MAT1100 - Grublegruppe Extra Problems 8

Jørgen O. Lye

Introductory group theory

This note is meant as a brief introduction to some aspects of elementary group theory. We start with the definition. A group G is a set together with a binary operation $*: G \times G \rightarrow G$ satisfying the following.

- There is an element $e \in G$ such that $e * g=g * e=g$ for all $g \in G$.
- If $g \in G$, there is an element $g^{-1} \in G$ such that $g * g^{-1}=e$.
- If $f, g, h \in G$ then $f *(g * h)=(f * g) * h$.

These requirements state that there should exist an identity element, all elements should have inverses, and associativity should hold.

Examples

Show (or convince yourself) that the following satisfy the group axioms.

\mathbb{R}

The set $G=\mathbb{R}$ with operation $*=+, e=0, g^{-1}=-g$. Why not choose * $=$. on this set?

\mathbb{R}^{+}

The set $G=\mathbb{R}^{+}=\{x \in \mathbb{R} \mid x>0\}$ with $*=\cdot, g^{-1}=\frac{1}{g}$. Why not choose $*=+$?

\mathbb{C}

The set $G=\mathbb{C}$ with $*=+$.

\mathbb{C}^{*}

The set $G=\mathbb{C}^{*}=\mathbb{C} \backslash\{0\}, *=\cdot$

Z

$G=\mathbf{Z}$ and $*=+$.

Exercise

Show (by only using the group axioms) that the inverse element is unique. Similarly, show that the identity element is unique.

Commutativity

Notice that I never required $g * h=h * g$. Groups for which this holds are called abelian (after Abel). Convince yourself that all the above examples are Abelian groups. If you know about matrices, then the following example is a non-abelian group:

Matrix groups

Let $G=G L(2, \mathbb{R})$ or $G L(2, \mathbb{C})$ where

$$
G L(2, \mathbf{F})=\{2 \times 2 \text { invertible matrices with entries in } \mathbf{F}\}
$$

Show that this is a group with normal matrix multiplication. Show that

$$
\left[\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right]=\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right]\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right] \neq\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right]=\left[\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right]
$$

and that all the matrices involved have inverses. This shows that $G L(2, \mathbf{F})$ is non-abelian.

Maps between groups

The maps, or functions, we study in Calculus are usually assumed to be continuous. Often differentiable as well. For groups, these notions don't necessarily make sense ${ }^{1}$. We need another requirement on our functions to make them respect group structure, and that requirement is as follows:

[^0]Let H and G be groups.

$$
\phi: G \rightarrow H
$$

is called a (group) homomorphism if

$$
\phi\left(a *_{G} b\right)=\phi(a) *_{H} \phi(b)
$$

for all $a, b \in G$.
Note that this says that I can compute the product between a and b in G or I can map them to H and use the product there. The answer should be the same.

Examples

Argue that

$$
\exp : \mathbb{R} \rightarrow \mathbb{R}^{+}
$$

is a group homomorphism. Same with

$$
\ln : \mathbb{R}^{+} \rightarrow \mathbb{R}
$$

Argue that $\phi: \mathbf{Z} \rightarrow \mathbf{Z}$ given by $\phi(x)=a x$ is a homomorphism for any $a \in \mathbf{Z}$.

Exercise

Argue that for $\phi: G \rightarrow H$ to be a homomorphism, we must have $\phi\left(e_{G}\right)=e_{H}$.

Inverses

Assume a homomorphism $\phi: G \rightarrow H$ is bijective, meaning it is one-to-one and onto (injective and surjective). As a map of sets, the inverse function exists. If ϕ^{-1} is also a homomorphism, we call ϕ an isomorphism and say that G and H are isomorphic groups. Isomorphic groups are denoted by $G \cong H$, or even $G=H$.

Example

Argue that $\mathbb{R} \cong \mathbb{R}^{+}$as groups where the operation on \mathbb{R} is + and the operation of \mathbb{R}^{+}is .

Exercise

Show that if $\phi: G \rightarrow H$ is an isomorphism, then $\phi\left(g^{-1}\right)=\phi(g)^{-1}$.

The complex case:

Argue that the map

$$
\exp : \mathbb{C} \rightarrow \mathbb{C}^{*}
$$

is a group homomorphism. Is this an isomorphism of groups?

Modular arithmetics

Let $p \in \mathbf{Z}$ and define the set $p \mathbf{Z}=\{p \cdot n \mid n \in \mathbf{Z}\}$. Argue that $p \mathbf{Z}$ is a group for any p with addition as operation. As an example, $2 \mathbf{Z}$ are all the even integers. Do the odd integers form a group?

Quotients

We will look more at quotients next time. For now, define the set

$$
\mathbf{Z} /(p \mathbf{Z})=\{0,1,2, \cdots p-1\}
$$

and define addition modulo p on it. As an example, $\mathbf{Z} /(3 \mathbf{Z})=\{0,1,2\}$ and $1+1=2,2+1=0,2+2=1$ etc. Argue that this is a group for any p.

Unit roots

The groups $\mathbf{Z} /(p \mathbf{Z})$ are written additively, but they are in fact isomorphic to a group written multiplicatively. Let

$$
C_{n}=\{\text { n'th roots of unity }\}=\left\{\zeta \in \mathbb{C} \mid \zeta^{n}=1\right\}
$$

Here the group operation is multiplicative

$$
\zeta * \omega=e^{\frac{2 \pi i k}{n}} e^{\frac{2 \pi i l}{n}}=e^{\frac{2 \pi i(k+l)}{n}}
$$

Argue that $C_{p} \cong \mathbf{Z} /(p \mathbf{Z})$.

[^0]: ${ }^{1}$ Differentiability can make sense for a group, and it's often very interesting when it does.

