me=0+m)1+8) - (1+6,), k=1...n,
k=1

where d; = 0. Thus for the inner product of n terms we obtain

P22 < wnung, ko= o &+ lanal, (B.13)
p |a1’71 +"'+an'7n|

The computation can be ill conditioned if the exact value is close to zero and some
of the components are large in absolute value.

B.4.3 Computing a matrix product

Using matrix norms we can bound the backward error in matrix algorithms. Sup-
pose we want to compute the matrix product C = A x B. Let n be the number
of columns of A and the number of rows of B. Each element in C' is the inner
product of a row of A and a column of B. Thus if C is the computed product
then from (B.13)

|7éij — Cij| < Kijnuly, _ labi ¥ lanb]

i = , all 4, 7. B.14
Cij 7 Jarby + -+ anby J (B.14)
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We write this as |¢;; — ¢;j| < Kyj|cij|nuly,. Using the infinity matrix norm we find
Zléii — ¢j| < nuy Zf{ij|cij| < knu'y Z\ciﬂ < knuyf||Clloo, all 4,
J J J
where k := max;; x;;. Maximizing over ¢ we obtain
IC ~Cll /
—————— < knujy,. (B.15)
IClloo

The calculation of a matrix product can be ill conditioned if one or more of the
product elements are small and the corresponding inner products have large terms
of opposite signs.



Appendix C

Differentiation of Vector
Functions

For any sufficiently differentiable f : R™ — R we recall that the partial derivative
with respect to the ith variable of f is defined by

Dif(x) == %ﬁf) = lim f(w’Lhe];) —@) o ern,

where e; is the ith unit vector in R™. For each @ € R™ we define the gradient
Vf(x) € R", and the hessian Hf = VV? f(z) € R™" of f by

Dy f DiDif -+ DiDynf
Vi=1| : |, Hf=VV'if:= : : , (C.1)
where VT f := (Vf)T is the row vector gradient. The operators VV1 and VIV
are quite different. Indeed, VIV f = D?f + ... + D2 f =: V2 the Laplacian of

f, while VV7 can be thought of as an outer product resulting in a matrix.

Lemma C.1 (Product rules)
For f,g: R™ — R we have the product rules

1. V(fg9) = fVg+gVf, VT(fg)=fVig+gV'/,
2. WV (fg)=VIVTg+VgVTf+ fVVTg+ gVVTF.

3. V2(fg) =2VT fVg+ fVig+ gV>3f.

345
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We define the Jacobian of a vector function f = [f1,... f]? : R® — R™
as the m, n matrix

Difi -+ Dpfi
Vif=| :

As an example, if f(x) = f(z,y) = 2® — 2y + y? and g(x,y) = [f(z,y), v —y]*
then

20—y 20—y —x+2y
Vi@y) [ x—|—2y] o [ 1 -1 ’
2°f 2
" . 2 -1
Hf(z,y) = g2f Oaé}]_|:1 2:|'
Oyox Oy?

The second order Taylor expansion in n variables can be expressed in terms
of the gradient and the hessian.

Lemma C.2 (Second order Taylor expansion)
Suppose f € C?(Q), where Q € R™ contains two points x,x + h € §, such that
the line segment L :={x +th :t € (0,1)} C Q. Then

fl®+h)=f(x)+h'Vf(z)+ %hTVVTf(c)h7 for some c € L. (C.2)

Proof. Let g :[0,1] — R be defined by ¢(t) := f(x + th). Then g € C?[0,1] and
by the chain rule

9(0) = f(z) g(1) = f(z+h),

Zh 8f‘”+th) =WV f(x + th),

i=1

S J(;‘””h) K'YV f(@ + th)h.
;0

i=1 j=1

Inserting these expressions in the second order Taylor expansion

g(1) = g(0) + ¢'(0) + %g"(u), for some u € (0,1),

we obtain (C.2) withe=ax +uh. 0O

The gradient and hessian of some functions involving matrices can be found
from the following lemma.
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Lemma C.3 (Functions involving matrices)
For anym,ne N, BeR™ C € R™" and x € R",y € R™ we have

1. viyTe) =vT(Cz) = C,
2. V(z"Bz) = (B + B")x, V' (z"Bz)=2"(B+ B"),
3. VvVT(x"Bx) = B+ BT,

Proof.

1. We find D;(y"C) = limy,—,0 1 ((y + he;)"'C —y"C) = el C and D;(Cx) =
limy, 0 3 (C(x + he;) — Cz) = Ce; and 1. follows.

2. Here we find

1 T T
}ILI—% E((w + he;)" B(x + he;) — ' Bx)
= lim (e] Bz + 2" Be; + hel'e;) = e] (B + B )z,
h—0
and the first part of 2. follows. Taking transpose we obtain the second part.

3. Combining 1. and 2. we obtain 3.
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