Solution to exam in MAT2400, Spring 2013

Problem 1: To prove pointwise convergence, we show that $\lim _{n \rightarrow \infty} f_{n}(x)=$ $\lim _{n \rightarrow \infty} n x e^{-n x^{2}}=0$ for all $x \in[0,1]$. For $x=0$, this is obvious as $f_{n}(0)=0$ for all n, and for $x \neq 0$, we use L'Hôpitals rule (remember to differentiate with respect to n and not x):

$$
\lim _{n \rightarrow \infty} n x e^{-n x^{2}}=\lim _{n \rightarrow \infty} \frac{n x}{e^{n x^{2}}} \stackrel{L^{\prime} H}{=} \lim _{n \rightarrow \infty} \frac{x}{x^{2} e^{n x^{2}}}=0
$$

To check uniform convergence, we find the maximal distance between f_{n} and 0 for each n. Differentiating f_{n}, we get

$$
f_{n}^{\prime}(x)=n e^{-n x^{2}}+n x e^{-n x^{2}}(-2 n x)=n e^{-n x^{2}}\left(1-2 n x^{2}\right)
$$

which shows that the maximal distance between f_{n} and 0 is achieved at $x=\frac{1}{\sqrt{2 n}} \in[0,1]$. Since

$$
f_{n}\left(\frac{1}{\sqrt{2 n}}\right)=n \frac{1}{\sqrt{2 n}} e^{-n \cdot \frac{1}{2 n}}=\sqrt{\frac{n}{2}} e^{-\frac{1}{2}} \rightarrow \infty
$$

the convergence is not uniform.
Problem 2: We must show that for any $\epsilon>0$, there is an $N \in \mathbb{N}$ such that when $n \geq N,\left|(f+g)(x)-\left(f_{n}+g_{n}\right)(x)\right|<\epsilon$ for all $x \in X$. Since the original sequences $\left\{f_{n}\right\}$ and $\left\{g_{n}\right\}$ converges uniformly to f and g, respectively, there are numbers $N_{1}, N_{2} \in \mathbb{N}$ such that $\left|f(x)-f_{n}(x)\right|<\frac{\epsilon}{2}$ for all $x \in X$ whenever $n \geq N_{1}$ and $\left|g(x)-g_{n}(x)\right|<\frac{\epsilon}{2}$ for all $x \in X$ whenever $n \geq N_{2}$. If we define $N=\max \left\{N_{1}, N_{2}\right\}$, the triangle inequality tells us that

$$
\left|(f+g)(x)-\left(f_{n}+g_{n}\right)(x)\right| \leq\left|f(x)-f_{n}(x)\right|+\left|g(x)-g_{n}(x)\right|<\frac{\epsilon}{2}+\frac{\epsilon}{2}=\epsilon
$$

for all $x \in X$ and all $n \geq N$. Hence $\left\{f_{n}+g_{n}\right\}$ converges uniformly to $f+g$.
Problem 3: a) Assume first that f is nonnegative. Then there is an increasing sequence $\left\{g_{n}\right\}$ of nonnegative, simple functions converging pointwise to f. Since $\int f d \mu=\lim _{n \rightarrow \infty} \int g_{n} d \mu$ and $f \geq g_{n}$, we get $\left\|f-g_{n}\right\|_{1}=\int\left|f-g_{n}\right| d \mu=$ $\int\left(f-g_{n}\right) d \mu=\int f d \mu-\int g_{n} d \mu \rightarrow 0$ (one may also use Lebesgue's Dominated Convergence Theorem with f as dominating function).

For a general integrable function f, we split it as a difference $f=f_{+}-f_{-}$ between two nonnegative, integrable functions, and approximate these by sequences $\left\{g_{n}^{+}\right\}$and $\left\{g_{n}^{-}\right\}$as above. Then

$$
\left\|f-\left(g_{n}^{+}-g_{n}^{-}\right)\right\|_{1} \leq\left\|f_{+}-g_{n}^{+}\right\|_{1}+\left\|f_{-}-g_{n}^{-}\right\|_{1} \rightarrow 0
$$

Since $g_{n}^{+}-g_{n}^{-}$is a simple function (it takes only finitely many values), this proves the statement.
b) Let $B=\left\{x \in \mathbb{R} \mid h(x) \neq \mathbf{1}_{A}(x)\right\}$. Then

$$
\left\|h(x)-\mathbf{1}_{A}(x)\right\|_{1}=\int\left|h-\mathbf{1}_{A}\right| d \mu \leq \int \mathbf{1}_{B} d \mu=\mu(B)<\epsilon
$$

c) Assume that $\epsilon>0$, and let $g=\sum_{i=1}^{n} a_{i} \mathbf{1}_{A_{i}}$ be a simple function in $L^{1}(\mu)$. Let M be a number larger than all $\left|a_{i}\right|, i=1,2, \ldots, n$, and for each i choose a continuous function $h_{i}: \mathbb{R} \rightarrow[0,1]$ such that $h_{i}=\mathbf{1}_{A_{i}}$ except on a set of measure less that $\frac{\epsilon}{M n}$. Note that by b), $\left\|h_{i}-\mathbf{1}_{A_{i}}\right\|_{1}<\frac{\epsilon}{M n}$. The function $h=\sum_{i=1}^{n} a_{i} h_{i}$ is continuous and

$$
\|h-g\|_{1}=\left\|\sum_{i=1}^{n} a_{i}\left(h_{i}-\mathbf{1}_{A_{i}}\right)\right\|_{1} \leq \sum_{i=1}^{n}\left|a_{i}\right|\left\|h_{i}-\mathbf{1}_{A_{i}}\right\|_{1}<n \cdot M \cdot \frac{\epsilon}{M n}=\epsilon
$$

d) If $f \in L^{1}(\mu)$, we know that there exists a sequence $\left\{g_{n}\right\}$ of simple functions converging to f in $L^{1}(\mu)$-norm. For each n, we know that there is continuous function h_{n} such that $\left\|g_{n}-h_{n}\right\|_{1}<\frac{1}{n}$. But then

$$
\left\|f-h_{n}\right\|_{1} \leq\left\|f-g_{n}\right\|_{1}+\left\|g_{n}-h_{n}\right\|_{1} \rightarrow 0
$$

Problem 4: a) We have

$$
\begin{gathered}
0 \leq \lim _{n \rightarrow \infty}\left|\left\langle\mathbf{u}_{n}, \mathbf{v}_{n}\right\rangle-\langle\mathbf{u}, \mathbf{v}\rangle\right|=\lim _{n \rightarrow \infty}\left|\left\langle\mathbf{u}_{n}, \mathbf{v}_{n}\right\rangle-\left\langle\mathbf{u}, \mathbf{v}_{n}\right\rangle+\left\langle\mathbf{u}, \mathbf{v}_{n}\right\rangle-\langle\mathbf{u}, \mathbf{v}\rangle\right| \leq \\
\lim _{n \rightarrow \infty}\left|\left\langle\mathbf{u}_{n}, \mathbf{v}_{n}\right\rangle-\left\langle\mathbf{u}, \mathbf{v}_{n}\right\rangle\right|+\lim _{n \rightarrow \infty}\left|\left\langle\mathbf{u}, \mathbf{v}_{n}\right\rangle-\langle\mathbf{u}, \mathbf{v}\rangle\right|= \\
=\lim _{n \rightarrow \infty}\left|\left\langle\mathbf{u}_{n}-\mathbf{u}, \mathbf{v}_{n}\right\rangle\right|+\lim _{n \rightarrow \infty}\left|\left\langle\mathbf{u}, \mathbf{v}_{n}-\mathbf{v}\right\rangle\right| \leq \\
\leq \lim _{n \rightarrow \infty}\left\|\mathbf{u}_{n}-\mathbf{u}\right\|\left\|\mathbf{v}_{n}\right\|+\lim _{n \rightarrow \infty}\|\mathbf{u}\|\left\|\mathbf{v}_{n}-\mathbf{v}\right\|=0
\end{gathered}
$$

since $\lim _{n \rightarrow \infty}\left\|\mathbf{u}_{n}-\mathbf{u}\right\|=\lim _{n \rightarrow \infty}\left\|\mathbf{v}_{n}-\mathbf{v}\right\|=0$ and $\lim _{n \rightarrow \infty}\left\|\mathbf{v}_{n}\right\|=\|\mathbf{v}\|$ (continuity of norm).
b) Let $\mathbf{u}_{n}=\sum_{i=1}^{n} \alpha_{i} \mathbf{e}_{i}$ and $\mathbf{v}_{n}=\sum_{j=1}^{n} \beta_{j} \mathbf{e}_{j}$ and note that

$$
\left\langle\mathbf{u}_{n}, \mathbf{v}_{n}\right\rangle=\sum_{1 \leq i, j \leq n} \alpha_{i} \beta_{j}\left\langle\mathbf{e}_{i}, \mathbf{e}_{j}\right\rangle=\sum_{i=1}^{n} \alpha_{i} \beta_{i}
$$

where we have used the orthonormality. By part a), we get

$$
\langle\mathbf{u}, \mathbf{v}\rangle=\lim _{n \rightarrow \infty}\left\langle\mathbf{u}_{n}, \mathbf{v}_{n}\right\rangle=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \alpha_{i} \beta_{i}=\sum_{i=1}^{\infty} \alpha_{i} \beta_{i}
$$

c) We prove (I) by induction on n. For $n=1$, we have $A\left(\alpha_{1} \mathbf{u}_{1}\right)=$ $\alpha_{1} A\left(\mathbf{u}_{i}\right)$ which is just condition (i). Assume that the assertion is proved for some number n, then

$$
\begin{gathered}
A\left(\sum_{i=1}^{n+1} \alpha_{i} \mathbf{u}_{i}\right)=A\left(\sum_{i=1}^{n} \alpha_{i} \mathbf{u}_{i}+\alpha_{n+1} \mathbf{u}_{n+1}\right) \stackrel{(i i)}{=} A\left(\sum_{i=1}^{n} \alpha_{i} \mathbf{u}_{i}\right)+A\left(\alpha_{n+1} \mathbf{u}_{n+1}\right)= \\
\text { ind. hyp. }+(\mathrm{i}) \sum_{i=1}^{n} \alpha_{i} A\left(\mathbf{u}_{i}\right)+\alpha_{n+1} A\left(\mathbf{u}_{n+1}\right)=\sum_{i=1}^{n+1} \alpha_{i} A\left(\mathbf{u}_{i}\right)
\end{gathered}
$$

shows that it holds for $n+1$.
To prove (II), just note that

$$
\begin{gathered}
A(\mathbf{u}-\mathbf{v})=A(\mathbf{u}+(-1) \mathbf{v})=A(\mathbf{u})+A((-1) \mathbf{v})= \\
=A(\mathbf{u})+(-1) A(\mathbf{v})=A(\mathbf{u})-A(\mathbf{v})
\end{gathered}
$$

d) We have $|A(\mathbf{u})-A(\mathbf{v})|=|A(\mathbf{u}-\mathbf{v})| \leq M\|\mathbf{u}-\mathbf{v}\|$. Given $\epsilon>0$, put $\delta=\frac{\epsilon}{M}$. Then $|A(\mathbf{u})-A(\mathbf{v})|<\epsilon$ whenever $\|\mathbf{u}-\mathbf{v}\|<\delta$, and hence A is uniformly continuous.
e) We have

$$
A\left(\sum_{i=1}^{n} \beta_{i} \mathbf{e}_{i}\right)=\sum_{i=1}^{n} \beta_{i} A\left(\mathbf{e}_{i}\right)=\sum_{i=1}^{n} \beta_{i}^{2}
$$

On the other hand

$$
A\left(\sum_{i=1}^{n} \beta_{i} \mathbf{e}_{i}\right) \leq M\left\|\sum_{i=1}^{n} \beta_{i} \mathbf{e}_{i}\right\|=M\left(\sum_{i=1}^{n} \beta_{i}^{2}\right)^{\frac{1}{2}}
$$

and thus $\sum_{i=1}^{n} \beta_{i}^{2} \leq M\left(\sum_{i=1}^{n} \beta_{i}^{2}\right)^{\frac{1}{2}}$ which implies $\left(\sum_{i=1}^{n} \beta_{i}^{2}\right)^{\frac{1}{2}} \leq M$. Since this holds for all $n \in \mathbb{N}$, we must have $\left(\sum_{i=1}^{\infty} \beta_{i}^{2}\right)^{\frac{1}{2}} \leq M$.
f) Since H is complete, it suffices to show that the sequence of partial sums $\mathbf{s}_{n}=\sum_{i=1}^{n} \beta_{i} \mathbf{e}_{i}$ is a Cauchy sequence. If $m>n$, we have

$$
\left\|\mathbf{s}_{m}-\mathbf{s}_{n}\right\|^{2}=\left\|\sum_{i=n+1}^{m} \beta_{i} \mathbf{e}_{i}\right\|^{2}=\left\langle\sum_{i=n+1}^{m} \beta_{i} \mathbf{e}_{i}, \sum_{i=n+1}^{m} \beta_{i} \mathbf{e}_{i}\right\rangle=\sum_{i=n+1}^{m} \beta_{i}^{2} \leq \sum_{i=n+1}^{\infty} \beta_{i}^{2}
$$

and since $\sum_{i=1}^{\infty} \beta_{i}^{2}$ converges, we can get the last term as small as we want by choosing n sufficiently large. Hence $\left\{\mathbf{s}_{n}\right\}$ is a Cauchy sequence, and the series $\sum_{i=1}^{\infty} \beta_{i} \mathbf{e}_{i}$ converges.
g) Since $\left\{\mathbf{e}_{i}\right\}_{i \in \mathbb{N}}$ is a basis, any element $\mathbf{x} \in H$ can be written as a linear combination $\mathbf{x}=\sum_{i=1}^{\infty} \alpha_{i} \mathbf{e}_{i}$. By b) above,

$$
\langle\mathbf{x}, \mathbf{y}\rangle=\left\langle\sum_{i=1}^{\infty} \alpha \mathbf{e}_{i}, \sum_{j=1}^{\infty} \beta_{j} \mathbf{e}_{j}\right\rangle=\sum_{i=1}^{\infty} \alpha_{i} \beta_{i}
$$

On the other hand, since A is continuous, we have

$$
\begin{gathered}
A(\mathbf{x})=A\left(\sum_{i=1}^{\infty} \alpha_{i} \mathbf{e}_{i}\right)=\lim _{n \rightarrow \infty} A\left(\sum_{i=1}^{n} \alpha_{i} \mathbf{e}_{i}\right)=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \alpha_{i} A\left(\mathbf{e}_{i}\right)= \\
=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \alpha_{i} \beta_{i}=\sum_{i=1}^{\infty} \alpha_{i} \beta_{i}
\end{gathered}
$$

Hence $A(\mathbf{x})=\langle\mathbf{x}, \mathbf{y}\rangle$ for all $\mathbf{x} \in H$.

