MAT1100 - Grublegruppe Extra Problems 14

Jørgen O. Lye

This note will deal with some basic Fourier-theory. We will here just assume convergence, even though this is a somewhat subtle and deep question.

The basic statement

Assume f is a (piecewise) continuous function on $f:[-\pi, \pi] \rightarrow \mathbb{C}$. Piecewise continuous means that by removing finitely many points from $[-\pi, \pi], f$ is continuous. The idea behind Fourier-theory is to write

$$
\begin{equation*}
f(x)=\sum_{n \in \mathbb{Z}} c_{n} e^{i n x} \tag{1}
\end{equation*}
$$

for some coefficients $c_{n} \in \mathbb{C}$. Alternatively, this could be written

$$
\begin{equation*}
f(x)=\sum_{n=0}^{\infty}\left(a_{n} \cos (n x)+b_{n} \sin (n x)\right) \tag{2}
\end{equation*}
$$

If f is real-valued, we can choose the coefficients a_{n} and b_{n} to be real numbers. Like I said above, we will assume we can write f as such a sum, and that the equality holds expect possibly at isolated points.

Quick question

Assume either equation 1 or 2 holds for a function f. Argue that we then need to have $f(x+2 n \pi)=f(x)$ for any n. I.e. that f is periodic when extended to all of $\mathbb{R}(f$ was originally only defined on $[-\pi, \pi])$.

Finding the coefficients

You were supposed to show earlier that

$$
\int_{-\pi}^{\pi} e^{-i m x} e^{i n x} d x=2 \pi \delta_{m n}= \begin{cases}2 \pi & m=n \\ 0 & n \neq m\end{cases}
$$

Use this to argue that

$$
\int_{-\pi}^{\pi} f(x) e^{-i m x} d x=2 \pi c_{m}
$$

I.e. that if we still assume the expansion of equation 1 , we can find c_{n} by

$$
c_{n}=\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(x) e^{-i n x} d x
$$

If you recall the L^{2} inner-product

$$
\langle f, g\rangle=\int_{-\pi}^{\pi} \bar{f} g d x
$$

you will see that the above can be written as follows. Let $e_{n}(x)=e^{i n x}$. Then

$$
c_{n}=\frac{1}{2 \pi}\left\langle e_{n}, f\right\rangle
$$

And as such,

$$
f(x)=\frac{1}{2 \pi} \sum_{n \in \mathbb{Z}}\left\langle e_{n}, f\right\rangle e_{n}
$$

This is analoguous to writing a vector in \mathbb{R}^{n} as

$$
\mathbf{v}=\sum_{k=1}^{n}\left(\mathbf{v} \cdot \mathbf{e}_{k}\right) \mathbf{e}_{k}
$$

Since there are n basis vectors \mathbf{e}_{k} for \mathbb{R}^{n}, we say that \mathbb{R}^{n} is an n-dimensional vectors space. If you accept that the set $\left\{e_{n}(x)\right\}_{n \in \mathbb{Z}}$ serves the same purpose for $L^{2}([-\pi, \pi])$, then you will hopefully agree that $L^{2}([-\pi, \pi])$ is infinitedimensional as a vector space.

Example

Let us test this newfound technology. Let $f(x)=x$. Let's try computing its Fourier-coefficients to see how this work.

$$
c_{n}=\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(x) e^{-i n x} d x=\frac{1}{2 \pi} \int_{-\pi}^{\pi} x e^{-i n x} d x
$$

We solve this by integrating by parts ("delvis integrasjon"). For $n \neq 0$, we have
$c_{n}=\frac{1}{2 \pi}\left(-\left.\frac{x e^{-i n x}}{i n}\right|_{-\pi} ^{\pi}-\frac{1}{i n} \int_{-\pi}^{\pi} e^{-i n x} d x\right)=\frac{1}{2 \pi}\left(\frac{i}{n}\left(\pi e^{i n \pi}-(-\pi) e^{-i n \pi}-0\right)\right.$

$$
c_{n}=\frac{i}{2 n \pi}\left(2 \pi(-1)^{n}\right)=\frac{i}{n}(-1)^{n}
$$

For $n=0$, we get that

$$
c_{0}=\frac{1}{2 \pi} \int_{-\pi}^{\pi} x d x=0
$$

So if Fourier-theory is supposed to work, we should be able to write

$$
f(x)=x=\sum_{n \neq 0} \frac{i}{n}(-1)^{n} e^{i n x}
$$

We can work a bit on the sum:

$$
x=\sum_{n=1}^{\infty} \frac{i}{n}(-1)^{n} e^{i n x}+\sum_{n=1}^{\infty} \frac{i}{-n}(-1)^{-n} e^{-i n x}=i \sum_{n=1}^{\infty} \frac{(-1)^{n}}{n}\left(e^{i n x}-e^{-i n x}\right)
$$

and finally

$$
x=\sum_{n=1}^{\infty} \frac{2(-1)^{n+1}}{n} \sin (n x)
$$

Exercise

Go through the above computation and justify the steps!
The plots of the sum

$$
\sum_{n=1}^{N} \frac{2(-1)^{n+1}}{n} \sin (n x)
$$

are included for $N=2,5,15$, and 50 . It gives numerical "evidence" that Fourier theory might work. Can you think of what happens at the endpoints? Hint: Note that the Fourier-series is periodic with period 2π and $f(x)=x$ is not!

Figure 1: Plot showing $f(x)=x$ (blue line) and its truncated Fourier series with $N=2$ terms (red).

Figure 2: Plot showing $f(x)=x$ (blue line) and its truncated Fourier series with $N=5$ terms (red).

Figure 3: Plot showing $f(x)=x$ (blue line) and its truncated Fourier series with $N=15$ terms (red).

Figure 4: Plot showing $f(x)=x$ (blue line) and its truncated Fourier series with $N=50$ terms (red).

Example

Let's do another example! Let's try $f(x)=x^{2}$. We need to compute

$$
c_{n}=\frac{1}{2 \pi} \int_{-\pi}^{\pi} x^{2} e^{-i n x} d x
$$

This is done by integration by parts again, and is left to the reader. The answer is

$$
x^{2}=\frac{\pi^{2}}{3}+4 \sum_{n=1}^{\infty} \frac{(-1)^{n}}{n^{2}} \cos (n x)
$$

Note that for this example, $c_{0} \neq 0$.
Plots are included for $N=2,5$, and 10 . Notice how quickly this converges. Note also that the endpoints don't blow up in this example. Any comment? In particular, think about how $f(x)=x^{2}$ looks when extended periodically.

Figure 5: Plot showing $f(x)=x^{2}$ (blue curve) and its truncated Fourier series with $N=2$ (red curve).

Figure 6: Plot showing $f(x)=x^{2}$ (blue curve) and its truncated Fourier series with $N=5$ (red curve).

Figure 7: Plot showing $f(x)=x^{2}$ (blue curve) and its truncated Fourier series with $N=10$ (red curve).

We can get some neat little result out of the Fourier-series of x^{2}. If we
believe in its convergence at $x=\pi$, we get

$$
\pi^{2}=f(\pi)=\frac{\pi^{2}}{3}+4 \sum_{n=1}^{\infty} \frac{(-1)^{n}}{n^{2}} \cos (n \pi)=\frac{\pi^{2}}{3}+4 \sum_{n=1}^{\infty} \frac{1}{n^{2}}
$$

Rearranging this gives

$$
\sum_{n=1}^{\infty} \frac{1}{n^{2}}=\frac{\pi^{2}}{6}
$$

If you recall that

$$
\zeta(s)=\sum_{n=1}^{\infty} \frac{1}{n^{s}}
$$

then this seems to show that $\zeta(2)=\frac{\pi^{2}}{6}$.
If you want $\zeta(4)$, you could try computing the Fourier series of x^{4}, but it quickly gets tedious.

Exercise

Notice that we could write

$$
x=\sum_{n=1}^{\infty} a_{n} \sin (n x)
$$

and

$$
x^{2}=\sum_{n=0}^{\infty} b_{n} \cos (n x)
$$

Look at what happens when $x \mapsto-x$ and use this to argue that

$$
x^{2 n}=\sum_{n=0}^{\infty} b_{n} \cos (n x)
$$

(no sines) and

$$
x^{2 n+1}=\sum_{n=1}^{\infty} a_{n} \sin (n x)
$$

(no cosines). More generally: If $f(-x)=f(x)$ for all x, then

$$
f(x)=\sum_{n=0}^{\infty} b_{n} \cos (n x)
$$

If $f(-x)=-f(x)$ for all x, then

$$
f(x)=\sum_{n=1}^{\infty} a_{n} \sin (n x)
$$

Finally, a somewhat unrelated question. Show that a function $f: \mathbb{R} \rightarrow \mathbb{R}$ which satisfies $f(-x)=-f(x)$ for all x must satisfy $f(0)=0$. Convince yourself that this is consistent with the claim I make about its Fourier series above.

