MAT2400: Solution to the exam 2. June, 2014

Problem 1: a) We shall prove that { f,,} converges pointwise to 0. For
x = 0 this is obvious as f,,(0) = 0 for all n. For x # 0, we note that

n?z?

falw) = nPaene = T

which shows that f,(z) — 0 as the exponential " grows faster than
the polynomial n?. An alternative justification is to note that by
L’Hopital’s rule (remember to differentiate with respect to n):

n?z? g .. 2nz? . 2nT pH L 2x
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=0

b) The convergence is not uniform. The simplest way to see this,
is probably to note that f,(1/n) = e~!, which means that the distance
from f, to 0 is always at least e!.

If you don’t see this, the standard method is to compute the maxi-
mal distance | f,,(x) —0| between f,, and the limit function 0 as x varies.
Since |f,(z) — 0] = fu(z), we differentiate f,(z) to find the maximum:

fi(x) = 2n%ze™™ — n®z?e™™ = n*re " (2 — nx)

This implies that the maximum is at x = % and that the maximal value
is

2\ .2

fu(2/n) =n? (—) e = 4e 2

n
Since the maximum value does not go to 0, the convergence is not uni-
form.

Problem 2: Let {y,} be a Cauchy sequence in X5; we must prove that
it converges. Since ¢ is a bijection, there are points z, in X; such that
d(x,) = yn, and since ¢ is an isometry, di(x,, Tm) = do(Yn, Ym). This
means that {z,} is also a Cauchy sequence, and since X; is complete,
it must converge to a point z € X;. Let y = ¢(x). Then

do(y,yn) = da(P(x), p(xy,)) = di(z,2,) = 0 asn — oo

and hence {y,} converges to y.



Problem 3: If u(X) < oo, the constant function g = M is integrable
since [ gdp = Mu(X) < co. Hence we can use Lebesgue’s Dominated
Convergence Theorem with g as the dominating function to get

lim fnduz/fdu
n—oo

To find a counterexample (there are many!), let (R, .4, ) be the usual
Lebesgue measure space, and choose

1 ifn<z<n+1

fn(x) =

0 otherwise

Note that [ f,dp =1 for all n, but that since {f,} converges point-
wise to f = 0, we have [ fdp = 0. This means that [ f,, du does not
converge to [ fdu in this case.

Problem 4: a) Pick a set A € D (such a set exists since D is
nonempty.) By (i), A°is in D, and by (ii) so is ) = AN A°.

b) We use induction on n. For n = 2 the statement holds as it is
identical to condition (ii). We proceed by induction and assume that
the statement holds for n =k, i.e. AN AsN...N A € D. By (ii), we
then get

AlﬂAgﬂ...ﬁAkﬁAkH:(AlﬂAgﬂ...ﬂAk)ﬂAkHGD

which shows that the statement holds for k£ + 1. By induction, it holds
for all n.

¢) We use b) and one of De Morgan’s laws: Since Ay, As, ..., A, €
D, we have A%, A5, ..., Ac € D by (i). By b), AS N ASN...NA° € D,
and by (i) and De Morgan’s law

AJUAU...UA, = (AINASN...NA) €D

d) From a) we know that () € D, and by (i) we know that if A € D,
then A° € D. Hence it suffices to show that if {B,} is a sequence of
sets in D, then J,.y Bn € D. The obvious plan is to use condition
(iii), but we first need to turn {B,} into a disjoint sequence {A,}.
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We define
Al:Bl,AQ:BQHBT,...,ATL:Bnm(BlLJBQU...UBn,l)C,...

and observe that by (i), b) and c), all the A,’s are in D. Since they
are also disjoint by construction, we can use (iii) to conclude that

UB.=J4.€D
neN neN

Problem 5: a) We have to check that d satisfies the three properties
of a metric.

(i) Positivity: We have d(z,y) = di(x,y) +da(z,y) > 0 with equality
if and only if x = y since this holds for d; and ds.

(i) Symmetry: d(z,y) = di(z,y) + da(2,y) = di(y, ) + do(y, x) =
d(y, ) since d; and dy are symmetric.

(iii) Triangle inequality: For all points z,y, z € X, we have

d(z,y) = di(v,y)+da(r,y) < di(z, 2)+di(2,y)+da(z, 2)+da(2, y)

= dl(xv Z) + dg(l’, Z) + dl(za y) + dQ(Zay) = d(l’, Z) + d(Zay)
since d; and dy satisfies the triangle inequality.

b) We must show that any sequence {z,} in C' has a subsequence
that converges to a point x € C' in the d-metric. Since C' is compact in
the di-metric, we know that {z,} has a subsequence {z,, } converging
to a point x € C' in the d;-metric, and since C' is compact in the ds-
metric, we know that {z,, } has a subsequence {a:nk]} converging to a
point y € C' in the dy-metric. As a subsequence of {z,, }, {xnkj} also
has to converge to x in the d;-metric, and since the two metrics are
compatible, this mean that x = y. Hence

d(xnkj , L) = dl(xnkj,x) + dg(l’nkj,l') —0 asj— o0
This shows that C' is compact with respect to d.

Problem 6: a) For the first part, note that if we use the definition of
convergence with ¢ = 1, we get an N € N such that if n > N, then



|z, —a| < 1. It follows that |z,| < |a| 4+ 1 for all n > N. This means
that {x,} is bounded by

M = max{|z1]|,|z2|, ..., |Tn-1],]a| + 1}

For the second part, assume that ¢ > 0. Since {z,} converges to a,
there is an N € N such that |a — z,| < § when n > N. By what we
have already proved, {z,} is bounded by an M € R, and hence for any
n > N:

n

rT1t+x+ -+ a— x; " |a — 2
R e e P Do s E
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Y la— " |a— la] + M n—N €
< : —2 <N =
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The last term is always less than £, and the next to last term we can

29
get less than £ by choosing n large enough. This means that we can get
|yn, — a] < € by choosing n sufficiently large, and hence {y,} converges

to a.



