MAT1100 - Grublegruppe Extra Problems 2

Jørgen O. Lye

In this note we look at an important application of sequences (følger), namely sequences of functions. For each $n \geq 0$, let $f_{n}(x)$ be a function. An example could be $f_{n}(x)=x^{n}$, so the sequence is $1, x, x^{2}, x^{3}, \cdots$. We could also consider sums of such functions called series (rekker), like a geometric series

$$
1+x+x^{2}+\cdots=\sum_{n=0}^{\infty} x^{n}
$$

where we for the time being assume the limit

$$
\lim _{N \rightarrow \infty} \sum_{n=0}^{N} x^{n}
$$

exists.

Exercise 1

Show that for $z \in \mathbb{C}$ with $|z|<1$, the geometric series

$$
\sum_{n=0}^{N} z^{n}
$$

converges to

$$
\sum_{n=0}^{\infty} z^{n}=\frac{1}{1-z}
$$

Hint: Multiply by $(1-z)$ and observe why the resulting sum is called telescoping.

Differentiation and integration

It can be shown (but we will not do so here!) that for series of the form

$$
\sum_{n=0}^{\infty} c_{n} x^{n}
$$

can, with c_{n} being numbers, be differentiated and integrated term by term:

$$
\int\left(\sum_{n=0}^{\infty} c_{n} x^{n}\right) d x=\sum_{n=0}^{\infty}\left(\int c_{n} x^{n} d x\right)=\sum_{n=0}^{\infty} c_{n} \frac{x^{n+1}}{n+1}
$$

And

$$
\frac{d}{d x}\left(\sum_{n=0}^{\infty} c_{n} x^{n}\right)=\sum_{n=0}^{\infty} \frac{d}{d x} c_{n} x^{n}=\sum_{n=0}^{\infty} n c_{n} x^{n-1}
$$

Exercise 2

Differentiate the power series defining e^{x} to show that $\left(e^{x}\right)^{\prime}=e^{x}$. I.e. differentiate

$$
e^{x}=\sum_{n=0}^{\infty} \frac{x^{n}}{n!}
$$

(Note: in the above notation we have $c_{n}=\frac{1}{n!}$).

Exercise 3

Integrate the geometric series to show that

$$
\ln (1-z)=-\sum_{n=1}^{\infty} \frac{z^{n}}{n}
$$

for $|z|<1$. What happens to the left hand side when you try putting $z=1$?
Note: this is actually the correct value, hinting that

$$
\sum_{n=1}^{\infty} \frac{1}{n}=\infty
$$

Exercise 4

It can be shown (but again, we will not do so) that the series

$$
\sum_{n=1}^{\infty} \frac{1}{n^{s}}
$$

Converges for all $s>1$. We saw in Exercise 3 that it seems to be infinite for $s=1$, so we will keep to $s>1$. This defines the Riemann-Zeta function

$$
\zeta(s)=\sum_{n=1}^{\infty} \frac{1}{n^{s}}
$$

Amongst the fun results that can be shown using Fourier analysis is that

$$
\zeta(2)=\sum_{n=1}^{\infty} \frac{1}{n^{2}}=1+\frac{1}{4}+\frac{1}{9}+\cdots=\frac{\pi^{2}}{6}
$$

What you will instead show (more or less) is that

$$
\zeta(s)=\prod_{p \text { prime }} \frac{1}{1-p^{-s}}=\frac{1}{1-2^{-s}} \cdot \frac{1}{1-3^{-s}} \cdot \frac{1}{1-5^{-s}} \cdots
$$

It might be easier to show the exact same thing written differently, namely that

$$
\zeta(s) \prod_{p \text { prime }}\left(1-\frac{1}{p^{s}}\right)=1
$$

Follow the induction steps
a)

Show that (or argue that)

$$
\begin{gathered}
\left(1-\frac{1}{2^{s}}\right) \zeta(s)=\left(1-\frac{1}{2^{s}}\right)\left(1+\frac{1}{2^{s}}+\frac{1}{3^{s}}+\frac{1}{4^{s}}+\frac{1}{5^{s}} \cdots\right) \\
\quad=1+\frac{1}{2^{s}}+\frac{1}{3^{s}}+\frac{1}{4^{s}} \cdots-\frac{1}{2^{s}}-\frac{1}{4^{s}}-\frac{1}{6^{s}} \cdots=\sum_{\substack{n=1 \\
2 \not n}}^{\infty} \frac{1}{n^{s}}
\end{gathered}
$$

The symbol $n \nmid m$ means " n does not divide m ", whereas $n \mid m$ means " n divides m ".
b)

Similarly, argue that

$$
\left(1-\frac{1}{2^{s}}\right)\left(1-\frac{1}{3^{s}}\right) \zeta(s)=\sum_{\substack{n=1 \\ 2,3 \uparrow n}}^{\infty} \frac{1}{n^{s}}
$$

c)

Argue loosely or by induction that continuing this way gives the desired formula

$$
\zeta(s)=\prod_{p \text { prime }} \frac{1}{1-p^{-s}}
$$

