MAT1100 - Grublegruppe Extra Problems 5

Jørgen O. Lye

Topological notions

This note will deal with some topological notions. If you read the metric space notes, you can let X be a metric space with some metric d. If not, let the space be \mathbb{R} and use $d(x, y)=|x-y|$ as the distance between points in all the formulations below.

Open sets

A subset $U \subset X$ is called open if for any $p \in U$, there is a ball $B_{R}(p)=\{x \in$ $X \mid d(x, p)<R\}$ such that $B_{R}(p) \subset U$. The intuition is that all points in an open set have some neighbourbood also contained in the open set.

Exercise

Let $x \in X$ be any point and pick some $k>0$. Let $A=B_{k}(x)$. Show that this is an open set. In words; show that an open ball is open. Note: this is not as obvious as it sounds!

Limit points and closed sets

Let $V \subset X$ be some set. A point $x \in X$ is called a limit point of A if any ball $B_{R}(x)$ intersects both A and $A^{c}=X \backslash A$ (the complement of A). Intuitively a limit point lies on the boundary of A.

A set V is called closed if it contains all its limit points.

Exercise

Show that a set V is closed if and only if $X \backslash V$ is an open set.
Hint: show that a set is open if and only if it contains none of its limit points.

Exercise

Show that the complement of a closed set is open.

Open versus closed

A set can be both open and closed. The entire space X and the empty set \emptyset are both open and closed. One way of seeing that is for instance that X doesn't have any limit points, and as such it contains all its limit points (i.e. none). Hence it is closed. Clearly any ball $B_{R}(x)$ fits inside X per definition of the ball, so X is open. Taking complements shows that the empty set is open.

Exercise

Show that an arbitrary union of open sets is open and a finite intersection of open sets is open.

Continuity

In Calculus, we say that a function $f: U \rightarrow \mathbb{R}(U \subset \mathbb{R})$ is continuous at a point x_{0} if for any $\epsilon>0$ there exists a $\delta>0$ such that $\left|x-x_{0}\right|<\delta \Longrightarrow$ $\left|f(x)-f\left(x_{0}\right)\right|<\epsilon$.

In a metric space, I previously defined continuity of a function $f: X \rightarrow Y$ to be that given $\epsilon>0$, there is a $\delta>0$ such that

$$
d_{X}\left(x_{0}, x\right)<\delta \Longrightarrow d_{Y}\left(f\left(x_{0}\right), f(x)\right)<\epsilon
$$

In this note you will learn about an equivalent notion.

Inverse image

Recall first that the inverse image of a function f means

$$
f^{-1}(U)=\{x \in X \mid f(x) \in U\}
$$

For instance if $X=\mathbb{R}$ and $U=(-1,1)$ with $f(x)=e^{x}$ then $f^{-1}(U)=$ $(-\infty, 0)$ while if $f(x)=\sin (x)$ then $f^{-1}(U)=\mathbb{R} \backslash \bigcup_{n=-\infty}^{\infty}\left\{\frac{\pi}{2}+n \pi\right\}$.

Exercise

Let $X=\mathbb{R}$ and $U=(1,2)$. Find the inverse images of the functions $f(x)=$ $x^{2}, f(x)=\cos (x), f(x)=x+1$.

Continuity via open sets

Let $f: X \rightarrow Y$ be some function between metric spaces. We say that the function is continuous at a point $x_{0} \in X$ if for any open set $V \subset Y$ with $f\left(x_{0}\right) \in V$ there is an open set $U \subset X$ with $x_{0} \in U$ such that $f^{-1}(V) \subset U$. More simply put: for any open subset $V \subset Y, f^{-1}(V) \subset X$ is open.

Exercise

Show that a function is continuous with this definition if and only if it is continuous using the metric space (or Calculus) definition.

Hint: If $d\left(x_{0}, x\right)<\delta$ it means that $x \in B_{\delta}\left(x_{0}\right)$. If $d\left(f(x), f\left(x_{0}\right)\right)<\epsilon$ then $f(x) \in B_{\epsilon}\left(f\left(x_{0}\right)\right)$.

