UNIVERSITY OF OSLO
 Faculty of mathematics and natural sciences

Examination in MAT2400 - Analysis 1.
Day of examination: August ??, 2011.
Examination hours: ??-??
This problem set consists of 2 pages.
Appendices: None.
Permitted aids: None.

Please make sure that your copy of the problem set is complete before you attempt to answer anything.

All items (1, 2, 3a, 3b etc.) count 10 points each.

Problem 1

The function $f:[-\pi, \pi] \rightarrow \mathbb{R}$ is defined by

$$
f(x)= \begin{cases}0 & \text { if } x \in[-\pi, 0) \\ 1 & \text { if } x \in[0, \pi]\end{cases}
$$

a) Show that if $n \in \mathbb{Z}$, then

$$
\int_{-\pi}^{\pi} f(x) e^{-i n x} d x= \begin{cases}\pi & \text { if } n=0 \\ 0 & \text { if } n \text { is even and different from } 0 \\ -\frac{2 i}{n} & \text { if } n \text { is odd }\end{cases}
$$

b) Find the Fourier series of f. To which function does this series converge pointwise? Is the convergence uniform?
c) Show that the Fourier series can be written

$$
\frac{1}{2}+\sum_{k=0}^{\infty} \frac{2 \sin ((2 k+1) x)}{\pi(2 k+1)}
$$

Problem 2

If (X, d) is a metric space, and $\left\{x_{n}\right\}$ is a sequence in X, we call $a \in X$ a limit point for $\left\{x_{n}\right\}$ if there is a subsequence of $\left\{x_{n}\right\}$ converging to a. Show that a is a limit point for $\left\{x_{n}\right\}$ if and only if all balls $B(a ; r), r>0$, centered at a contain infinitely many terms of the sequence.

Problem 3

In this problem μ is the Lebesgue measure on \mathbb{R}^{d}, and B_{n} is the ball

$$
B_{n}=\left\{x \in \mathbb{R}^{d}:\|x\| \leq n\right\}
$$

a) Show that if $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ is a nonnegative, measurable function, then

$$
\lim _{n \rightarrow \infty} \int_{B_{n}} f d \mu=\int f d \mu
$$

b) Show that if $g: \mathbb{R}^{d} \rightarrow \mathbb{R}$ is an integrable function, then

$$
\lim _{n \rightarrow \infty} \int_{B_{n}} g d \mu=\int g d \mu
$$

Problem 4

In this problem X is the set of all functions

$$
f: \mathbb{N} \rightarrow \mathbb{R}
$$

such that the limit $\lim _{i \rightarrow \infty} f(i)$ exists (the limit should be a number; we do not accept $\pm \infty$ as limit values).
a) Show that
(i) If $f \in X$ and $c \in \mathbb{R}$, then $c f \in X$.
(ii) If $f, g \in X$, then $f+g \in X$.

The result in a) tells us that X is a vector space. You may use this freely in what follows.
b) Show that $\sup \{|f(i)|: i \in \mathbb{N}\}$ is finite for all $f \in X$.
c) Show that

$$
\|f\|=\sup \{|f(i)|: i \in \mathbb{N}\}
$$

is a norm on X.
d) Show that X is complete.

Problem 5

In this problem $\left(X, d_{X}\right)$ and $\left(Y, d_{Y}\right)$ are two compact metric spaces, and $f: X \rightarrow Y$ is an invertible, continuous function. Show that the inverse function $g: Y \rightarrow X$ is continuous.

