
MATH2400 Exam August 2013. Solution

Poblem 1: Since f is bounded, there is a constant M ∈ R such that |f(t)| ≤
M for all t. Hence if y ≤ x,

|F (x)− F (y)| = |
∫ x

0

f(t) dt−
∫ y

0

f(t) dt| = |
∫ x

y

f(t) dt| ≤

≤
∫ x

y

|f(t)| dt ≤
∫ x

y

M dt = M(x− y)

Given ε > 0, we may choose δ = ε
M

and have |F (x) − F (y)| < ε whenever
|x− y| < δ. This shows that F is uniformly continuous.

The problem may also be solved using the Mean Value Thorem.

Problem 2: Let ε > 0. Since {xn} is a Cauchy sequence, there is a number
N1 ∈ N such that ||xn − xm|| < ε

2
when n,m ≥ N1. Similarly, since {yn} is a

Cauchy sequence, there is a number N2 ∈ N such that ||yn − ym|| < ε
2

when
n,m ≥ N2. Choose N = max{N1, N2}, then if n,m ≥ N

||(xn + yn)− (xm + ym)|| = ||(xn − xm) + (yn − ym)|| ≤

≤ ||xn − xm||+ ||yn − ym|| <
ε

2
+
ε

2
= ε

This shows that {xn + yn} is a Cauchy sequence.

Problem 3: a) Let ε > 0; we must show that there is an N ∈ N such that
when n ≥ N , |f(gn(x)) − f(g(x))| < ε for all x ∈ R. Since f is uniformly
continuous, there is a δ > 0 such that |f(u)−f(v)| < ε whenever |u−v| < δ,
and since {gn} converges uniformly to g, there is an N ∈ N such that when
n ≥ N , |gn(x) − g(x)| < δ for all x. This means that for n ≥ N , we have
|f(gn(x))− f(g(x))| < ε for all x ∈ R just as we wanted.

b) Since |gn(x)−g(x)| = 1
n
, the sequence {gn} clearly converges uniformly

to g (given ε > 0, just choose N > 1
ε

to get |gn(x) − g(x)| = ε for all x and
all n ≥ N).

On the other hand, since

|f(gn(x))− f(g(x))| = |(x+
1

n
)2 − x2| = |2x

n
+

1

n2
|

1



we see that no matter how big n is, we can get |f(gn(x)) − f(g(x))| as big
as we want by choosing x appropriately, and hence f(gn(x)) does not con-
verge uniformly to f(g(x)). The reason this do not contradict part a), is that
f(x) = x2 is not uniformly continuous as required there.

Problem 4: a) Assume that {x}n converges to x in norm. By Cauchy-
Schwarz’ inequality

|〈x− xn, a〉| ≤ ||x− xn||||a|| → 0

for all a ∈ X, and hence {x}n converges weakly to x.

b) Any a ∈ X can be written as a sum a =
∑∞

i=0 αiei, where ||a||2 =∑∞
i=1 α

2
i . Since the series converges, limi→∞ αi = 0, and we get

〈en − 0, a〉 = 〈en,
∞∑
i=0

αiei〉 =
∞∑
i=1

αi〈en, ei〉 = αn → 0

which shows that {x}n converges weakly to 0. As ||en − 0|| = ||en|| = 1, the
sequence does not converge to 0 in norm.

Problem 5: a) All closed balls in Rm are compact since they are closed and
bounded.

b) First note that if n 6= m,

||en−em||2 = 〈en−em, en−em〉 = 〈en, en〉−2〈en, em〉+〈em, em〉 = 1−2·0+1 = 2

and hence ||en − em|| =
√

2.
Let B(0, r) be a closed ball around the origin. The sequence {ren}

lies in this ball, but no subsequence of it can be a Cauchy sequence since
||ren − rem|| = r||en − em|| = r

√
2 whenever n 6= m. Hence {ren} does not

have a convergent subsequence, and B(0, r) is not compact for any r > 0.

Problem 6: a) Since ||fn− 0||1 =
∫
|fn− 0| dµ =

∫
fn dµ = 1, {fn} does not

converge to 0 in L1-norm. On the other hand, if ε > 0,

µ({x ∈ X : |f(x)− 0| ≥ ε}) ≤ 1

n
→ 0 as n→∞

which shows that {fn} converges to 0 in measure.
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b) The sequence consists of simple functions. The first element is the
simple function of the entire interval [0,1], then come the simple functions of
the intervals [0, 1

2
] and [1

2
, 1], followed by the simple functions of the intervals

[0, 1
3
], [1

3
, 2
3
] and [2

3
, 1]. Continuing in this manner, we get a sequence that

clearly converges to 0 in measure (as the intervals get shorter and shorter),
but which doesn’t converge at any point x (since x will be contained in in-
finitely many of the intervals).

c) We argue contrapositively: Assume that {fn} does not converge to f
in measure. This means that there is an ε > 0 such that

µ({x ∈ X : |fn(x)− f(x)| ≥ ε})

does not go 0, and hence there is an α > 0 such that

µ({x ∈ X : |fn(x)− f(x)| ≥ ε}) ≥ α

for infinitely many n. For these n,

||fn − f ||1 =

∫
|fn − f | dµ ≥ εα,

and hence {fn} cannot converge to f in L1-norm.

d) Assume that ε > 0, and let

BN = {x ∈ X : there exists n ≥ N such that |fn(x)− f(x)| ≥ ε}) =

=
⋃
n≥N

{x ∈ X : |fn(x)− f(x)| ≥ ε})

The sets BN are measurable, the sequence {BN} is decreasing, and since
{fn} converges to f almost everywhere, µ(

⋂
N∈NBN) = 0. By continuity of

measure, µ(BN)→ 0, and hence

µ({x ∈ X : |fN(x)− f(x)| ≥ ε})→ 0

since {x ∈ X : |fN(x) − f(x)| ≥ ε} ⊂ BN . This proves convergence in
measure.
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