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The definition tells us that given twoelements a and b ina totally ordered
set, either @ < b or b < q. For elements in a partially ordered set that is
not totally ordered, there s a third possibility. What is-it?

4.2.4 EXERCISE
Let A be a set. Show that P(A) need not be totally ordered under the relation C. u]

4.2.5 DEFINITION

Let A be a partially ordered set under <. A is said to obey the law of tricotomy if for
every a and b € A exactly one of the following is true:

i.a<b. ii.a=b. iii. b < a.

4.2.6 THEOREM
A partially ordered set A is totally ordered iff it obeys the law of trichotomy. O

S ‘hmm CP Au _un  any mE.nmE o&nﬁn set and B any subset om A, dﬁa B

= iftherits the partial order from A, in the sense that if we take two elements -
x and“y of B, we can sensibly ask whether x < ¥,y < x, or x:and y ﬁn.
unrelated. (You should verify that the relation on B obtained in this way

i is:a partial order.) In other words, we can easily view-any subset of a

Eﬁ:&% ordered set as a @Edm:w oam_,@u set in its own nmE < :

4.2.7 EXERCISE

Itis easy to see that P(N) is not totally ordered, but it has subsets that are totally ordered.
Give an example of an infinite totally ordered subset of P(N) (under the order ©). o

When we are dealing with a partial order on a set with only a few elements, we can
often make sense of the situation with some simple diagrams called lattice diagrams.’
(Lattice diagrams can also be useful for picturing a small section of a larger ordered set.)

'One reader pointed out that this is a misnomer. Lattices are partially ordered sets in which every pair of
:lements has a least upper bound and a greatest lower bound. (See page 76 for definitions.) We use the diagrams

o represent partially ordered sets that are not lattices. The misusage is common, so I let it stand, but the point
s well taken,
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{1,2,3}

I

{1,2} {1, 3} {2, 3)

Figure 4.4 Lattice diagram for P(A)

Consider, for instance, the power set of A = {1, 2, 3} under set inclusion. We can
draw a simple diagram that shows the order relation on this set. This is illustrated in
Figure 4.4.

One element of the set is smaller than another if and only if an upward path can
be found that connetts them. (That path may traverse other elements in between.) Since
we always move up along the diagram, elements that are on the same level cannot be
related to one another, nor can an element above be less than one that sits on a level
below it. Naturally, each element is related to itself as in all partial orders. This is not
shown explicitly in the diagram.

4.2.8 EXERCISE

When we say that “one element of the set is smaller than another only if an upward path
can be found that connects them” (even if it traverses other elements in between), what
property of partial orderings are we relying on? o

Remark. The drawing of lattice diagrams is a pretty intuitive enterprise, so I will
mostly leave it to your intuition and will not try to rigorously write out rules for
constructing them. However, there is one rule that is worth mentioning explicitly. An
element always appears on the lowest possible level. That is, an element must always be
larger than at least one element on the level immediately below it. If this is not the case,
we can and will draw it on a lower level.

4.2.9 EXERCISE

Show that the partial orderings on {a, b, ¢, d, e, f} depicted in Figure 4.5 are the same.
(Remember, partial orderings are sets of ordered pairs. Two partial orders are same if
those sets are equal.) Notice, however, that only one of the three lattice diagrams is
“legal.” Which one is it? o
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w.h&.

Figure 4.5

Figure 4.6 Isomorphic partial orders

Consider the diagrams shown in Figure 4.5. Suppose that we had not labeled the
wE.mEm. Then we would have been observing only the order structure of the set and
ithing else. There is a sense in which the two lattice diagrams shown in Figure 4.6
e the same mathematical structure. The difference between them amounts only to a

ek e

i
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Figure 4.7 Partial orders on two elements

“relabeling” of the points. As long as we are interested only in the order structure, such
relabeling is not important.*

Two mathematical structures that are the same up
to a relabeling of the elements involved are called iso-
morphic structures. The partial orderings shown in
Figure 4.6 are, therefore, isomorphic partial orders. We
will have more to say about isomorphic partial orders
when we talk about functions. For now, we will make
do with an intuitive idea of what isomorphism means.

The etymology. of the
word “isomorphic” is
enlightening. It comes
from the two greek words -
isos meaning same and
morphos meaning shape.
C: .ﬁ:ﬂmm that are m.mm._.ﬂmﬁ :

4.2.10 EXAMPLE - phichave the same math-
Suppose we have sets with two, three, and four ele- ematical “shape” or Suuc: !
ments. How might these sets be partially ordered (upto et o i e

arelabeling of the elements—up fo isomorphism)? We
can use lattice diagrams to find all possible situations.

1. Partial orders on sets with two elements. For the set with two elements, we have
only two possibilities: Either one element is smaller than the other or they are
not related. This yields only two possible partial orders (which we display in
Figure 4.7).

2. Partial orders on sets with three elements. Draw lattice diagrams for all possible
partial orders on a set with three elements. There are five of them. (Hint: If you
have trouble, you might peek at the discussion given below about partial orders
on a set with four elements and then try again.)

3. Partial orders on sets with four elements. As the number of elements gets larger,
the number of possible partial orders increases rapidly, so if we have any hope
of getting all possibilities, we have to be quite systematic about the way we go
about classifying them. One possible approach is to think about the number of
“Jevels” there will be in a lattice diagram. If we have four elements, we can have
our elements on one, two, three, or four levels. (If all the elements are on the

4¥ou have seen this before. The functions
Fr=xt-1 ad g=r"-1
are, in fact, the same mathematical object.
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Figure 4.8 Partial orders on a set with four elements in which
there are two elements on each level

same level, we have a totally unordered set. If the elements lie on four levels, we
have a totally ordered set.)

Let us consider partial orders in which there are only two levels. Here there
are three possibilities:
= There are two elements on each level.
= There are three elements on the first (lowest) level and one on the second level.

= There is a single element on the first level and there are three on the second
level.

Consider the case in which there are two elements on each level. Remember
that the rules for drawing lattice diagrams require that each element on the
second level be “tied” to at least one element on the first level. This gives us
four possibilities. Each element on the first level is tied to a different element on
the second level. One of the elements on the first level is tied to both elements on
the second level, and the other element is unrelated to the elements on the second
level. One of the elements on the first level is tied to each element on the second
level and the other element is tied to only one of them. The final possibility is that
each element on the first level is tied to each element on the second level. This
line of reasoning yields the lattice diagrams shown in Figure 4.8.

Now you should attempt to finish the classification of partial orders on sets
with four elements. (There are 16 of them!)

e

Draw lattice diagrams for at least ten distinct partial orders on sets with five
elements. Can you get all of them? (There are 55 in all.) m

Though lattice diagrams can be very useful for describing partial orderings on small
ets, they are of limited usefulness when the sets we are dealing with are large or infinite.
\nalysis of partial orderings on larger sets therefore requires that we be able to describe

SERPRG. ¥ ~Jou e — L . o - ———
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ordered sets and totally unordered sets. These are what you might call global properties
of a partial order—that is, properties that describe the partial order as a whole. Some
clements have a special status with respect to all the other elements in the partially
ordered set.

4.2.11 DEFINITION
Let A be a partially ordered set. Let x € A.

1. The element x is called a maximal element for A if there exists no y € A such
that y > x. Similarly, x is a minimal element for A if there does not exist y € A
such that y < x.

2. The element x is the greatest element of A if x > y forall y € A. Similarly, x is
the least element of A if x < y for all y in A.

At first glance, you might think that “greatest element” and “maximal element”
mean the same thing, but, in fact, they are different. One reason why you might confuse
these two is that you are too used to thinking about totally ordered sets!

¥

4.2.12 EXERCISE

Look at the lattice diagrams in Figure 4.21 on page 98. For each determine whether the
partially ordered set has any minimal elements, maximal elements, a greatest element, a
least element. In each case, list all you find. a

4.2.13 EXERCISE

1. Give examples that illustrate the difference between a maximal element and the
greatest element of a partially ordered set A. Drawing lattice diagrams is a good
way to do this.

2. Give examples to show that a given partially ordered set can have more than one
minimal element or none at all. u]

4.2.14 THEOREM

Let T be a totally ordered set and fix x € T. Then x is a maximal element of 7 if and only
if x is the greatest element of J. (That is, in a totally ordered set, the phrases “maximal
element” and “greatest element” mean the same thing!) u}

Notice that we have been talking about the greatest element of A, as though there
were only one. The following theorem justifies this usage.

4.2.15 THEOREM

Let A be a partially ordered set. Prove that if A has a greatest element, then that greatest
element is unique. (Hint: This is a uniqueness theorem. Turn back to page 30 and remind
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Remark. Theorems 4.2.14 and 4.2.15 dealt with
greatest elements and maximal elements. Analogous
statements can be made about least elements and min-
imal elements. Formulate the appropriate statements,
then review the arguments you gave for maximal and

In general, when we de-
fine an object, we ¢annot
‘assume it is unique just -

greatest elements to see that they can be easily modi- are defining the object by ..
fied to give the analogous results for least and minimal means of a property or set -
elements. -.of properties: Any oE,mna :

“satisfying those proper- b
In addition to global properties, we have local ; :
properties, that is, properties that refer only to a spe-
cific section (subset) of the partially ordered set—they
describe only how the partial order behaves “locally”

and have nothing to say about the larger picture in the
partial order.

- definiti on. Furthermore,

4.2.16 DEFINITION

Let A be a partially ordered set. An element x of A is
said to be an immediate successor ofyedify<x

ind there does not exist an element Z € A such that
y<z<azx.

Likewise, x € A is said to be an immediate prede-
essor of y € A if . . . (You should complete this defi-
lition for yourself,)

L.2.17 EXERCISE

'how by giving an example that immediate successors and immediate predecessors are
Ot necessarily unique.

«2.18 THEOREM

12 totally ordered set, immediate successors and immediate predecessors (when they

<ist) are unique. o

2.1 DEFINITION
3t A be a partially ordered set. Let K be a nonempty subset of A. Let x € A.

1. x is an upper bound for X if x > y for all y € K. If such an element exists, we
say that X is bounded above.

2. x is called the least upper bound of K if
® X is an upper bound for K, and
* given any upper bound u for K, x < u.

-because we wishitso, We

Lies il then’satisfy the -

A

b2 e

SR

4.2 Orderings 77

In this case, x is denoted by lub K. .
3. The least upper bound for X is called the greatest element of Kifx € K.

4.2.20 EXERCISE

Using Definition 4.2.19 as your model, construct definitions for lower coE..P bounded
below, greatest lower bound, and least element of a subset K of a partially ordered

a]
set AS

4.2.21. EXERCISE
Consider R under the customary ordering <.
1. Let K = [—3, 3]. Find four upper bounds for K. Does K have a least upper bound?
A greatest element?
2. Find an example of a subset K of R in which K has no lower bound.

3. Find an example of a subset X of R in which K has no least element but has a
. ]
greatest lower bound.

4.2.22 THEOREM

Let A be a partially ordered set. Let K be a nonempty subset of A.If K has aleast nuﬁnm_.
bound, it is unique.

4.2.23 DEFINITION

A partially ordered set in which every nonempty subset that is bounded above has a least
upper bound is said to have the least upper bound property.

4,2.24 EXAMPLE
1. You will show in Problem 11 at the end of the chapter that for any set X, P30
has the least upper bound property.
2. The most important example of an ordered set s..p.E the FE.EEUQ cﬂ:n&mwow,wmw\
is (R, <). You should think about this for a while to see if you _ua:o<M_ ww s
true. It is an axiom of the real number system that R, o:.umnon_ as usual, has ¢
least upper bound property. (See Chapter 8 for more details.)

4.2.25 LEMMA
Let A be a partially ordered set and let K be a subset of A. Define

L ={x € A:xis alower bound for K}.

alled the supremum and the
5The least upper bound and greatest lower cc:.ﬁn of K are Emﬂ commonly ¢ p
infimum of K. These are denoted by sup K and inf X, respectively.
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Suppose that L g has aleast upper bound. Show thatthe . - ; .
least upper bound x of L is the greatest lower bound = “Lemma” is another word

of K. O . for theorem, but it has the
~-additional mearing that
4.2.26 THEOREM + +it is a-theorem proved

‘mostly as'an aid'to prov-

Let A be a parti
e a partially ordered set that has the least upper ing another, bigger theo-

voE& property. Then every nonempty subset of A that S iliaricmania S0 os
is bounded below has a greatest lower bound. (Or we miay not he interésting in
might say: Every partially ordered set with theleastup- .. H.,.wE.. $atEo
per bound property also has the greatest lower bound .~~~ Ak
property.)

(Hint: Use Lemma 4.2.25.) O

Equivalence Relations

Useful relations on a set are often closely related to the way that we organize the set
m our minds. For example, the relation “<” describes the ordering that we place on
he real numbers. When we think of sets in everyday life, we may tend to divide them
nto categories. We divide the set of adult people into two categories: men and women.
We divide the set of foods into the four basic food groups: cereals, meats, fruits and
7egetables, and dairy products. We divide the set of college students into seniors, juniors,
sophomores, and freshmen. We divide the set of integers into even and odd integers.

Such divisions are as useful in mathematics as they are in other endeavors; we will
10w consider them in mathematical terms. Notice that in each set above, all the categories
re mutually exclusive (no member belongs to more than one category) and exhaustive
every member belongs to some category). The mathematical term for this is “partition.”
A partition of a set § is a collection of mutually exclusive and exhaustive subsets of S.
Jere are some formal definitions.

1.3.1 DEFINITION

£t S be a set. Let  be a collection of subsets of S. The elements of §2 are said to be
rairwise disjoint if for all elements A, B € , either A=Bor AN B =,

3 AR BT PR sy

You may wondet why we'do notsay “Let A and B be distinct elements of
Then AN) B = #1.” Thisisclearly equivalent and seems less confusing

Our phrasing is chosen to suggesta certain way of thinking about the idea,
ractice, when we set out toshow that a collection of sets is pairwise
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Figure 4.9 A partition of a set S

4.3.2 EXERCISE

Find an infinite collection of pairwise disjoint subsets of R. o

4.3.3 DEFINITION
A collection §2 of nonempty subsets of a set S is said to be a partition of S provided that
the elements of § are pairwise disjoint and their union is all of S. That is,

i. given A and B € Q, either A= B or AN B=§, and

i U A=S.
AeQ

4.3.4 EXERCISE

I said above that a partition of S is a collection of mutually exclusive and exhaustive
categories (subsets) of S. Which of the two provisions in the definition corresponds to
mutual exclusivity? Which corresponds to the fact that the categories are exhaustive? 0

4.3.5 EXERCISE (Partitions)
Construct the following examples of partitions.
1. Give an example of a partition of the set § = {1, 2, 3, 4}.
2. Give an example of a partition of N that has four elements.
3. Give an example of a partition of R? that has infinitely many elements. o

Thus far we have been thinking about dividing a set into disjoint subsets. This
division into categories can be seen in another light—in terms of relations. We can think
of all members of a given category as being related to each other. This gives a relation;
we take all possible ordered pairs of elements that come from the same category.

As you might suspect, the set-theoretic and relational interpretations of categoriza-
tion are closely related. In fact, every collection of subsets of A (not just partitions) can
be associated in a natural way with a relation on A. Conversely, every relation on A
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4.3.6 DEFINITION

Let A be a set and £2 any subset of P(A). If @) and a5 are elements of A, we will say that
ay is related to az

if there exists an element R € Q that contains both a; and ay.
This relation, ~q, is called the relation on A associated with .
4.3.7 EXERCISE
Let
A=1{1,2,3,4,5,6) and
Q=1{{1,3,4}, {2,4}, (3,4}}.
List the elements of ~q. o
4.3.8 THEOREM
Let A be a set and let €2 be a subset of P(A). Then the relation ~g associated with  is
symmetric. ]
1.3.9 DEFINITION
et A be a set. Let ~ be any relation on A. Every a € A gives us a subset of A:
T,={xe€A:a~x}

The set T, is called the set of relatives of a under ~. All of these subsets make up a
:ollection £ of subsets of A:

Q.={T,:ae A}
2~ 1s called the collection of subsets of A associated with ~.
1.3.10 EXERCISE
£t A=1{1,2,3,4,5,6}. Suppose
~={(1,1),(2,2),(2,3),(2,5), 3,5, 4,2), 4, 3), 4,5),(5,2), (5,3), (5, 5)}.
1. Foreacha € A, find T,.
2. Now find Q.. o
L.3.11 PROBLEM
etA=1{1,2,3,4,5,6}.
1. Consider the following subset of P(A):
£ ={{1,2,3,4}], {5, 6}}).
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2. Consider the following relation on A:

~={(1,1),(2,2),(3,3).4,4),(,5), (66),(1,2),
(1,4), (2, 1), (2,4, 4,1),4,2),3,6), (6,3)}.

Find 2-.. 5]

4.3.12 PROBLEM

Paul and Bettie have four sons: P. W. (age 12), Pat (age 10), Will (age 7), and Ben (age 4).
In this family, person A is related to person B if A is older than B. (Bettie is older than
Paul.)

What is the collection of subsets associated with the relation? [u]

4.3.13 PROBLEM
Poll between 5 and 10 people. From this set of people, form the following subsets.

¢ The set of all people who own cats.
o The set of all'people who own gerbils.
o The set of people who do not have pets.
Describe the relation associated with this collection of subsets. Theorem 4.3.8 says that

it should be symmetric. Is it reflexive? Antisymmetric? Transitive? Explain. o

4.3.14 PROBLEM
Give an example of a set A and a subset £2 of P(A) such that

1. the relation ~ associated with £2 is reflexive.
2. the relation ~ associated with £2 is not reflexive. o

Complete the statement of the following theorem, then prove it.

4.3.15 THEOREM

Let A be a set and let Q be a subset of P(A).
If , then the relation ~g is reflexive. o

4.3.16 THEOREM

Let A be a set and let  be a subset of P(A). Suppose that the elements of 2 are pairwise
disjoint. Then the relation ~q associated with is transitive. O
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4.3.17 COROLLARY

Let S be a set. Let 2 be a partition of S. Then the
relation on S associated with €2 is reflexive, symmetric,
and transitive. O

_¥Corollary” is-another

- word for theorem, but it
has the additional mean- -
.ing that its proof follows
‘immediately from previ-
~ously proved theorems.

4.3.18 DEFINITION

A relation on S that is reflexive, symmetric, and tran-
sitive is called an equivalence relation.

4.3.19 EXERCISE (Equivalence relations)

Give an example of an equivalence relation. (Be sure to specify the set on which the
relation is defined.) D

4.3.20 LEMMA
Suppose A is a set. Let ~ be an equivalence relation on A and let @, b € A. Then

T, = T if and only if a ~ b. u}

We have seen that a partition of § yields an equivalence relation. Conversely, we
have the following.

4.3.21 THEOREM
Let ~ be an equivalence relation on a set S. Then ©-. forms a partition of S. That is,

° |J Ix =S5, and
xeS8
o for x and y in §, either Ty = Ty, or T, N Ty, = 4.

(Hint: This is a set-theoretic theorem. You are showing that sets are equal, so you
will need to use element arguments just as you did in the chapter on set theory. For
additional guidance on the proof of the second part, see the box on page 78.) u}

By now it should be pretty clear that the study of equivalence relations on § is
intimately related to the partitioning of S into disjoint subsets. In fact, they are two faces
of the same problem. When we study partitions, we can view them mathematically in
either way: We can bring the tools of set theory to bear when we think of a-partition as
a collection of subsets, or we can use what we know about relations to make sense of
them! These two views complement each other, and it is useful to be able to cross over
easily from one to the other.

To make this juggling act advance more smoothly, we introduce some more lan-
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4.3.22 DEFINITION

Let S be a set, let ~ be an equivalence relation on S, and let x € S. Then T is called the
equivalence class of x under ~.

Following this, £ is called the set of equivalence classes of § given by ~ (or simply
the equivalence classes of ~.)

Lemma 4.3.20 and-Theorem 4.3.21 explain why we introduced this new
set of terms. Theorem 4.3.21 tells us that the T}’s are a set of mutually
-~ exclusive and exhaustive “categories” of S. Lemma 4.3.20 tells us what -
these “categories” (equivalence classes) are. Two elements of § fall into
the same “category” (equivalence class) if and only if they are related to. :
- “each other. All the elements in an equivalence class are related to one .
another. Any element outside a mmEnEE. mmszmhgon class is unrelated
__to elements in the equivalence class.

4.3.23 EXERCISE

Show that the following relations ~ on the specified set § are equivalence relations. In
each case do this in two ways:

« By identifying the equivalence classes and noting that they partition S.
By showing directly that ~ is reflexive, symmetric, and transitive.

1. §={p: pis a person in Ohio}. A~ B if A and B were born in the same year.
2. S=Z. a~bifl|al= bl
3. S=17.a~ bif a — bis an integral multiple of 5. D

Graphs

Consider the digraph shown in Figure 4.3. Notice that it is possible to get from Dubuque
to Chicago and back. However, it is only possible to go one way between Rochester and
Philadelphia. If every possible route was two-way, it would make sense to eliminate the
two arcs going different ways and replace them by a single undirected edge. The resulting
diagram would become Figure 4.10.

If we think about what happened in mathematical terms, we started with a symmetric
relation in which no element was related to itself. In such a relation, for distinct x and
y, saying that x is related to y is the same as saying that y is related to x; therefore, it
is sometimes convenient to simply conjoin the two ordered pairs (x,y) and (y, x) and
think of them as a single unordered pair {x, y} (in effect, the two-element set containing
x and y). So a symmetric relation in which no element is related to itself can be thought



84 Chapter4 Relations

Boston

Rochester

Pittsburgh

(3

O
o New York
Gnv_wn_:n @
Philadelphia

Cincinnati

Figure 410 Two-way transportation network

Figure 4.11 - A graph

4.1 DEFINITION

-et V be asetand E a set of unordered pairs of elements of V. Then the pair G = (V, E)
s called a graph on the set V.

The elements of the set V are called the vertices of G.

. .m vy and v, are vertices of G, and {vy, v} € E, we say that there is an edge in G
oining vy and v;. Thus the elements of the set E are called the edges of G.

.mmﬁo 4.11 shows a convenient way to represent graphs. The diagram shows the
ertices and the edges between them. The placement of the vertices and the lengths of
e mﬁ.umnm do H.Hoﬂ matter. Crossings where there is not a vertex have no significance and
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4.4.2 EXERCISE

For the graph shown in Figure 4.11, list the vertices and the edges. Verify that both
diagrams give the same answer. o

Graphs have many applications. Here are some examples that illustrate the variety
of fields in which graph theory can be useful.

4.4.3 EXAMPLE

1. The two graphs shown in Figure 4.12 represent the chemical bonds of propane
and isobutane molecules. (The vertices that are atached to four edges are carbon
atoms, the vertices that are attached only to one edge are hydrogen atoms.)

.

2. Figure 4.13 shows the family tree of Indo-European language groups, as proposed
by August Schleicher in 1862. English is part of the Germanic group. (Modern
versions of the diagram are more complex and include additional groups unknown
to Schieicher.)

3. Figure 4.14 shows an electrical resistor network. The vertices in the network are
connected by imperfect conductors, called resistors. (Similar graphs can be drawn
showing other kinds of electrical networks and computer networks.) ]

Remarks. Graph theory is a rich and varied subject. This will be a very brief treatment.
To focus the discussion, 1 have decided to introduce only those ideas and theorems that
I need to make it possible to discuss map coloring. In particular, I will limit the sorts of
graphs that we Jook at.

1. Though the definition of graph makes perfect sense if the set of vertices is infinite,
we will confine our discussion to talking about finite graphs. So whenever I say
“Let G = (V, E) beagraph” I really mean “Let V be a finite setand let G=(V,E)
be a graph on V.”

H H
H & H H £ H 5
H g H He- L HO o H
H C  en H it M
H
H H

Propane Isobutane
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Germanic

1. Let u and v be vertices in G. If the pair {u, v} is in E, then « and v are said to

Slavo-
Germanic \\\E be adjacent vertices. The edge {u, v} is said to be incident with the vertices u
Balo b [ Shic ] A
sk 2. The degree of a vertex v is the number of edges incident with v. The degree of v
is denoted by deg(v).

3. A vertex of degree one is called an end vertex.

v_mwwwgao- Ttalo- Celtic
Celtic -
Itali
e— ]

Celtic Albanian 4. If u, v, and w are vertices, and {1, v}, {v, w}, and {w, u} are all edges, then u, v,
ﬁ_w%aww /E and w are said to form a triangle in G.
T~ Trean 5. Let V¥ C V.If E* C E, and the edges in E* are incident only with vertices in
Mum“ﬂ.u e V* then G* = (V*, E*) is said to be a subgraph of G.
6. Let V* C V, and let E* be the set of all edges that join pairs of vertices in V*.

Figure 4.13 The descent of Indo-European languages Then G* = (V*, E*) is called the subgraph of G generated by V*.

4.4.5 EXERCISE
For this exercise, refer once again to Figure 4.11. Answer the following questions about
the graph G depicted there.

1. Find a pair of vertices of G that are adjacent and a pair of vertices that are not

adjacent.

2. What edges of G are incident with v3?

3. Which vertex in G has largest degree? Which vertex has smallest degree?

4. Does the G contain a triangle?

5. Draw the subgraph of G that is generated by the vertices {v1, vz, v4, vs}.

6. Draw the subgraph of G that is generated by the vertices {vi, v3, Us, vg}.

7. Find a subgraph of G that is not the subgraph generated by its set of vertices. O

Figure 4.14 An electrical resistor network

2. Some discussions of graphs assume the possi-
bility of an edge from a vertex to itself and of
more than one edge joining the same pair of ver-
tices. The definition I gave does not allow for graphs we  will be %&Ew“
either of these. - with have a finite humber

of vertices »ﬂm ﬁnﬁmﬁm

4.4.6 THEOREM
Let G = (V, E) be a graph. Let e be the number of edges of G. Then

Y deg(v) =2e. o

veV

It would be an understatement to call graph theory
a “definition-rich” subject. That is, a there are lots of Em&nﬂmﬁn& aasnwos
words you need to know just to carry on a conversation ﬁou either En wﬁmg‘ i
about graph theory. Please bear with me while I define .4052& or En n:B?H
lots of terms. The good news is that most of the ideas are :
intuitive, and the definitions are easy to remember. (As
you read, draw lots of pictures to help you understand
the meanings of the terms.)

4.4.7 DEFINITION (Moving around the graph)
Let G = (V, E) be a graph.

1. Let u and v be vertices in G. A walk in G from « to v is an alternating list of
vertices and edges in which each edge is incident with the vertices that come
before and after it:

4.4.4 DEFINITION (Inside the graph)
Let G = (V. F) he a oranh

u, {u, v}, vy, {v1, v2}, v, {v2, w3}, V3, . oo s Un—t, (VR VL U




