
Solution to exam in MAT2400, Spring 2013

Problem 1: To prove pointwise convergence, we show that limn→∞ fn(x) =
limn→∞ nxe

−nx2 = 0 for all x ∈ [0, 1]. For x = 0, this is obvious as fn(0) = 0
for all n, and for x 6= 0, we use L’Hôpitals rule (remember to differentiate
with respect to n and not x):

lim
n→∞

nxe−nx
2
= lim

n→∞

nx

enx2
L′H
= lim

n→∞

x

x2enx2
= 0

To check uniform convergence, we find the maximal distance between fn and
0 for each n. Differentiating fn, we get

f ′n(x) = ne−nx
2
+ nxe−nx

2
(−2nx) = ne−nx

2
(1− 2nx2)

which shows that the maximal distance between fn and 0 is achieved at
x = 1√

2n
∈ [0, 1]. Since

fn(
1√
2n

) = n
1√
2n
e−n·

1
2n =

√
n

2
e−

1
2 →∞

the convergence is not uniform.

Problem 2: We must show that for any ε > 0, there is an N ∈ N such that
when n ≥ N , |(f + g)(x)− (fn+ gn)(x)| < ε for all x ∈ X. Since the original
sequences {fn} and {gn} converges uniformly to f and g, respectively, there
are numbers N1, N2 ∈ N such that |f(x)−fn(x)| < ε

2 for all x ∈ X whenever
n ≥ N1 and |g(x)− gn(x)| < ε

2 for all x ∈ X whenever n ≥ N2. If we define
N = max{N1, N2}, the triangle inequality tells us that

|(f + g)(x)− (fn + gn)(x)| ≤ |f(x)− fn(x)|+ |g(x)− gn(x)| <
ε

2
+
ε

2
= ε

for all x ∈ X and all n ≥ N . Hence {fn + gn} converges uniformly to f + g.

Problem 3: a) Assume first that f is nonnegative. Then there is an increas-
ing sequence {gn} of nonnegative, simple functions converging pointwise to f .
Since

∫
f dµ = limn→∞

∫
gn dµ and f ≥ gn, we get ||f−gn||1 =

∫
|f−gn| dµ =∫

(f−gn) dµ =
∫
f dµ−

∫
gn dµ→ 0 (one may also use Lebesgue’s Dominated

Convergence Theorem with f as dominating function).
For a general integrable function f , we split it as a difference f = f+−f−

between two nonnegative, integrable functions, and approximate these by
sequences {g+n } and {g−n } as above. Then

||f − (g+n − g−n )||1 ≤ ||f+ − g+n ||1 + ||f− − g−n ||1 → 0
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Since g+n − g−n is a simple function (it takes only finitely many values), this
proves the statement.

b) Let B = {x ∈ R |h(x) 6= 1A(x)}. Then

||h(x)− 1A(x)||1 =
∫
|h− 1A| dµ ≤

∫
1B dµ = µ(B) < ε

c) Assume that ε > 0, and let g =
∑n

i=1 ai1Ai be a simple function in
L1(µ). Let M be a number larger than all |ai|, i = 1, 2, . . . , n, and for each
i choose a continuous function hi : R → [0, 1] such that hi = 1Ai except on
a set of measure less that ε

Mn . Note that by b), ||hi − 1Ai ||1 < ε
Mn . The

function h =
∑n

i=1 aihi is continuous and

||h− g||1 = ||
n∑
i=1

ai(hi − 1Ai)||1 ≤
n∑
i=1

|ai|||hi − 1Ai ||1 < n ·M · ε

Mn
= ε

d) If f ∈ L1(µ), we know that there exists a sequence {gn} of simple
functions converging to f in L1(µ)-norm. For each n, we know that there is
continuous function hn such that ||gn − hn||1 < 1

n . But then

||f − hn||1 ≤ ||f − gn||1 + ||gn − hn||1 → 0

Problem 4: a) We have

0 ≤ lim
n→∞

|〈un,vn〉 − 〈u,v〉| = lim
n→∞

|〈un,vn〉 − 〈u,vn〉+ 〈u,vn〉 − 〈u,v〉| ≤

lim
n→∞

|〈un,vn〉 − 〈u,vn〉|+ lim
n→∞

|〈u,vn〉 − 〈u,v〉| =

= lim
n→∞

|〈un − u,vn〉|+ lim
n→∞

|〈u,vn − v〉| ≤

≤ lim
n→∞

||un − u||||vn||+ lim
n→∞

||u||||vn − v|| = 0

since limn→∞ ||un − u|| = limn→∞ ||vn − v|| = 0 and limn→∞ ||vn|| = ||v||
(continuity of norm).

b) Let un =
∑n

i=1 αiei and vn =
∑n

j=1 βjej and note that

〈un,vn〉 =
∑

1≤i,j≤n
αiβj〈ei, ej〉 =

n∑
i=1

αiβi

where we have used the orthonormality. By part a), we get

〈u,v〉 = lim
n→∞

〈un,vn〉 = lim
n→∞

n∑
i=1

αiβi =

∞∑
i=1

αiβi
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c) We prove (I) by induction on n. For n = 1, we have A(α1u1) =
α1A(ui) which is just condition (i). Assume that the assertion is proved for
some number n, then

A(

n+1∑
i=1

αiui) = A(

n∑
i=1

αiui + αn+1un+1)
(ii)
= A(

n∑
i=1

αiui) +A(αn+1un+1) =

ind. hyp.+(i)
=

n∑
i=1

αiA(ui) + αn+1A(un+1) =
n+1∑
i=1

αiA(ui)

shows that it holds for n+ 1.
To prove (II), just note that

A(u− v) = A(u+ (−1)v) = A(u) +A((−1)v) =

= A(u) + (−1)A(v) = A(u)−A(v)

d) We have |A(u) − A(v)| = |A(u − v)| ≤ M ||u − v||. Given ε > 0, put
δ = ε

M . Then |A(u) − A(v)| < ε whenever ||u − v|| < δ, and hence A is
uniformly continuous.

e) We have

A(
n∑
i=1

βiei) =
n∑
i=1

βiA(ei) =
n∑
i=1

β2i

On the other hand

A(

n∑
i=1

βiei) ≤M ||
n∑
i=1

βiei|| =M

(
n∑
i=1

β2i

) 1
2

and thus
∑n

i=1 β
2
i ≤ M

(∑n
i=1 β

2
i

) 1
2 which implies

(∑n
i=1 β

2
i

) 1
2 ≤ M . Since

this holds for all n ∈ N, we must have
(∑∞

i=1 β
2
i

) 1
2 ≤M .

f) Since H is complete, it suffices to show that the sequence of partial
sums sn =

∑n
i=1 βiei is a Cauchy sequence. If m > n, we have

||sm − sn||2 = ||
m∑

i=n+1

βiei||2 = 〈
m∑

i=n+1

βiei,
m∑

i=n+1

βiei〉 =
m∑

i=n+1

β2i ≤
∞∑

i=n+1

β2i

and since
∑∞

i=1 β
2
i converges, we can get the last term as small as we want

by choosing n sufficiently large. Hence {sn} is a Cauchy sequence, and the
series

∑∞
i=1 βiei converges.
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g) Since {ei}i∈N is a basis, any element x ∈ H can be written as a linear
combination x =

∑∞
i=1 αiei. By b) above,

〈x,y〉 = 〈
∞∑
i=1

αei,
∞∑
j=1

βjej〉 =
∞∑
i=1

αiβi

On the other hand, since A is continuous, we have

A(x) = A(
∞∑
i=1

αiei) = lim
n→∞

A(
n∑
i=1

αiei) = lim
n→∞

n∑
i=1

αiA(ei) =

= lim
n→∞

n∑
i=1

αiβi =

∞∑
i=1

αiβi

Hence A(x) = 〈x,y〉 for all x ∈ H.
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