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Problem 1: The functions fn : [0,∞)→ R are given by

fn(x) = n2x2e−nx

a) Show that the sequence {fn} converges pointwise.

b) Does the sequence converge uniformly?

Problem 2: In this problem (X1, d1) and (X2, d2) are two metric spaces.
Assume that (X1, d1) and (X2, d2) are isometric, i.e., there exists a bijection
φ : X1 → X2 such that

d1(x, y) = d2(φ(x), φ(y)) for all x, y ∈ X1.

Show that if (X1, d1) is complete, then (X2, d2) is also complete.

Problem 3: Assume that (X,A, µ) is a measure space. Recall that a
sequence {fn} of functions from X to R is called bounded if there is an
M ∈ R such that |fn(x)| ≤ M for all n ∈ N and all x ∈ X. Assume that
{fn} is a bounded sequence of measurable functions converging pointwise to
a function f . Show that if µ(X) <∞, then

lim
n→∞

∫
fn dµ =

∫
f dµ

Find an example which shows that this is not always the case when µ(X) =
∞.

(Continued on page 2.)
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Problem 4: In this problem X is a nonempty set and D is a nonempty
family of subsets of X such that the following three conditions are satisfied:

(i) If A ∈ D, then Ac ∈ D.

(ii) If A,B ∈ D, then A ∩B ∈ D.

(iii) If {An}n∈N is a disjoint sequence of sets in D, then
⋃

n∈NAn ∈ D.

a) Show that ∅ ∈ D.

b) Show by induction that if A1, A2, . . . , An ∈ D, then A1∩A2∩. . .∩An ∈
D.

c) Show that if A1, A2, . . . , An ∈ D, then A1 ∪A2 ∪ . . . ∪An ∈ D.

d) Show that D is a σ-algebra.

Problem 5: In this problem, d1 and d2 are two metrics on the same
nonempty set X. Define d : X ×X → R by

d(x, y) = d1(x, y) + d2(x, y) for all x, y ∈ X.

a) Show that d is a metric on X.

We say that d1 and d2 are compatible if the following condition is satisfied:

Condition: If a sequence {xn} converges to a in the d1-metric and to b in
the d2-metric, then a = b.

b) Assume that d1 and d2 are compatible. Show that if C ⊂ X is compact
with respect to d1 and d2, then C is also compact with respect to d.

Problem 6: Assume that {xn} is a sequence of real numbers converging to
a ∈ R. Show that {xn} is bounded, i.e., that there exists an M ∈ R such
that |xn| ≤M for all n ∈ N. Show also that if

yn =
x1 + x2 + ·+ xn

n
for all n ∈ N,

then the sequence {yn} converges to a.

The End


