MAT1100 - Grublegruppe Extra Problems 10

Jørgen O. Lye

Finite groups

A group is said to be finite if the underlying set has finitely many elements. The number of elements is referred to as the order of the group.

Quick exercise

Find the order of $\mathbf{Z} /(p \mathbf{Z})$.

Discrete symmetry groups

Consider a regular n-gon. Let D_{n} be the group of symmetries of the n-gon. The cases $n=1$ and $n=3$ should illuminate the general case.

D_{1}

A 1 -gon is simply an interval $[a, b]$. What you can do with this is to reflect along the middle, interchanging the two vertices. Let this operation be called μ. Clearly $\mu \circ \mu=e=\mathrm{id}$. This is the only symmetry of a 2 -gon, so $D_{1} \cong$ $\{\mu, e\}$. Convince yourself that this is isomorphic to $\mathbf{Z} /(2 \mathbf{Z})$.

D_{3}

The regular 3 -gon is a triangle with angles $\frac{\pi}{3}$. Name the vertices 1,2 and 3 . Let the ordered set of vertices be $[1,2,3]$.

Rotations

Geometrically, what we can do is to rotate the triangle by an angle of $\frac{\pi}{3}$ around the centre of mass (the centre of the triangle). To establish a convention, we will assume the rotation is counter clockwise. Call this rotation ρ. Convince yourself that ρ, ρ^{2} and $\rho^{3}=e$ are the possible rotations.

Exercise

Show that $\rho([1,2,3])=[3,1,2]$ and $\rho^{2}([1,2,3])=[2,3,1]$.

Reflections

In addition to rotations there are reflections. Let μ_{i} be the reflection through the line through vertex i and the middle of the opposing line-segment in the 3 -gon.

Exercise

Show that $\mu_{1}([1,2,3])=[1,3,2], \mu_{2}([1,2,3])=[3,2,1]$ and $\mu_{3}([1,2,3])=$ $[2,1,3]$.

The symmetries the the 3 -gon is given by permuting its vertices. Convince yourself that this is so.

Exercise

Argue that the set of rotations of D_{3} constitute a subgroup isomorphic to $C_{3} \cong \mathbf{Z} /(3 \mathbf{Z})$. Recall that C_{p} are p 'th roots of unity. Do the set of reflections make up a subgroup? Hint: compute $\mu_{1} \mu_{2}$ or even just μ_{i}^{2} for some i.

Exercise

Is the group D_{3} abelian? That is, do all the elements of D_{3} commute. What is the order of D_{3} ? Is D_{3} isomorphic to $\mathbf{Z} /(p \mathbf{Z})$ for some p ?

D_{4}

Study the symmetries of a regular 4 -gon, i.e. a square. How many rotations? How many reflections? What is the order of the group? Is it abelian?

D_{n}

This is the general case. Show that (or at least convince yourself that)

- There are n rotations (including identity), n reflections,
- The rotations make up a subgroup $C_{n} \cong \mathbf{Z} /(n \mathbf{Z})$,
- The reflections do not constitute a subgroup,
- D_{n} is non-abelian for $n>2$.
- D_{n} is not isomorphic to $\mathbf{Z} /(p \mathbf{Z})$ for any p when $n>2$ (hint: see the point above).

Is D_{n-1} a subgroup of D_{n} ?

Groups of permutations

Pick some integer $n \geq 1$ and look at ordered set of elements $[1,2, \cdots n]$. The group S_{n}, called the symmetric group, is the group of all permutations of these n. It's perhaps clear that this group is made up of combinations of permutations of pairs.
S_{2} and S_{3}
Let's look at a couple of concrete example. S_{3} is the set of permutations of $[1,2,3]$. If you didn't already do so, argue that $S_{3} \cong D_{3}$. Similarly, argue that $S_{2} \cong D_{2}$.

S_{4}

Argue that this group has 24 elements and show that it is non-abelian. Is it true that $S_{4} \cong D_{4}$?
S_{n}

Show that:

- The order is $n!$,
- The group is non-abelian,
- S_{n} is not isomorphic to D_{n} for $n>3$ (an easy solution is to look at the order),
- $S_{1} \subset S_{2} \subset S_{3} \subset \cdots S_{n}$ as subgroups.
A_{n}
Finally, there is an important subgroup of S_{n} that should be mentioned. Define the sign of a permutation to be $(-1)^{p}$ where p is the number of times a neighbouring pair of elements is interchanged. For instance the identity has sign 1 , the permutation $[1,2,3] \rightarrow[2,1,3]$ has sign -1 and the permutation $[1,2,3] \rightarrow[2,3,1]$ has sign 1 . Not that the sign of reflections is -1 and the sign of rotations is +1 . This sign is sometimes also called the parity.

Permutations of sign +1 are called even permutations, those with sign -1 are called odd permutations.

Let $A_{n} \subset S_{n}$ be the even permutations. Show that this is a subgroup. Is the set of odd permutations a group?

Remark

There is a useful theorem which I will not prove which is called Lagrange's theorem. It simply states the following. Assume G is a finite group and H is a subgroup. Then the order of H divides the order of G.

An example of its use is to argue that since D_{n} has order $2 n$ and D_{m} has order $2 m$, then D_{m} is cannot be a subgroup of D_{n} unless $m \leq n$ and m divides n. In particular, D_{n-1} is not a subgroup of D_{n} for $n>3$.

