- 6. $A = \mathbb{R}$. $x \sim y$ if x y is rational. (You may assume here that the negative of a rational number is rational and the sum of two rational numbers is rational.)
- 7. $A = \{\ell : \ell \text{ is a line in the Cartesian plane}\}$. $x \sim y$ if x and y are parallel lines or if x and y are the same line.

4.2 Orderings

In the previous section we mentioned the order \leq on $\mathbb R$ as a familiar example of a relation. Order relations are fundamental to many branches of mathematics.

4.2.1 DEFINITION

A relation \leq on a set A is called a partial ordering if \leq is reflexive, antisymmetric, and transitive. A set together with a partial ordering on it is called a partially ordered set.² When we need to talk about a partially ordered set, we may refer to the pair (A, \leq) or we may equivalently talk about the set A under the relation \leq .

In Section 4.1 we said that we usually use the notation $a \sim b$ to indicate that the pair (a, b) is in a given relation. As the definition indicates, when that relation is a partial ordering, we customarily use $a \leq b$. In this context \geq , <, and > have their usual meanings; for instance, a > b means that $b \leq a$ and $b \neq a$.

Note that we use the symbol ≤ generically to refer to any relation that is reflexive, antisymmetric, and transitive. The underlying set may not be a set of real numbers; the symbol does not, unless specifically indicated, refer to the traditional ordering of the real numbers.

4.2.2 EXAMPLE

Verify that the following are examples of partially ordered sets.

- 1. R under the traditional ordering of the real numbers.
- 2. For any set A, $\mathcal{P}(A)$ under \subseteq .
- 3. Any set A under the ordering: $a \le b$ iff a = b. (We will call this a totally unordered set. Explain why this is a sensible use of language.)

The second and third of these examples are different from the first in a very important way.

4.2.3 DEFINITION

A partially ordered set A with partial order \leq is said to be **totally ordered** if given any two elements a and b in A, either $a \leq b$ or $b \leq a$. In this case, \leq is called a **total ordering**.

² Partially ordered sets are sometimes called posets for short.