UNIVERSITY OF OSLO
 Faculty of mathematics and natural sciences

Examination in MAT2400 - Analysis 1.
Day of examination: Wednesday, June 15th, 2011.
Examination hours: 09.00-13.00
This problem set consists of 3 pages.
Appendices: None.
Permitted aids: None.

Please make sure that your copy of the problem set is complete before you attempt to answer anything.

All items (1, 2, 3a, 3b etc.) count 10 points.

Problem 1

The functions $f_{n}: \mathbb{R} \rightarrow \mathbb{R}$ are defined by

$$
f_{n}(x)=\arctan \left(x^{2 n}\right)
$$

Show that

$$
\lim _{n \rightarrow \infty} f_{n}(x)=\left\{\begin{array}{cl}
\frac{\pi}{2} & \text { if }|x|>1 \\
\frac{\pi}{4} & \text { if }|x|=1 \\
0 & \text { if }|x|<1
\end{array}\right.
$$

Is the convergence uniform?

Problem 2

(X, d) is a metric space, and A is a subset of X. We say that $b \in X$ is an accumulation point for A if any ball $B(b ; r), r>0$, contains a point from A different from b. Show that b is an accumulation point for A if and only if there is a sequence $\left\{x_{n}\right\}$ from A which converges to b and where all the elements are different from b.

Problem 3

In this problem, μ is the Lebesgue measure on \mathbb{R}^{d}, and \mathcal{M}^{+}is the set of non-negative, measurable functions $f: \mathbb{R}^{d} \rightarrow[0, \infty]$. Assume that $I: \mathcal{M}^{+} \rightarrow[0, \infty]$ satisfies the following four conditions:
(i) $I(c f)=c I(f)$ for all $c \in[0, \infty)$ and all $f \in \mathcal{M}^{+}$.
(ii) $I(f+g)=I(f)+I(g)$ for all $f, g \in \mathcal{M}^{+}$.
(iii) $I\left(\mathbf{1}_{A}\right)=\mu(A)$ for all measurable $A \subset \mathbb{R}^{d}$.
(iv) If $\left\{f_{n}\right\}$ is an increasing sequence from \mathcal{M}^{+}converging to f, then $\lim _{n \rightarrow \infty} I\left(f_{n}\right)=I(f)$.
a) Show by induction that

$$
I\left(c_{1} f_{1}+c_{2} f_{2}+\cdots+c_{n} f_{n}\right)=c_{1} I\left(f_{1}\right)+c_{2} I\left(f_{2}\right)+\cdots+c_{n} I\left(f_{n}\right)
$$

for all $n \in \mathbb{N}$, all $c_{1}, c_{2}, \ldots, c_{n} \in[0, \infty)$ and all $f_{1}, f_{2}, \ldots, f_{n} \in \mathcal{M}^{+}$.
b) Show that $I(f)=\int f d \mu$ for all non-negative, simple functions f.
c) Show that $I(f)=\int f d \mu$ for all $f \in \mathcal{M}^{+}$.

Problem 4

In this problem X is the set of all functions

$$
f: \mathbb{N} \rightarrow \mathbb{R}
$$

such that

$$
\sum_{i=1}^{\infty}|f(i)|<\infty
$$

a) Show that
(i) If $f \in X$ and $c \in \mathbb{R}$, then $c f \in X$.
(ii) If $f, g \in X$, then $f+g \in X$.

The result in part a) tells us that X is a vector space. You may use this freely in what follows.
b) Show that

$$
\|f\|=\sum_{i=1}^{\infty}|f(i)|
$$

is a norm on X.
c) For all $n \in \mathbb{N}$, we define $e_{n}: \mathbb{N} \rightarrow \mathbb{R}$ by

$$
e_{n}(i)= \begin{cases}1 & \text { if } i=n \\ 0 & \text { otherwise }\end{cases}
$$

Show that $\left\{e_{n}\right\}_{n \in \mathbb{N}}$ is a basis for X.
d) Show that $\lim _{n \rightarrow \infty}\left\|f-e_{n}\right\|=\|f\|+1$ for all $f \in X$. Why can't $\left\{e_{n}\right\}$ have a convergent subsequence in $(X,\|\cdot\|)$?
e) Show that

$$
B=\{f \in X:\|f\| \leq 1\}
$$

is closed and bounded, but not compact. Is B totally bounded?

Problem 5

In this problem (X, d) is a metric space, A is a subset of $X, f: A \rightarrow \mathbb{R}$ is a uniformly continuous function, and b is a boundary point of A. Show that if $\left\{x_{n}\right\}$ is a sequence from A converging to b, then the sequence $\left\{f\left(x_{n}\right)\right\}$ converges. Find an example which shows that this does not always hold if we only assume that f is continuous.

