Often we deal with several sets at once and study the relationships between them. Here is one relationship that is probably already familiar to you.

2.2.1 DEFINITION

If A and S are sets, we say that S is a subset of A if every element of S is in A (which can be written in implication form as "If $x \in S$, then $x \in A$.") We denote this by $S \subseteq A$.

The next theorem shows that every nonempty set has at least two subsets.

2.2.2 THEOREM

For all sets X, $\emptyset \subseteq X$ and $X \subseteq X$. (*Hint*: Look at the implication given in the definition of subset. Explicitly write out the implications that you are meant to prove. What can you conclude?)

2.2.3 EXERCISE

How many subsets does Ø have?

Notice that the statement "If $x \in S$, then $x \in X$ " is an implication just like those that we studied in the last chapter. Thus to show that $S \subseteq X$, we must take an x for which the hypothesis is true (that is, an x in S) and show that the conclusion is also true for that x. That is, we must show $x \in X$. We do this so often in mathematics that there is a name for the process. It is called an **element argument**. To get started, try your hand at the following (very simple) element argument.

2.2.4 EXERCISE

Prove that if $A \subseteq B$ and $B \subseteq C$, then $A \subseteq C$. (Notice that your goal is to prove that $A \subseteq C$. Therefore, according to the process described above, you begin your argument with "Let $x \in A$." At the end of your argument, you should be able to say: "Then $x \in C$.")

2.2.5 DEFINITION

If B is a subset of X and $B \neq X$, then we say that B is a proper subset of X.

2.2.6 EXERCISE

Give two proper subsets of the set $\{1, 3, 5, 7, 9, 11\}$.

Because a set is completely characterized by its elements, it is reasonable to say that two sets are the same set if they have the same elements. That is, every element of A is in B and every element of B is in A.

2.2.7 **DEFIN**

Suppose that A

A word form as followin marint, a definit waggler waggler

"X "X

mean ex

2.3 Set

The axioms of s any subset of a s unions, intersect

2.3.1 DEFINI

Let U be a set. L

The set $S_U^{\mathcal{C}}$ is call call $S_U^{\mathcal{C}}$ "the com

(For technical always be taken in makes no sense.)

2.3.2 EXERCI

Consider the inte

2.3.3 **EXERCI**

As in Exercise 2.