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Extra Problems 13

Jørgen O. Lye

This document will serve as a brief introduction to some aspects of non-
Euclidean geometry in dimension 2. We will start with some intuitively
defined notions of distance.

Warning: there are many new concepts and much heavy machinery in-
troduced in rapid succession. Don’t despair if it is somewhat overwhelming.

Riemannian Metrics

Consider two points (x1, y1), (x2, y2) in the plane. The distance between
them is ∆s2 = ∆x2 + ∆y2. Given a curve γ(t) = (x(t), y(t)), 0 ≤ t ≤ 1 the
length of the curve is given by∫

ds =

∫ 1

0

√
ẋ2 + ẏ2 dt

where ẋ = dx
dt

and ẏ = dy
dt

. The intuition is to say that as ∆x and ∆y become
“infinitesimal” (a notion usually not rigorously defined nowadays), we can
write

ds =
√
dx2 + dy2

If you allow yourself to think that you can divide and multiply by dt, this
becomes

ds =

√(
dx

dt

)2

+

(
dy

dt

)2

dt

which upon integrating gives the above. The expression ds is called a metric.
It is related to, but is not the same as a metric defined earlier when we talked
about metric spaces.
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Hyperbolic half-plane

Consider the set H = {z = x + iy ∈ C|y > 0}. It is called the Poincaré
half-plane. This is where we will build a new geometry called hyperbolic
geometry. As such, define a metric (in the sense of the above section) on H
by

ds2 =
dx2 + dy2

y2

Note that this is fine as y 6= 0 on our set. The idea here to to have an
inhomogeneous idea of lengths; the distance between points gets stretched
for y close to 0.

Example

Consider the curve γ(t) = (a, t + ε). a ∈ R and ε > 0. This describes the
line (in the Euclidean sense) from (a, ε) to (a, 1 + ε). Let us compute its
hyperbolic length:∫

ds =

∫ 1

0

√
ẋ2 + ẏ2

y(t)
dt =

∫ 1

0

√
02 + 12

t+ ε
dt = ln(t+ ε)

∣∣∣1
0

= ln

(
1 + ε

ε

)
Note that this diverges as ε→ 0. This is in contrast to the Euclidean length
which is of course 1.

Exercise

Compute the hyperbolic length of the curve

γ(t) = (cos(πt), sin(πt))

and show that it is infinite. You may either estimate the integral using the
techniques of 9.5 or you can compute the integral. What does the curve
represent? Note that 0 < t < 1 to keep γ(t) in H.

Lines

Euclidean lines can be defined to be curves γ(t) such that given two points
p, q ∈ Rn, then γ(0) = p, γ(1) = q, and there are no other curves having a
shorter length than γ. “Lines are the shortest paths between points.”

The next question is of course: what are hyperbolic lines? We will try to
answer this question in the next section.
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Calculus of Variations

The following machinery is due to Euler, Lagrange and others around that
time. It was invented to solve a similar problem, namely: given 2 points on
a wall, what curve connecting the 2 points will make a bead sliding without
friction (influenced only by gravity) along the curve travel from one point to
the other in the shortest amount of time?

Let us return to the problem at hand. Write the length of a hyperbolic
curve as

`(γ) =

∫
ds =

∫ √(
dx
dy

)2
+ 1

y
dy

Here I have implicitly assumed that I will be allowed to write x as a function
of y. Since this curve starts at (x1, y1) and ends at (x2, y2), the integral goes
from y1 to y2 with the condition that x(y1) = x1, x(y2) = x2. What we’re
then looking for is a function x = x(y) such that the integral∫ y2

y1

√
x′(y)2 + 1

y
dy

becomes as small as possible. A way of handling such scenarios is as follows.
Assume x(y) is extremal. Consider a variation ε(y) such that we get a

new curve x(y) + ε(y). Due to the boundary conditions we need to have

ε(y1) = ε(y2) = 0. Let us call the integrand

√
x′(y)2+1

y
= L = L(x, x′, y) (here

L does not depend on x).
I will need a result from multivariable Taylor-expansions which says

L(x+ ε, ẋ+ ε̇, y) = L(x, ẋ, y) + ε
∂L

∂x
(x, ẋ, y) + ε̇

∂L

∂ẋ
(x, ẋ, y) + · · ·

Here · · · means higher derivative and higher orders of ε. ẋ means (for now)
dx
dy

.
Let’s integrate:∫ y2

y1

L(x+ ε, ẋ+ ε̇, y) dy ≈
∫ y2

y1

L(x, ẋ, y) + ε
∂L

∂x
(x, ẋ, y) + ε̇

∂L

∂ẋ
(x, ẋ, y) dy

The first term ∫ y2

y1

L(x, ẋ, y) dy

is the length of the curve `(γ). So the other 2 terms are changes in the length.
Let’s look at them.∫ y2

y1

ε
∂L

∂x
(x, ẋ, y)+ε̇

∂L

∂ẋ
(x, ẋ, y) dy =

∫ y2

y1

ε

(
∂L

∂x
(x, ẋ, y)− ε d

dy

∂L

∂ẋ
(x, ẋ, y)

)
dy
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In the last step I have integrated by parts and used the conditions ε(y1) =
ε(y2) = 0. See to it that you agree!

The idea is now to demand that this change vanishes since we assumed
we were at an extremal point (point meaning curve x(y)). This is completely
analoguous to the Calculus theorem saying that f ′(x) = 0 at an extremal
point. Hence we want

0 =

∫ y2

y1

ε

(
∂L

∂x
(x, ẋ, y)− ε d

dy

∂L

∂ẋ
(x, ẋ, y)

)
dy

Since ε(y) is arbitrary (apart from the boundary conditions) we conclude
(why?) that

∂L

∂x
(x, ẋ, y)− ε d

dy

∂L

∂ẋ
(x, ẋ, y)

This called the Euler-Lagrange equation. It is a necessary condition for a
maximum or minimum. It is the central tool we’re going to use. If the above
derivation is confusing, simply accept the Euler-Lagrange equation.

Applying Euler-Lagrange

Recall that in our hyperbolic case,

L =

√
ẋ2 + 1

y

We compute from this that
∂L

∂x
= 0

Hence the Euler Lagrange equations are simply

d

dy

(
∂L

∂ẋ

)
= 0

Hence
∂L

∂ẋ
= c

for some constant c. Computing the partial derivative gives

ẋ

y
√
ẋ2 + 1

= c
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Exercise

Show that if c = 0, x(y) = k for some constant. What lines are these?
For c 6= 0 the differential equation has the solutions

x = ±
√
R2 − y2 + x0

for some constants x0 and R. Rewrite this to get

(x− x0)2 + y2 = R2

What is this geometrically?

Conclusion

The above is a sketch of the proof that the lines in hyperbolic geometry
are vertical (Euclidean) lines parallel with the y-axis and parts of circle arcs
where the circle has centre on the y-axis.

Exercise

With the above as lines, convince yourself that the Euclidean axiom about
parallel lines fails in hyperbolic geometry with the above lines.

Euclidean lines again

As a test of our Lagrangian machinery, let us see that we do get the correct
answer for Euclidean lines. I.e. let

ds =
√
dx2 + dy2 =

√
ẋ2 + 1dy

So the Lagrange function L is

L =
√
ẋ2 + 1

Once again we compute
∂L

∂x
= 0

So the Euler-Lagrange equation tells us that

d

dy

∂L

∂ẋ
= 0

or that
∂L

∂ẋ
= c

for some constant c. Show that the solutions to this are straight lines x(y) =
ay + b.
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Euclidean Isometries

In geometry we’re often interested in maps that preserve distances. Such
maps are called isometries. In Euclidean geometry, these are translations,
rotations and reflections. A way of seeing this is that if

(x′, y′) = (x+ a, y + b)

is a translation (the prime does not denote a derivative here!) then dx′ =
d(x+ a) = dx and dy′ = dy. So the Euclidean metric

ds2 = dx2 + dy2

is invariant;
dx2 + dy2 = dx′2 + dy′2

For a rotation we had

(x′, y′) = (x cos(θ)− y sin(θ), x sin(θ) + y cos(θ))

hence (for a fixed angle θ!)

dx′ = dx cos(θ)− dy sin(θ)

dy′ = dx sin(θ) + dy cos(θ)

From which we get

(dx′)2 = dx2 cos2(θ)− 2dxdy sin(θ) cos(θ) + dy2 sin(θ)

and
(dy′)2 = dx2 sin2(θ) + 2dxdy sin(θ) cos(θ) + dy2 cos2(θ)

Combining gives
(dx′)2 + (dy′)2 = dx2 + dy2

So rotations preserve the Euclidean distance ds2.

Quick calculation

Show that the reflections (x′, y′) = (−x, y) and (x′, y′) = (x,−y) are isome-
tries.
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Hyperbolic isometries

We have the expression

ds2 =
dx2 + dy2

y2

This can be written as

ds2 =
dzdz

y2

with z = x+ iy, dz = dx+ idy and dz = dx− idy. I claim that the map

z′ =
az + b

cz + d

with a, b, c, d ∈ R and ad − bc = 1 will map H → H and be an isometry.
Justify the following claims:

dz′ =
1

(cz + d)2
dz

dz′dz′ =
dzdz

|cz + d|4

y′ = Im

(
az + b

cz + d

)
=

y

|cz + d|2

dz′dz′

y′2
=
dzdz

y2

Hence these are indeed isometries.

Fractional linear transformations

Let’s study functions of the form

f(z) =
az + b

cz + d

a, b, c, d ∈ R and ad − bc = 1 some more. They are called fractional linear
transformations. Note that if

g(z) =
αz + β

γz + δ

Then

f(g(z)) =
(aα + bγ)z + (aβ + bδ)

(cα + dδ)z + (dβ + dδ)
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Hence the composition of two fractional linear transformations is again a
fractional linear transformation. The function f(z) = z is the identity, so
with compositions of functions as the operation, the set of all fractional linear
transformations is a group!

If we think of f as being given by the 4 numbers

(
a b
c d

)
and g as being

given by

(
α β
γ δ

)
, then the function f(g(z)) is given by the numbers

(
a b
c d

)(
α β
γ δ

)
The requirement ad− bc = 1 says precisely that the determinant is 1. So in
the language of group theory, there is a homomorphism from SL2(R) to the
FLT’s (fractional linear transformations). It is clearly surjective (why?). Is it

injective? Well, note that

(
a b
c d

)
6=
(
−a −b
−c −d

)
, but that az+b

cz+d
= (−a)z+(−b)

(−c)z+(−d) .

It can be shown (feel free to try) that this is the only thing standing in the
way of injectivity. Hence the group of fractional linear transformations is
isomorphic to SL2(R)/µ2 where µ2 = {±1}.

Remarks

Hyperbolic Geometry

This is just scratching the surface of hyperbolic geometry. You can define
triangles using the above lines, then define angles. You can move triangles
around and ask when two triangles are the same modulo a fractional linear
transformation (i.e. an isometry). The conclusion would then have been that
given the 3 angles of the triangle, the lengths of the sides would have been
completely determined!

We could also have defined areas, and then shown that a hyperbolic tran-
gle consisting of edges that are circle arcs starting and stopping at y = 0
would have an area of π, even though the edges have infinite length.

Finally, you can start asking what the fractional linear transformations
do and start classifying them.

Calculus of Variations

The Calculus of Variations goes a lot deeper than just hyperbolic geometry.
It is used a lot both in theoretical physics and in finance.
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Physics

In physics, a basic Lagrangian is L(x(t), ẋ(t), t) = T − V where x(t) is the
position of a particle at time t, T is the particle’s kinetic energy, and V =
V (x) is the potential energy. If you use T = 1

2
mẋ2 as the kinetric energy, the

Euler-Lagrenge equations become

V ′(x) +mẍ = 0

or
mẍ = −V ′(x)

A standard definition of a potential V (x) is that F = −V ′(x) where F is
the force. So the Euler-Lagrange equations reproduce Newton’s second law
of motion, F = ma = mẍ.

You can actually deduce the basic equations of quantum field theory,
general relativity, and string theory from suitable Lagrange functions (albeit
in more variables).

Finance

In finance, L is typically some cost function you want to minimize or it’s
a utility function you want to maximize. Typically however, you need to
impose more constraints in finance than I have done here; if one of the vari-
ables in the Lagrange function is supposed to represent e.g. money or time,
then both should be taken as finite for the answer to be have applications in
the real world. Then you’re headed into the domain of control theory. Both
calculus of variations and control theory (with toy models from finance as
examples) are part of the course MAT2440.
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