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This note will deal with some basic Fourier-theory. We will here just as-
sume convergence, even though this is a somewhat subtle and deep question.

The basic statement

Assume f is a (piecewise) continuous function on f : [−π, π]→ C. Piecewise
continuous means that by removing finitely many points from [−π, π], f is
continuous. The idea behind Fourier-theory is to write

f(x) =
∑
n∈Z

cne
inx (1)

for some coefficients cn ∈ C. Alternatively, this could be written

f(x) =
∞∑
n=0

(an cos(nx) + bn sin(nx)) (2)

If f is real-valued, we can choose the coefficients an and bn to be real numbers.
Like I said above, we will assume we can write f as such a sum, and that the
equality holds expect possibly at isolated points.

Quick question

Assume either equation 1 or 2 holds for a function f . Argue that we then
need to have f(x + 2nπ) = f(x) for any n. I.e. that f is periodic when
extended to all of R (f was originally only defined on [−π, π]).

Finding the coefficients

You were supposed to show earlier that∫ π

−π
e−imxeinx dx = 2πδmn =

{
2π m = n

0 n 6= m
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Use this to argue that ∫ π

−π
f(x)e−imx dx = 2πcm

I.e. that if we still assume the expansion of equation 1, we can find cn by

cn =
1

2π

∫ π

−π
f(x)e−inx dx

If you recall the L2 inner-product

〈f, g〉 =

∫ π

−π
fg dx

you will see that the above can be written as follows. Let en(x) = einx. Then

cn =
1

2π
〈en, f〉

And as such,

f(x) =
1

2π

∑
n∈Z

〈en, f〉 en

This is analoguous to writing a vector in Rn as

v =
n∑
k=1

(v · ek)ek

Since there are n basis vectors ek for Rn, we say that Rn is an n-dimensional
vectors space. If you accept that the set {en(x)}n∈Z serves the same purpose
for L2([−π, π]), then you will hopefully agree that L2([−π, π]) is infinite-
dimensional as a vector space.

Example

Let us test this newfound technology. Let f(x) = x. Let’s try computing its
Fourier-coefficients to see how this work.

cn =
1

2π

∫ π

−π
f(x)e−inx dx =

1

2π

∫ π

−π
xe−inx dx

We solve this by integrating by parts (“delvis integrasjon”). For n 6= 0, we
have

cn =
1

2π

(
−xe

−inx

in

∣∣∣π
−π
− 1

in

∫ π

−π
e−inx dx

)
=

1

2π

(
i

n
(πeinπ − (−π)e−inπ − 0

)
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cn =
i

2nπ
(2π(−1)n) =

i

n
(−1)n

For n = 0, we get that

c0 =
1

2π

∫ π

−π
x dx = 0

So if Fourier-theory is supposed to work, we should be able to write

f(x) = x =
∑
n 6=0

i

n
(−1)neinx

We can work a bit on the sum:

x =
∞∑
n=1

i

n
(−1)neinx +

∞∑
n=1

i

−n
(−1)−ne−inx = i

∞∑
n=1

(−1)n

n
(einx − e−inx)

and finally

x =
∞∑
n=1

2(−1)n+1

n
sin(nx)

Exercise

Go through the above computation and justify the steps!
The plots of the sum

N∑
n=1

2(−1)n+1

n
sin(nx)

are included for N = 2, 5, 15, and 50. It gives numerical “evidence” that
Fourier theory might work. Can you think of what happens at the endpoints?
Hint: Note that the Fourier-series is periodic with period 2π and f(x) = x
is not!
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Figure 1: Plot showing f(x) = x (blue line) and its truncated Fourier series
with N = 2 terms (red).

Figure 2: Plot showing f(x) = x (blue line) and its truncated Fourier series
with N = 5 terms (red).
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Figure 3: Plot showing f(x) = x (blue line) and its truncated Fourier series
with N = 15 terms (red).

Figure 4: Plot showing f(x) = x (blue line) and its truncated Fourier series
with N = 50 terms (red).
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Example

Let’s do another example! Let’s try f(x) = x2. We need to compute

cn =
1

2π

∫ π

−π
x2e−inx dx

This is done by integration by parts again, and is left to the reader. The
answer is

x2 =
π2

3
+ 4

∞∑
n=1

(−1)n

n2
cos(nx)

Note that for this example, c0 6= 0.
Plots are included forN = 2, 5, and 10. Notice how quickly this converges.

Note also that the endpoints don’t blow up in this example. Any comment?
In particular, think about how f(x) = x2 looks when extended periodically.

Figure 5: Plot showing f(x) = x2 (blue curve) and its truncated Fourier
series with N = 2 (red curve).
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Figure 6: Plot showing f(x) = x2 (blue curve) and its truncated Fourier
series with N = 5 (red curve).

Figure 7: Plot showing f(x) = x2 (blue curve) and its truncated Fourier
series with N = 10 (red curve).

We can get some neat little result out of the Fourier-series of x2. If we
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believe in its convergence at x = π, we get

π2 = f(π) =
π2

3
+ 4

∞∑
n=1

(−1)n

n2
cos(nπ) =

π2

3
+ 4

∞∑
n=1

1

n2

Rearranging this gives
∞∑
n=1

1

n2
=
π2

6

If you recall that

ζ(s) =
∞∑
n=1

1

ns

then this seems to show that ζ(2) = π2

6
.

If you want ζ(4), you could try computing the Fourier series of x4, but it
quickly gets tedious.

Exercise

Notice that we could write

x =
∞∑
n=1

an sin(nx)

and

x2 =
∞∑
n=0

bn cos(nx)

Look at what happens when x 7→ −x and use this to argue that

x2n =
∞∑
n=0

bn cos(nx)

(no sines) and

x2n+1 =
∞∑
n=1

an sin(nx)

(no cosines). More generally: If f(−x) = f(x) for all x, then

f(x) =
∞∑
n=0

bn cos(nx)
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If f(−x) = −f(x) for all x, then

f(x) =
∞∑
n=1

an sin(nx)

Finally, a somewhat unrelated question. Show that a function f : R→ R
which satisfies f(−x) = −f(x) for all x must satisfy f(0) = 0. Convince
yourself that this is consistent with the claim I make about its Fourier series
above.
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