
Ark7: Solutions

I have written down some very sketchy solutions to some of the exercises. I have only

treated the ones given for the friday sessions, and it has been done rather hastly, so

forgive me if there are errors. Still, I hope, they will be useful for you.

Problem 1:

a) Recall Abel’s formula for partial summation (lemma 4.4.1 page 94 in Tom’s notes),

where sN =
�N

n=0 an:

N�

n=0

anbn = sNbN +

N−1�

n=0

sn(bn − bn+1). (✯)

Let now M < N be another integer. We have

M�

n=0

anbn = sMbM +

M−1�

n=0

sn(bn − bn+1), (✯✯)

and subtraction equation ✯✯ from equation ✯, we get

N�

n=M+1

anbn = sNbN − sMbM +

N−1�

n=M

sn(bn − bn+1). (✯✯✯)

b) From ✯✯✯ we get by the triangle inequality and the facts that bn ≥ bn+1 ≥ 0

N�

n=M+1

|anbn| ≤ |sNbN | + |sMbM | +
N−1�

n=M

|sn| (bn − bn+1) (❀)

≤ AbN + AbM + A
N−1�

n=M

(bn − bn+1)

= AbN + AbM + A(bM − bN) = 2AbM .

where A is the bound for the partial sums of an, i.e., sN =

���
�N

n=0 an

��� ≤ A for all

N . (Which was given the obviuosly bad name M in the problem). We have used the

equality:
�N−1

n=M(bn − bn+1) = bM − bN resulting from the telescoping propety; all the

terms in the sum, except the two to the right in the formula, cancels.
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c) Given � > 0. As bn tends to zero when n →∞, we may find N0 such that bn < �/2A
for n > N0, but then by the inequality ❀ we obtain

N�

n=M+1

|anbn| ≤ 2AbM ≤ �

if N, M > N0, and
�∞

n=0 anbn is Cauchy and converges.

d) Take an = bn =
(−1)n
√

n . Then
�∞

n=0 an converges by Liebnitz’ criterion for alternating

sums, but anbn =
1
n and the harmonic series

�∞
n=0

1
n diverges. ❏

Problem 2:

a) The formula

2 sin α sin β = cos(α− β)− cos(α + β).

is well known, and follows from the addition formula for cosinus:

cos(α + β) = cos α cos β − sin α sin β,

and the facts that sin x is an odd function and cos x an even one.

b) This is just the previous formula with α = kx and β = x/2.

c) Use the formula in b) and the telescoping property to obtain the formula in the

problem:
n�

k=1

2 sin kx sin
x

2
= cos

x

2
− cos (n +

1

2
)x.

Then, dividing by 2 sin
x
2 — which we suppose is different from zero — and using the

triangel inequality, we get

�����

n�

k=1

sin kx

����� ≤
��cos

x
2 − cos (n +

1
2)x

��

2
��sin x

2

�� ≤ 1��sin x
2

��

d) Since a > 0 the sequence {k−a} decreases monotonically to zero. We saw that�n
k=1 sin kx is bounded. Hence Dirichlet’s criterion gives us the convergence. ❏

Problem 7:

a) We have to show that if {xn} and {yn} are two elements in l1, then their sum

{xn + yn} is there also. That is, if the two former sequences are absolutely convergent,

then the latter is. This is well known, and follows from the comparison test and the

triangle inequality:

|xn + yn| ≤ |xn| + |yn| .

— 2 —
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If a is a scalar, it is clear that {axn} is in l1 when {xn} is there.

b) Let a be a scalar. Then
�∞

n=1 |axn| = |a|
�∞

n=1 |xn|. We have

∞�

n=1

|xn + yn| ≤
∞�

n=1

|xn| +
∞�

n=1

|yn|

by the triangle inequality. Finally if
�∞

n=1 |xn| = 0, clearly xn = 0 for all n.

c) That the ei’s form a basis, follows if we can show that {xn} =
�∞

k=1 xkek. The partial

sum is the sequence
�N

k=1 xkek, which is equal to {x1, x2, . . . , xN , 0, 0, 0, . . . }, i.e., the

sequence that is equal to xn up to the index N and from then on equal to zero. The diffe-

rence between {xn} and
�N

k=1 xkek is the the sequence zN = {0, 0, . . . , 0, xN+1, xN+2, . . . }
whose norm is

�zN� =

∞�

k=N+1

|xk|

which tends to zero when N tends to ∞ since
�∞

k=1 |xk| converges since {xn} lies in

l1. ❏

Problem 12 :

a) We have the Cauchy-Schwarz inequality from problem 11:

(

n�

k=1

xkyk)
2 ≤ (

n�

k=1

x2
k)(

n�

k=1

y2
k).

Since the two sequences
�∞

k=1 x2
k and

�∞
k=1 y2

k converge, we have

(

n�

k=1

xkyk)
2 ≤ (

n�

k=1

x2
k)(

n�

k=1

y2
k) ≤ (

∞�

k=1

x2
k)(

∞�

k=1

, y2
k)

and letting n tend to ∞ we obtain:

(

∞�

k=1

xkyk)
2 ≤ (

∞�

k=1

x2
k)(

∞�

k=1

y2
k).

b) The only problem in showing that l2 is a vector space, is to see that it is closed

under addition. That is, we have to show that if
�∞

k=1 x2
k and

�∞
k=1 y2

k both converge,

then
�∞

k=1(xk + yk)
2

converges. But the convergence of the first two series, gives us

that
�∞

k=1 xkyk converges by 4.a). Hence

N�

k=1

(xk + yk)
2

=

N�

k=1

(x2
k + 2xkyk + y2

) ≤
∞�

k=1

x2
k + 2

∞�

k=1

xkyk +

∞�

k=1

y2
k,
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and we are through.

c) This is straight foreward, using the corresponding properties for series.

d) The main problem here is notational. We have to look at sequences of sequences!!

So, we change notation slightly hopefully making thing a little clearer. A sequence is

nothing but a function ξ : N → R. The correspondence with the “old” notation is that

ξn = ξ(n). In the “new” notation, the norm is given by �ξ�2
=

�∞
k=1 ξ(k)

2
.

Now, a sequence in l2 is a sequence {ξn} of functions ξn : N → R, and it is Cauchy

if for every � > 0 there is an N such that

�ξn − ξm�2
=

∞�

k=1

(ξn(k)− ξm(k))
2 ≤ �2

(✥)

whenever n, m > N . But this means that for each k we have |ξn(k)− ξm(k)| < � for

n, m > N . Hence each of the sequences {ξn(k)}∞n=1 is a Cauchy sequence, and converges

to some number ξ(k). From ✥ we get for all M :

M�

k=1

(ξn(k)− ξm(k))
2 ≤

∞�

k=1

(ξn(k)− ξm(k))
2 ≤ �2

and first letting m tend to ∞, and then M tend to ∞, we arrive at:

�ξn − ξ� ≤ �

for n > N , which shows that {ξn} converges to ξ — which indeed is an element of l2,
since

�ξ� = �ξ − ξn + ξn� ≤ �ξ − ξn� + �ξn� ≤ � + �ξn� ,

whenevere n > N . Hence �ξ� < ∞, and ξ ∈ l2.

e) In our “new” notation the sequnce ei is the function ei : N → R given by ei(k) = 0 if

i �= k and ek(k) = 1. Clearly each ei is quadratically summable, having only one term

different from zero. We want to show that ξ =
�∞

i=1 ξ(i)ei. Which is reasonable: If we

ignore convergence problems, the right side evaluates at k to ξ(k) since ei(k) = 0 if

i �= k and ek(k) = 1.

To check convergence we examine:

�����ξ −
n�

i=1

ξ(i)ei

�����

2

=

∞�

i=n+1

ξ(i)2.

— 4 —
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This can be made arbitrarily small by choosing n sufficiently great since
�∞

i=1 ξ(i)2

converges, and hence limn→∞
�n

i=1 ξ(i)ei = ξ. ❏

Problem : Take any w ∈ V . It can be written w =
�∞

n=1 �w, vi � vi, and by Parseval’s

theorem we get
∞�

n=1

�w, vi �2 = �w�2 ≤ ∞

Hence the sequence α(i) = �w, vi � (in our “new” notation from problem 12) is quadra-

tically summable and belongs to l2. If wk is a sequence in V , we get in this way a

sequence αk in l2 with αk(i) = �wk, vi �.
Assume now that wk is Cauchy, then αk is Cauchy in l2; indeed:

�αn − αm�2
=

∞�

i=0

(αn − αm)
2

= �wn − wm�2

again by Parseval. But wk being Cauchy, we can , given � > 0, find an N such that if

n, m > N , the last term satisfies �wn − wm�2 < �2
, and hence also �αn − αm�2 < �2

.

We know that l2 is complete, so let α = limn→∞ αk. Then limn→∞wk =
�∞

i=1 α(i)vi.

Indeed:

�����wk −
∞�

i=1

α(i)vi

�����

2

=

�����

∞�

i=1

(αk(i)− α(i))vi

�����

2

=

∞�

i=1

(αk(i)− α(k))
2,

but this tends to zero since limn→∞ αk = α in l2. ❏

Problem 14:

a) This is straight forward, using well known properties of the integral

b) This is just a translation of the general Cauchy-Schwarz inequality to the present

situation with � b

a

f(x)g(x) dx = � f, g �

and � b

a

|f(x)|2 dx = �f�2 .

❏

Problem 15:
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a) The formal properties of an inner product follow from the corresponding properties

of the integral. The main point to check is that integral is convergent, and to see that,

we substitute t = cos u. Then dt = − sin udu. When t = 1 then u = 0, and t = −1

gives u = π. Hence

� 1

−1

f(t)g(t)√
1− t2

dt =

� π

0

f(cos u)g(cos u) du, (★)

and the last integrand is bounded, hence the integral converges.

b) Since Tn(cos u) = cos(n arccos(cos u)) = cos(nu), u belonging to [0, π], we get by ★
that

�Tn, Tm � = � cos nu, cos mu �C

where � , �C denotes the inner product in C([0, π], R). And we can conclude, since we

know that cos nu form an orthogonal set with respect to that product.

c) We use induction on n to show that cos nv is a polynomial in cos v of degree n, then

putting v = arccos t and using cos arccos t = t we are through. We use the now well

known formulas:

2 sin α sin β = cos(α− β)− cos(α + β)

2 sin α cos β = sin(α + β) + sin(α− β)

Putting α = t and β = nt in the last one, we get

2 sin t cos nt = sin(n + 1)t− sin(n− 1)t.

We multiply by 2 sin t and obtain:

4 sin t cos nt = 2 sin t sin(n + 1)t− 2 sin t sin(n− 1)t

= cos nt− cos(n + 2)t− cos(n− 2)t + cos nt

= cos(n− 2)− cos(n + 2) + 2 cos nt,

— 6 —
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from wich it follows easyly by induction that cos(n+2)t is a polynomial of degree n+2.

Indeed:

cos(n + 2)t = cos(n− 2) + 4t2 cos nt− 2 cos nt,

and by induction cos nt and cos(n− 2)t are poly’s of degree n and n− 2 respectively.

❏

Versjon: Tuesday, April 10, 2012 9:35:08 AM
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