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All items (1, 2, 3, 4a, 4b etc.) count 10 points each.

Problem 1

Show that if f : R → R is a bounded, continuous function, then F (x) =∫ x
0 f(t) dt is uniformly continuous on R.

Problem 2

Assume that {xn} and {yn} are two Cauchy sequences in a normed space
(X, || · ||). Show that {xn + yn} is also a Cauchy sequence.

Problem 3
a) Assume that f : R → R is a uniformly continuous function and that
{gn} is a sequence of functions gn : R → R converging uniformly
to g : R → R. Show that the functions hn(x) = f(gn(x)) converge
uniformly to h(x) = f(g(x)).

b) Let f(x) = x2 and gn(x) = x + 1
n . Show that the functions gn(x)

converge uniformly to g(x) = x, but that the functions f(gn(x)) do
not converge uniformly to f(g(x)). Why doesn’t this contradict part
a)?

Problem 4

A metric space (X, d) is called locally compact if there around every point
x ∈ X is a closed ball B(x; r), r > 0, which is compact.

a) Show that Rm (with the usual metric) is locally compact.

b) Assume that (X, 〈·, ·〉) is an inner product over R with orthonormal
basis {en}n∈N. Show that X is not locally compact. It may be
advantageous first to show that ||en − em|| =

√
2 when n 6= m.

(Continued on page 2.)
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Problem 5

In this problem (X, 〈·, ·〉) is an inner product space over R, and || · || is the
norm generated by 〈·, ·〉. If {x}n∈N is a sequence of elements in X, we say
that {xn} converges to x ∈ X in norm if limn→∞ ||x− xn|| = 0 (this is just
the usual kind of convergence in a normed space). We say that the sequence
{xn} converges weakly to x ∈ X if limn→∞〈x− xn,a〉 = 0 for all a ∈ X.

a) Show that if {xn} converges to x in norm, then {xn} also converges
weakly to x.

b) Assume that {en}n∈N is an orthonormal basis for X. Show that the
sequence {e}n∈N converges weakly to 0, but that it doesn’t converge
to 0 in norm.

Problem 6

In this problem µ is the Lebesgue measure on the interval [0, 1], and all
functions are measurable functions from [0, 1] to R. We say that the sequence
{fn} converges to f in measure if

lim
n→∞

µ({x ∈ X : |f(x)− fn(x)| ≥ ε})→ 0

for all ε > 0.

a) Define fn : [0, 1]→ R by

fn(x) =


n if x ∈ [0, 1n ]

0 otherwise

Show that the sequence {fn} converges to 0 in measure, but that it
does not converge to 0 in L1-norm.

b) Give an example of a sequence {fn} which converges to 0 in measure,
but such that {fn(x)} does not converge to 0 at any point x ∈ [0, 1].

c) Show that if {fn} converges to f in L1-norm, then {fn} converges to
f in measure.

d) Show that if {fn} converges to f almost everywhere, then {fn}
converges to f in measure.

The End


