Ark7：Solutions

I have written down some very sketchy solutions to some of the exercises．I have only treated the ones given for the friday sessions，and it has been done rather hastly，so forgive me if there are errors．Still，I hope，they will be useful for you．

Problem 1：

a）Recall Abel＇s formula for partial summation（lemma 4．4．1 page 94 in Tom＇s notes）， where $s_{N}=\sum_{n=0}^{N} a_{n}$ ：

$$
\begin{equation*}
\sum_{n=0}^{N} a_{n} b_{n}=s_{N} b_{N}+\sum_{n=0}^{N-1} s_{n}\left(b_{n}-b_{n+1}\right) \tag{初}
\end{equation*}
$$

Let now $M<N$ be another integer．We have

$$
\begin{equation*}
\sum_{n=0}^{M} a_{n} b_{n}=s_{M} b_{M}+\sum_{n=0}^{M-1} s_{n}\left(b_{n}-b_{n+1}\right) \tag{次次}
\end{equation*}
$$

and subtraction equation 次次from equation ${ }^{2}$ ，we get

$$
\sum_{n=M+1}^{N} a_{n} b_{n}=s_{N} b_{N}-s_{M} b_{M}+\sum_{n=M}^{N-1} s_{n}\left(b_{n}-b_{n+1}\right) . \quad \text { (大勾次) }
$$

b）From 地地 we get by the triangle inequality and the facts that $b_{n} \geq b_{n+1} \geq 0$

$$
\begin{align*}
\sum_{n=M+1}^{N}\left|a_{n} b_{n}\right| & \leq\left|s_{N} b_{N}\right|+\left|s_{M} b_{M}\right|+\sum_{n=M}^{N-1}\left|s_{n}\right|\left(b_{n}-b_{n+1}\right) \tag{8}\\
& \leq A b_{N}+A b_{M}+A \sum_{n=M}^{N-1}\left(b_{n}-b_{n+1}\right) \\
& =A b_{N}+A b_{M}+A\left(b_{M}-b_{N}\right)=2 A b_{M}
\end{align*}
$$

where A is the bound for the partial sums of a_{n} ，i．e．，$s_{N}=\left|\sum_{n=0}^{N} a_{n}\right| \leq A$ for all N ．（Which was given the obviuosly bad name M in the problem）．We have used the equality：$\sum_{n=M}^{N-1}\left(b_{n}-b_{n+1}\right)=b_{M}-b_{N}$ resulting from the telescoping propety；all the terms in the sum，except the two to the right in the formula，cancels．
c) Given $\epsilon>0$. As b_{n} tends to zero when $n \rightarrow \infty$, we may find N_{0} such that $b_{n}<\epsilon / 2 A$ for $n>N_{0}$, but then by the inequality ${ }_{\text {G }}$ we obtain

$$
\sum_{n=M+1}^{N}\left|a_{n} b_{n}\right| \leq 2 A b_{M} \leq \epsilon
$$

if $N, M>N_{0}$, and $\sum_{n=0}^{\infty} a_{n} b_{n}$ is Cauchy and converges.
d) Take $a_{n}=b_{n}=\frac{(-1)^{n}}{\sqrt{n}}$. Then $\sum_{n=0}^{\infty} a_{n}$ converges by Liebnitz' criterion for alternating sums, but $a_{n} b_{n}=\frac{1}{n}$ and the harmonic series $\sum_{n=0}^{\infty} \frac{1}{n}$ diverges.

Problem 2:

a) The formula

$$
2 \sin \alpha \sin \beta=\cos (\alpha-\beta)-\cos (\alpha+\beta) .
$$

is well known, and follows from the addition formula for cosinus:

$$
\cos (\alpha+\beta)=\cos \alpha \cos \beta-\sin \alpha \sin \beta
$$

and the facts that $\sin x$ is an odd function and $\cos x$ an even one.
b) This is just the previous formula with $\alpha=k x$ and $\beta=x / 2$.
c) Use the formula in b) and the telescoping property to obtain the formula in the problem:

$$
\sum_{k=1}^{n} 2 \sin k x \sin \frac{x}{2}=\cos \frac{x}{2}-\cos \left(n+\frac{1}{2}\right) x .
$$

Then, dividing by $2 \sin \frac{x}{2}$ - which we suppose is different from zero - and using the triangel inequality, we get

$$
\left|\sum_{k=1}^{n} \sin k x\right| \leq \frac{\left|\cos \frac{x}{2}-\cos \left(n+\frac{1}{2}\right) x\right|}{2\left|\sin \frac{x}{2}\right|} \leq \frac{1}{\left|\sin \frac{x}{2}\right|}
$$

d) Since $a>0$ the sequence $\left\{k^{-a}\right\}$ decreases monotonically to zero. We saw that $\sum_{k=1}^{n} \sin k x$ is bounded. Hence Dirichlet's criterion gives us the convergence.

Problem 7:

a) We have to show that if $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ are two elements in l_{1}, then their sum $\left\{x_{n}+y_{n}\right\}$ is there also. That is, if the two former sequences are absolutely convergent, then the latter is. This is well known, and follows from the comparison test and the triangle inequality:

$$
\left|x_{n}+y_{n}\right| \leq\left|x_{n}\right|+\left|y_{n}\right| .
$$

If a is a scalar, it is clear that $\left\{a x_{n}\right\}$ is in l_{1} when $\left\{x_{n}\right\}$ is there.
b) Let a be a scalar. Then $\sum_{n=1}^{\infty}\left|a x_{n}\right|=|a| \sum_{n=1}^{\infty}\left|x_{n}\right|$. We have

$$
\sum_{n=1}^{\infty}\left|x_{n}+y_{n}\right| \leq \sum_{n=1}^{\infty}\left|x_{n}\right|+\sum_{n=1}^{\infty}\left|y_{n}\right|
$$

by the triangle inequality. Finally if $\sum_{n=1}^{\infty}\left|x_{n}\right|=0$, clearly $x_{n}=0$ for all n.
c) That the e_{i} 's form a basis, follows if we can show that $\left\{x_{n}\right\}=\sum_{k=1}^{\infty} x_{k} e_{k}$. The partial sum is the sequence $\sum_{k=1}^{N} x_{k} e_{k}$, which is equal to $\left\{x_{1}, x_{2}, \ldots, x_{N}, 0,0,0, \ldots\right\}$, i.e., the sequence that is equal to x_{n} up to the index N and from then on equal to zero. The difference between $\left\{x_{n}\right\}$ and $\sum_{k=1}^{N} x_{k} e_{k}$ is the the sequence $z_{N}=\left\{0,0, \ldots, 0, x_{N+1}, x_{N+2}, \ldots\right\}$ whose norm is

$$
\left\|z_{N}\right\|=\sum_{k=N+1}^{\infty}\left|x_{k}\right|
$$

which tends to zero when N tends to ∞ since $\sum_{k=1}^{\infty}\left|x_{k}\right|$ converges since $\left\{x_{n}\right\}$ lies in l_{1}.

Problem 12 :

a) We have the Cauchy-Schwarz inequality from problem 11:

$$
\left(\sum_{k=1}^{n} x_{k} y_{k}\right)^{2} \leq\left(\sum_{k=1}^{n} x_{k}^{2}\right)\left(\sum_{k=1}^{n} y_{k}^{2}\right)
$$

Since the two sequences $\sum_{k=1}^{\infty} x_{k}^{2}$ and $\sum_{k=1}^{\infty} y_{k}^{2}$ converge, we have

$$
\left(\sum_{k=1}^{n} x_{k} y_{k}\right)^{2} \leq\left(\sum_{k=1}^{n} x_{k}^{2}\right)\left(\sum_{k=1}^{n} y_{k}^{2}\right) \leq\left(\sum_{k=1}^{\infty} x_{k}^{2}\right)\left(\sum_{k=1}^{\infty}, y_{k}^{2}\right)
$$

and letting n tend to ∞ we obtain:

$$
\left(\sum_{k=1}^{\infty} x_{k} y_{k}\right)^{2} \leq\left(\sum_{k=1}^{\infty} x_{k}^{2}\right)\left(\sum_{k=1}^{\infty} y_{k}^{2}\right)
$$

b) The only problem in showing that l_{2} is a vector space, is to see that it is closed under addition. That is, we have to show that if $\sum_{k=1}^{\infty} x_{k}^{2}$ and $\sum_{k=1}^{\infty} y_{k}^{2}$ both converge, then $\sum_{k=1}^{\infty}\left(x_{k}+y_{k}\right)^{2}$ converges. But the convergence of the first two series, gives us that $\sum_{k=1}^{\infty} x_{k} y_{k}$ converges by 4.a). Hence

$$
\sum_{k=1}^{N}\left(x_{k}+y_{k}\right)^{2}=\sum_{k=1}^{N}\left(x_{k}^{2}+2 x_{k} y_{k}+y^{2}\right) \leq \sum_{k=1}^{\infty} x_{k}^{2}+2 \sum_{k=1}^{\infty} x_{k} y_{k}+\sum_{k=1}^{\infty} y_{k}^{2}
$$

and we are through.
c) This is straight foreward, using the corresponding properties for series.
d) The main problem here is notational. We have to look at sequences of sequences!! So, we change notation slightly hopefully making thing a little clearer. A sequence is nothing but a function $\xi: \mathbb{N} \rightarrow \mathbb{R}$. The correspondence with the "old" notation is that $\xi_{n}=\xi(n)$. In the "new" notation, the norm is given by $\|\xi\|^{2}=\sum_{k=1}^{\infty} \xi(k)^{2}$.

Now, a sequence in l_{2} is a sequence $\left\{\xi_{n}\right\}$ of functions $\xi_{n}: \mathbb{N} \rightarrow \mathbb{R}$, and it is Cauchy if for every $\epsilon>0$ there is an N such that

$$
\begin{equation*}
\left\|\xi_{n}-\xi_{m}\right\|^{2}=\sum_{k=1}^{\infty}\left(\xi_{n}(k)-\xi_{m}(k)\right)^{2} \leq \epsilon^{2} \tag{*}
\end{equation*}
$$

whenever $n, m>N$. But this means that for each k we have $\left|\xi_{n}(k)-\xi_{m}(k)\right|<\epsilon$ for $n, m>N$. Hence each of the sequences $\left\{\xi_{n}(k)\right\}_{n=1}^{\infty}$ is a Cauchy sequence, and converges to some number $\xi(k)$. From we get for all M :

$$
\sum_{k=1}^{M}\left(\xi_{n}(k)-\xi_{m}(k)\right)^{2} \leq \sum_{k=1}^{\infty}\left(\xi_{n}(k)-\xi_{m}(k)\right)^{2} \leq \epsilon^{2}
$$

and first letting m tend to ∞, and then M tend to ∞, we arrive at:

$$
\left\|\xi_{n}-\xi\right\| \leq \epsilon
$$

for $n>N$, which shows that $\left\{\xi_{n}\right\}$ converges to ξ - which indeed is an element of l_{2}, since

$$
\|\xi\|=\left\|\xi-\xi_{n}+\xi_{n}\right\| \leq\left\|\xi-\xi_{n}\right\|+\left\|\xi_{n}\right\| \leq \epsilon+\left\|\xi_{n}\right\|
$$

whenevere $n>N$. Hence $\|\xi\|<\infty$, and $\xi \in l_{2}$.
e) In our "new" notation the sequnce e_{i} is the function $e_{i}: \mathbb{N} \rightarrow \mathbb{R}$ given by $e_{i}(k)=0$ if $i \neq k$ and $e_{k}(k)=1$. Clearly each e_{i} is quadratically summable, having only one term different from zero. We want to show that $\xi=\sum_{i=1}^{\infty} \xi(i) e_{i}$. Which is reasonable: If we ignore convergence problems, the right side evaluates at k to $\xi(k)$ since $e_{i}(k)=0$ if $i \neq k$ and $e_{k}(k)=1$.

To check convergence we examine:

$$
\left\|\xi-\sum_{i=1}^{n} \xi(i) e_{i}\right\|^{2}=\sum_{i=n+1}^{\infty} \xi(i)^{2} .
$$

This can be made arbitrarily small by choosing n sufficiently great since $\sum_{i=1}^{\infty} \xi(i)^{2}$ converges, and hence $\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \xi(i) e_{i}=\xi$.

Problem : Take any $w \in V$. It can be written $w=\sum_{n=1}^{\infty}\left\langle w, v_{i}\right\rangle v_{i}$, and by Parseval's theorem we get

$$
\sum_{n=1}^{\infty}\left\langle w, v_{i}\right\rangle^{2}=\|w\|^{2} \leq \infty
$$

Hence the sequence $\alpha(i)=\left\langle w, v_{i}\right\rangle$ (in our "new" notation from problem 12) is quadratically summable and belongs to l_{2}. If w_{k} is a sequence in V, we get in this way a sequence α_{k} in l_{2} with $\alpha_{k}(i)=\left\langle w_{k}, v_{i}\right\rangle$.

Assume now that w_{k} is Cauchy, then α_{k} is Cauchy in l_{2}; indeed:

$$
\left\|\alpha_{n}-\alpha_{m}\right\|^{2}=\sum_{i=0}^{\infty}\left(\alpha_{n}-\alpha_{m}\right)^{2}=\left\|w_{n}-w_{m}\right\|^{2}
$$

again by Parseval. But w_{k} being Cauchy, we can, given $\epsilon>0$, find an N such that if $n, m>N$, the last term satisfies $\left\|w_{n}-w_{m}\right\|^{2}<\epsilon^{2}$, and hence also $\left\|\alpha_{n}-\alpha_{m}\right\|^{2}<\epsilon^{2}$.

We know that l_{2} is complete, so let $\alpha=\lim _{n \rightarrow \infty} \alpha_{k}$. Then $\lim _{n \rightarrow \infty} w_{k}=\sum_{i=1}^{\infty} \alpha(i) v_{i}$. Indeed:

$$
\left\|w_{k}-\sum_{i=1}^{\infty} \alpha(i) v_{i}\right\|^{2}=\left\|\sum_{i=1}^{\infty}\left(\alpha_{k}(i)-\alpha(i)\right) v_{i}\right\|^{2}=\sum_{i=1}^{\infty}\left(\alpha_{k}(i)-\alpha(k)\right)^{2},
$$

but this tends to zero since $\lim _{n \rightarrow \infty} \alpha_{k}=\alpha$ in l_{2}.

Problem 14:

a) This is straight forward, using well known properties of the integral
b) This is just a translation of the general Cauchy-Schwarz inequality to the present situation with

$$
\int_{a}^{b} f(x) \overline{g(x)} d x=\langle f, g\rangle
$$

and

$$
\int_{a}^{b}|f(x)|^{2} d x=\|f\|^{2}
$$

Problem 15:
a) The formal properties of an inner product follow from the corresponding properties of the integral. The main point to check is that integral is convergent, and to see that, we substitute $t=\cos u$. Then $d t=-\sin u d u$. When $t=1$ then $u=0$, and $t=-1$ gives $u=\pi$. Hence

$$
\int_{-1}^{1} \frac{f(t) g(t)}{\sqrt{1-t^{2}}} d t=\int_{0}^{\pi} f(\cos u) g(\cos u) d u
$$

and the last integrand is bounded, hence the integral converges.
b) Since $T_{n}(\cos u)=\cos (n \arccos (\cos u))=\cos (n u)$, u belonging to $[0, \pi]$, we get by that

$$
\left\langle T_{n}, T_{m}\right\rangle=\langle\cos n u, \cos m u\rangle_{C}
$$

where \langle,\rangle_{C} denotes the inner product in $C([0, \pi], \mathbb{R})$. And we can conclude, since we know that $\cos n u$ form an orthogonal set with respect to that product.
c) We use induction on n to show that $\cos n v$ is a polynomial in $\cos v$ of degree n, then putting $v=\arccos t$ and using $\cos \arccos t=t$ we are through. We use the now well known formulas:

$$
\begin{aligned}
& 2 \sin \alpha \sin \beta=\cos (\alpha-\beta)-\cos (\alpha+\beta) \\
& 2 \sin \alpha \cos \beta=\sin (\alpha+\beta)+\sin (\alpha-\beta)
\end{aligned}
$$

Putting $\alpha=t$ and $\beta=n t$ in the last one, we get

$$
2 \sin t \cos n t=\sin (n+1) t-\sin (n-1) t .
$$

We multiply by $2 \sin t$ and obtain:

$$
\begin{aligned}
4 \sin t \cos n t & =2 \sin t \sin (n+1) t-2 \sin t \sin (n-1) t \\
& =\cos n t-\cos (n+2) t-\cos (n-2) t+\cos n t \\
& =\cos (n-2)-\cos (n+2)+2 \cos n t,
\end{aligned}
$$

from wich it follows easyly by induction that $\cos (n+2) t$ is a polynomial of degree $n+2$. Indeed:

$$
\cos (n+2) t=\cos (n-2)+4 t^{2} \cos n t-2 \cos n t
$$

and by induction $\cos n t$ and $\cos (n-2) t$ are poly's of degree n and $n-2$ respectively.

