MAT1100 - Grublegruppe Extra Problems 8

Jørgen O. Lye

Introductory group theory

This note is meant as a brief introduction to some aspects of elementary group theory. We start with the definition. A group G is a set together with a binary operation $*: G \times G \to G$ satisfying the following.

- There is an element $e \in G$ such that e * g = g * e = g for all $g \in G$.
- If $g \in G$, there is an element $g^{-1} \in G$ such that $g * g^{-1} = e$.
- If $f, g, h \in G$ then f * (g * h) = (f * g) * h.

These requirements state that there should exist an **identity element**, all elements should have **inverses**, and **associativity** should hold.

Examples

Show (or convince yourself) that the following satisfy the group axioms.

 \mathbb{R}

The set $G = \mathbb{R}$ with operation $* = +, e = 0, g^{-1} = -g$. Why not choose $* = \cdot$ on this set?

 \mathbb{R}^+

The set $G = \mathbb{R}^+ = \{x \in \mathbb{R} | x > 0\}$ with $* = \cdot, g^{-1} = \frac{1}{g}$. Why not choose * = +?

 \mathbb{C}

The set $G = \mathbb{C}$ with * = +.

 \mathbb{C}^*

The set $G = \mathbb{C}^* = \mathbb{C} \setminus \{0\}, * = \cdot$.

 \mathbf{Z}

 $G = \mathbf{Z}$ and * = +.

Exercise

Show (by only using the group axioms) that the inverse element is unique. Similarly, show that the identity element is unique.

Commutativity

Notice that I never required g * h = h * g. Groups for which this holds are called **abelian** (after Abel). Convince yourself that all the above examples are Abelian groups. If you know about matrices, then the following example is a non-abelian group:

Matrix groups

Let $G = GL(2, \mathbb{R})$ or $GL(2, \mathbb{C})$ where

 $GL(2, \mathbf{F}) = \{2 \times 2 \text{ invertible matrices with entries in } \mathbf{F}\}\$

Show that this is a group with normal matrix multiplication. Show that

$$\begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \neq \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$$

and that all the matrices involved have inverses. This shows that $GL(2, \mathbf{F})$ is non-abelian.

Maps between groups

The maps, or functions, we study in Calculus are usually assumed to be continuous. Often differentiable as well. For groups, these notions don't necessarily make sense¹. We need another requirement on our functions to make them respect group structure, and that requirement is as follows:

 $^{^1\}mathrm{Differentiability}$ can make sense for a group, and it's often very interesting when it does.

Let H and G be groups.

$$\phi: G \to H$$

is called a (group) homomorphism if

$$\phi(a *_G b) = \phi(a) *_H \phi(b)$$

for all $a, b \in G$.

Note that this says that I can compute the product between a and b in G or I can map them to H and use the product there. The answer should be the same.

Examples

Argue that

 $\exp: \mathbb{R} \to \mathbb{R}^+$

is a group homomorphism. Same with

 $\ln:\mathbb{R}^+\to\mathbb{R}$

Argue that $\phi : \mathbf{Z} \to \mathbf{Z}$ given by $\phi(x) = ax$ is a homomorphism for any $a \in \mathbf{Z}$.

Exercise

Argue that for $\phi: G \to H$ to be a homomorphism, we must have $\phi(e_G) = e_H$.

Inverses

Assume a homomorphism $\phi : G \to H$ is bijective, meaning it is one-to-one and onto (injective and surjective). As a map of sets, the inverse function exists. If ϕ^{-1} is also a homomorphism, we call ϕ an **isomorphism** and say that G and H are isomorphic groups. Isomorphic groups are denoted by $G \cong H$, or even G = H.

Example

Argue that $\mathbb{R} \cong \mathbb{R}^+$ as groups where the operation on \mathbb{R} is + and the operation of \mathbb{R}^+ is \cdot .

Exercise

Show that if $\phi: G \to H$ is an isomorphism, then $\phi(g^{-1}) = \phi(g)^{-1}$.

The complex case:

Argue that the map

 $\exp:\mathbb{C}\to\mathbb{C}^*$

is a group homomorphism. Is this an isomorphism of groups?

Modular arithmetics

Let $p \in \mathbf{Z}$ and define the set $p\mathbf{Z} = \{p \cdot n | n \in \mathbf{Z}\}$. Argue that $p\mathbf{Z}$ is a group for any p with addition as operation. As an example, $2\mathbf{Z}$ are all the even integers. Do the odd integers form a group?

Quotients

We will look more at quotients next time. For now, define the set

$$\mathbf{Z}/(p\mathbf{Z}) = \{0, 1, 2, \cdots p - 1\}$$

and define addition modulo p on it. As an example, $\mathbf{Z}/(3\mathbf{Z}) = \{0, 1, 2\}$ and 1+1=2, 2+1=0, 2+2=1 etc. Argue that this is a group for any p.

Unit roots

The groups $\mathbf{Z}/(p\mathbf{Z})$ are written additively, but they are in fact isomorphic to a group written multiplicatively. Let

$$C_n = \{ \text{n'th roots of unity} \} = \{ \zeta \in \mathbb{C} | \zeta^n = 1 \}$$

Here the group operation is multiplicative

$$\zeta \ast \omega = e^{\frac{2\pi ik}{n}} e^{\frac{2\pi il}{n}} = e^{\frac{2\pi i(k+l)}{n}}$$

Argue that $C_p \cong \mathbf{Z}/(p\mathbf{Z})$.