MAT1100 - Grublegruppe
Extra Problems 14

Jorgen O. Lye

This note will deal with some basic Fourier-theory. We will here just as-
sume convergence, even though this is a somewhat subtle and deep question.

The basic statement

Assume f is a (piecewise) continuous function on f : [—m, 7] — C. Piecewise
continuous means that by removing finitely many points from [—7, 7], f is
continuous. The idea behind Fourier-theory is to write

flx) =) cne™ (1)

for some coefficients ¢, € C. Alternatively, this could be written

oo

flz) = Z (a,, cos(nz) + b, sin(nz)) (2)

n=0
If f is real-valued, we can choose the coefficients a,, and b,, to be real numbers.
Like I said above, we will assume we can write f as such a sum, and that the
equality holds expect possibly at isolated points.

Quick question

Assume either equation 1 or 2 holds for a function f. Argue that we then
need to have f(x + 2n7m) = f(z) for any n. Le. that f is periodic when
extended to all of R (f was originally only defined on [—m, 7]).

Finding the coefficients

You were supposed to show earlier that

4 . , 2 =
/ e "M dr = 270y = Tom=n
- 0 n 7& m
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Use this to argue that
/ f(z)e ™ dx = 27c,,
Le. that if we still assume the expansion of equation 1, we can find ¢, by
- [t
Cp = — x)e x
2 J_,

If you recall the L? inner-product

™

(f.o9)=[ fgdu
you will see that the above can be written as follows. Let e,(z) = ¢™*. Then
1
Cn = 5 (en f)
And as such,
1
f(z) = o % {(en, f) en

This is analoguous to writing a vector in R™ as

n

VvV = Z(V . ek)ek

k=1

Since there are n basis vectors e for R, we say that R" is an n-dimensional
vectors space. If you accept that the set {e,(z)},ez serves the same purpose
for L?([—m,x]), then you will hopefully agree that L?*([—m,n]) is infinite-
dimensional as a vector space.

Example

Let us test this newfound technology. Let f(z) = x. Let’s try computing its
Fourier-coefficients to see how this work.
1 " —inx 1 " —inx
Cp = — flz)e "™ de = — xe " dx
2r J_. 2 J_,

We solve this by integrating by parts (“delvis integrasjon”). For n # 0, we

have
™ 1 ™ . 1 ) ) )
- e " dac) =5 (i(ﬁem7T — (—m)e """ — 0)

1 xefinx
=5 | ——
2T m l-r  in J_, n
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n = — (2m(=1)") = =(=1)"
en= 5 (2m(-1)") = (1)
For n = 0, we get that
1 ™
co = | xdaczO

So if Fourier-theory is supposed to Work7 we should be able to write

n#0
We can work a bit on the sum:

T = e n znx —-n —znx — nr __ —inx
>, (-1 +Z_n i) (e e
n=1 n=1

and finally
© 2 n+1
Z sin(nx)
n=1

Exercise

Go through the above computation and justify the steps!
The plots of the sum

n+1

Z 2= sin(nx)

n=1

are included for N = 2,5,15, and 50. It gives numerical “evidence” that
Fourier theory might work. Can you think of what happens at the endpoints?
Hint: Note that the Fourier-series is periodic with period 27 and f(z) = x
is not!



Figure 1: Plot showing f(z) = « (blue line) and its truncated Fourier series
with NV = 2 terms (red).

Figure 2: Plot showing f(z) = = (blue line) and its truncated Fourier series
with N =5 terms (red).



Figure 3: Plot showing f(z) = = (blue line) and its truncated Fourier series
with N = 15 terms (red).

Figure 4: Plot showing f(z) = = (blue line) and its truncated Fourier series
with N = 50 terms (red).



Example

Let’s do another example! Let’s try f(z) = xz?. We need to compute

[,

Cp = — rée " dx
2 ),

This is done by integration by parts again, and is left to the reader. The
answer is

2 e —1)"
22 = % + 4; ( n2) cos(nx)
Note that for this example, ¢y # 0.
Plots are included for N = 2,5, and 10. Notice how quickly this converges.
Note also that the endpoints don’t blow up in this example. Any comment?
In particular, think about how f(x) = 22 looks when extended periodically.

Figure 5: Plot showing f(z) = 2? (blue curve) and its truncated Fourier
series with N = 2 (red curve).



Figure 6: Plot showing f(x) = 22 (blue curve) and its truncated Fourier
series with N =5 (red curve).

Figure 7: Plot showing f(x) = 22 (blue curve) and its truncated Fourier
series with N = 10 (red curve).

We can get some neat little result out of the Fourier-series of 2. If we
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believe in its convergence at x = m, we get

72 = f(n) :%2—1-4; (_12)n cos(n) :7%24—42i

n

Rearranging this gives

r 72
—~n* 6
If you recall that
= 1
((s) = 2 oy

then this seems to show that ((2) = %2.

If you want ((4), you could try computing the Fourier series of z*, but it
quickly gets tedious.

Exercise

Notice that we could write
oo
T = Z a, sin(nx)
n=1

and .
— Z by, cos(nx)
n=0

Look at what happens when x +— —x and use this to argue that

o0
" = Z b, cos(nz)
n=0

(no sines) and
o

R Z a, sin(nx)

n=1

(no cosines). More generally: If f(—xz) = f(z) for all z, then

flz) = Z by, cos(nx)



If f(—z) = —f(x) for all z, then

flz) = Z a, sin(nx)

Finally, a somewhat unrelated question. Show that a function f : R — R
which satisfies f(—z) = —f(x) for all x must satisfy f(0) = 0. Convince
yourself that this is consistent with the claim I make about its Fourier series
above.



