
Some elements of elementary set theory
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By Geir Ellingsud

Most of what this document contains is probably well known to most of you, but
still I think it is useful to cast a glance at it the beginning of the course. It treats the
elementary constructions in set theory which will be used through out the course. It
will certainly be of great help in understanding the rest of what we will do. It has
gotten somehow long — so take a look at it, and use it as a reference later in the
course. The paragraphs are marked with red stars (like this (∗∗∗) or this (∗∗) or this
(∗), or they are unmarked) according to there urgency.

For many of concepts that are introduced the Norwegian word is also given (•like
this). It is important to introduce at least the Norwegian students to a Norwegian
terminology, even though the course is given in english.

Specifying sets (∗∗∗)
A set (•en mengde) consists of its elements (•elementer, medlemmer), and we write

a ∈ A to express that a is a member of A. Two sets are equal if and only if they do
have the same elements. If A and B are two sets, we call B a subset of A (•delmengde,
undermengde) in case every element of B is an element of A. In symbols we write
B ⊆ A. If in addition the two sets are different we write B ⊂ A and call B is a proper
subset of A (•en ekte undermengde), or we say that the inclusion is strict (•streng
inklusjon).

A frequently used way of showing two sets A and B to be equal is separately to
show the two inclusions A⊆B and B⊆A. Obviously these two inclusions imply that
the two sets have the same elements. Indeed, if not, one of them — say B — would
have an element not contained in the other — which is A — contradicting the inclusion
A⊆B.

The complement (•komplementet) of a subset B of A is the set consisting of the
elements from A not contained in B. The complement is written Bc. There is a set
without elements called the empty set (•den tomme mengde), and it is denoted by the
symbol ∅. May be this seems a curious definition to make, but it is very convenient.

A set can be specified in several ways; the simplest one is listing the elements, like
in A = { a, b, c }, which is a set with the three letters a, b and c as members.

We often need to define sets in a systematic way, often with a great number of
elements (even infinitely many is common) and often with members depending on

1



Elements of Set Theory MAT2200 — Spring 2011

some parameter. It that case it is convenient to of specify the members of the set in
the following way; which we illustrate with an example: The set of even integers may
be written like

A = { 2k | k ∈ N } = {2, 4, 6, . . . }. (!)

Sometimes we use a condition to single out the elements belonging to a set. The
syntax is like {x | P (x) } where P (x) is a statement involving x. The set consists of the
elements x for which P (x) is true. As an example, the set (!) above could be written

A = {x ∈ N | x even }.

One word of warning, when listing the elements of a set, in one way or another,
repeated elements are only counted once — double membership is not a concept in
this context. Sometimes multiply listed elements can be tricky to spot, because the
repetition might not be explicit. The following example, which also reminds you that
a set very well may consist of subsets of another set, illustrates this:

B = { { a, b, c } | a, b, c ∈ A }.

This set B is not the set of all subsets of A with three elements. Neither the case a = b
nor the case a = b = c is excluded, so the elements of B are the nonempty subset of A
with three elements or less.

When a set is specified by listing the elements, the order does not matter. So we
have

{Katz, Maus } = {Maus, Katz }.

Intersections and unions (∗∗) — De Morgans Laws (∗)
If A1, A2, . . . , An are sets, their intersection (•snittet) — written A1 ∩A2 ∩ · · · ∩An —
is the set of elements common to all the sets A1, . . . , An. In other words

A1 ∩ A2 ∩ · · · ∩ An = { a | a ∈ Ai for all i = 1, 2, . . . , n }.

Their union (•union) — written A1 ∪ A2 ∪ · · · ∪ An — is the set whose elements
are those contained in at least one of the sets A1, A2, . . . , An. Stated with symbols:

A1 ∪ A2 ∪ · · · ∪ An = { a | a ∈ Ai for at least one i, 1 ≤ i ≤ n }.

We shall often be interested in families of sets. A family may be specified by using
indices from a set I — finite or infinite — and in that case it is written as A = {Ai }i∈I .
Or it can be given just as a set of sets, like in the example A = { [a, b] | a, b ∈ R, a < b }.

—  —
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The following notation for the intersection and the union of the sets belonging to a
family will be convenient:

⋂

i∈I

Ai ={ a |a ∈ Ai for all i ∈ I },

⋃

i∈I

Ai ={ a |a ∈ Ai for at least one i ∈ I },

or if the family is given as a set of sets, the notation will be as follows:

⋂

A∈A

A ={ a |a ∈ A for all A ∈ A },

⋃

A∈A

A ={ a |a ∈ A for at least one A ∈ A }.

It is easily verified that intersection is distributive (•distributiv) over union and vice
versa:

Proposition 1 Let Ai with i ∈ I an B be sets. Then we have

B ∩
⋃

i∈I

Ai =
⋃

i∈I

B ∩ Ai,

B ∪
⋂

i∈I

Ai =
⋂

i∈I

B ∪ Ai.

Named after August De Morgan — one of the founders and the first professor of
mathematics at the University College of London — the De Morgans Laws describe
the complement of unions and intersections:

Proposition 2 Let A1, . . . , An be sets, then:

(A1 ∪ A2 ∪ · · · ∪ An)c =Ac
1 ∩ Ac

2 ∩ · · · ∩ Ac
n,

(A1 ∩ A2 ∩ · · · ∩ An)c =Ac
1 ∪ Ac

2 ∪ · · · ∪ Ac
n.

In fact, a not being an element of A1 ∪A2 ∪ · · · ∪An is equivalent to a not being a
member of any of the Ai; hence a is in all the Ac

i — that is a ∈ Ac
1 ∩Ac

2 ∩ · · · ∩Ac
n. In

a similar way, a not being member of A1 ∩ A2 ∩ · · · ∩ An is equivalent to a not being
in at least one of the Ai, hence a ∈ Ac

1 ∪ Ac
2 ∪ · · · ∪ Ac

n. !

—  —
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If we are dealing with a family A of sets, the De Morgans Laws has the following
appearance

(
⋂

A∈A

A)c =
⋃

A∈A

Ac,

(
⋃

A∈A

A)c =
⋂

A∈A

Ac.

Finally in this paragraph, we recall that two sets A and B are said to be disjoint
(•disjunkte) if they do not have any element in common, equivalently, one may require
their intersection to be empty; in symbols A ∩ B = ∅. The sets from a family A =
{Ai }i∈I are said to be mutually disjoint (•parvis disjunkte) if Ai ∩ Aj = ∅ whenever
i )= j.

Maps (∗∗∗)
Recall that a map or mapping or function (•avbildning, funksjon) φ between to sets A
and B is a rule — specified in one way or another — which given an element a in the
set A, returns an element φ(a) in B. We often write

φ : A → B

to indicate that φ is a mapping from A to B. We shall call the set A the source of φ
and B its target. (•No commonly used norwegian words for these concepts). The sets
A and B are important attributes of the mapping — sometimes, when we use the map
primarily to compare them, they are even the main point of interest.

You already know a lot of maps — any function f(x) of a real variable, or for that
matter a complex one, gives an example. Linear maps are also well known from the
courses in linear algebra. We shall give some examples of a slightly different flavor:

Example  Let A = { 1, 2, 3 } and let α : A → A be given as

α(n) =






2 if n = 1

3 if n = 2

1 if n = 1,

There is another notation for maps like this (i.e., whose source and target are the same
finite set) in which α would be written in the following way: 1 +→ 2 +→ 3 +→ 1. An
arrow x +→ y means that x is mapped to y by the map under consideration. The map

—  —
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α is called a permutation (•permutasjon, ombytting) since it — well — permutes the
numbers 1, 2 and 3. It even has a more precise name; it is said to be a cyclic (•syklisk)
permutation — the drawing to the left in the following figure indicates why.

1

2

3

1−1

i

−i

Example  Yet another example of a permutation. This time we let B be the set
of forth roots of unity, i.e., B = {±1,±i }⊆C, and we let β : B → B be given by
β(z) = z3. Then β has the following effect: i +→ i3 = −1 and −i +→ (−i)3 = i, so i
and −i are interchanged by β. Obviously β does not move neither 1 nor −1. Even
if β is a pemutation, it is not a cyclic one. In the other notation β would we written
i +→ −i +→ i, with the convention that lacking elements are not moved by the map.

Can you describe what the map δ : B → B given by δ(z) = z2 does?

Example  Let γ : Z → Z be given as γ(n) = 5n.

Example  Our last example is the determinant. I has as source the set Mn(R) of
square matrices with real entries of some size — say size n — and takes values in R.
It is defined by sending a matrix A to its determinant det A. So we would like to write
it as

det : Mn(R) → R

Composition of maps (∗∗∗)
Given two maps φ : A → B and ψ : B → C there is a composed map (•sammensatt
avbildning) ψ ◦ φ : A → C defined by the rule

ψ ◦ φ(x) = ψ(φ(x)). (♠)

Sometimes we shall drop the ◦ and simply write ψφ for the composed map. Two maps
are called composable (•komponerbare) it they are — well — composable; this requires

—  —
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the source of one to be the target of the other. Be aware that this is not a symmetric
notion — if ψ and φ are composable, there is no reason why φ and ψ should be.

The arrow notation is practical to avoid mixing things up:

A
φ−−−→ B

ψ−−−→ C

This clearly shows that the source of ψ equals the target of φ. Hence ψ◦φ is meaningful,
but φ ◦ ψ is not — unless C = A for some to us yet unknown reason.

Example  The maps β and δ from the example (2) on page 5 are composable (likewise
are δ and φ) and the composition is given by β ◦δ(z) = β(δ(z)) = (z2)3 = z6 = z2. The
last equality holds for elements z ∈ B, since they are all forth roots of unity. Hence
β ◦ δ = δ!

One checks easily that forming the composition of two maps is an associative
(•assosiativ) operation: i.e.,

Proposition 3 Let θ, ψ, φ be three composable maps. Then we have

θ ◦ (ψ ◦ φ)) = (θ ◦ ψ) ◦ φ.

Indeed, for x ∈ A we have:

(θ ◦ (ψ ◦ φ))(x) = θ(ψ ◦ φ(x)) = θ(ψ(φ(x))) = θ ◦ ψ(φ(x)) = ((θ ◦ ψ) ◦ φ)(x)

where each of the equalities follows directly from the definition (♠) above applied to
an appropriate pair of maps.

I follows from the law of associativity that expressions like

φ1 ◦ φ2 ◦ φ3 ◦ · · · ◦ φn (♠♠)

where the φi are composable maps, are meaningful. Only two maps can directly be
composed, and to give meaning to an expression like (♠♠), one has to place parentheses
in an intelligent way. That is, in such a way that every pair of opening and closing
parentheses encloses only two maps, which of course, in their turn might be nested
compositions of other maps. One example is

(φ1 ◦ φ2) ◦ (φ3 ◦ ((φ4 ◦ φ5) ◦ φ6)).

Acceptable nestings can be made in a lot of different ways, however, the associativity
property assures that the resulting maps all will be equal whatever nesting used. Ideally
this needs a proof, buy we shall accept it as a fact — it is not very difficult to prove,
although a good proof is somehow subtle to formulate.

—  —
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Invertible maps (∗∗∗)
For every set A there is an identity map (•en identities avbildning). It has both A as
source and target, is written idA, and it is defined by idA(a) = a for all a ∈ A. Of
course, for any map φ : A → B we have φ ◦ idA = φ and idB ◦ φ = φ.

Given a map φ : A → B. If there is a mapping the other way around, that is a map
ρ : B → A, with the property that

ρ ◦ φ = idA and φ ◦ ρ = idB, (♣)

we shall say that φ is invertible (•invertibel), and call the map ρ the inverse (•den
inverse, den omvendte) of φ. The inverse is usually denoted by φ−1, and it is the only
map satisfying (♣). Indeed, if ρ1 and ρ2 both satisfied (♣), we would have

ρ1 ◦ φ = idA = ρ2 ◦ φ (♣♣)

which on composition with ρ1 from the right, would give

ρ1 ◦ φ ◦ ρ1 = ρ2 ◦ φ ◦ ρ1.

But φ ◦ ρ1 = idB, so finally (♣♣) would imply ρ1 = ρ2. !

Proposition 4 The composition of two composable, invertible maps is invertible, and
if ψ and φ are the two maps, we have the formula

(ψ ◦ φ)−1 = φ−1 ◦ ψ−1.

The easiest way to prove this, is by verifying that φ−1 ◦ ψ−1 satisfies (♣), and we
do that simply by composing φ−1 ◦ ψ−1 with ψ ◦ φ:

(ψ ◦ φ) ◦ (φ−1 ◦ ψ−1) = ψ ◦ (φ ◦ φ−1) ◦ ψ−1 = ψ ◦ (idB) ◦ ψ−1 = ψ ◦ ψ−1 = idA

It is very important also to check the other equality in (♣), that is (φ−1◦ψ−1)◦(ψ◦φ) =
idB. The argument for that being, with the obvious changes, the same as the one we
just gave, and we leave it to the reader. !

Example  (of a minimalist). In fact, as we just said, it is crucial to check both
identities in (♣) to be sure we have an inverse map. To convince your self of this,
take a look at the following minimalists example: Let A = { 1, 2 } and B = { 1 } and
define φ : A → B by — well — there is only one way of doing this, namely by putting

—  —



Elements of Set Theory MAT2200 — Spring 2011

φ(1) = φ(2) = 1. Let ψ : B → A be given by ψ(1) = 1. Then φ ◦ ψ = idB, but
ψ ◦ φ )= idA as it sends both elements of A to 1.

Example  What would be the inverse of the map α in example (1) on page 4?
Remember it was described as

α : 1 +→ 2 +→ 3 +→ 1. (♥)

To get the inverse mapping, we reverse this, i.e., we send 1 +→ 3, 3 +→ 2 and 2 +→ 1; or
written together

1 +→ 3 +→ 2 +→ 1,

which just is (♥) backwards!

Example  The mapping β : B → B (where B = {±1,±i }) in example (2) is its
own inverse! In fact, we compute

β ◦ β(z) = β(β(z)) = (z3)3 = z9 = z(z4)2 = z

since B consists of the forth roots of one.
With a little thought, we could have arrived at this conclusion without computing,

remembering that the effect of β was to interchange i and −i. So interchanging them
once more, we are restoring the order!

One more example
For those who want an example of a more visual nature, we have produced the figure
above, where we have placed a copy of B = [0, 1] inside the rectangle A = { (x, y) |
0 ≤ x ≤ 1, 1 ≤ y ≤ 3 } as B′ = { (x, a) | 0 ≤ x ≤ 1 }. The parameter a is any number
between 1 and 2, and the maps are ψ(x) = (a, x) and φ(x, y) = x. One easily checks
that φ ◦ ψ = idB, but that ψ ◦ φ )= idA.

B

A

B′

φ

ψ

In fact, these two examples illustrate a rather general sit-
uation. Given a map φ : A → B, a map σ : B → A is called a
section or a transversal (•seksjon, tversnitt) to φ if φ◦σ = idB.

Not every map has a section. Indeed, if φ has a section σ,
necessarily φ(A) = B ( because ψ(σ(y)) = y for all y ∈ B) and
this is not true for all maps. On the other hand, the condition
ψ(A) = B is also sufficient for φ to have a section. In fact,
in that case all the fibers φ−1(y) are nonempty, and we may
define σ by letting σ(y) be any element in φ−1(y).

—  —
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The freedom in choosing any element in φ−1(y) as the value for σ(y) tells us that
sections almost never are unique. What would be a condition on a map for it to have
only one section?

Images and inverse images (∗)
We continue to work with our map φ : A → B, and in addition we let C ⊆A and D⊆B
be two subsets. The image (•bildet) φ(C) of C and the inverse image (•det inverse
bildet) φ−1(D) of D are the sets

φ(C) = {φ(a) | a ∈ C } and φ−1(D) = { a ∈ A | φ(a) ∈ D }.

In the case D has only one element, say D = {b}, we usually shall write φ−1(b) for
φ−1({ b }) and call φ−1(b) the fiber (•fiberen) of φ over b. The elements of φ−1(b) are
called the preimages (•no good Norwegian word) of b. The fiber over a point b might
very well be empty. Indeed, this happens if and only if b is not in the image φ(A).

It follows more or less by definition that

φ(φ−1(D))⊆D and C ⊆φ−1(φ(C)). (!)

In either case equality does not hold in general.
A situation where an element b of B is not contained in the image φ(A), would give

an example of a strict inclusion in the first case. Then φ−1(b) = ∅ and φ(φ−1(b)) = ∅ )=
A — at least if A is nonempty. What is true generally is that φ(A) ∩D = φ(φ−1(D)).

A more concrete example comes here

Example  We go back to example (3) on page 5 where we defined a map γ : Z → Z
by n +→ 5n — the “multiplication-by-five-map”. Let D ⊆Z be given as D = {n ∈ Z |
3 < n < 21 }.

What is γ−1(D)?
Well, we need to find all integers in D divisible by 5. That is 5, 10, 15 and 20. Hence
γ(γ−1(D)) = { 5, 10, 15, 20 } and γ−1(D) = { 1, 2, 3, 4 }.

To produce an example of a strict inclusion in the second case, take any map
φ : A → B having an element a with more than one element in the fiber φ−1(φ(a)) —
the minimalists example (6) on page 7 will do.

Proposition 5 Let φ : A → B be a map. For any two subsets A1 and A2 of A we have

φ(A1 ∩ A2) ⊆ φ(A1) ∩ φ(A2) (†)
φ(A1 ∪ A2) = φ(A1) ∪ φ(A2)

In other words, forming images commute with intersections and unions.

—  —
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Proof. It is clear that φ(A1 ∩A2) ⊆ φ(Ai) for i = 1, 2. Since A1 ∩A2 ⊆ Ai this follows
from (!) on page 9; hence φ(A1 ∩ A2) ⊆ φ(A1) ∩ φ(A2).

We attack the other equality. Now Ai⊆A1 ∪A2 for both i = 1 and i = 2, hence we
get φ(Ai)⊆φ(A1 ∪ A2), again by (!) on page 9.

To establish the inclusion φ(A1 ∪ A2)⊆φ(Ai), pick an element b from φ(A1 ∪ A2).
This means that b = φ(a) with a either in A1 or in A2. In the first case b ∈ φ(A1) and
in the second in φ(A2). !

B

A A1

A2

φ

It is worth remarking, that the inclusion in equation (†) in proposi-
tion 5 very well might be strict. For example, the intersection A1∩A2

could be empty but φ(A1) = φ(A2) = B. An example of this would
be the minimalists example (6) on page 7 above: φ : { 1, 2 } →{ 1 }
given in the only possible way φ(1) = φ(2) = 1. Then the two
subsets A1 = { 1 } and A2 = { 2 } of the source { 1, 2 } will do.

A somehow more geometric example is illustrated in the small
figure to the left. There A is the square

A = { (x, y) | 0 ≤ x ≤ 1, 1 ≤ y ≤ 3 }

and φ the projection onto the x-axis. The two sets Ai are defined as Ai = { (x, ai) |
0 ≤ x ≤ 2 } where a1 and a2 any two numbers, we only require they be different and
both lay between 1 and 3.

A1A2

ba

A

B

φ

In the second drawing, to the right, the images of the two trian-
gles A1 and A2 (red and blue in the figure) intersect in the interval
[a, b] but the image of the intersection (violet) is certainly a smaller
interval.

A final remark about images, is that the statement in proposition
5 is valid for any number of subsets, in fact it is true for any family
A of subsets of A. We have the following proposition whose proof
is similar — in fact verbatim with the obvious modifications — to
the one we just gave

Proposition 6 Assume that A is a family of subsets of A and that φ : A → B is a
map. Then

φ(
⋂

A∈A

A)⊆
⋂

A∈A

φ(A) and φ(
⋃

A∈A

A) =
⋃

A∈A

φ(A),

so the formation of images of subsets under a map, commutes with arbitrary unions
and intersections.

—  —
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We now move from studying images of intersections and unions, to studying inverse
images. The following result tells us that the formation of inverse images behaves very
well with respect to intersections and unions. We state it first for two subsets, but it
is valid for any family, the general result being stated at the end of the paragraph.

Proposition 7 Let φ : A → B be a map. If B1 and B2 are two subsets of B we have

φ−1(B1 ∩B2) = φ−1(B1) ∩ φ−1(B2)

φ−1(B1 ∪B2) = φ−1(B1) ∪ φ−1(B2).

I other words, taking inverse images commute with intersections and unions.

Proof. By (!) on page 9 we have

φ(φ−1(B1 ∩B2))⊆B1 ∩B2⊆Bi

for i = 1, 2, and therefore

φ−1(B1 ∩B2)⊆φ−1(B1) ∩ φ−1(B2).

On the other hand, from proposition 5 we get

φ(φ−1(B1) ∩ φ−1(B2))⊆φ(φ−1(B1)) ∩ φ(φ−1(B2))⊆B1 ∩B2

so
φ−1(B1) ∩ φ−1(B2)⊆φ−1(B1 ∩B2),

and we are done.
For the other equality in the proposition we refer to proposition 7 which gives us

φ(φ−1(B1) ∪ φ−1(B2)) = φ(φ−1(B1)) ∪ φ(φ−1(B2)))⊆B1 ∪B2

by (!) on page 9, so
φ−1(B1) ∪ φ−1(B2)⊆φ−1(B1 ∪B2).

On the other hand
Bi⊆B1 ∪B2

for i = 1, 2, so again by (!) on page 9

φ−1(B1) ∪ φ−1(B2)⊆φ−1(B1 ∪B2)

and we are through. !

As promised, here comes the general statement. We shall not prove it, but the
interested reader should try. The proof goes along the same lines as the proof of
proposition 7 above.

—  —
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Proposition 8 Let B be a family of subsets of a set B and let φ : A → B be a map.
Then

φ−1(
⋂

B∈B

B) =
⋂

B∈B

φ−1(B)

φ−1(
⋃

B∈B

B) =
⋃

B∈B

φ−1(B)

In other words, the formation of inverse images commutes with arbitrary unions and
intersections.

Injective and surjective and all that (∗∗∗)
We have now come to the two important notions of injective (•injektiv) and surjec-
tive(•surjektiv) maps. In what follows we keep the notation with the map φ : A → B.

• The map φ is injective if for any b ∈ B there is at most one a ∈ A such that
φ(a) = b.

• The map is surjective if for any b ∈ B there is at least one a ∈ A such that
φ(a) = b.

Another way of phrasing the definition of injectivity, is to say that the fibers φ−1(b)
are either empty or have just one element. Still another variant is the following: φ is
injective if and only if whenever a1 )= a2 then φ(a1) )= φ(a2), so an injective map sends
different points to different points. The term one-to-one map (•en-en-tydig avbildning)
is a frequently used synonym for an injective map.

Example  The minimalists map φ : { 1, 2 } → { 1 } is surjective, but not injective.
The map δ : B = {±1,±i } → B with δ(z) = z2 is neither injective nor surjective, as
(±1)2 = 1 and (±i)2 = −1. However β : B → B given by z +→ z3 is both injective and
surjective. It just interchanges i and −i.

Example  The “multiplication-by-five-map” γ : Z → Z in example (3) on page 5
and given by γ(n) = 5n is injective but not surjective.

Surjectivity of φ means that φ(A) = B (check that!) or that the fibers of φ are all
nonempty (and that!). The term onto (•p̊a) is also in use.

A map which is both injective and surjective is called bijective (•bijektiv). This is
equivalent to the map being invertible, which is an observation so fundamental, that it
deserves to be formulates as a proposition:

—  —
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Proposition 9 A map φ : A → B is invertible if and only if it is both injective and
surjective.

Proof. Assume that φ is invertible and let a1 and a2 be two members of A satisfying
φ(a1) = φ(a2). By applying φ−1 on both sides of this equation one deduces

a1 = idA(a1) = φ−1(φ(a1)) = φ−1(φ(a2)) = idA(a2) = a2,

and hence φ is injective. To see that φ is surjective, pick an element b ∈ B and let
a = φ−1(b). Then φ(a) = φ(φ−1(b)) = idB(b) = b.

To verify the implication the other way, assume ψ to be both injective and surjective.
We want to define φ−1 : B → A, so let b ∈ B be any element. We claim that for every
b there exactly one ab ∈ A being a solution of

φ(ab) = b. (")

The existence of a solution follows from the fact that φ is surjective, and the uniqueness
from the injectivity of φ. This solves our problem, since if we put φ−1(b) = ab, we get
a map φ−1 : B → A, and it is easy to verify that φ−1(φ(a)) = a and φ(φ−1(b)) = b. !

Cartesian product (∗∗)
The cartesian product is named after the french philosopher and mathematician René
Descartes, who was one of the first to use coordinates (x, y) to describe points in the
plane. He thus identified the plane with R2. This is short hand for the product R×R,
and therefore the name.

The cartesian product or simply the product (•det kartesiske produktet, produktet)
of two arbitrary sets A and B is the set of all pairs (a, b) with a ∈ A and b ∈ B, or in
symbols

A×B = { (a, b) | a ∈ A, b ∈ B }.
There are two obvious maps pA : A×B → A and pB : A×B → B given by pA(a, b) = a
and pB(a, b) = b respectively. They are called the projection (•projeksjonen) onto A
resp. B.

More generally if A1, . . . , An are sets, we define their (cartesian) product as

A1 × A2 × . . .× An = { (a1, . . . , an) | ai ∈ Ai for i = 1, 2, . . . , n }

There are obvious projection maps pAi given by pAi(a1, . . . , an) = ai.
We sometimes write

∏n
i=1 Ai for the product A1 × A2 × . . .× An.
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Finite sets (∗∗)
At least in the first part of the course when we shall work with finite groups, our
mappings will mostly be between finite sets. In this paragraph we shall point out a few
properties of such maps which later will make a few of our arguments simpler — or
even possible. At several occasions in the development of the theory of finite groups,
counting arguments play a crucial role. It is therefore appropriate to review a few
features of the combinatorics of finite sets.

The number of elements in a finite set X is in the context of group theory most
often denoted by |X|, although the notation #X is in use. We shall adopt the notation
|X|. It is also called the cardinality (•kardinaliteten) of X.

Assume that A is a finite set and let In = { 1, 2, . . . , n } be the set of integers
between 1 and n. Let further a mapping φ : In → A be given. We may think of φ as a
count of the elements of A, or as a listing of them: φ(1) being the first element of A,
φ(2) the second and so on.

It might happen that not every element of a is listed and so that some elements do
not figure on the list — this is the case if φ is not surjective.

It might also happen that some element is counted several times and therefore
occupies several places in the list. This happens if φ is not injective .

We want to give a “heil norskt” (•sorry, no english equivalent) and define a set A
by A = {Solveig, Per, Aase }. Furthermore let a map φ : I5 → A be given by

φ(1) = φ(4) = Soveig, φ(2) = Per and φ(3) = φ(5) = Aase.

Then the corresponding listing of our three friends will be:

Solveig, Per, Aase, Solveig, Aase.

If however φ is bijective, the count is correct and every element is listed exactly
once. In that case we obviously have |A| = n. We formalize this as a proposition:

Proposition 10 Assume that A is a set. Then there is a bijection from In to A if and
only if there are exactly n elements in A, i.e., if and only if |A| = n. More generally:
Two sets have the same number of elements if and only if there is a bijection between
them.

The second statement follows, since if there are bijections from In to both sets, say φ
and ψ, one obtains a bijective map between the two sets by composing one of them
with the inverse of the other, e.g., φ ◦ ψ−1.
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If φ : In → A is injective, no element is listed twice, so clearly |A| ≥ n. The
inequality is strict if and only if some element in A is not among the listed ones, which
means that there are members of A not in the image of φ. Or rephrased, ψ is not
surjective. Replacing In with any set B having n elements, we get:

Proposition 11 Let φ : B → A be an injective map between finite sets. Then |B| ≤ |A|
with equality if and only if φ is bijective.

In a similar manner if ψ is surjective, every element is counted at least once, and
this implies that |A| ≤ n. The inequality is strict if and only if some element is counted
at least twice, i.e., if and only if φ is not injective. Hence

Proposition 12 Let φ : A → B be a surjective map between finite sets. Then |B| ≤ |A|
with equality if and only if φ is bijective.

These two propositions are very useful when it comes to proving that a mapping
between finite sets is bijective knowing the two sets are of the same cardinality. It
suffices to check either injectivity or surjectivity of the mapping. This is comparable
to the situation in linear algebra when one is to show that a linear map between two
vector spaces of the same dimension is an isomorphism — it suffices to prove the map
to be injective or surjective.

Proposition 13 Let A and B be two finite sets. Then |A×B| = |A||B|. More
generally, if A is a finite family of finite sets, then

|
∏

A∈A

A| =
∏

A∈A

|A|

or expressed in words, the cardinality of a finite product of finite sets is the product of
the cardinalities of the factors.

Proof. By induction, the general case follows from the case of two sets. Now the
elements in A× B are pairs (a, b) where a is freely chosen from A and b freely choose
from B. For each a there are |B| different choices for b, and as there are |A| different
ways of choosing a, we altogether get |B||A| different pairs. !

The following is a slight generalization of this proposition which later will turn out
to be useful at a few occasions— the proof is left as an (useful) exercise to the reader
(so give it a try!):
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Proposition 14 Let A and B be finite sets, and let φ : A → B be a mapping. Assume
that the all b ∈ B, the fibers φ−1(b) have the same number of elements. Then for any
y0 ∈ B we have

|A| = |B| · |φ−1(y0)|.

Proposition 15 Let A be a finite set having n elements. Then the number of different
bijections from In to A equals n!.

Proof. If we are to define a bijection ψ : In → A, we may choose ψ(1) freely among the
members of A. This gives us n possibilities. To be sure of ψ being injective, we must
avoid ψ(1) when choosing ψ(2), a part from that, it may be chosen freely. Hence there
are n− 1 possibilities. Similarly there are n− 2 possibilities for choosing ψ(3), and in
general we may choose ψ(i) freely among n− i + 1 possibilities. Altogether, this gives

n(n− 1)(n− 2) · · · · · (n− i) · · · · · 2 · 1 = n!

possibilities for ψ. !

WE shall finish this paragraph with a well known result, here formulated as a
statement about the number of different subsets of a finite set with a given number
of elements. It may be interpreted as the number of ways to chose a given number of
elements from a given set, which is obviously the same.

We remind you that the binomial coefficient
(

n
k

)
is given as

(
n

k

)
=

n!

(n− k)!k!
=

n · (n− 1) · · · · · (n− k + 1)

k!
.

Proposition 16 Given a set A with |A| = n. Then the number of subsets of A with
k elements is equal to

(
n
k

)
.

Proof. Let B⊆A denote a subset of cardinality k. The first element in B may be
chosen i n different way. For the next one, which must be different from the first, we
have n − 1 possibilities, for the one after there are n − 2 possibilities, etc. This gives
n · (n− 1) · · · · · (n− k +1) possibilities altogether. The same element but in a different
order give the same subset, so we have to divide that number by the number of ways
to order k elements. But that we saw, is k!. !
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Partitions (∗∗∗)
There are two concepts that will be used extensively in this course, namely the concepts
of partitions and equivalence relations. So it will be of great help to grasp these concepts
properly. Teachers of mathematics know by experience that the students often find
them difficult.

We start by defining a partition (•partisjon, oppdeling) of a set A. It is nothing
but — well, a partition! That is a family of subsets of A — which we shall denote by
P and whose elements we shall call the parts or classes (•deler, klasser) — with the
two properties formulated in the following definition

Definition 1 A partition P of a set A, is a family of subsets such that

(i) The sets in P covers A; that is
⋃

P∈P

P = A.

(ii) The parts of P are mutually disjoint; that is, if P, P ′ ∈ P and P )= P ′, then

P ∩ P ′ = ∅

Example  We can divide the integers into the two classes consisting of the even
and odd integers respectively. Let P0 = { 2k | k ∈ Z } and P1 = { 2k + 1 | k ∈ Z }.
They are clearly disjoint — an integer cannot at the same time be both even and odd
— and they cover Z since any integer is either odd or even. So P = {P0, P1 } is a
partition of Z.

Let us go a step further. The even integers are those divisible by two, and the odd
ones those that are not. We can do similar things with three in stead of two, and divide
the integers into those divisible by three and those that are not. This certainly gives a
partition of Z, but we want to divide Z further.

If a is an integer not divisible by 3, there are two cases. Either a behaves like
1, 4, 7, 10, . . . (or like −2,−5,−8, . . . for that matter), in which case a = 3q + 1 for
q ∈ Z. The set of those numbers will be denoted by P1. In the other case, a behaves
like 2, 5, 8, 11, . . . (or like −1,−4,−7, . . . ) and a = 3q+2. Those integers form a subset
we shall call P2.

In this way we have constructed a partition of Z into three parts, P = {P0, P1, P2 },
where P0 denotes the class of integers divisible by 3. In figure 1 above, the elements of
P0 are indicated by a red circle those in P1 by a yellow one and those in P2 by an
orange one
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Z :
−4 −1 2 5 8−3 0 3 6 9−5 −2 1 4 7

Figure 1: The partition of the integers Z in three parts after their rest when divided by
3.

Naming the classes (∗∗)
The names P0 and P1 are of course no good names for the sets of even and odd numbers,
the only reason they were chosen was to illustrate the definition. Better names would
be even and odd, and even better ones would be one of the at least two frequently used
conventions for naming parts of a partition, which we will now describe. We start with
a rather obvious lemma:

Lemma 1 Suppose that A is a set with a partition P. Then every element in A is
contained in exactly one class P from P.

Proof. Let a ∈ A. That a is contained in at most one part follows because the parts
are mutually disjoint — i.e., P ∩ P ′ = ∅ if P )= P ′ — and since the members of P
covers A — i.e.,

⋃
P∈P P = A — the element a lies in at least one part. !

Now, for any element a ∈ A, we let [a] ∈ P denote the unique part to which a
belongs. Then obviously [a] = [a′] if and only if the two elements a and a′ belong to
the same part. Every part in P is of the form [a], hence have

P = { [a] | a ∈ A }

Be warned, in this description of the set P there are a lot repetitions! In fact a
part P is repeated as many times as it has elements. We shall call a a representative
(•representant) for the part where it belongs.

In our first example of even and odd integers, the class of even integers equals [a]
for any even integer a = 2k; the far most commonly used is of course [0], but you may
very well use [2] or [−2] or [12] or [98765432] or . . . .

Similarly, the other class — the one where the odd numbers belong — may be
written [2k + 1] for any odd integer 2k + 1; the most common being [1]. We thus have

P = { [a] | a ∈ Z } = { [1], [0] }

In the first description, there are a lot of repetitions, in fact infinitely many (e.g., the
class of even numbers is repeated once for each even number), but in the second there
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are non. We have chosen exactly one representative from each class. Such a choice of
elements is called a set of representatives (•et sett av representanter) for the partition.

In our second example — where we classified the integers according to their rest
after being divided by three — a set of representatives would be { 0, 1, 2 }. This is
by far the most common one, although {−1, 0, 1 } is also quite popular. Any choice
would do, like {−31,−272, 357 }, but would be a utterly stupid choice unless there is a
particular reason behind. The best is to keep the representatives as simple as possible.

Naming some partitions (∗)
The name P of these partitions we so far has studied, is as bad as P0, P2 and P2 were
for the parts, and it was only chosen for the same reason, to illustrate definition 17.
Again there are several conventions, but Zp or Z/pZ are the most frequent ones, where
p = 2 in our first example and p = 3 in the second. To sum up:

Z3 = { [ 0 ], [1], [2] } = { [0], [1], [−1] }

and
Z2 = { [0], [1] }.

We promised two standard notations for the classes of a partition. The other one
is similar to the one we just described, it works in exactly the same manner, the only
difference being notational. The part containing a is denoted by ā, so if you want,
[a] = ā. Both ways are convenient and will used in the course.

Example  Let us give a last concrete example, which is very well known from
every day life. We shall let A be the set of dates, and not to complicate the matters
unnecessarily 1 we shall start at 1. January 1900 and end at 31. December 2010. So

A = { 1Jan1900, 2Jan1900, 3Jan1900, . . . , 31Dec2020 }.

Now, every date is also a weekday, hence we may divide A into seven parts, the mon-
days, the tuesdays etc. In that way we get a partition of all dates, labeled by the
weekdays.

With a few changes, we can connect this example with two first. First let us extend
the time line to far beyond doomsday and backwards to far beyond big bang. Secondly
we assume the calendar we use to day, has been in use at all times ( which is far from

1Many different calenders have in use. The one we use today in our part of the world, the Julian
calender was introduced in catholic countries in xxxx, in England and Sweden in . . . and i Sovjet Union
in . . .
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the truth). Finally we choose a first date, that is a date from which we count all other
date. The dates before the first date have a negative sign and the ones after a positive.
In this way, our dates are numbered, and the calendar ( i.e., the set of dates) has
become identified with Z.

Now the first date was of course a sunday — and as the week has seven days, every
sunday has a number of the form 7n+1. Similarly, the day zero, that is the date before
the first date, was a saturday. Hence every saturday has a number divisible by 7. And
so on, mondays are of the form 7n + 2, tuesdays of the form 7n + 3, etc.

We end up with the partition

Z7 = { [0], [1], [2], [3], [4], [5], [6] }

of the integers.
Other “temporal” examples can be made with p = 24, p = 365, etc. Every time

one has a cyclic phenomena, a similar reasoning may be applied.
All this to show you that the partitions Zp are not too farfetched, as least some of

them are common in every day life.

Mappings again (∗)
A general way of generating partitions is via maps. The fibers of a map φ : A → B

are all subsets of the source A, and they are mutually disjoint. Indeed, if a ∈ φ−1(b)∩
φ−1(b′), then we have

b = φ(a) and b′ = φ(a)

so b = b′ and hence φ−1(b) = φ−1(b′). Clearly the fibers cover A, since a ∈ φ−1(φ(a)).
We have proved:

Proposition 17 Let φ : A → B be a map. Then the set of fibers of φ forms a partition
of A, i.e.,

Pφ = {φ−1(b) | b ∈ B }

is a partition of A.

This example is not only general, it is in fact universal ! Meaning that any partition
arises in this way — as the set of fibers of a map.

Indeed, let A be a set and P a partition of A. We just introduced the notation [a]
for the class to which the element a belongs. This is however much more than just a
naming of that class, it defines a mapping πP : A +→ P by sending a to [a]!
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Now we checked the (obvious2) fact that [a] = [a′] if and only if they belong to the
same class which means that the fiber of πP over a class P equals P . Indeed, chose a
representative a for P , then [a] = P , and we have

π−1
P ([a]) = { a′ | [a′] = [a] } = { a′ | a′ ∈ [a] } = [a].

!

We sum up:

Proposition 18 Let A be a set and P a partition of A. Then the mapping A +→ P
defined by a +→ [a] has as fibers the classes in P, the fiber over P ∈ P being P .

More counting (∗)
We shall need a few counting results involving partitions. They are rather obvious and
easy to prove, but useful at occasions. The basic one is this:

Proposition 19 Let A be a finite set, and let P be a partition of A. Then every part
in P is (of course) finite, and we have

|A| =
∑

P∈P

|P |

Proof. As any element of A is in exactly one class, this is obvious. !

Proposition 20 Let φ : A → B be a map between finite sets. Then

|A| =
∑

b∈B

|φ−1(b)|.

Proof. We saw that the set of fibers {φ−1(b) | b ∈ B } forms a partition of A. The
proposition follows then from proposition 21 which we just proved. !

2We insist that this is obvious. The equality says that a and a′ are in the same class if and only if
they are in the same class! This may look stupid, but obvious things like that are often important —
not deep, but important — in mathematics. There is even a name for them; they are called tautologies.
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Equivalence relations (∗∗)
The other important concept we mentioned in the pargraph about partitions, is the
concept of an equivalence relation. As we shall see, the two concepts — partitions and
equivalence relations — are tightly connected.

A relation (•relasjon) on a set, or a binary relation (•binær relasjon) to be precise,
is a subset R⊆A × A; binary meaning that we are comparing two an two elements
from A. We say that x is related to y, if (x, y) ∈ R, and we write x ∼R y. To simplify
the notation, we often suppress the reference to R if there is a marginal danger of
misunderstanding, and just write x ∼ y.

A relation is called an equivalence relation (•ekvivalensrelasjon) if the following
conditions are satisfied for any elements x, y and z ∈ A

(i) Reflexivity: (•Refleksivitet) x ∼ x.

(ii) Symmetry: (•Symmetri) x, y ∈ A x ∼ y if and only if y ∼ x.

(iii) Transitivity: (•Transitivitet) If x ∼ y and y ∼ z then x ∼ z.

Equality is a basic example of an equivalence relation, and the three conditions are
modelled on well known properties of equality.

Equivalence relation are quite special realtions, and it is important to understand
that there are many, many other relations. There is one well known just at hand,
namelig “less than ”, i.e., the underlying set is the reals, and x is related to y if x > y.
This relation is far from being symmetric, and it is not even reflexive (since we chose
to use a strict inequality), although it is transitive.

Given an equivalence relation, we can partition our set into so called equivalence
classes. For any a ∈ A we define3

[a] = { a′ ∈ A | a′ ∼ a},

and called it the equivalence class (•ekvivalensklasse) where a belongs. The symmetry
condition (ii) above states that a′ ∼ a if and only if a ∼ a′, which translated into the
language of equivalence classes means that a′ ∈ [a] if and only if a ∈ [a′]. So we have

[a] = { a′ ∈ A | a ∼ a′}.

From the reflexivity condition (i) above it follows that a ∈ [a].
The fundamental (in this context) observation, is that

3This notation is very close to the one we used on page 18 when we spoke about partitions. That
is no coincidence, and the reason will become clear in a while.
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Lemma 2 If a′ ∈ [a], then [a] = [a′].

Proof. First of all, since a′ ∈ [a] we have a ∼ a′. If a′′ ∈ [a] is another element, the
definition of [a] gives a′′ ∼ a and by transitivity we get a′′ ∼ a′. Thus [a]⊆ [a′]. Then
a ∈ [a′], and by a symmetric argument — which means repeting the argument with
the roles of a and a′ interchanged — we get [a′]⊆ [a]. !

We want to emphasize that the result in lemma 2 of course is special to equivalence
relations. It is not true for most other relations, and it is certainly false for the relation
x > y on the reals (be sure you understand that).

Proposition 21 The set of equivalence classes is a partition of A

Proof. We have have to prove two things; that the equivalence classes cover A, and
that they are mutually disjoint. The first follows by the remark above that reflexivity
implies a ∈ [a].

The second follows from the lemma. Indeed, we have to show that two equivalence
classes are either disjoint or equal, so assume b ∈ [a]∩[a′]. Then by applying the lemma
twice — first to a and b and then to a′ and b — we get [a] = [b] = [a′]. !

We have just seen that the equivalence classes of an equivalence relation forms a par-
tition. This also works the other way around. Given a partition P of a set A, there
is a natural way to define an equivalence relation on A with the property that the
equivalence classes are exactly the classes of P.

Lingering a little over that last sentence — it makes it clear what we have to do:
We define a ∼P b to mean that a and b are in the same class from P. The work to be
done, is to check that this indeed is an equivalence relation — that is, it satisfies the
three axioms above.

Proposition 22 With the notation above, a ∼P b is an equivalence relation.

Proof. We must check the three conditions above.
Because a ∈ [a]4 our relation a ∼P b is reflexive. The statement “a and b belong to the
same class frm P” is symmetric in a and b. This takes care of the symmetry condition.

The last challenge is the transitivity: So let a ∼P b and b ∼P c. Then a and b
belong to a common class, say P , and b and c to a common class P ′. Now b belongs
to both P and P ′, so P ∩P ′ )= ∅. Since P is a partition, two classes from P are either
disjoint or equal, hence P = P ′. This means that a and c belong to the same class.
Hence a ∼P c. !

4This now denotes the part of P where a belongs
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Congruences (∗)
One of the earliest equivalence relations ( not being equality), to appear in mathemat-
ics, is the relation which somehow loosely can be described as “being congruent to
mod n”. It can be traced back to the antique times, both in Greece, Babylon and India
the old mathematicians used it in one way or other. And it is omnipresent in modern
mathematics.

We certainly shall come back to it later in the course, with much more complete
treatment — this is just a teaser!

The underlying set of the relation is the set Z of integers, and we chose a number
n which is called the modulus (• modulus)— for example n = 2, n = 3 or n = 7 are all
great choices, but any number will do equally well.

We say that to integers x and y are congruent modulo n (• kongruente modulo n),
if their difference is divisible by n — i.e., if x− y = qn for an integer q ∈ Z. We write

x ≡ y mod n. (♠)

Here comes a few examples:

Example  Two even numbers are congruent mod 2 — likewise are two odd.
A number x is even if and only if x ≡ 0 mod 2.
All saturdays are congruent mod 7!! And, in fact, an integral number x is divisible by
7 if and only if x ≡ 0 mod 7.
Any two numbers of the form 24q + 1 with q ∈ Z are congruent mod 24, and they all
satisfy5

24q + 1 ≡ 1 mod 24

It remains to be proven that we in fact have an equivalence relation:

Proposition 23 Let n ∈ Z. The relation x ≡ y mod n is an equivalence relation.

Proof. Obviously x−x = 0·n is divisible by n. So by (♠) x ≡ x mod n, and reflexivity
holds.

As obvious, if x − y is divisible by n so is y − x; indeed, if x − y = qn with q an
integer then y − x = (−q)n and of course −q ∈ Z as q is. Hence by (♠) x ≡ y mod n
implies y ≡ x mod n, and symmetry holds.

Finally, suppose that

x ≡ y ≡ n and y ≡ z mod n.

5This is close to a tautology.
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By definition (♠) that means that

x− y = qn and y − z = q′n

where both q and q′ are integers. By adding the two equalities we obtain

x− z = (x− y) + (y − z) = qn + q′n = (q + q′)n,

and q + q′ ∈ Z. That is x ≡ z mod n, and transitivity is established. !

The equivalence classes corresponding to the relation x ≡ y mod n are called the
congruences classes mod n (•restklasser modulo n eller mod n).

The final examples
Let us take a closer look on few cases, and we start with n = 2. There are two

classes, one with even n’s odd and one for odd. So we are back to our earlier partition
from page 17, which babtized Z2.

In a similar way, we looked at Z3 and Z7, they both fit into the same pattern. In
school we learned to divide one integer by another and we learned that by dividing x
by n we get a quotient q and a rest r satisfying

x = qn + r

where q and r are integers, and the rest r lies between 0 and n — 0 allowed, not n.
For example, if n = 3, any integral number x can be written 3q + r with r = 0, 1 or

2. So the congruence classes are [0], [1] and [2], which we recognize from the examples
on page 17.

January 13, 2011
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