MAT1100 - Grublegruppe Extra Problems 7

Jørgen O. Lye

Norms

Closely related to the concept of metrics is the concept of norms, written $\|v\|$ for a vector. For vectors in \mathbb{R}^{n} or \mathbb{C}^{n} the norm is usually taken to be the length:

$$
\|v\|=|v|
$$

A norm is supposed to satisfy the following axioms for any vector v and any number $\alpha(\alpha \in \mathbb{R}$ or $\alpha \in \mathbb{C})$:

$$
\begin{gathered}
\|v\| \geq 0 \\
\|v\|=0 \Longleftrightarrow v=0 \\
\|\alpha v\|=|\alpha|\|v\| \\
\|v+u\| \leq\|u\|+\|v\|
\end{gathered}
$$

Given a norm, the reader can hopefully show that

$$
d(u, v)=\|u-v\|
$$

defines a metric. Note however that not all metrics come from a norm. The discrete metric is one example (why?).

Norms can be defined for functions as well. For instance, we can define

$$
\|f\|_{p}=\left(\int|f|^{p}\right)^{1 / p}
$$

This gives rise to the metric discussed previously for the spaces $L^{p}([0,1])$.
The goal of this note is to establish the triangle inequality for $1<p<\infty$, namely that

$$
\|f+g\|_{p} \leq\|f\|_{p}+\|g\|_{p}
$$

Inequalities and integrals

In a sense the most basic inequality we have for integrals is

$$
\left|\int f+g d x\right| \leq \int|f+g| d x
$$

This can be thought of as a generalised version of the inequality for sums:

$$
\left|\sum_{n=1}^{N} f_{n}\right| \leq \sum_{n=1}^{N}\left|f_{n}\right|
$$

In terms of norms, this inequality says that

$$
\|f+g\|_{1} \leq\|f\|_{1}+\|g\|_{1}
$$

To show the general p case, we need to work a bit.

Young's inequality

Let a, b non-negative numbers and let $\frac{1}{p}+\frac{1}{q}=1$. Then

$$
a b \leq \frac{a^{p}}{p}+\frac{b^{q}}{q}
$$

The proof uses that the logarithm is concave. Define $t=1 / p \Longleftrightarrow t-1=$ $1 / q$, assume $a, b>0$ and justify the steps used below:

$$
\log \left(t a^{p}+(1-t) b^{q}\right) \geq t \log \left(a^{p}\right)+(1-t) \log \left(b^{q}\right)=\log (a)+\log (b)=\log (a b)
$$

Conclude with Young's inequality.
Hint: A function is concave if

$$
f(a t+(1-t) b) \geq t f(a)+(1-t) f(b)
$$

for all $t \in[0,1]$ and all a, b wherever f is supposed to be defined and concave.

Hölder's inequality

This inequality says that

$$
\|f g\|_{1} \leq\|f\|_{p}\|g\|_{q}
$$

where $\frac{1}{p}+\frac{1}{q}=1$. In terms of integrals it says

$$
\int_{0}^{1}|f g| d x \leq\left(\int_{0}^{1}|f|^{p} d x\right)^{1 / p}\left(\int_{0}^{1}|g|^{q} d x\right)^{1 / q}
$$

In the proof, we may assume $0<\|f\|_{p}<\infty$ and $0<\|g\|_{q}<\infty$ (why?). By replacing f by $\frac{f}{\|f\|_{p}}$ and g by $\frac{g}{\|g\|_{q}}$, we can assume that $\|f\|=\|g\|=1$ (why?).

Use Young's inequality on $a=\frac{|f(t)|}{p}$ and $b=\frac{|g(t)|}{q}$ to conclude that

$$
\|f g\|_{1} \leq \frac{1}{p}+\frac{1}{q}=1=\|f\|_{p}\|g\|_{q}
$$

Minkowski's inequality

Justify the manipulations:

$$
\begin{gathered}
\|f+g\|_{p}^{p}=\int_{0}^{1}|f+g|^{p} d x=\int_{0}^{1}(|f+g|)|f+g|^{p-1} d x \leq \int_{0}^{1}(|f|+|g|)|f+g|^{p-1} d x \\
=\int_{0}^{1}|f| \cdot|f+g|^{p-1} d x+\int_{0}^{1}|g| \cdot|f+g|^{p-1} d x
\end{gathered}
$$

Apply Hölder's inequality to these two terms and argue for the following:

$$
\left\|(f+g)^{(p-1)}\right\|_{q}=\left(\int_{0}^{1}|f+g|^{(p-1) q} d x\right)^{1 / q}=\left(\int_{0}^{1}|f+g|^{p} d x\right)^{1 / q}=\|f+g\|_{p}^{p / q}=\|f+g\|_{p}^{p-1}
$$

Hint: use that $\frac{1}{p}+\frac{1}{q}=1$ several times.
Conclude that

$$
\|f+g\|_{p}^{p} \leq\left(\|f\|_{p}+\|g\|_{p}\right)\|f+g\|_{p}^{p-1}
$$

from which we conclude finally that

$$
\|f+g\|_{p} \leq\|f\|_{p}+\|g\|
$$

This is known as Minkowski's inequality and it is the triangle inequality for the L^{p}-spaces.

Remark

There is nothing inherintly magical about the interval $[0,1]$. Another closed and bounded interval $[a, b]$ would work just as well. If you want these results for an unbounded or open interval, you have to be a bit more careful, as integrals could then quite easily be infinite.

