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Introductory group theory

This note is meant as a brief introduction to some aspects of elementary
group theory. We start with the definition. A group G is a set together with
a binary operation ∗ : G×G→ G satisfying the following.

• There is an element e ∈ G such that e ∗ g = g ∗ e = g for all g ∈ G.

• If g ∈ G, there is an element g−1 ∈ G such that g ∗ g−1 = e.

• If f, g, h ∈ G then f ∗ (g ∗ h) = (f ∗ g) ∗ h.

These requirements state that there should exist an identity element, all
elements should have inverses, and associativity should hold.

Examples

Show (or convince yourself) that the following satisfy the group axioms.

R

The set G = R with operation ∗ = +, e = 0, g−1 = −g. Why not choose
∗ = · on this set?

R+

The set G = R+ = {x ∈ R
∣∣x > 0} with ∗ = ·, g−1 = 1

g
. Why not choose

∗ = +?

C

The set G = C with ∗ = +.
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C∗

The set G = C∗ = C \ {0}, ∗ = ·.

Z

G = Z and ∗ = +.

Exercise

Show (by only using the group axioms) that the inverse element is unique.
Similarly, show that the identity element is unique.

Commutativity

Notice that I never required g ∗ h = h ∗ g. Groups for which this holds are
called abelian (after Abel). Convince yourself that all the above examples
are Abelian groups. If you know about matrices, then the following example
is a non-abelian group:

Matrix groups

Let G = GL(2,R) or GL(2,C) where

GL(2,F) = {2× 2 invertible matrices with entries in F}

Show that this is a group with normal matrix multiplication. Show that[
0 1
−1 0

]
=

[
1 0
0 −1

] [
0 1
1 0

]
6=

[
0 1
1 0

] [
1 0
0 −1

]
=

[
0 −1
1 0

]
and that all the matrices involved have inverses. This shows that GL(2,F)
is non-abelian.

Maps between groups

The maps, or functions, we study in Calculus are usually assumed to be
continuous. Often differentiable as well. For groups, these notions don’t
necessarily make sense1. We need another requirement on our functions to
make them respect group structure, and that requirement is as follows:

1Differentiability can make sense for a group, and it’s often very interesting when it
does.
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Let H and G be groups.
φ : G→ H

is called a (group) homomorphism if

φ(a ∗G b) = φ(a) ∗H φ(b)

for all a, b ∈ G.
Note that this says that I can compute the product between a and b in

G or I can map them to H and use the product there. The answer should
be the same.

Examples

Argue that
exp : R→ R+

is a group homomorphism. Same with

ln : R+ → R

Argue that φ : Z → Z given by φ(x) = ax is a homomorphism for any
a ∈ Z.

Exercise

Argue that for φ : G→ H to be a homomorphism, we must have φ(eG) = eH .

Inverses

Assume a homomorphism φ : G → H is bijective, meaning it is one-to-one
and onto (injective and surjective). As a map of sets, the inverse function
exists. If φ−1 is also a homomorphism, we call φ an isomorphism and say
that G and H are isomorphic groups. Isomorphic groups are denoted by
G ∼= H, or even G = H.

Example

Argue that R ∼= R+ as groups where the operation on R is + and the opera-
tion of R+ is ·.

Exercise

Show that if φ : G→ H is an isomorphism, then φ(g−1) = φ(g)−1.
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The complex case:

Argue that the map
exp : C→ C∗

is a group homomorphism. Is this an isomorphism of groups?

Modular arithmetics

Let p ∈ Z and define the set pZ = {p · n
∣∣n ∈ Z}. Argue that pZ is a group

for any p with addition as operation. As an example, 2Z are all the even
integers. Do the odd integers form a group?

Quotients

We will look more at quotients next time. For now, define the set

Z/(pZ) = {0, 1, 2, · · · p− 1}

and define addition modulo p on it. As an example, Z/(3Z) = {0, 1, 2} and
1 + 1 = 2, 2 + 1 = 0, 2 + 2 = 1 etc. Argue that this is a group for any p.

Unit roots

The groups Z/(pZ) are written additively, but they are in fact isomorphic to
a group written multiplicatively. Let

Cn = {n’th roots of unity} = {ζ ∈ C
∣∣∣ζn = 1}

Here the group operation is multiplicative

ζ ∗ ω = e
2πik
n e

2πil
n = e

2πi(k+l)
n

Argue that Cp
∼= Z/(pZ).
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