MAT1100 - Grublegruppe Extra Problems 4

Jørgen O. Lye

Cauchy sequences

A sequence $\left\{x_{n}\right\}$ is called a Cauchy sequence (Cauchy-følge) if given an $\epsilon>0$, there is an $N>0$ such that $\left|x_{n}-x_{m}\right|<\epsilon$ for all $n, m \geq N$.

If you read the note about metric spaces, replace $\left|x_{n}-x_{m}\right|$ by $d\left(x_{n}, x_{m}\right)$ and you have the definition of a Cauchy sequence in a metric space.

Problem 1

Show that if $\left\{x_{n}\right\}$ is a convergent sequence then $\left\{x_{n}\right\}$ is a Cauchy sequence.

Problem 2

Consider the set \mathbb{Q} of rational numbers, and let $\left\{x_{n}\right\}$ be the decimal expansion of $\sqrt{2}$ where x_{n} has n decimals included. By this I mean

$$
\begin{gathered}
x_{1}=1.4=\frac{14}{10} \\
x_{2}=1.41=\frac{141}{100} \\
x_{3}=1.414=\frac{1414}{1000}
\end{gathered}
$$

et cetera. Then $x_{n} \in \mathbb{Q}$ for all $n \geq 1$. Show that it is a Cauchy sequence, where the distance between rational numbers is defined in exactly the same way as for real numbers.

Problem 3

Show that $\sqrt{2} \notin \mathbb{Q}$.
Hint: Assume it is, i.e. $\sqrt{2}=\frac{a}{b}$. Demand that a and b do not have common factors. Squaring shows that $2=\frac{a^{2}}{b^{2}}$, showing that b^{2} divides a^{2}. Show that this means b divides a, contradicting the demand that a and b do not have common factors.

Problem 4

Conclude that the sequence in Problem 2 is a Cauchy sequence in \mathbb{Q} that does not converge in \mathbb{Q}.

Completeness

A metric space is called complete if every Cauchy sequence converges. The metric spaces \mathbb{R} and \mathbb{C} are complete with their usual metrics, as are \mathbb{R}^{n} and \mathbb{C}^{n} for any $n \geq 0$. The metric space \mathbb{Q} with the same metric as \mathbb{R} is not complete.

Recall that I defined $L^{1}(C[a, b])$ as the metric space of continuous functions defined on $[a, b]$ with the metric

$$
d(f, g)=\int_{a}^{b}|f(x)-g(x)| d x
$$

You will now show that the space $L^{1}(C[0,1])$ is not complete.

a

Let

$$
f_{n}(x)= \begin{cases}1 & x \in\left[0, \frac{1}{2}\right) \\ e^{-n\left(x-\frac{1}{2}\right)} & x \in\left[\frac{1}{2}, 1\right]\end{cases}
$$

and compute

$$
d\left(f_{n}, f_{m}\right)=\int_{0}^{1}\left|f_{n}-f_{m}\right| d x
$$

b)

Show (or argue) that given an $\epsilon>0$, you can find an $N>0$ such that $d\left(f_{n}, f_{m}\right)<\epsilon$ whenever $m, n \geq N$. In other words, show that f_{n} is a Cauchy sequence.
c)

Show that f_{n} converges to

$$
f(x)= \begin{cases}1 & x \in\left[0, \frac{1}{2}\right) \\ 0 & x \in\left[\frac{1}{2}, 1\right]\end{cases}
$$

in the metric of $L^{1}(C[0,1])$. I.e. show that

$$
\int_{0}^{1}\left|f_{n}(x)-f(x)\right| d x \rightarrow 0
$$

as $n \rightarrow \infty$.
d)

Since f is obviously not a continuous function (you can show it if you like), $f \notin L^{1}(C([0,1]))$.

Conclude that $L^{1}(C([0,1]))$ is not complete.

