MATH2400 Exam August 2013. Solution

Poblem 1: Since f is bounded, there is a constant $M \in \mathbb{R}$ such that $|f(t)| \leq$ M for all t. Hence if $y \leq x$,

$$
\begin{gathered}
|F(x)-F(y)|=\left|\int_{0}^{x} f(t) d t-\int_{0}^{y} f(t) d t\right|=\left|\int_{y}^{x} f(t) d t\right| \leq \\
\leq \int_{y}^{x}|f(t)| d t \leq \int_{y}^{x} M d t=M(x-y)
\end{gathered}
$$

Given $\epsilon>0$, we may choose $\delta=\frac{\epsilon}{M}$ and have $|F(x)-F(y)|<\epsilon$ whenever $|x-y|<\delta$. This shows that F is uniformly continuous.

The problem may also be solved using the Mean Value Thorem.
Problem 2: Let $\epsilon>0$. Since $\left\{\mathbf{x}_{n}\right\}$ is a Cauchy sequence, there is a number $N_{1} \in \mathbb{N}$ such that $\left\|\mathbf{x}_{n}-\mathbf{x}_{m}\right\|<\frac{\epsilon}{2}$ when $n, m \geq N_{1}$. Similarly, since $\left\{\mathbf{y}_{n}\right\}$ is a Cauchy sequence, there is a number $N_{2} \in \mathbb{N}$ such that $\left\|\mathbf{y}_{n}-\mathbf{y}_{m}\right\|<\frac{\epsilon}{2}$ when $n, m \geq N_{2}$. Choose $N=\max \left\{N_{1}, N_{2}\right\}$, then if $n, m \geq N$

$$
\begin{gathered}
\left\|\left(\mathbf{x}_{n}+\mathbf{y}_{n}\right)-\left(\mathbf{x}_{m}+\mathbf{y}_{m}\right)\right\|=\left\|\left(\mathbf{x}_{n}-\mathbf{x}_{m}\right)+\left(\mathbf{y}_{n}-\mathbf{y}_{m}\right)\right\| \leq \\
\leq\left\|\mathbf{x}_{n}-\mathbf{x}_{m}\right\|+\left\|\mathbf{y}_{n}-\mathbf{y}_{m}\right\|<\frac{\epsilon}{2}+\frac{\epsilon}{2}=\epsilon
\end{gathered}
$$

This shows that $\left\{\mathbf{x}_{n}+\mathbf{y}_{n}\right\}$ is a Cauchy sequence.
Problem 3: a) Let $\epsilon>0$; we must show that there is an $N \in \mathbb{N}$ such that when $n \geq N,\left|f\left(g_{n}(x)\right)-f(g(x))\right|<\epsilon$ for all $x \in \mathbb{R}$. Since f is uniformly continuous, there is a $\delta>0$ such that $|f(u)-f(v)|<\epsilon$ whenever $|u-v|<\delta$, and since $\left\{g_{n}\right\}$ converges uniformly to g, there is an $N \in \mathbb{N}$ such that when $n \geq N,\left|g_{n}(x)-g(x)\right|<\delta$ for all x. This means that for $n \geq N$, we have $\left|f\left(g_{n}(x)\right)-f(g(x))\right|<\epsilon$ for all $x \in \mathbb{R}$ just as we wanted.
b) Since $\left|g_{n}(x)-g(x)\right|=\frac{1}{n}$, the sequence $\left\{g_{n}\right\}$ clearly converges uniformly to g (given $\epsilon>0$, just choose $N>\frac{1}{\epsilon}$ to get $\left|g_{n}(x)-g(x)\right|=\epsilon$ for all x and all $n \geq N$).

On the other hand, since

$$
\left|f\left(g_{n}(x)\right)-f(g(x))\right|=\left|\left(x+\frac{1}{n}\right)^{2}-x^{2}\right|=\left|\frac{2 x}{n}+\frac{1}{n^{2}}\right|
$$

we see that no matter how big n is, we can get $\left|f\left(g_{n}(x)\right)-f(g(x))\right|$ as big as we want by choosing x appropriately, and hence $f\left(g_{n}(x)\right)$ does not converge uniformly to $f(g(x))$. The reason this do not contradict part a), is that $f(x)=x^{2}$ is not uniformly continuous as required there.

Problem 4: a) Assume that $\{\mathbf{x}\}_{n}$ converges to \mathbf{x} in norm. By CauchySchwarz' inequality

$$
\left|\left\langle\mathbf{x}-\mathbf{x}_{n}, \mathbf{a}\right\rangle\right| \leq\left\|\mathbf{x}-\mathbf{x}_{n}\right\|\|\mathbf{a}\| \rightarrow 0
$$

for all $\mathbf{a} \in X$, and hence $\{\mathbf{x}\}_{n}$ converges weakly to \mathbf{x}.
b) Any $\mathbf{a} \in X$ can be written as a sum $\mathbf{a}=\sum_{i=0}^{\infty} \alpha_{i} \mathbf{e}_{i}$, where $\|\mathbf{a}\|^{2}=$ $\sum_{i=1}^{\infty} \alpha_{i}^{2}$. Since the series converges, $\lim _{i \rightarrow \infty} \alpha_{i}=0$, and we get

$$
\left\langle\mathbf{e}_{n}-\mathbf{0}, \mathbf{a}\right\rangle=\left\langle\mathbf{e}_{n}, \sum_{i=0}^{\infty} \alpha_{i} \mathbf{e}_{i}\right\rangle=\sum_{i=1}^{\infty} \alpha_{i}\left\langle\mathbf{e}_{n}, \mathbf{e}_{i}\right\rangle=\alpha_{n} \rightarrow 0
$$

which shows that $\{\mathbf{x}\}_{n}$ converges weakly to $\mathbf{0}$. As $\left\|\mathbf{e}_{n}-\mathbf{0}\right\|=\left\|\mathbf{e}_{n}\right\|=1$, the sequence does not converge to $\mathbf{0}$ in norm.

Problem 5: a) All closed balls in \mathbb{R}^{m} are compact since they are closed and bounded.
b) First note that if $n \neq m$,
$\left\|\mathbf{e}_{n}-\mathbf{e}_{m}\right\|^{2}=\left\langle\mathbf{e}_{n}-\mathbf{e}_{m}, \mathbf{e}_{n}-\mathbf{e}_{m}\right\rangle=\left\langle\mathbf{e}_{n}, \mathbf{e}_{n}\right\rangle-2\left\langle\mathbf{e}_{n}, \mathbf{e}_{m}\right\rangle+\left\langle\mathbf{e}_{m}, \mathbf{e}_{m}\right\rangle=1-2 \cdot 0+1=2$
and hence $\left\|\mathbf{e}_{n}-\mathbf{e}_{m}\right\|=\sqrt{2}$.
Let $\overline{\mathrm{B}}(\mathbf{0}, r)$ be a closed ball around the origin. The sequence $\left\{r \mathbf{e}_{n}\right\}$ lies in this ball, but no subsequence of it can be a Cauchy sequence since $\left\|r \mathbf{e}_{n}-r \mathbf{e}_{m}\right\|=r\left\|\mathbf{e}_{n}-\mathbf{e}_{m}\right\|=r \sqrt{2}$ whenever $n \neq m$. Hence $\left\{r \mathbf{e}_{n}\right\}$ does not have a convergent subsequence, and $\overline{\mathrm{B}}(\mathbf{0}, r)$ is not compact for any $r>0$.

Problem 6: a) Since $\left\|f_{n}-0\right\|_{1}=\int\left|f_{n}-0\right| d \mu=\int f_{n} d \mu=1,\left\{f_{n}\right\}$ does not converge to 0 in L^{1}-norm. On the other hand, if $\epsilon>0$,

$$
\mu(\{x \in X:|f(x)-0| \geq \epsilon\}) \leq \frac{1}{n} \rightarrow 0 \quad \text { as } n \rightarrow \infty
$$

which shows that $\left\{f_{n}\right\}$ converges to 0 in measure.
b) The sequence consists of simple functions. The first element is the simple function of the entire interval $[0,1]$, then come the simple functions of the intervals $\left[0, \frac{1}{2}\right]$ and $\left[\frac{1}{2}, 1\right]$, followed by the simple functions of the intervals $\left[0, \frac{1}{3}\right],\left[\frac{1}{3}, \frac{2}{3}\right]$ and $\left[\frac{2}{3}, 1\right]$. Continuing in this manner, we get a sequence that clearly converges to 0 in measure (as the intervals get shorter and shorter), but which doesn't converge at any point x (since x will be contained in infinitely many of the intervals).
c) We argue contrapositively: Assume that $\left\{f_{n}\right\}$ does not converge to f in measure. This means that there is an $\epsilon>0$ such that

$$
\mu\left(\left\{x \in X:\left|f_{n}(x)-f(x)\right| \geq \epsilon\right\}\right)
$$

does not go 0 , and hence there is an $\alpha>0$ such that

$$
\mu\left(\left\{x \in X:\left|f_{n}(x)-f(x)\right| \geq \epsilon\right\}\right) \geq \alpha
$$

for infinitely many n. For these n,

$$
\left\|f_{n}-f\right\|_{1}=\int\left|f_{n}-f\right| d \mu \geq \epsilon \alpha
$$

and hence $\left\{f_{n}\right\}$ cannot converge to f in L^{1}-norm.
d) Assume that $\epsilon>0$, and let

$$
\begin{aligned}
B_{N}=\{x \in X: & \text { there exists } \left.\left.n \geq N \text { such that }\left|f_{n}(x)-f(x)\right| \geq \epsilon\right\}\right)= \\
& \left.=\bigcup_{n \geq N}\left\{x \in X:\left|f_{n}(x)-f(x)\right| \geq \epsilon\right\}\right)
\end{aligned}
$$

The sets B_{N} are measurable, the sequence $\left\{B_{N}\right\}$ is decreasing, and since $\left\{f_{n}\right\}$ converges to f almost everywhere, $\mu\left(\bigcap_{N \in \mathbb{N}} B_{N}\right)=0$. By continuity of measure, $\mu\left(B_{N}\right) \rightarrow 0$, and hence

$$
\mu\left(\left\{x \in X:\left|f_{N}(x)-f(x)\right| \geq \epsilon\right\}\right) \rightarrow 0
$$

since $\left\{x \in X:\left|f_{N}(x)-f(x)\right| \geq \epsilon\right\} \subset B_{N}$. This proves convergence in measure.

