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All items (Problems 1, 2, 3a, 3b, osv) count 10 points each.

Problem 1: Show that the sequence fn(x) = nxe−nx
2 converges pointwise

on the interval [0, 1] and decide whether the convergence is uniform.

Problem 2: Assume that (X, d) is a metric space and that {fn} and {gn}
are two sequences of functions from X to R which converge uniformly to f
and g, respectively. Show that {fn + gn} converges uniformly to f + g.

Problem 3: In this problem µ is the Lebesgue measure on R, and A is the
σ-algebra of Lebesgue measurable sets. We write L1(µ) as an abbreviation
of L1(R,A, µ), and we let || · ||1 denote the L1-norm (i.e. ||f ||1 =

∫
|f | dµ).

a) Show that for each f ∈ L1(µ) there is a sequence {gn} of simple
functions converging to f in L1(µ) (i.e. ||f − gn||1 → 0 as n→∞).

For each A ∈ A and each ε > 0 there is a continuous function h : R→ [0, 1]
such that µ({x ∈ R |h(x) 6= 1A(x)}) < ε. You may use this freely (and
without proving it) in the rest of the problem.

b) Show that ||1A − h||1 < ε when A and h are as above.

c) Show that for every simple function g ∈ L1(µ) and every ε > 0 there
is a continuous function h such that ||g − h||1 < ε.

d) Show that for every f ∈ L1(µ) there is a sequence {hn} of continuous
functions such that ||f − hn||1 → 0.

Problem 4: In this problem (H, 〈·, ·〉) is a real Hilbert space (i.e. a complete
inner product space over R) with orthonormal basis {ei}i∈N.

a) Let {un} and {vn} be two sequences in H. Show that if limn→∞ un =
u and limn→∞ vn = v, then limn→∞〈un,vn〉 = 〈u,v〉.

b) Show that if u =
∑∞

i=1 αiei and v =
∑∞

i=1 βiei are two elements in H,
then 〈u,v〉 =

∑∞
i=1 αiβi.

(Continued on page 2.)
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A linear functional on H is a function A : H → R such that

(i) A(αu) = αA(u) for all α ∈ R and u ∈ H.

(ii) A(u+ v) = A(u) +A(v) for all u,v ∈ H.

In the rest of the problem A is a linear functional.

c) Show that

(I) A(
∑n

i=1 αiui) =
∑n

i=1 αiA(ui) for all n ∈ N, all α1, . . . , αn ∈ R
and all u1, . . . ,un ∈ H

(II) A(u− v) = A(u)−A(v) for all u,v ∈ H.

From now on we assume that there is a number M ∈ R such that |A(u)| ≤
M ||u|| for all u ∈ H. (As usual, || · || by is the norm generated by the inner
product 〈·, ·〉, i.e. ||u|| = (〈u,u〉)

1
2 .)

d) Show that A is uniformly continuous.

e) Let βi = A(ei) and show that A(
∑n

i=1 βiei) =
∑n

i=1 β
2
i for all n ∈ N.

Use this to show that
(∑∞

i=1 β
2
i

) 1
2 ≤M .

f) Show that the series
∑∞

i=1 βiei converges in H.

g) Let y =
∑∞

i=1 βiei. Show that A(x) = 〈x,y〉 for all x ∈ H.

The End


