MAT2400: Solution to the exam 2. June, 2014

Problem 1: a) We shall prove that $\left\{f_{n}\right\}$ converges pointwise to 0 . For $x=0$ this is obvious as $f_{n}(0)=0$ for all n. For $x \neq 0$, we note that

$$
f_{n}(x)=n^{2} x^{2} e^{-n x}=\frac{n^{2} x^{2}}{e^{n x}}
$$

which shows that $f_{n}(x) \rightarrow 0$ as the exponential $e^{n x}$ grows faster than the polynomial n^{2}. An alternative justification is to note that by L'Hôpital's rule (remember to differentiate with respect to n):

$$
\lim _{n \rightarrow \infty} \frac{n^{2} x^{2}}{e^{n x}} \stackrel{L^{\prime} H}{=} \lim _{n \rightarrow \infty} \frac{2 n x^{2}}{x e^{n x}}=\lim _{n \rightarrow \infty} \frac{2 n x}{e^{n x}} \stackrel{L^{\prime} H}{=} \lim _{n \rightarrow \infty} \frac{2 x}{x e^{n x}}=0
$$

b) The convergence is not uniform. The simplest way to see this, is probably to note that $f_{n}(1 / n)=e^{-1}$, which means that the distance from f_{n} to 0 is always at least e^{-1}.

If you don't see this, the standard method is to compute the maximal distance $\left|f_{n}(x)-0\right|$ between f_{n} and the limit function 0 as x varies. Since $\left|f_{n}(x)-0\right|=f_{n}(x)$, we differentiate $f_{n}(x)$ to find the maximum:

$$
f_{n}^{\prime}(x)=2 n^{2} x e^{-n x}-n^{3} x^{2} e^{-n x}=n^{2} x e^{-n x}(2-n x)
$$

This implies that the maximum is at $x=\frac{2}{n}$ and that the maximal value is

$$
f_{n}(2 / n)=n^{2}\left(\frac{2}{n}\right)^{2} e^{-n \cdot \frac{2}{n}}=4 e^{-2}
$$

Since the maximum value does not go to 0 , the convergence is not uniform.

Problem 2: Let $\left\{y_{n}\right\}$ be a Cauchy sequence in X_{2}; we must prove that it converges. Since ϕ is a bijection, there are points x_{n} in X_{1} such that $\phi\left(x_{n}\right)=y_{n}$, and since ϕ is an isometry, $d_{1}\left(x_{n}, x_{m}\right)=d_{2}\left(y_{n}, y_{m}\right)$. This means that $\left\{x_{n}\right\}$ is also a Cauchy sequence, and since X_{1} is complete, it must converge to a point $x \in X_{1}$. Let $y=\phi(x)$. Then

$$
d_{2}\left(y, y_{n}\right)=d_{2}\left(\phi(x), \phi\left(x_{n}\right)\right)=d_{1}\left(x, x_{n}\right) \rightarrow 0 \quad \text { as } n \rightarrow \infty
$$

and hence $\left\{y_{n}\right\}$ converges to y.

Problem 3: If $\mu(X)<\infty$, the constant function $g=M$ is integrable since $\int g d \mu=M \mu(X)<\infty$. Hence we can use Lebesgue's Dominated Convergence Theorem with g as the dominating function to get

$$
\lim _{n \rightarrow \infty} \int f_{n} d \mu=\int f d \mu
$$

To find a counterexample (there are many!), let $(\mathbb{R}, \mathcal{A}, \mu)$ be the usual Lebesgue measure space, and choose

$$
f_{n}(x)= \begin{cases}1 & \text { if } n \leq x<n+1 \\ 0 & \text { otherwise }\end{cases}
$$

Note that $\int f_{n} d \mu=1$ for all n, but that since $\left\{f_{n}\right\}$ converges pointwise to $f=0$, we have $\int f d \mu=0$. This means that $\int f_{n} d \mu$ does not converge to $\int f d \mu$ in this case.

Problem 4: a) Pick a set $A \in \mathcal{D}$ (such a set exists since \mathcal{D} is nonempty.) By (i), A^{c} is in \mathcal{D}, and by (ii) so is $\emptyset=A \cap A^{c}$.
b) We use induction on n. For $n=2$ the statement holds as it is identical to condition (ii). We proceed by induction and assume that the statement holds for $n=k$, i.e. $A_{1} \cap A_{2} \cap \ldots \cap A_{k} \in \mathcal{D}$. By (ii), we then get

$$
A_{1} \cap A_{2} \cap \ldots \cap A_{k} \cap A_{k+1}=\left(A_{1} \cap A_{2} \cap \ldots \cap A_{k}\right) \cap A_{k+1} \in \mathcal{D}
$$

which shows that the statement holds for $k+1$. By induction, it holds for all n.
c) We use b) and one of De Morgan's laws: Since $A_{1}, A_{2}, \ldots, A_{n} \in$ \mathcal{D}, we have $A_{1}^{c}, A_{2}^{c}, \ldots, A_{n}^{c} \in \mathcal{D}$ by (i). By b), $A_{1}^{c} \cap A_{2}^{c} \cap \ldots \cap A_{n}^{c} \in \mathcal{D}$, and by (i) and De Morgan's law

$$
A_{1} \cup A_{2} \cup \ldots \cup A_{n}=\left(A_{1}^{c} \cap A_{2}^{c} \cap \ldots \cap A_{n}^{c}\right)^{c} \in \mathcal{D}
$$

d) From a) we know that $\emptyset \in \mathcal{D}$, and by (i) we know that if $A \in \mathcal{D}$, then $A^{c} \in \mathcal{D}$. Hence it suffices to show that if $\left\{B_{n}\right\}$ is a sequence of sets in \mathcal{D}, then $\bigcup_{n \in \mathbb{N}} B_{n} \in \mathcal{D}$. The obvious plan is to use condition (iii), but we first need to turn $\left\{B_{n}\right\}$ into a disjoint sequence $\left\{A_{n}\right\}$.

We define

$$
A_{1}=B_{1}, A_{2}=B_{2} \cap B_{1}^{c}, \ldots, A_{n}=B_{n} \cap\left(B_{1} \cup B_{2} \cup \ldots \cup B_{n-1}\right)^{c}, \ldots
$$

and observe that by (i), b) and c), all the A_{n} 's are in \mathcal{D}. Since they are also disjoint by construction, we can use (iii) to conclude that

$$
\bigcup_{n \in \mathbb{N}} B_{n}=\bigcup_{n \in \mathbb{N}} A_{n} \in \mathcal{D}
$$

Problem 5: a) We have to check that d satisfies the three properties of a metric.
(i) Positivity: We have $d(x, y)=d_{1}(x, y)+d_{2}(x, y) \geq 0$ with equality if and only if $x=y$ since this holds for d_{1} and d_{2}.
(ii) Symmetry: $d(x, y)=d_{1}(x, y)+d_{2}(x, y)=d_{1}(y, x)+d_{2}(y, x)=$ $d(y, x)$ since d_{1} and d_{2} are symmetric.
(iii) Triangle inequality: For all points $x, y, z \in X$, we have

$$
\begin{gathered}
d(x, y)=d_{1}(x, y)+d_{2}(x, y) \leq d_{1}(x, z)+d_{1}(z, y)+d_{2}(x, z)+d_{2}(z, y) \\
=d_{1}(x, z)+d_{2}(x, z)+d_{1}(z, y)+d_{2}(z, y)=d(x, z)+d(z, y)
\end{gathered}
$$

since d_{1} and d_{2} satisfies the triangle inequality.
b) We must show that any sequence $\left\{x_{n}\right\}$ in C has a subsequence that converges to a point $x \in C$ in the d-metric. Since C is compact in the d_{1}-metric, we know that $\left\{x_{n}\right\}$ has a subsequence $\left\{x_{n_{k}}\right\}$ converging to a point $x \in C$ in the d_{1}-metric, and since C is compact in the d_{2} metric, we know that $\left\{x_{n_{k}}\right\}$ has a subsequence $\left\{x_{n_{k_{j}}}\right\}$ converging to a point $y \in C$ in the d_{2}-metric. As a subsequence of $\left\{x_{n_{k}}\right\},\left\{x_{n_{k_{j}}}\right\}$ also has to converge to x in the d_{1}-metric, and since the two metrics are compatible, this mean that $x=y$. Hence

$$
d\left(x_{n_{k_{j}}}, x\right)=d_{1}\left(x_{n_{k_{j}}}, x\right)+d_{2}\left(x_{n_{k_{j}}}, x\right) \rightarrow 0 \quad \text { as } j \rightarrow \infty
$$

This shows that C is compact with respect to d.
Problem 6: a) For the first part, note that if we use the definition of convergence with $\epsilon=1$, we get an $N \in \mathbb{N}$ such that if $n \geq N$, then
$\left|x_{n}-a\right|<1$. It follows that $\left|x_{n}\right|<|a|+1$ for all $n \geq N$. This means that $\left\{x_{n}\right\}$ is bounded by

$$
M=\max \left\{\left|x_{1}\right|,\left|x_{2}\right|, \ldots,\left|x_{n-1}\right|,|a|+1\right\}
$$

For the second part, assume that $\epsilon>0$. Since $\left\{x_{n}\right\}$ converges to a, there is an $N \in \mathbb{N}$ such that $\left|a-x_{n}\right|<\frac{\epsilon}{2}$ when $n \geq N$. By what we have already proved, $\left\{x_{n}\right\}$ is bounded by an $M \in \mathbb{R}$, and hence for any $n \geq N$:

$$
\begin{gathered}
\left|a-y_{n}\right|=\left|a-\frac{x_{1}+x_{2}+\cdot+x_{n}}{n}\right|=\left|\sum_{i=1}^{n} \frac{a-x_{i}}{n}\right| \leq \sum_{i=1}^{n}\left|\frac{a-x_{i}}{n}\right| \leq \\
\leq \sum_{i=1}^{N}\left|\frac{a-x_{i}}{n}\right|+\sum_{i=N+1}^{n}\left|\frac{a-x_{i}}{n}\right| \leq N \frac{|a|+M}{n}+\frac{n-N}{n} \cdot \frac{\epsilon}{2}
\end{gathered}
$$

The last term is always less than $\frac{\epsilon}{2}$, and the next to last term we can get less than $\frac{\epsilon}{2}$ by choosing n large enough. This means that we can get $\left|y_{n}-a\right|<\epsilon$ by choosing n sufficiently large, and hence $\left\{y_{n}\right\}$ converges to a.

