## Ark8: Solutions

I have written down some very sketchy solutions to some of the exercises. I have only treated the ones given for the friday sessions, and it has been done rather hastly, so forgive me if there are errors. Still, I hope, they will be useful for you.

## Problem 1:

a) We compute

$$
\int_{0}^{a} \frac{1}{a^{2}}(x-a)^{2} d x=\left.\right|_{0} ^{a} \frac{1}{3 a^{2}}(x-a)^{3}=\frac{a}{3} .
$$

The $L_{2}$-norm is given by

$$
\left\|T_{k, n}\right\|_{2}^{2}=\int_{a_{k, n}-10^{-(n-1)}}^{a_{k, n}+10^{-(n-1)}} T_{k, n}^{2} d x=2 \cdot 10^{2(n-1)} \int_{a_{k, n}}^{a_{k, n}+10^{-(n-1)}}\left(x-a_{n, k}-10^{-(n-1)}\right)^{2} d x
$$

Following the hint, setting $a=10^{-(n-1)}$ and substituting $y=x-a_{k, n}$ gives $d y=d x$ and new limits 0 and $a=10^{-(n-1)}$, hence

$$
\left\|T_{k, n}\right\|_{2}^{2}=2 \frac{1}{a^{2}} \int_{0}^{a}(y-a)^{2} d y=2 \cdot \frac{a}{3}=2 \cdot 10^{-(n-1)} / 3
$$

Taking square roots we get $\left\|T_{k, n}\right\|_{2}=\sqrt{6} / 3 \cdot 10^{-\frac{n-1}{2}}$.
b) Clearly $\lim _{n \rightarrow \infty}\left\|T_{k, n}\right\|_{2}=\sqrt{6} / 3 \lim _{n \rightarrow \infty} 10^{-\frac{n-1}{2}}=0$; and when the indices of the sequence $T_{k, n}$ go to $\infty$ necessarily $n$ also tends to $\infty$.
c) An easy computation gives $T_{k, n}(x)=-10^{n-1}\left|x-a_{k, n}\right|+1$. Hence if $\left|x-a_{k, n}\right|<10^{-n}$ we get

$$
T_{k, n}(x)=-10^{n-1}\left|x-a_{k, n}\right|+1 \geq-10^{n-1} \cdot 10^{-n}+1=9 / 10
$$

d) One gets $k \cdot 10^{-n}$ by just keeping the $n$ first decimals in the decimal expansion of $x$.
e) Given an $N$ and an $x$, we can, for any $n>N$, find points $a_{k, n}=k \cdot 10^{-n}$ with $\left|x-k \cdot 10^{-n}\right|<10^{-n}$, and hence $T_{k, n}(x) \geq 9 / 10$. On the other hand, by choosing $a_{k, n}$ far away from $x$, we get $T_{k, n}(x)=0$; e.g., if $n$ is so big that $10^{-n}<\frac{x}{10}$, there are points of the form $a_{k, n}$ with distance to $x$ greater than $10^{-(n-1)}$, and hence $T_{k, n}(x)=0$. This shows that arbitrarily far out in the sequence there are $k$ and $n$ for wich $T_{k, n}(x)=0$
and $k$ and $n$ for wich $T_{k, n}(x) \geq 9 / 10$, hence the sequence $\left\{T_{k, n}(x)\right\}$ does not converge.

## Problem 2:

a) The sequence $\left\{\frac{1}{\sqrt{n}}\right\}$ decrease to zero when $n$ tends to infinity. Hence $f(x)=$ $\sum_{n=1}^{\infty} \frac{\sin n x}{\sqrt{n}}$ converges by Dirichlet's criterion (problem 1 on Ark7).
b) The function $f(x)$ can not be in $L_{2}$ since if it were, we would have by Parseval's formula

$$
\sum_{n=1}^{\infty}\left(\frac{1}{\sqrt{n}}\right)^{2}=\sum_{n=1}^{\infty} \frac{1}{n}=\int_{-\pi}^{\pi}|f(x)|^{2} d x<\infty
$$

which is not the case since the harmonic series $\sum_{n=1}^{\infty} \frac{1}{n}$ diverges.

## Problem 3:

a) We find:

$$
\begin{aligned}
c_{n} e^{i n x}+c_{-n} e^{-i n x} & =c_{n} \cos n x+c_{-n} \cos (-n x)+i c_{n} \sin n x+i c_{-n} \sin (-n x) \\
& =\left(c_{n}+c_{-n}\right) \cos n x+i\left(c_{n}-c_{-n}\right) \sin n x .
\end{aligned}
$$

b) If $a_{n}$ and $b_{n}$ are real, we get

$$
\begin{aligned}
& c_{n}+c_{-n}=\overline{c_{n}}+\overline{c_{-n}} \\
& c_{n}-c_{-n}=-\overline{c_{n}}+\overline{c_{-n}},
\end{aligned}
$$

adding the equations gives $2 c_{n}=2 \bar{c}_{-n}$, hence $c_{n}=\overline{c_{-n}}$. The other way is clear: $c_{n}+\overline{c_{n}}$ and $i\left(c_{n}-\overline{c_{n}}\right)$ are obviously equal to their conjugates and hence real. It follows that $a_{n}=c_{n}+\bar{c}_{n}=2 \operatorname{Re} c_{n}$ and $b_{n}=i\left(c_{n}-\bar{c}_{n}\right)=-2 \operatorname{Im} c_{n}$
c) If $f(x)$ is a real function, then the complex conjugate of $c_{n}=\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(x) e^{-i n x} d x$ is equal to $c_{-n}=\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(x) e^{i n x} d x$; so both $a_{n}$ and $b_{n}$ are real. Using the formulas $e^{-i n x}+e^{i n x}=2 \cos n x$ and $e^{-i n x}-e^{i n x}=2 i \sin n x$ we get the formulas in the problem.
d) If $f$ is an odd function, we get since $\cos x$ is even, that $\int_{-\pi}^{0} f(x) \cos n x d x=$ $-\int_{0}^{\pi} f(x) \cos n x d x$ (substitute $y=-x$ ), hence $a_{n}=0$
e) If $f(x)$ is even, the $f(x) \sin n x$ is odd, $\operatorname{since} \sin n x$ is odd. It follows that $b_{n}=0$.

Problem 4: Assume first that $a \in[-\pi, \pi]$. Then we have

$$
\begin{aligned}
\int_{a}^{a+2 \pi} f(x) d x & =\int_{a}^{\pi} f(x) d x+\int_{\pi}^{a+2 \pi} f(x) d x= \\
& =\int_{a}^{\pi} f(x) d x+\int_{-\pi}^{a} f(x) d x= \\
& =\int_{-\pi}^{\pi} f(x) d x
\end{aligned}
$$

where we substituted $x-2 \pi$ for $x$ in the last integral in the second formula.
If $a \notin[-\pi, \pi]$, we can write $a=a^{\prime}+2 k \pi$ where $k$ is an integer and $a^{\prime} \in[-\pi, \pi]$. Substitute $x-2 k \pi$ for $x$ to get

$$
\int_{a}^{a+2 \pi} f(x) d x=\int_{a^{\prime}}^{a^{\prime}+2 \pi} f(x) d x
$$

Problem 5: We substitute $u=x-a$ in the integral defining the Fourier coefficient $c_{n}(f(x))$ and use problem 4 to obtain:

$$
\begin{aligned}
c_{n}(f(x))=\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(x) e^{-i n x} d x & =\frac{1}{2 \pi} \int_{-\pi-a}^{\pi+a} f(u+a) e^{-i n(u+a)} d u= \\
\frac{1}{2 \pi} e^{-i n a} \int_{-\pi}^{\pi} f(u+a) e^{-i n u} d u & =e^{-i n a} c_{n}(f(x+a)) .
\end{aligned}
$$

## Problem 6. 7

a) By using the formula in the hint with $\alpha=k x$ and $\beta=x / 2$ we get by the "telescoping the property" of the sum:

$$
\begin{aligned}
\sum_{k=0}^{n} \sin k x & =\frac{1}{2 \sin \frac{x}{2}} \sum_{k=1}^{n}(\cos (k-1 / 2) x-\cos (k+1 / 2) x) \\
& =\frac{\cos \frac{x}{2}-\cos \left(n+\frac{1}{2}\right) x}{2 \sin \frac{x}{2}}
\end{aligned}
$$

b) By using the formula in the hint with $\alpha=k x$ and $\beta=x / 2$ we get by the "telescoping the property" of the sum:

$$
\begin{aligned}
\sum_{k=0}^{n} \cos k x & =\frac{1}{2 \sin \frac{x}{2}} \sum_{k=0}^{n}(\sin (k+1 / 2) x-\sin (k-1 / 2) x) \\
& =\frac{\sin \frac{x}{2}+\sin \left(n+\frac{1}{2}\right) x}{2 \sin \frac{x}{2}}
\end{aligned}
$$

c) This is a slightly delicate point which we come back to in a later problem. The point is that both $\sin \left(n+\frac{1}{2}\right) x$ and $\cos \left(n+\frac{1}{2}\right) x$ oscillates strongly, in fact if $x$ is irrational, the sets $\left\{\sin \left(n+\frac{1}{2}\right) x: n \in \mathbb{N}\right\}$ an $\left\{\cos \left(n+\frac{1}{2}\right) x: n \in \mathbb{N}\right\}$ are dense in $[-1,1]$, so the above formulas show that neither of the series $\sum_{k=0}^{\infty} \sin k x$ and $\sum_{k=0}^{\infty} \cos k x$ converges

## Problem 12:

a) We compute:

$$
\begin{aligned}
\frac{1}{2 \pi} \int_{-\pi}^{\pi} e^{i z t} e^{-i n t} d t & =\frac{1}{2 \pi} \int_{-\pi}^{\pi} e^{i(z-n) t} d t=\left.\frac{1}{2 \pi i(z-n)}\right|_{-\pi} ^{\pi} e^{i(z-n) t}= \\
\frac{1}{2 \pi i(z-n)}\left(e^{i(z-n) \pi}-e^{-i(z-n) \pi}\right) & =\frac{e^{n \pi}}{2 \pi i(z-n)}\left(e^{i z \pi}-e^{-i z \pi}\right)=\frac{(-1)^{n} \sin \pi z}{\pi(z-n)} .
\end{aligned}
$$

b) We compute the $L_{2}$-norm of $e^{i x t}$ for $x \in \mathbb{R}$ :

$$
\left\|e^{i x t}\right\|_{2}^{2}=\frac{1}{2 \pi} \int_{-\pi}^{\pi} e^{i x t} e^{-i x t} d t=\frac{1}{2 \pi} \int_{-\pi}^{\pi} d t=1 .
$$

The Parseval-identity then gives the result since $\left|c_{n}\right|^{2}=\frac{\sin ^{2} \pi x}{\pi^{2}(x-n)^{2}}$
c) To get the Fourier coefficients of $e^{x}$, we put $z=-i$ in the formula in a). That gives us

$$
c_{n}=(-1)^{n} \frac{e^{i(-i \pi)}-e^{i(i \pi)}}{2 \pi i(i-n)}=(-1)^{n+1} \frac{e^{\pi}-e^{-\pi}}{2 \pi} \frac{(n+i) i}{n^{2}+1}
$$

Hence

$$
e^{x}=\frac{e^{\pi}-e^{-\pi}}{2 \pi} \sum_{n=-\infty}^{\infty}(-1)^{n+1} \frac{(n+i) i e^{i n x}}{n^{2}+1} .
$$

