
MAT2400: Solution to the exam 2. June, 2014

Problem 1: a) We shall prove that {fn} converges pointwise to 0. For
x = 0 this is obvious as fn(0) = 0 for all n. For x 6= 0, we note that

fn(x) = n2x2e−nx =
n2x2

enx

which shows that fn(x) → 0 as the exponential enx grows faster than
the polynomial n2. An alternative justification is to note that by
L’Hôpital’s rule (remember to differentiate with respect to n):

lim
n→∞

n2x2

enx
L′H
= lim

n→∞

2nx2

xenx
= lim

n→∞

2nx

enx
L′H
= lim

n→∞

2x

xenx
= 0

b) The convergence is not uniform. The simplest way to see this,
is probably to note that fn(1/n) = e−1, which means that the distance
from fn to 0 is always at least e−1.

If you don’t see this, the standard method is to compute the maxi-
mal distance |fn(x)−0| between fn and the limit function 0 as x varies.
Since |fn(x)− 0| = fn(x), we differentiate fn(x) to find the maximum:

f ′n(x) = 2n2xe−nx − n3x2e−nx = n2xe−nx(2− nx)

This implies that the maximum is at x = 2
n

and that the maximal value
is

fn(2/n) = n2

(
2

n

)2

e−n·
2
n = 4e−2

Since the maximum value does not go to 0, the convergence is not uni-
form.

Problem 2: Let {yn} be a Cauchy sequence in X2; we must prove that
it converges. Since φ is a bijection, there are points xn in X1 such that
φ(xn) = yn, and since φ is an isometry, d1(xn, xm) = d2(yn, ym). This
means that {xn} is also a Cauchy sequence, and since X1 is complete,
it must converge to a point x ∈ X1. Let y = φ(x). Then

d2(y, yn) = d2(φ(x), φ(xn)) = d1(x, xn)→ 0 as n→∞

and hence {yn} converges to y.
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Problem 3: If µ(X) <∞, the constant function g = M is integrable
since

∫
g dµ = Mµ(X) <∞. Hence we can use Lebesgue’s Dominated

Convergence Theorem with g as the dominating function to get

lim
n→∞

∫
fn dµ =

∫
f dµ

To find a counterexample (there are many!), let (R,A, µ) be the usual
Lebesgue measure space, and choose

fn(x) =

 1 if n ≤ x < n+ 1

0 otherwise

Note that
∫
fn dµ = 1 for all n, but that since {fn} converges point-

wise to f = 0, we have
∫
f dµ = 0. This means that

∫
fn dµ does not

converge to
∫
f dµ in this case.

Problem 4: a) Pick a set A ∈ D (such a set exists since D is
nonempty.) By (i), Ac is in D, and by (ii) so is ∅ = A ∩ Ac.

b) We use induction on n. For n = 2 the statement holds as it is
identical to condition (ii). We proceed by induction and assume that
the statement holds for n = k, i.e. A1 ∩A2 ∩ . . . ∩Ak ∈ D. By (ii), we
then get

A1 ∩ A2 ∩ . . . ∩ Ak ∩ Ak+1 = (A1 ∩ A2 ∩ . . . ∩ Ak) ∩ Ak+1 ∈ D

which shows that the statement holds for k+ 1. By induction, it holds
for all n.

c) We use b) and one of De Morgan’s laws: Since A1, A2, . . . , An ∈
D, we have Ac1, A

c
2, . . . , A

c
n ∈ D by (i). By b), Ac1 ∩ Ac2 ∩ . . . ∩ Acn ∈ D,

and by (i) and De Morgan’s law

A1 ∪ A2 ∪ . . . ∪ An = (Ac1 ∩ Ac2 ∩ . . . ∩ Acn)c ∈ D

d) From a) we know that ∅ ∈ D, and by (i) we know that if A ∈ D,
then Ac ∈ D. Hence it suffices to show that if {Bn} is a sequence of
sets in D, then

⋃
n∈NBn ∈ D. The obvious plan is to use condition

(iii), but we first need to turn {Bn} into a disjoint sequence {An}.
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We define

A1 = B1, A2 = B2 ∩Bc
1, . . . , An = Bn ∩ (B1 ∪B2 ∪ . . . ∪Bn−1)

c, . . .

and observe that by (i), b) and c), all the An’s are in D. Since they
are also disjoint by construction, we can use (iii) to conclude that⋃

n∈N

Bn =
⋃
n∈N

An ∈ D

Problem 5: a) We have to check that d satisfies the three properties
of a metric.

(i) Positivity: We have d(x, y) = d1(x, y) +d2(x, y) ≥ 0 with equality
if and only if x = y since this holds for d1 and d2.

(ii) Symmetry: d(x, y) = d1(x, y) + d2(x, y) = d1(y, x) + d2(y, x) =
d(y, x) since d1 and d2 are symmetric.

(iii) Triangle inequality: For all points x, y, z ∈ X, we have

d(x, y) = d1(x, y)+d2(x, y) ≤ d1(x, z)+d1(z, y)+d2(x, z)+d2(z, y)

= d1(x, z) + d2(x, z) + d1(z, y) + d2(z, y) = d(x, z) + d(z, y)

since d1 and d2 satisfies the triangle inequality.

b) We must show that any sequence {xn} in C has a subsequence
that converges to a point x ∈ C in the d-metric. Since C is compact in
the d1-metric, we know that {xn} has a subsequence {xnk

} converging
to a point x ∈ C in the d1-metric, and since C is compact in the d2-
metric, we know that {xnk

} has a subsequence {xnkj
} converging to a

point y ∈ C in the d2-metric. As a subsequence of {xnk
}, {xnkj

} also

has to converge to x in the d1-metric, and since the two metrics are
compatible, this mean that x = y. Hence

d(xnkj
, x) = d1(xnkj

, x) + d2(xnkj
, x)→ 0 as j →∞

This shows that C is compact with respect to d.

Problem 6: a) For the first part, note that if we use the definition of
convergence with ε = 1, we get an N ∈ N such that if n ≥ N , then
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|xn − a| < 1. It follows that |xn| < |a| + 1 for all n ≥ N . This means
that {xn} is bounded by

M = max{|x1|, |x2|, . . . , |xn−1|, |a|+ 1}

For the second part, assume that ε > 0. Since {xn} converges to a,
there is an N ∈ N such that |a − xn| < ε

2
when n ≥ N . By what we

have already proved, {xn} is bounded by an M ∈ R, and hence for any
n ≥ N :

|a− yn| =
∣∣∣∣a− x1 + x2 + ·+ xn

n

∣∣∣∣ =

∣∣∣∣∣
n∑
i=1

a− xi
n

∣∣∣∣∣ ≤
n∑
i=1

∣∣∣∣a− xin

∣∣∣∣ ≤
≤

N∑
i=1

∣∣∣∣a− xin

∣∣∣∣+
n∑

i=N+1

∣∣∣∣a− xin

∣∣∣∣ ≤ N
|a|+M

n
+
n−N
n
· ε

2

The last term is always less than ε
2
, and the next to last term we can

get less than ε
2

by choosing n large enough. This means that we can get
|yn − a| < ε by choosing n sufficiently large, and hence {yn} converges
to a.
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