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Chapter 1

Preliminaries: Proofs, Sets,
and Functions

Chapters with the word ”preliminaries” in the title are never much fun, but
they are useful — they provide the reader with the background information
necessary to enjoy the main body of the text. This chapter is no exception,
but I have tried to keep it short and to the point; everything you find
here will be needed at some stage, and most of the material will show up
throughout the book.

Mathematical analysis is a continuation of calculus, but it is more ab-
stract and therefore in need of a larger vocabulary and more precisely defined
concepts. You have undoubtedly dealt with proofs, sets, and functions in
your previous mathematics courses, but probably in a rather casual way.
Now they become the centerpiece of the theory, and there is no way to un-
derstand what is going on if you don’t have a good grasp of them: The
subject matter is so abstract that you can no longer rely on drawings and
intuition; you simply have to be able to understand the concepts and to
read, create and write proofs. Fortunately, this is not as difficult as it may
sound if you have never tried to take proofs and formal definitions seriously
before.

1.1 Proofs

There is nothing mysterious about mathematical proofs; they are just chains
of logically irrefutable arguments that bring you from things you already
know to whatever you want to prove. Still there are a few tricks of the trade
that are useful to know about.

Many mathematical statements are of the form “If A, then B”. This
simply means that whenever statement A holds, statement B also holds,
but not necessarily vice versa. A typical example is: ”If n ∈ N is divisible
by 14, then n is divisible by 7”. This is a true statement since any natural

3



4CHAPTER 1. PRELIMINARIES: PROOFS, SETS, AND FUNCTIONS

number that is divisible by 14, is also divisible by 7. The opposite statement
is not true as there are numbers that are divisible by 7, but not by 14 (e.g.
7 and 21).

Instead of “If A, then B”, we often say that “A implies B” and write
A =⇒ B. As already observed, A =⇒ B and B =⇒ A mean two different
things. If they are both true, A and B hold in exactly the same cases, and
we say that A and B are equivalent. In words, we say “A if and only if B”,
and in symbols we write A⇐⇒ B. A typical example is:

“A triangle is equilateral if and only if all three angels are 60◦”

When we want to prove that A ⇐⇒ B, it is often convenient to prove
A =⇒ B and B =⇒ A separately.

If you think a little, you will realize that “A =⇒ B” and “not-B =⇒
not-A” mean exactly the same thing — they both say that whenever A
happens, so does B. This means that instead of proving “A =⇒ B”, we
might just a well prove “not-B =⇒ not-A”. This is called a contrapositive
proof, and is convenient when the hypothesis “not-B” gives us more to work
on than the hypothesis “A”. Here is a typical example.

Proposition 1.1.1 If n2 is an even number, so is n.

Proof: We prove the contrapositive statement: ”If n is odd, so is n2”: If n
is odd, it can be written as n = 2k+1 for a nonnegative integer k. But then

n2 = (2k + 1)2 = 4k2 + 4k + 1 = 2(2k2 + 2k) + 1

which is clearly odd. 2

It should be clear why a contrapositive proof is best in this case: The hy-
pothesis “n is odd” is much easier to work with than the original hypothesis
“n2 is even”.

A related method of proof is proof by contradiction or reductio ad ab-
surdum. In these proofs, we assume the opposite of what we want to show,
and prove that this leads to a contradiction. Hence our assumption must be
false, and the original claim is established. Here is a well-known example.

Proposition 1.1.2
√

2 is an irrational number.

Proof: We assume for contradiction that
√

2 is rational. This means that

√
2 =

m

n

for natural numbers m and n. By cancelling as much as possible, we may
assume that m and n have no common factors.
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If we square the equality above and multiply by n2 on both sides, we get

2n2 = m2

This means that m2 is even, and by the previous proposition, so is m. Hence
m = 2k for some natural number k, and if we substitute this into the last
formula above and cancel a factor 2, we see that

n2 = 2k2

This means that n2 is even, and by the previous proposition n is even. Thus
we have proved that both m and n are even, which is impossible as we as-
sumed that they have no common factors. This means that the assumption
that

√
2 is rational leads to a contradiction, and hence

√
2 must be irra-

tional. 2

Let me end this section by reminding you of a technique you have cer-
tainly seen before, proof by induction. We use this technique when we
want to prove that a certain statement P (n) holds for all natural num-
bers n = 1, 2, 3, . . .. A typical statement one may want to prove in this way,
is

P (n) : 1 + 2 + 3 + · · ·+ n =
n(n+ 1)

2

The basic observation behind the technique is:

1.1.3 (Induction Principle) Assume that P (n) is a statement about nat-
ural numbers n = 1, 2, 3, . . .. Assume that the following two conditions are
satisfied:

(i) P (1) is true

(ii) If P (k) is true for a natural number k, then P (k + 1) is also true.
Then P (n) holds for all natural numbers n.

Let us see how we can use the principle to prove that

P (n) : 1 + 2 + 3 + · · ·+ n =
n(n+ 1)

2

holds for all natural numbers n.
First we check that the statement holds for n = 1: In this case the

formula says

1 =
1 · (1 + 1)

2

which is obviously true. Assume now that P (k) holds for some natural
number k, i.e.

1 + 2 + 3 + · · ·+ k =
k(k + 1)

2
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We then have

1 + 2 + 3 + · · ·+ k + (k + 1) =
k(k + 1)

2
+ (k + 1) =

(k + 1)(k + 2)

2

which means that P (k + 1) is true. By the Induction Principle, P (n) holds
for all natural numbers n.

Exercises for Section 1.1

1. Assume that the product of two integers x and y is even. Show that at least
one of the numbers is even.

2. Assume that the sum of two integers x and y is even. Show that x and y are
either both even or both odd.

3. Show that if n is a natural number such that n2 is divisible by 3, then n is
divisible by 3. Use this to show that

√
3 is irrational.

1.2 Sets and boolean operations

In the systematic development of mathematics, set is usually taken as the
fundamental notion from which all other concepts are developed. We shall
not be so ambitious, we shall just think naively of a set as a collection of
mathematical objects. A set may be finite, such as the set

{1, 2, 3, 4, 5, 6, 7, 8, 9}

of all natural numbers less than 10, or infinite as the set (0, 1) of all real
numbers between 0 and 1.

We shall write x ∈ A to say that x is an element of the set A, and x /∈ A
to say that x is not an element of A. Two sets are equal if they have exactly
the same elements, and we say that A is subset of B (and write A ⊆ B) if
all elements of A are elements of B, but not necessarily vice versa. Note
that there is no requirement that A is strictly included in B, and hence it
is correct to write A ⊆ B when A = B (in fact, a standard technique for
showing that A = B is first to show that A ⊆ B and then that B ⊆ A). By
∅ we shall mean the empty set, i.e. the set with no elements (you may feel
that a set with no elements is a contradiction in terms, but mathematical
life would be much less convenient without the empty set).

Many common sets have a standard name and notation such as

N = {1, 2, 3, . . .}, the set of natural numbers

Z = {. . .− 3,−2,−1, 0, 1, 2, 3, . . .}, the set of all integers

Q, the set of all rational numbers
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R, the set of all real numbers

C, the set of all complex numbers

Rn, the set of all real n-tuples

To specify other sets, we shall often use expressions of the kind

A = {a |P (a)}

which means the set of all objects satisfying condition P . Often it is more
convenient to write

A = {a ∈ B |P (a)}
which means the set of all elements in B satisfýıng the condition P . Exam-
ples of this notation are

[−1, 1] = {x ∈ R | − 1 ≤ x ≤ 1}

and
A = {2n− 1 | n ∈ N}

where A is the set of all odd numbers. To increase readability I shall oc-
casionally replace the vertical bar | by a colon : and write A = {a : P (a)}
and A = {a ∈ B : P (a)} instead of A = {a |P (a)} and A = {a ∈ B |P (a)},
e.g. in expressions like {||αx|| : |α| < 1} where there are lots of vertical bars
already.

If A1, A2, . . . , An are sets, their union and intersection are given by

A1∪A2∪. . .∪An = {a | a belongs to at least one of the sets A1, A2, . . . , An}

and

A1 ∩A2 ∩ . . . ∩An = {a | a belongs to all the sets A1, A2, . . . , An},

respectively. Two sets are called disjoint if they do not have elements in
common, i.e. if A ∩B = ∅.

When we calculate with numbers, the distributive law tells us how to
move common factors in and out of parentheses:

b(a1 + a2 + · · ·+ an) = ba1 + ba2 + · · · ban

Unions and intersections are distributive both ways, i.e. we have:

Proposition 1.2.1 For all sets B,A1, A2, . . . , An

B ∩ (A1 ∪A2 ∪ . . . ∪An) = (B ∩A1) ∪ (B ∩A2) ∪ . . . ∪ (B ∩An) (1.2.1)

and

B ∪ (A1 ∩A2 ∩ . . . ∩An) = (B ∪A1) ∩ (B ∪A2) ∩ . . . ∩ (B ∪An) (1.2.2)
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Proof: We prove the first formula and leave the second as an exercise. The
proof is in two steps: first we prove that the set on the left is a subset of the
one on the right, and then we prove that the set on the right is a subset of
the one on the left.

Assume first that x is an element of the set on the left, i.e. x ∈ B ∩
(A1 ∪ A2 ∪ . . . ∪ An). Then x must be in B and at least one of the sets Ai.
But then x ∈ B ∩ Ai, and hence x ∈ (B ∩ A1) ∪ (B ∩ A2) ∪ . . . ∪ (B ∩ An).
This proves that

B ∩ (A1 ∪A2 ∪ . . . ∪An) ⊆ (B ∩A1) ∪ (B ∩A2) ∪ . . . ∪ (B ∩An)

To prove the opposite inclusion, assume that x ∈ (B ∩ A1) ∪ (B ∩ A2) ∪
. . . ∪ (B ∩ An). Then x ∈ B ∩ Ai for at least one i, and hence x ∈ B and
x ∈ Ai. But if x ∈ Ai for some i, then x ∈ A1 ∪ A2 ∪ . . . ∪ An, and hence
x ∈ B ∩ (A1 ∪A2 ∪ . . . ∪An). This proves that

B ∩ (A1 ∪A2 ∪ . . . ∪An) ⊇ (B ∩A1) ∪ (B ∩A2) ∪ . . . ∪ (B ∩An)

As we now have inclusion in both directions, (1.2.1) follows. 2

Remark: It is possible to prove formula (1.2.1) in one sweep by noticing
that all steps in the argument are equivalences and not only implications,
but most people are more prone to making mistakes when they work with
chains of equivalences than with chains of implications.

There are also other algebraic rules for unions and intersections, but
most of them are so obvious that we do not need to state them here (an
exception is De Morgan’s laws which we shall return to in a moment).

The set theoretic difference A \B (also written A−B) is defined by

A \B = {a | a ∈ A, a /∈ B}

In many situations we are only interested in subsets of a given set U (often
referred to as the universe). The complement Ac of a set A with respect to
U is defined by

Ac = U \A = {a ∈ U | a /∈ A}

We can now formulate De Morgan’s laws:

Proposition 1.2.2 (De Morgan’s laws) Assume that A1, A2, . . . , An are
subsets of a universe U . Then

(A1 ∪A2 ∪ . . . ∪An)c = Ac1 ∩Ac2 ∩ . . . ∩Acn (1.2.3)

and
(A1 ∩A2 ∩ . . . ∩An)c = Ac1 ∪Ac2 ∪ . . . ∪Acn (1.2.4)
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(These rules are easy to remember if you observe that you can distribute
the c outside the parentheses on the individual sets provided you turn all
∪’s into ∩’s and all ∩’s into ∪’s).

Proof of De Morgan’s laws: We prove the first part and leave the second
as an exercise. The strategy is as indicated above; we first show that any
element of the set on the left must also be an element of the set on the right,
and then vice versa.

Assume that x ∈ (A1 ∪ A2 ∪ . . . ∪ An)c. Then x /∈ A1 ∪ A2 ∪ . . . ∪ An,
and hence for all i, x /∈ Ai. This means that for all i, x ∈ Aci , and hence
x ∈ Ac1 ∩Ac2 ∩ . . . ∩Acn.

Assume next that x ∈ Ac1 ∩ Ac2 ∩ . . . ∩ Acn. This means that x ∈ Aci for
all i, in other words: for all i, x /∈ Ai . Thus x /∈ A1 ∪ A2 ∪ . . . ∪ An which
means that x ∈ (A1 ∪A2 ∪ . . . ∪An)c. 2

We end this section with a brief look at cartesian products. If we have
two sets, A and B, the cartesian product A × B consists of all pairs (a, b)
where a ∈ A and b ∈ B. If we have more sets A1, A2, . . . , An, the cartesian
product A1 × A2 × · · · × An consists of all n-tuples (a1, a2, . . . , an) where
a1 ∈ A1, a2 ∈ A2, . . . , an ∈ An. If all the sets are the same (i.e. Ai = A for
all i), we usually write An instead of A× A× · · · × A. Hence Rn is the set
of all n-tuples of real numbers, just as you are used to, and Cn is the set of
all n-tuples of complex numbers.

Exercises for Section 1.2

1. Show that [0, 2] ∪ [1, 3] = [0, 3] and that [0, 2] ∩ [1, 3] = [1, 2]

2. Let U = R be the universe. Explain that (−∞, 0)c = [0,∞)

3. Show that A \B = A ∩Bc.

4. The symmetric difference A 4 B of two sets A,B consists of the elements
that belong to exactly one of the sets A,B. Show that

A4B = (A \B) ∪ (B \A)

5. Prove formula (1.2.2).

6. Prove formula (1.2.4).

7. Prove that A1 ∪A2 ∪ . . . ∪An = U if and only if Ac1 ∩Ac2 ∩ . . . ∩Acn = ∅.

8. Prove that (A∪B)×C = (A×C)∪(B×C) and (A∩B)×C = (A×C)∩(B×C).

1.3 Families of sets

A collection of sets is usually called a family. An example is the family

A = {[a, b] | a, b ∈ R}
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of all closed and bounded intervals on the real line. Families may seem
abstract, but you have to get used to them as they appear in all parts of
higher mathematics. We can extend the notions of union and intersection
to families in the following way: If A is a family of sets, we define⋃

A∈A
A = {a | a belongs to at least one set A ∈ A}

and ⋂
A∈A

A = {a | a belongs to all sets A ∈ A}

The distributive laws extend to this case in the obvious way. i.e.,

B ∩ (
⋃
A∈A

A) =
⋃
A∈A

(B ∩A) and B ∪ (
⋂
A∈A

A) =
⋂
A∈A

(B ∪A)

and so do the laws of De Morgan:

(
⋃
A∈A

A)c =
⋂
A∈A

Ac and (
⋂
A∈A

A)c =
⋃
A∈A

Ac

Families are often given as indexed sets. This means we we have a basic
set I, and that the family consists of one set Ai for each element in I. We
then write the family as

A = {Ai | i ∈ I},

and use notation such as⋃
i∈I

Ai and
⋂
i∈I

Ai

or alternatively⋃
{Ai : i ∈ I} and

⋂
{Ai : i ∈ I}

for unions and intersections
A rather typical example of an indexed set is A = {Br | r ∈ [0,∞)}

where Br = {(x, y) ∈ R2 |x2 + y2 = r2}. This is the family of all circles in
the plane with centre at the origin.

Exercises for Section 1.3

1. Show that
⋃
n∈N[−n, n] = R

2. Show that
⋂
n∈N(− 1

n ,
1
n ) = {0}.

3. Show that
⋃
n∈N[ 1n , 1] = (0, 1]

4. Show that
⋂
n∈N(0, 1

n ] = ∅
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5. Prove the distributive laws for families. i.e.,

B ∩ (
⋃
A∈A

A) =
⋃
A∈A

(B ∩A) and B ∪ (
⋂
A∈A

A) =
⋂
A∈A

(B ∪A)

6. Prove De Morgan’s laws for families:

(
⋃
A∈A

A)c =
⋂
A∈A

Ac and (
⋂
A∈A

A)c =
⋃
A∈A

Ac

1.4 Functions

Functions can be defined in terms of sets, but for our purposes it suffices
to think of a function f : X → Y from X to Y as a rule which to each
element x ∈ X assigns an element y = f(x) in Y . If f(x) 6= f(y) whenever
x 6= y, we call the function injective (or one-to-one). If there for each y ∈ Y
is an x ∈ X such that f(x) = y, the function is called surjective (or onto).
A function which is both injective and surjective, is called bijective — it
establishes a one-to-one correspondence between the elements of X and Y .

If A is subset of X, the set f(A) ⊆ Y defined by

f(A) = {f(a) | a ∈ A}

is called the image of A under f . If B is subset of Y , the set f−1(B) ⊆ X
defined by

f−1(B) = {x ∈ X | f(x) ∈ B}

is called the inverse image of B under f . In analysis, images and inverse
images of sets play important parts, and it is useful to know how these
operations relate to the boolean operations of union and intersection. Let
us begin with the good news.

Proposition 1.4.1 Let B be a family of subset of Y . Then for all functions
f : X → Y we have

f−1(
⋃
B∈B

B) =
⋃
B∈B

f−1(B) and f−1(
⋂
B∈B

B) =
⋂
B∈B

f−1(B)

We say that inverse images commute with arbitrary unions and intersec-
tions.

Proof: I prove the first part; the second part is proved similarly. Assume first
that x ∈ f−1(

⋃
B∈B B). This means that f(x) ∈

⋃
B∈B B, and consequently

there must be at least one B ∈ B such that f(x) ∈ B. But then x ∈
f−1(B), and hence x ∈

⋃
B∈B f

−1(B). This proves that f−1(
⋃
B∈B B) ⊆⋃

B∈B f
−1(B).

To prove the opposite inclusion, assume that x ∈
⋃
B∈B f

−1(B). There
must be at least one B ∈ B such that x ∈ f−1(B), and hence f(x) ∈ B.
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This implies that f(x) ∈
⋃
B∈B B, and hence x ∈ f−1(

⋃
B∈B B). 2

For forward images the situation is more complicated:

Proposition 1.4.2 Let A be a family of subset of X. Then for all functions
f : X → Y we have

f(
⋃
A∈A

A) =
⋃
A∈A

f(A) and f(
⋂
A∈A

A) ⊆
⋂
A∈A

f(A)

In general, we do not have equality in the last case. Hence forward images
commute with unions, but not always with intersections.

Proof: To prove the statement about unions, we first observe that since
A ⊆

⋃
A∈AA for all A ∈ A, we have f(A) ⊆ f(

⋃
A∈AA) for all such A. Since

this inclusion holds for all A, we must also have
⋃
A∈A f(A) ⊆ f(

⋃
A∈A). To

prove the opposite inclusion, assume that y ∈ f(
⋃
A∈AA). This means that

there exists an x ∈
⋃
A∈AA such that f(x) = y. This x has to belong to at

least one A ∈ A, and hence y ∈ f(A) ⊆
⋃
A∈A f(A).

To prove the inclusion for intersections, just observe that since
⋂
A∈AA ⊆

A for all A ∈ A, we must have f(
⋂
A∈AA) ⊆ f(A) for all such A. Since

this inclusion holds for all A, it follows that f(
⋂
A∈AA) ⊆

⋂
A∈A f(A). The

example below shows that the opposite inclusion does not always hold. 2

Example 1: Let X = {x1, x2} and Y = {y}. Define f : X → Y by
f(x1) = f(x2) = y, and let A1 = {x1}, A2 = {x2}. Then A1 ∩ A2 = ∅ and
consequently f(A1∩A2) = ∅. On the other hand f(A1) = f(A2) = {y}, and
hence f(A1)∩f(A2) = {y}. This means that f(A1∩A2) 6= f(A1)∩f(A2). ♣

The problem in this example stems from the fact that y belongs to both
f(A1) and f(A2), but only as the image of two different elements x1 ∈ A1

og x2 ∈ A2; there is no common element x ∈ A1 ∩ A2 which is mapped to
y. This problem disappears if f is injective:

Corollary 1.4.3 Let A be a family of subset of X. Then for all injective
functions f : X → Y we have

f(
⋂
A∈A

A) =
⋂
A∈A

f(A)

Proof: The easiest way to show this is probably to apply Proposition 2 to
the inverse function of f , but I choose instead to prove the missing inclusion
f(
⋂
A∈AA) ⊇

⋂
A∈A f(A) directly.

Assume y ∈
⋂
A∈A f(A). For each A ∈ A there must be an element

xA ∈ A such that f(xA) = y. Since f is injective, all these xA ∈ A must
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be the same element x, and hence x ∈ A for all A ∈ A. This means that
x ∈

⋂
A∈AA, and since y = f(x), we have proved that y ∈ f(

⋂
A∈AA). 2

Taking complements is another operation that commutes with inverse
images, but not (in general) with forward images.

Proposition 1.4.4 Assume that f : X → Y is a function and that B ⊆
Y . Then f−1(Bc)) = (f−1(B))c. (Here, of course, Bc = Y \ B is the
complement with respect to the universe Y , while (f−1(B))c = X \ f−1(B)
is the complemet with respect to the universe X).

Proof: An element x ∈ X belongs to f−1(Bc) if and only if f(x) ∈ Bc.
On the other hand, it belongs to (f−1(B))c if and only if f(x) /∈ B, i.e. iff
f(x) ∈ Bc. 2

Finally, let us just observe that being disjoint is also a property that
is conserved under inverse images; if A ∩ B = ∅, then f−1(A) ∩ f−1(B) =
∅. Again the corresponding property for forward images does not hold in
general.

Exercises for Section 1.4

1. Let f : R→ R be the function f(x) = x2. Find f([−1, 2]) and f−1([−1, 2]).

2. Let g : R2 → R be the function g(x, y) = x2 + y2. Find f([−1, 1] × [−1, 1])
and f−1([0, 4]).

3. Show that a strictly increasing function f : R→ R is injective. Does it have
to be surjective?

4. Prove the second part of Proposition 1.4.1.

5. Find a function f : X → Y and a set A ⊆ X such that we have neither
f(Ac) ⊆ f(A)c nor f(A)c ⊆ f(Ac).

6. Show that if f : X → Y and g : Y → Z are injective, then g ◦ f : X → Z is
injective.

7. Show that if f : X → Y and g : Y → Z are surjective, then g ◦ f : X → Z is
surjective.

1.5 Relations and partitions

In mathematics there are lots of relations between objects; numbers may
be smaller or larger than each other, lines may be parallell, vectors may be
orthogonal, matrices may be similar and so on. Sometimes it is convenient
to have an abstract definition of what we mean by a relation.
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Definition 1.5.1 By a relation on a set X, we mean a subset R of the
cartesian product X × X. We usually write xRy instead of (x, y) ∈ R to
denote that x and y are related. The symbols ∼ and ≡ are often used to
denote relations, and we then write x ∼ y and x ≡ y.

At first glance this definition may seem strange as very few people think
of relations as subsets of X ×X, but a little thought will convince you that
it gives us a convenient starting point, especially if I add that in practice
relations are rarely arbitrary subsets of X ×X, but have much more struc-
ture than the definition indicates. We shall take a look at one such class of
relations, the equivalence relations. Equivalence relations are used to parti-
tion sets into subsets, and from a pedagogical point of view, it is probably
better to start with the related notion of a partition.

Informally, a partition is what we get if we divide a set into non-overlapping
pieces. More precisely, If X is a set, a partition P of X is a family of subset
of X such that each element in x belongs to exactly one set P ∈ P. The
elements P of P are called partition classes of P.

Given a partition of X, we may introduce a relation ∼ on X by

x ∼ y ⇐⇒ x and y belong to the same set P ∈ P

It is easy to check that ∼ has the following three properties:

(i) x ∼ x for all x ∈ X.

(ii) If x ∼ y, then y ∼ x.

(iii) If x ∼ y and y ∼ z, then x ∼ z.

We say that ∼ is the relation induced by the partition P.
Let us now turn the tables around and start with a relation on X satis-

fying conditions (i)-(iii):

Definition 1.5.2 An equivalence relation on X is a relation ∼ satisfying
the following conditions:

(i) Reflexivity: x ∼ x for all x ∈ X,

(ii) Symmetry: If x ∼ y, then y ∼ x,

(iii) Transitivity: If x ∼ y and y ∼ z, then x ∼ z.

Given an equivalence relation ∼ on X, we may for each x ∈ X define
the equivalence class [x] of x by:

[x] = {y ∈ X |x ∼ y}

The following result tells us that there is a one-to-one correspondence be-
tween partitions and equivalence relations — all partitions induce an equiv-
alence relation, and all equivalence relations define a partition
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Proposition 1.5.3 If ∼ is an equivalence relation on X, the collection of
equivalence classes

P = {[x] : x ∈ X}

is a partition of X.

Proof: We have to prove that each x in X belongs to exactly one equivalence
class. We first observe that since x ∼ x by (i), x ∈ [x] and hence belongs to
at least one equivalence class. To finish the proof, we have to show that if
x ∈ [y] for some other element y ∈ X, then [x] = [y].

We first prove that [y] ⊆ [x]. To this end assume that z ∈ [y]. By
definition, this means that y ∼ z. On the other hand, the assumption that
x ∈ [y] means that y ∼ x, which by (ii) implies that x ∼ y. We thus have
x ∼ y and y ∼ z, which by (iii) means that x ∼ z. Thus z ∈ [x], and hence
we have proved that [y] ⊆ [x].

The opposite inclusion [x] ⊆ [y] is proved similarly: Assume that z ∈ [x].
By definition, this means that x ∼ z. On the other hand, the assumption
that x ∈ [y] means that y ∼ x. We thus have y ∼ x and x ∼ z, which by
(iii) implies that y ∼ z. Thus z ∈ [y], and we have proved that [x] ⊆ [y]. 2

The main reason why this theorem is useful is that it is often more
natural to describe situations through equivalence relations than through
partitions. The following example assumes that you remember a little linear
algebra:

Example 1.5.3: Let V be a vector space and U a subspace. Define a
relation on V by

x ∼ y ⇐⇒ x− y ∈ U

Let us show that∼ is an equivalence relation by checking the three conditions
(i)-(iii) in the definition:

(i) Since x− x = 0 ∈ U , we see that x ∼ x for all x ∈ V .

(ii) Assume that x ∼ y. This means that x− y ∈ U , and hence y − x =
−(x − y) ∈ U since subspaces are closed under multiplication by scalars.
This means that y ∼ x.

(iii) If x ∼ y and y ∼ z, then x− y ∈ U and y − z ∈ U . Since subspaces
are closed under addition, this means that x − z = (x − y) + (y − z) ∈ U ,
and hence x ∼ z.

As we have now proved that ∼ is an equivalence relation, the equivalence
classes of ∼ form a partition of V . ♣
.

If ∼ is an equivalence relation on X, we let X/∼ denote the set of all
equivalence classes of ∼. Such quotient constructions are common in all
parts of mathematics, and you will see a few examples in this book.
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Exercises to Section 1.5

1. Let P be a partition of a set A, and define a relation ∼ on A by

x ∼ y ⇐⇒ x and y belong to the same set P ∈ P

Check that ∼ is an equivalence relation.

2. Assume that P is the partition defined by an equivilance relation ∼. Show
that ∼ is the equivalence relation induced by P.

3. Let L be the collection of all lines in the plane. Define a relation on L by
saying that two lines are equivalent if and only if they are parallel. Show
that this an equivalence relation on L.

4. Define a relation on C by

z ∼ y ⇐⇒ |z| = |w|

Show that ∼ is an equivalence relation. What does the equivalence classes
look like?

5. Define a relation ∼ on R3 by

(x, y, z) ∼ (x′, y′, z′) ⇐⇒ 3x− y + 2z = 3x′ − y′ + 2z′

Show that ∼ is an equivalence relation and describe the equivalence classes
of ∼.

6. Let m be a natural number. Define a relation ≡ on Z by

x ≡ y ⇐⇒ x− y is divisible by m

Show that ≡ is an equivalence relation on Z. How many partition classes are
there, and what do they look like?

7. Let M be the set of all n× n matrices. Define a relation on ∼ on M by

A ∼ B ⇐⇒ if there exists an invertible matrix P such that A = P−1BP

Show that ∼ is an equivalence relation.

1.6 Countability

A set A is called countable if it possible to make a list a1, a2, . . . , an, . . . which
contains all elements of A. Finite sets A = {a1, a2, . . . , am} are obviously
countable1 as they can be listed

a1, a2, . . . , am, am, am, . . .

1Some books exclude the finite sets from the countable and treat them as a separate
category, but that would be impractical for our purposes.
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(you may list the same elements many times). The set N of all natural
numbers is also countable as it is automatically listed by

1, 2, 3, . . .

It is a little less obvious that the set Z of all integers is countable, but we
may use the list

0, 1,−1, 2,−2, 3,−3 . . .

It is also easy to see that a subset of a countable set must be countable, and
that the image f(A) of a countable set is countable (if {an} is a listing of
A, then {f(an)} is a listing of f(A)).

The next result is perhaps more surprising:

Proposition 1.6.1 If the sets A,B are countable, so is the cartesian prod-
uct A×B.

Proof: Since A and B are countable, there are lists {an}, {bn} containing
all the elements of A and B, respectively. But then

{(a1, b1), (a2, b1), (a1, b2), (a3, b1), (a2, b2), (a1, b3), (a4, b1), (a3, b2), . . . , }

is a list containing all elements of A×B (observe how the list is made; first
we list the (only) element (a1, b1) where the indicies sum to 2, then we list
the elements (a2, b1), (a1, b2) where the indicies sum to 3, then the elements
(a3, b1), (a2, b2), (a1, b3) where the indicies sum to 4 etc.) 2

Remark If A1, A2, . . . , An is a finite collection of countable sets, then the
cartesian product A1 × A2 × · · · × An is countable. This can be proved by
induction from the Proposition above, using that A1 × · · · × Ak × Ak+1 is
essentially the same set as (A1 × · · · ×Ak)×Ak+1.

The same trick we used to prove Proposition 1.6.1, can also be used to
prove the next result:

Proposition 1.6.2 If the sets A1, A2, . . . , An, . . . are countable, so is their
union

⋃
n∈NAn. Hence a countable union of countable sets is itself countable.

Proof: Let Ai = {ai1, ai2, . . . , ain, . . .} be a listing of the i-th set. Then

{a11, a21, a12, a31, a22, a13, a41, a32, . . .}

is a listing of
⋃
i∈NAi. 2

Proposition 1.6.1 can also be used to prove that the rational numbers
are countable:
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Proposition 1.6.3 The set Q of all rational numbers is countable.

Proof: According to Proposition 1.6.1, the set Z × N is countable and can
be listed (a1, b1), (a2, b2), (a3, b3), . . .. But then a1

b1
, a2b2 ,

a3
b3
, . . . is a list of all

the elements in Q (due to cancellations, all rational numbers will appear
infinitely many times in this list, but that doesn’t matter). 2

Finally, we prove an important result in the opposite direction:

Theorem 1.6.4 The set R of all real numbers is not countable.

Proof: (Cantor’s diagonal argument) Assume for contradiction that R is
countable and can be listed r1, r2, r3, . . .. Let us write down the decimal
expansions of the numbers on the list:

r1 = w1.a11a12a13a14 . . .

r2 = w2.a21a22a23a24 . . .

r3 = w3.a31a32a33a34 . . .

r4 = w4.a41a42a43a44 . . .
...

...
...

(wi is the integer part of ri, and ai1, ai2, ai3, . . . are the decimals). To get our
contradiction, we introduce a new decimal number c = 0.c1c2c3c4 . . . where
the decimals are defined by:

ci =


1 if aii 6= 1

2 if aii = 1

This number has to be different from the i-th number ri on the list as the
decimal expansions disagree on the i-th place (as c has only 1 and 2 as
decimals, there are no problems with nonuniqueness of decimal expansions).
This is a contradiction as we assumed that all real numbers were on the list.2

Exercises to Section 1.6

1. Show that a subset of a countable set is countable.

2. Show that if A1, A2, . . . An are countable, then A1×A2×· · ·An is countable.

3. Show that the set of all finite sequences (q1, q2, . . . , qk), k ∈ N, of rational
numbers is countable.

4. Show that if A is an infinite, countable set, then there is a list a1, a2, a3, . . .
which only contains elements in A and where each element in A appears
only once. Show that if A and B are two infinite, countable sets, there is a
bijection (i.e. an injective and surjective function) f : A→ B.
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5. Show that the set of all subsets of N is not countable (Hint: Try to modify
the proof of Theorem 1.6.4.)
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Chapter 2

Metric Spaces

Many of the arguments you have seen in several variable calculus are almost
identical to the corresponding arguments in one variable calculus, especially
arguments concerning convergence and continuity. The reason is that the
notions of convergence and continuity can be formulated in terms of distance,
and that the notion of distance between numbers that you need in the one
variable theory, is very similar to the notion of distance between points or
vectors that you need in the theory of functions of severable variables. In
more advanced mathematics, we need to find the distance between more
complicated objects than numbers and vectors, e.g. between sequences, sets
and functions. These new notions of distance leads to new notions of con-
vergence and continuity, and these again lead to new arguments suprisingly
similar to those we have already seen in one and several variable calculus.

After a while it becomes quite boring to perform almost the same argu-
ments over and over again in new settings, and one begins to wonder if there
is general theory that covers all these examples — is it possible to develop
a general theory of distance where we can prove the results we need once
and for all? The answer is yes, and the theory is called the theory of metric
spaces.

A metric space is just a set X equipped with a function d of two variables
which measures the distance between points: d(x, y) is the distance between
two points x and y in X. It turns out that if we put mild and natural
conditions on the function d, we can develop a general notion of distance
that covers distances between numbers, vectors, sequences, functions, sets
and much more. Within this theory we can formulate and prove results
about convergence and continuity once and for all. The purpose of this
chapter is to develop the basic theory of metric spaces. In later chapters we
shall meet some of the applications of the theory.

21



22 CHAPTER 2. METRIC SPACES

2.1 Definitions and examples

As already mentioned, a metric space is just a setX equipped with a function
d : X×X → R which measures the distance d(x, y) beween points x, y ∈ X.
For the theory to work, we need the function d to have properties similar
to the distance functions we are familiar with. So what properties do we
expect from a measure of distance?

First of all, the distance d(x, y) should be a nonnegative number, and it
should only be equal to zero if x = y. Second, the distance d(x, y) from x to
y should equal the distance d(y, x) from y to x. Note that this is not always
a reasonable assumption — if we, e.g., measure the distance from x to y by
the time it takes to walk from x to y, d(x, y) and d(y, x) may be different —
but we shall restrict ourselves to situations where the condition is satisfied.
The third condition we shall need, says that the distance obtained by going
directly from x to y, should always be less than or equal to the distance we
get when we go via a third pont z, i.e.

d(x, y) ≤ d(x, z) + d(z, x)

It turns out that these conditions are the only ones we need, and we sum
them up in a formal definition.

Definition 2.1.1 A metric space (X, d) consists of a non-empty set X and
a function d : X ×X → [0,∞) such that:

(i) (Positivity) For all x, y ∈ X, d(x, y) ≥ 0 with equality if and only if
x = y.

(ii) (Symmetry) For all x, y ∈ X, d(x, y) = d(y, x).

(iii) (Triangle inequality) For all x, y, z ∈ X

d(x, y) ≤ d(x, z) + d(z, y)

A function d satisfying conditions (i)-(iii), is called a metric on X.

Comment: When it is clear – or irrelevant – which metric d we have in
mind, we shall often refer to “the metric space X” rather than “the metric
space (X, d)”.

Let us take a look at some examples of metric spaces.

Example 1: If we let d(x, y) = |x−y|, (R, d) is a metric space. The first two
conditions are obviously satisfied, and the third follows from the ordinary
triangle inequality for real numbers:

d(x, y) = |x− y| = |(x− z) + (z − y)| ≤ |x− z|+ |z − y| = d(x, z) + d(z, y)
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Example 2: If we let d(x,y) = |x−y|, then (Rn, d) is a metric space. The
first two conditions are obviously satisfied, and the third follows from the
triangle inequality for vectors the same way as above :

d(x,y) = |x− y| = |(x− z) + (z− y)| ≤ |x− z|+ |z− y| = d(x, z) + d(z,y)

Example 3: Assume that we want to move from one point x = (x1, x2)
in the plane to another y = (y1, y2), but that we are only allowed to move
horizontally and vertically. If we first move horizontally from (x1, x2) to
(y1, x2) and then vertically from (y1, x2) to (y1, y2), the total distance is

d(x,y) = |y1 − x1|+ |y2 − x2|

This gives us a metric on R2 which is different from the usual metric in
Example 2. It is ofte referred to as the Manhattan metric or the taxi cab
metric.

Also in this cas the first two conditions of a metric space are obviously
satisfied. To prove the triangle inequality, observe that for any third point
z = (z1, z2), we have

d(x,y) = |y1 − x1|+ |y2 − x1| =

= |(y1 − z1) + (z1 − x1)|+ |(y2 − z2) + (z2 − x2)| ≤

≤ |y1 − z1|+ |z1 − x1|+ |y2 − z2|+ |z2 − x2| =

= |z1 − x1|+ |z2 − x2|+ |y1 − z1|+ |y2 − z2| =

= d(x, z) + d(z, y)

where we have used the ordinary triangle inequality for real numbers to get
from the second to the third line. ♣

Example 4: We shall now take a look at an example of a different kind.
Assume that we want to send messages in a language with N symbols (letters,
numbers, punctuation marks, space, etc.) We assume that all messages have
the same length K (if they are too short or too long, we either fill them out
or break them into pieces). We let X be the set of all messages, i.e. all
sequences of symbols from the language of length K. If x = (x1, x2, . . . , xK)
and y = (y1, y2, . . . , yK) are two messages, we define

d(x,y) = the number of indices n such that xn 6= yn

It is not hard to check that d is a metric. It is usually referred to as the
Hamming-metric, and is much used in coding theory where it serves as a
measure of how much a message gets distorted during transmission. ♣
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Example 5: There are many ways to measure the distance between func-
tions, and in this example we shall look at some. Let X be the set of all
continuous functions f : [a, b]→ R. Then

d1(f, g) = sup{|f(x)− g(x)| : x ∈ [a, b]}

is a metric on X. This metric determines the distance beween two functions
by measuring the distance at the x-value where the graphs are most apart.
This means that the distance between two functions may be large even if
the functions in average are quite close. The metric

d2(f, g) =

∫ b

a
|f(x)− g(x)| dx

instead sums up the distance between f(x) og g(x) at all points. A third
popular metric is

d3(f, g) =

(∫ b

a
|f(x)− g(x)|2 dx

) 1
2

This metric is a generalization of the usual (euclidean) metric in Rn:

d(x,y) =

√√√√ n∑
i=1

(xi − yi)2 =

(
n∑
i=1

(xi − yi)2

) 1
2

(think of the integral as a generalized sum). That we have more than
one metric on X, doesn’t mean that one of them is “right” and the oth-
ers “wrong”, but that they are useful for different purposes. ♣

Eksempel 6: The metrics in this example may seem rather strange. Al-
though they are not very useful in applications, they are important to know
about as they are totally different from the metrics we are used to from Rn
and may help sharpen our intuition of how a metric can be. Let X be any
non-empty set, and define:

d(x, y) =


0 if x = y

1 if x 6= y

It is not hard to check that d is a metric on X, usually referred to as the
discrete metric. ♣

Eksempel 7: There are many ways to make new metric spaces from old.
The simplest is the subspace metric: If (X, d) is a metric space and A
is a non-empty subset of X, we can make a metric dA on A by putting
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dA(x, y) = d(x, y) for all x, y ∈ A — we simply restrict the metric to A. It
is trivial to check that dA is a metric on A. In practice, we rarely bother to
change the name of the metric and refer to dA simply as d, but remember
in the back of our head that d is now restricted to A. ♣

There are many more types of metric spaces than we have seen so far,
but the hope is that the examples above will give you a certain impres-
sion of the variety of the concept. In the next section we shall see how we
can define convergence and continuity for sequences and functions in metric
spaces. When we prove theorems about these concepts, they automatically
hold in all metric spaces, saving us the labor of having to prove them over
and over again each time we introduce a new class of spaces.

An important question is when two metric spaces (X, dX) and (Y, dY )
are the same. The easy answer is to say that we need the sets X,Y and
the functions dX , dY to be equal. This is certainly correct if one interprets
“being the same” in the strictest sense, but it is often more appropriate to
use a looser definition — in mathematics we are usually not interested in
what the elements of a set are, but only in the relationship between them
(you may, e.g., want to ask yourself what the natural number 3 “is”).

An isometry between two metric spaces is a bijection which preserves
what is important for metric spaces: the distance between points. More
precisely:

Definition 2.1.2 Assume that (X, dX) and (Y, dY ) are metric spaces. An
isometry from (X, dX) to (Y, dY ) is a bijection i : X → Y such that dX(x, y) =
dY (i(x), i(y)) for all x, y ∈ X. We say that (X, dX) and (Y, dY ) are isomet-
ric if there exists an isometry from (X, dX) to (Y, dY ).

In many situations it is convenient to think of two metric spaces as “the
same” if they are isometric. Note that if i is an isometry from (X, dX) to
(Y, dY ), then the inverse i−1 is an isometry from (Y, dY ) to (X, dX), and
hence being isometric is a symmetric relation.

A map which preserves distance, but does not necessarily hit all of Y , is
called an embedding :

Definition 2.1.3 Assume that (X, dX) and (Y, dY ) are metric spaces. An
embedding of (X, dX) into (Y, dY ) is an injection i : X → Y such that
dX(x, y) = dY (i(x), i(y)) for all x, y ∈ X.

Note that an embedding i can be regarded as an isometry between X
and its image i(X).

We end this section with an important consequence of the triangle in-
equality.
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Proposition 2.1.4 (Inverse Triangle Inequality) For all elements x, y, z
in a metric space (X, d), we have

|d(x, y)− d(x, z)| ≤ d(y, z)

Proof: Since the absolute value |d(x, y) − d(x, z)| is the largest of the two
numbers d(x, y)− d(x, z) and d(x, z)− d(x, y), it suffices to show that they
are both less than or equal to d(y, z). By the triangle inequality

d(x, y) ≤ d(x, z) + d(z, y)

and hence d(x, y) − d(x, z) ≤ d(z, y) = d(y, z). To get the other inequality,
we use the triangle inequality again,

d(x, z) ≤ d(x, y) + d(y, z)

and hence d(x, z)− d(x, y) ≤ d(y, z). 2

Exercises for Section 2.1

1. Show that (X, d) in Example 4 is a metric space.

2. Show that (X, d1) in Example 5 is a metric space.

3. Show that (X, d2) in Example 5 is a metric space.

4. Show that (X, d) in Example 6 is a metric space.

5. A sequence {xn}n∈N of real numbers is called bounded if there is a number
M ∈ R such that |xn| ≤ M for all n ∈ N. Let X be the set of all bounded
sequences. Show that

d({xn}, {yn}) = sup{|xn − yn| : n ∈ N}

is a metric on X.

6. If V is a (real) vector space, a function || · || : V → R is called a norm if the
following conditions are satisfied:

(i) For all x ∈ V , ||x|| ≥ 0 with equality if and only if x = 0.

(ii) ||αx|| = |α|||x|| for all α ∈ R and all x ∈ V .

(iii) ||x+ y||| ≤ ||x||+ ||y|| for all x, y ∈ V .

Show that if || · || is a norm, then d(x, y) = ||x− y|| defines a metric on V .

7. Show that for vectors x,y, z ∈ Rm,

| |x− y| − |x− z| | ≤ |y − z|

8. Assume that d1 og d2 are two metrics on X. Show that

d(x, y) = d1(x, y) + d2(x, y)

is a metric on X.
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9. Assume that (X, dX) and (Y, dY ) are two metric spaces. Define a function

d : (X × Y )× (X × Y )→ R

by
d((x1, y1), (x2, y2)) = dX(x1, x2) + dY (y1, y2)

Show that d is a metric on X × Y .

10. Let X be a non-empty set, and let ρ : X ×X → R be a function satisfying:

(i) ρ(x, y) ≥ 0 with equality if and only if x = y.

(ii) ρ(x, y) ≤ ρ(x, z) + ρ(z, y) for all x, y, z ∈ X.

Define d : X ×X → R by

d(x, y) = max{ρ(x, y), ρ(y, x)}

Show that d is a metric on X.

11. Let a ∈ R. Show that the function f(x) = x+ a is an isometry from R to R.

12. Recall that an n × n matrix U is orthogonal if U−1 = UT . Show that if
U is orthogonal and b ∈ Rn, then the mapping i : Rn → Rn given by
i(x) = Ux + b is an isometry.

2.2 Convergence and continuity

We begin our study of metric spaces by defining convergence. A sequence
{xn} in a metric space X is just an ordered collection {x1, x2, x3, . . . , xn, . . .}
of elements in X enumerated by the natural numbers.

Definition 2.2.1 Let (X, d) be a metric space. A sequencee {xn} in X
converges to a point a ∈ X if there for every ε > 0 exists an N ∈ N such
that d(xn, a) < ε for all n ≥ N . We write limn→∞ xn = a or xn → a.

Note that this definition exactly mimics the definition of convergence in
R og Rn. Here is an alternative formulation.

Lemma 2.2.2 A sequence {xn} in a metric space (X, d) converges to a if
and only if limn→∞ d(xn, a) = 0.

Proof: The distances {d(xn, a)} form a sequence of nonnegative numbers.
This sequence converges to 0 if and only if there for every ε > 0 exists an
N ∈ N such that d(xn, a) < ε when n ≥ N . But this is exactly what the
definition above says. 2

May a sequence converge to more than one point? We know that it
cannot in Rn, but some of these new metric spaces are so strange that we
can not be certain without a proof.
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Proposition 2.2.3 A sequence in a metric space can not converge to more
than one point.

Proof: Assume that limn→∞ xn = a and limn→∞ xn = b. We must show
that this is only possible if a = b. According to the triangle inequality

d(a, b) ≤ d(a, xn) + d(xn, b)

Taking limits, we get

d(a, b) ≤ lim
n→∞

d(a, xn) + lim
n→∞

d(xn, b) = 0 + 0 = 0

Consequently, d(a, b) = 0, and according to point (i) (positivity) in the def-
inition of metric spaces, a = b. 2

Note how we use the conditions in Definition 2.1.1 in the proof above. So
far they are all we know about metric spaces. As the theory develops, we
shall get more and more tools to work with.

We can also phrase the notion of convergence in more geometric terms.
If a is an element of a metric space X, and r is a positive number, the (open)
ball centered at a with radius r is the set

B(a; r) = {x ∈ X | d(x, a) < r}

As the terminology suggests, we think of B(a; r) as a ball around a with
radius r. Note that x ∈ B(a; r) means exactly the same as d(x, a) < r.

The definition of convergence can now be rephrased by saying that {xn}
converges to a if the elements of the sequence {xn} eventually end up inside
any ball B(a; ε) around a.

Let us now see how we can define continuity in metric spaces.

Definition 2.2.4 Assume that (X, dX), (Y, dY ) are two metric spaces. A
function f : X → Y is continuous at a point a ∈ X if for every ε > 0 there
is a δ > 0 such that dY (f(x), f(a)) < ε whenever dX(x, a) < δ.

This definition says exactly the same as as the usual definitions of continuity
for functions of one or several variables; we can get the distance between
f(x) and f(a) smaller than ε by choosing x such that the distance between
x and a is smaller than δ. The only difference is that we are now using the
metrics dX og dY to measure the distances.

A more geometric formulation of the definition is to say that for any open
ball B(f(a); ε) around f(a), there is an open ball B(a, δ) around a such that
f(B(a; δ)) ⊆ B(f(a); ε) (make a drawing!).

There is a close connection between continuity and convergence which
reflects our intuitive feeling that f is continuous at a point a if f(x) ap-
proaches f(a) whenever x approaches a.
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Proposition 2.2.5 The following are equivalent for a function f : X → Y
between metric spaces:

(i) f is continuous at a point a ∈ X.

(ii) For all sequences {xn} converging to a, the sequence {f(xn)} converges
to f(a).

Proof: (i) =⇒ (ii): We must show that for any ε > 0, there is an N ∈ N
such that dY (f(xn), f(a)) < ε when n ≥ N . Since f is continuous at a,
there is a δ > 0 such that dY (f(xn), f(a)) < ε whenever dX(x, a) < δ. Since
xn converges to a, there is an N ∈ N such that dX(xn, a) < δ when n ≥ N .
But then dY (f(xn), f(a)) < ε for all n ≥ N .

(ii) =⇒ (i) We argue contrapositively: Assume that f is not continuous
at a. We shall show that there is a sequence {xn} converging to a such that
{f(xn)} does not converge to f(a). That f is not continuous at a, means
that there is an ε > 0 such that no matter how small we choose δ > 0, there
is an x such that dX(x, a) < δ, but dY (f(x), f(a)) ≥ ε. In particular, we can
for each n ∈ N find an xn such that dX(xn, a) < 1

n , but dY (f(xn), f(a)) ≥ ε.
Then {xn} converges to a, but {f(xn)} does not converge to f(a). 2

The composition of two continuous functions is continuous.

Proposition 2.2.6 Let (X, dX), (Y, dY ), (Z, dZ) be three metric spaces.
Assume that f : X → Y and g : Y → Z are two functions, and let h : X → Z
be the composition h(x) = g(f(x)). If f is continuous at the point a ∈ X
and g is continuous at the point b = f(a), then h is continuous at a.

Proof: Assume that {xn} converges to a. Since f is continuous at a, the
sequence {f(xn)} converges to f(a), and since g is continuous at b = f(a),
the sequence {g(f(xn))} converges to g(f(a)), i.e {h(xn)} converges to h(a).
By the proposition above, h is continuous at a. 2

As in calculus, a function is called continuous if it is continuous at all
points:

Definition 2.2.7 A function f : X → Y between two metrics spaces is
called continuous if it continuous at all points x in X.

Occasionally, we need to study functions which are only defined on a
subset A of our metric space X. We define continuity of such functions by
restricting the conditions to elements in A:

Definition 2.2.8 Assume that (X, dX), (Y, dY ) are two metric spaces and
that A is a subset of X. A function f : A → Y is continuous at a point
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a ∈ A if for every ε > 0 there is a δ > 0 such that dY (f(x), f(a)) < ε
whenever x ∈ A and dX(x, a) < δ. We say that f is continuous if it is
continuous at all a ∈ A.

There is another way of formulating this definition that is often useful: We
can think of f as a function from the metric space (A, dA) (recall Example
7 in Section 2.1) to (Y, dY ) and use the original definition of continuity in
2.2.4. By just writing it out, it is easy to see that this definition says exactly
the same as the one above. The advantage of the second definition is that
it makes it easier to transfer results from the full to the restricted setting,
e.g., it is now easy to see that Proposition 2.2.5 can be generalized to:

Proposition 2.2.9 Assume that (X, dX) and (Y, dY ) are metric spaces and
that A ⊆ X. Then the following are equivalent for a function f : A→ Y :

(i) f is continuous at a point a ∈ A.

(ii) For all sequences {xn} in A converging to a, the sequence {f(xn)}
converges to f(a).

Exercises to Section 2.2

1. Assume that (X, d) is a discrete metric space (recall Example 6 in Section
2.1). Show that the sequence {xn} converges to a if and only if there is an
N ∈ N such that xn = a for all n ≥ N .

2. Prove Proposition 2.2.6 without using Proposition 2.2.5, i.e. use only the
definition of continuity.

3. Prove Proposition 2.2.9.

4. Assume that (X, d) is a metric space, and let R have the usual metric
dR(x, y) = |x− y|. Assume that f, g : X → R are continuous functions.

a) Show that cf is continuous for all constants c ∈ R.

b) Show that f + g is continuous.

c) Show that fg is continuous.

5. Let (X, d) be a metric space and choose a point a ∈ X. Show that the
function f : X → R given by f(x) = d(x, a) is continuous (we are using the
usual metric dR(x, y) = |x− y| on R).

6. Let (X, dX) and (Y, dY ) be two metric spaces. A function f : X → Y
is said to be a Lipschitz function if there is a constant K ∈ R such that
dY (f(u), f(v)) ≤ KdX(u, v) for all u, v ∈ X. Show that all Lipschitz func-
tions are continuous.

7. Let dR be the usual metric on R and let ddisc be the discrete metric on R.
Let id : R→ R be the identity function id(x) = x. Show that

id : (R, ddisc)→ (R, dR)
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is continuous, but that

id : (R, dR)→ (R, ddisc)

is not continuous. Note that this shows that the inverse of a bijective, con-
tinuous function is not necessarily continuous.

8. Assume that d1 and d2 are two metrics on the same space X. We say that
d1 and d2 are equivalent if there are constants K and M such that d1(x, y) ≤
Kd2(x, y) and d2(x, y) ≤Md1(x, y) for all x, y ∈ X.

a) Assume that d1 and d2 are equivalent metrics on X. Show that if {xn}
converges to a in one of the metrics, it also converges to a in the other
metric.

b) Assume that d1 and d2 are equivalent metrics on X, and that (Y, d) is
a metric space. Show that if f : X → Y is continuous when we use the
d1-metric on X, it is also continuous when we use the d2-metric.

c) We are in the same setting as i part b), but this time we have a function
g : Y → X. Show that if g is continuous when we use the d1-metric on
X, it is also continuous when we use the d2-metric.

d Assume that d1, d2 and d3 are three metrics on X. Show that if d1
and d2 are equivalent, and d2 and d3 are equivalent, then d1 and d3 are
equivalent.

e) Show that

d1(x,y) = |x1 − y1|+ |x2 − y2|+ . . .+ |xn − yn|

d2(x,y) = max{|x1 − y1|, |x2 − y2|, . . . , |xn − yn[}

d3(x,y) =
√
|x1 − y1|2 + |x2 − y2|2 + . . .+ |xn − yn|2

are equivalent metrics on Rn.

2.3 Open and closed sets

In this and the following sections, we shall study some of the most important
classes of subsets of metric spaces. We begin by recalling and extending the
definition of balls in a metric space:

Definition 2.3.1 Let a be a point in a metric space (X, d), and assume that
r is a positive, real number. The (open) ball centered at a with radius r is
the set

B(a; r) = {x ∈ X : d(x, a) < r}

The closed ball centered ar a with radius r is the set

B(a; r) = {x ∈ X : d(x, a) ≤ r}
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In many ways, balls in metric spaces behave just the way we are used to, but
geometrically they may look quite different from ordinary balls. A ball in the
Manhattan metric (Example 3 in Section 2.1) looks like an ace of diamonds,
while a ball in the discrete metric (Example 6 i Section 2.1) consists either
of only one point or the entire space X.

If A is a subset of X and x is a point in X, there are three possibilities:

(i) There is a ball B(x; r) around x which is contained in A. In this case
x is called an interior point of A.

(ii) There is a ball B(x; r) around x which is contained in the complement
Ac. In this case x is called an exterior point of A.

(iii) All balls B(x; r) around x contain points in A as well as points in the
complement Ac. In this case x is a boundary point of A.

Note that an interior point always belongs to A, while an exterior point
never belongs to A. A boundary point will some times belong to A, and
some times to Ac.

We now define the important concepts of open and closed sets:

Definition 2.3.2 A subset A of a metric space is open if it does not contain
any of its boundary points, and it is closed if it contains all its boundary
points.

Most sets contain some, but not all of their boundary points, and are
hence neither open nor closed. The empty set ∅ and the entire space X are
both open and closed as they do not have any boundary points. Here is an
obvious, but useful reformulation of the definition of an open set.

Proposition 2.3.3 A subset A of a metric space X is open if and only if
it only consists of interior points, i.e. for all a ∈ A, there is a ball B(a; r)
around a which is contained in A.

Observe that a set A and its complement Ac have exactly the same
boundary points. This leads to the following useful result.

Proposition 2.3.4 A subset A of a metric space X is open if and only if
its complement Ac is closed.

Proof: If A is open, it does not contain any of the (common) boundary
points. Hence they all belong to Ac, and Ac must be closed.

Conversely, if Ac is closed, it contains all boundary points, and hence A
can not have any. This means that A is open. 2

The following observation may seem obvious, but needs to be proved:
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Lemma 2.3.5 All open balls B(a; r) are open sets, while all closed balls
B(a; r) are closed sets.

Proof: We prove the statement about open balls and leave the other as an
exercise. Assume that x ∈ B(a; r); we must show that there is a ball B(x; ε)
around x which is contained in B(a; r). If we choose ε = r − d(x, a), we see
that if y ∈ B(x; ε) then by the triangle inequality

d(y, a) ≤ d(y, x) + d(x, a) < ε+ d(x, a) = (r − d(x, a)) + d(x, a) = r

Thus d(y, a) < r, and hence B(x; ε) ⊆ B(a; r) 2

The next result shows that closed sets are indeed closed as far as se-
quences are concerned:

Proposition 2.3.6 Assume that F is a subset of a metric space X. The
following are equivalent:

(i) F is closed.

(ii) If {xn} is a convergent sequence of elements in F , then the limit a =
limn→∞ xn always belongs to F .

Proof: Assume that F is closed and that a does not belong to F . We
must show that a sequence from F cannot converge to a. Since F is closed
and contains all its boundary points, a has to be an exterior point, and
hence there is a ball B(a; ε) around a which only contains points from the
complement of F . But then a sequence from F can never get inside B(a, ε),
and hence cannot converge to a.

Assume now that that F is not closed. We shall construct a sequence
from F that converges to a point outside F . Since F is not closed, there is a
boundary point a that does not belong to F . For each n ∈ N, we can find a
point xn from F in B(a; 1

n). Then {xn} is a sequence from F that converges
to a point a which is not in F . 2

An open set containing x is called a neighborhood of x1. The next result
is rather silly, but also quite useful.

Lemma 2.3.7 Let U be a subset of the metric space X, and assume that
each x0 ∈ U has a neighborhood Ux0 ⊆ U . Then U is open.

Proof: We must show that any x0 ∈ U is an interior point. Since Ux0 is
open, there is an r > 0 such that B(x0, r) ⊆ Ux0 . But then B(x0, r) ⊆ U ,

1In some books, a neighborhood of x is not necessarily open, but does contain a ball
centered at x. What we have defined, is the then referred to as an open neighborhood
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which shows that x0 is an interior point of U . 2

In Proposition 2.2.5 we gave a characterization of continuity in terms of
sequences. We shall now prove three characterizations in terms of open and
closed sets. The first one characterizes continuity at a point.

Proposition 2.3.8 Let f : X → Y be a function between metric spaces,
and let x0 be a point in X. Then the following are equivalent:

(i) f is continuous at x0.

(ii) For all neighborhoods V of f(x0), there is a neighborhood U of x0 such
that f(U) ⊆ V .

Proof: (i) =⇒ (ii): Assume that f is continuous at x0. If V is a neighbor-
hood of f(x0), there is a ball BY (f(x0), ε) centered at f(x0) and contained in
V . Since f is continuous at x0, there is a δ > 0 such that dY (f(x), f(x0)) < ε
whenever dX(x, x0) < δ. But this means that f(BX(x0, δ)) ⊆ BY (f(x0), ε) ⊆
V . Hence (ii) is satisfied if we choose U = B(x0, δ).

(ii) =⇒ (i) We must show that for any given ε > 0, there is a δ > 0 such
that dY (f(x), f(x0)) < ε whenever dX(x, x0) < δ. Since V = BY (f(x0), ε)
is a neighbohood of f(x0), there must be a neighborhood U of x0 such that
f(U) ⊆ V . Since U is open, there is a ball B(x0, δ) centered at x0 and
contained in U . Assume that dX(x, x0) < δ. Then x ∈ BX(x0, δ) ⊆ U ,
and hence f(x) ∈ V = BY (f(x0), ε), which means that dY (f(x), f(x0)) < ε.
Hence we have found a δ > 0 such that dY (f(x), f(x0)) < ε whenever
dX(x, x0) < δ, and thus f is continuous at x0. 2

We can also use open sets to characterize global continuity of functions:

Proposition 2.3.9 The following are equivalent for a function f : X → Y
between two metric spaces:

(i) f is continuous.

(ii) Whenever V is an open subset of Y , the inverse image f−1(V ) is an
open set in X.

Proof: (i) =⇒ (ii): Assume that f is continuous and that V ⊆ Y is open.
We shall prove that f−1(V ) is open. For any x0 ∈ f−1(V ), f(x0) ∈ V , and
we know from the previous theorem that there is a neighborhood Ux0 of
x0 such that f(Ux0) ⊆ V . But then Ux0 ⊆ f−1(V ), and by Lemma 2.3.7,
f−1(V ) is open.

(ii) =⇒ (i) Assume that the inverse images of open sets are open. To
prove that f is continuous at an arbitrary point x0, Proposition 2.3.6 tells
us that it suffices to show that for any neighborhood U of f(x0), there is a
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neighborhood V of x0 such that f(V ) ⊆ U . But this easy: Since the inverse
image of an open set is open, we can simply choose U = f−1(V ). 2

The description above is useful in many situations. Using that inverse
images commute with complements, and that closed sets are the comple-
ments of open, we can translate it into a statement about closed sets:

Proposition 2.3.10 The following are equivalent for a function f : X → Y
between two metric spaces:

(i) f is continuous.

(ii) Whenever F is a closed subset of Y , the inverse image f−1(F ) is a
closed set in X.

Proof: (i) =⇒ (ii): Assume that f is continuous and that F ⊆ Y is closed.
Then F c is open, and by the previous proposition, f−1(F c) is open. Since
inverse images commute with complements, (f−1(F ))c = f−1(F c). This
means that f−1(F ) has an open complement and hence is closed.

(ii) =⇒ (i) Assume that the inverse images of closed sets are closed.
According to the previous proposition, it suffices to show that the inverse
image of any open set V ⊆ Y is open. But if V is open, the complement V c

is closed, and hence by assumption f−1(V c) is closed. Since inverse images
commute with complements, (f−1(V ))c = f−1(V c). This means that the
complement of f−1(V ) is closed, and hence f−1(V ) is open. 2

Mathematicians usually sum up the last two theorems by saying that
openness and closedness are preserved under inverse, continuous images. Be
aware that these properties are not preserved under continuous, direct im-
ages; even if f is continuous, the image f(U) of an open set U need not be
open, and the image f(F ) of a closed F need not be closed:

Eksempel 1: Let f, g : R→ R be the continuous functions defined by

f(x) = x2 and g(x) = arctanx

The set R is both open and closed, but f(R) equals [0,∞) which is not open,
and g(R) equals (−π

2 ,
π
2 ) which is not closed. Hence the continuous image

of an open set need not be open, and the continuous image of a closed set
need not be closed. ♣

We end this section with two simple but useful observations on open and
closed sets.

Proposition 2.3.11 Let (X, d) be a metric space.
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a) If G is a (finite or infinite) collection of open sets, then the union⋃
G∈G G is open.

b) If G1, G2, . . . , Gn is a finite collection of open sets, then the intersec-
tion G1 ∩G2 ∩ . . . ∩Gn is open.

Proof: Left to the reader (see Exercise 12, where you are also asked to show
that the intersection of infinitely many open sets is not necessarily open). 2

Proposition 2.3.12 Let (X, d) be a metric space.

a) If F is a (finite or infinite) collection of closed sets, then the intersec-
tion

⋂
F∈F F is closed.

b) If F1, F2, . . . , Fn is a finite collection of closed sets, then the union
F1 ∪ F2 ∪ . . . ∪ Fn is closed.

Proof: Left to the reader (see Exercise 13, where you are also asked to show
that the union of infinitely many closed sets is not necessarily closed). 2

Propositions 2.3.10 and 2.3.11 are the starting points for topology, an
even more abstract theory of nearness.

Exercises to Section 2.3

1. Assume that (X, d) is a discrete metric space.

a) Show that an open ball in X is either a set with only one element (a
singleton) or all of X.

b) Show that all subsets of X are both open and closed.

c) Assume that (Y, dY ) is another metric space. Show that all functions
f : X → Y are continuous.

2. Give a geometric description of the ball B(a; r) in the Manhattan metric (see
Example 3 in Section 2.1). Make a drawing of a typical ball. Show that the
Manhattan metric and the usual metric in R2 have exactly the same open
sets.

3. Assume that F is a non-empty, closed and bounded subset of R (with the
usual metric d(x, y) = |y − x|). Show that supF ∈ F and inf F ∈ F . Give
an example of a bounded, but not closed set F such that supF ∈ F and
inf F ∈ F .

4. Prove the second part of Lemma 2.3.5, i.e. prove that a closed ball B(a; r) is
always a closed set.

5. Assume that f : X → Y and g : Y → Z are continuous functions. Use
Proposition 2.3.9 to show that the composition g ◦ f : X → Z is continuous.
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6. Assume that A is a subset of a metric space (X, d). Show that the interior
points of A are the exterior points of Ac, and that the exterior points of A
are the interior points of Ac. Check that the boundary points of A are the
boundary points of Ac.

7. Assume that A is a subset of a metric space X. The interior A◦ of A is the
set consisting of all interior points of A. Show that A◦ is open.

8. Assume that A is a subset of a metric space X. The closure A of A is the
set consisting of all interior points plus all boundary points of A.

a) Show that A is closed.

b) Let {an} be a sequence from A converging to a point a. Show that
a ∈ A.

9. Let (X, d) be a metric space, and let A be a subset of X. We shall consider
A with the subset metric dA.

a) Assume that G ⊆ A is open in (X, d). Show that G is open in (A, dA).

b) Find an example which shows that although G ⊆ A is open in (A, dA)
it need not be open in (X, dX).

c) Show that if A is an open set in (X, dX), then a subset G of A is open
in (A, dA) if and only if it is open in (X, dX)

10. Let (X, d) be a metric space, and let A be a subset of X. We shall consider
A with the subset metric dA.

a) Assume that F ⊆ A is closed in (X, d). Show that F is closed in (A, dA).

b) Find an example which shows that although F ⊆ A is closed in (A, dA)
it need not be closed in (X, dX).

c) Show that if A is a closed set in (X, dX), then a subset F of A is open
in (A, dA) if and only if it is closed in (X, dX)

11. Let (X, d) be a metric space and give R the usual metric. Assume that
f : X → R is continuous.

a) Show that the set

{x ∈ X | f(x) < a}

is open for all a ∈ R.

a) Show that the set

{x ∈ X | f(x) ≤ a}

is closed for all a ∈ R.

12. Prove Proposition 2.3.11. Find an example of an infinite collection of open
sets G1, G2, . . . whose intersection is not open.

13. Prove Proposition 2.3.12. Find an example of an infinite collection of closed
sets F1, F2, . . . whose union is not closed.
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2.4 Complete spaces

One of the reasons why calculus in Rn is so successful, is that Rn is a
complete space. We shall now generalize this notion to metric spaces. The
key concept is that of a Cauchy sequence:

Definition 2.4.1 A sequence {xn} in a metric space (X, d) is a Cauchy
sequence if for each ε > 0 there is an N ∈ N such that d(xn, xm) < ε
whenever n,m ≥ N .

We begin by a simple observation:

Proposition 2.4.2 Every convergent sequence is a Cauchy sequence.

Proof: If a is the limit of the sequence, there is for any ε > 0 a number
N ∈ N such that d(xn, a) < ε

2 whenever n ≥ N . If n,m ≥ N , the triangle
inequality tells us that

d(xn, xm) ≤ d(xn, a) + d(a, xm) <
ε

2
+
ε

2
= ε

and consequently {xn} is a Cauchy sequence. 2

The converse of the proposition above does not hold in all metric spaces,
and we make the following definition:

Definition 2.4.3 A metric space is called complete if all Cauchy sequences
converge.

We know from MAT1110 that Rn is complete, but that Q is not when we
use the usual metric d(x, y) = |x − y|. The complete spaces are in many
ways the “nice” metric spaces, and we shall spend much time studying their
properties. We shall also spend some time showing how we can make non-
complete spaces complete. Example 5 in Section 2.1 (where X is the space
of all continuous f : [a, b] → R) shows some interesting cases; X with the
metric d1 is complete, but not X with the metrics d2 and d3. By introducing
a stronger notion of integral (the Lebesgue integral) we can extend d2 and
d3 to complete metrics by making them act on richer spaces of functions.
In Section 2.7, we shall study an abstract method for making incomplete
spaces complete by adding new points.

The following proposition is quite useful. Remember that if A is a subset
of X, then dA is the subspace metric obtained by restricting d to A (see
Example 7 in Section 2.1).

Proposition 2.4.4 Assume that (X, d) is a complete metric space. If A is
a subset of X, (A, dA) is complete if and only if A is closed.
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Proof: Assume first that A is closed. If {an} is a Cauchy sequence in A, {an}
is also a Cauchy sequence in X, and since X is complete, {an} converges to
a point a ∈ X. Since A is closed, Proposition 2.3.6 tells us that a ∈ A. But
then {an} converges to a in (A, dA), and hence (A, dA) is complete.

If A is not closed, there is a boundary point a that does not belong to A.
Each ball B(a, 1

n) must contain an element an from A. In X, the sequence
{an} converges to a, and must be a Cauchy sequence. However, since a /∈ A,
the sequence {an} does not converge to a point in A. Hence we have found
a Cauchy sequence in (A, dA) that does not converge to a point in A, and
hence (A, dA) is incomplete. 2

The nice thing about complete spaces is that we can prove that sequences
converge to a limit without actually constructing or specifying the limit —
all we need is to prove that the sequence is a Cauchy sequence. To prove
that a sequence has the Cauchy property, we only need to work with the
given terms of the sequence and not the unknown limit, and this often makes
the arguments much easier. As an example of this technique, we shall now
prove an important theorem that will be useful later in the book, but first
we need some definitions.

A function f : X → X is called a contraction if there is a positive number
s < 1 such that

d(f(x), f(y)) ≤ s d(x, y) for all x, y ∈ X

We call s a contraction factor for f . All contractions are continuous (prove
this!), and by induction it is easy to see that

d(f◦n(x), f◦n(y)) ≤ snd(x, y)

where f◦n(x) = f(f(f(. . . f(x)))) is the result of iterating f exactly n times.
If f(a) = a, we say that a is a fixed point for f .

Theorem 2.4.5 (Banach’s Fixed Point Theorem) Assume that (X, d)
is a complete metric space and that f : X → X is a contraction. Then f
has a unique fixed point a, and no matter which starting point x0 ∈ X we
choose, the sequence

x0, x1 = f(x0), x2 = f◦2(x0), . . . , xn = f◦n(x0), . . .

converges to a.

Proof: Let us first show that f can not have more than one fixed point. If
a and b are two fixed points, and s is a contraction factor for f , we have

d(a, b) = d(f(a), f(b)) ≤ s d(a, b)
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Since 0 < s < 1, this is only possible if d(a, b) = 0, i.e. if a = b.

To show that f has a fixed point, choose a starting point x0 in X and
consider the sequence

x0, x1 = f(x0), x2 = f◦2(x0), . . . , xn = f◦n(x0), . . .

Assume, for the moment, that we can prove that this is a Cauchy sequence.
Since (X, d) is complete, the sequence must converge to a point a. To prove
that a is a fixed point, observe that we have xn+1 = f(xn) for all n, and
taking the limit as n → ∞, we get a = f(a). Hence a is a fixed point of f ,
and the theorem must hold. Thus it suffices to prove our assumption that
{xn} is a Cauchy sequence.

Choose two elements xn and xn+k of the sequence. By repeated use of
the triangle inequality, we get

d(xn, xn+k) ≤ d(xn, xn+1) + d(xn+1, xn+2) + . . .+ d(xn+k−1, xn+k) =

= d(f◦n(x0), f◦n(x1)) + d(f◦(n+1)(x0), f◦(n+1)(x1)) + . . .

. . .+ d(f◦(n+k−1)(x0), f◦(n+k−1)(x1)) ≤

≤ snd(x0, x1) + sn+1d(x0, x1) + . . .+ sn+k−1d(x0, x1) =

=
sn(1− sk)

1− s
d(x0, x1) ≤ sn

1− s
d(x0, x1)

where we have summed a geometric series to get to the last line. Since
s < 1, we can get the last expression as small as we want by choosing n
large enough. Given an ε > 0, we can in particular find an N such that
sN

1−s d(x0, x1) < ε. For n,m = n+ k larger than or equal to N , we thus have

d(xn, xm) ≤ sn

1− s
d(x0, x1) < ε

and hence {xn} is a Cauchy sequence. 2

In Section 3.4 we shall use Banach’s Fixed Point Theorem to prove the
existence of solutions to quite general differential equations.

Exercises to Section 2.4

1. Show that the discrete metric is always complete.

2. Assume that (X, dX) and (Y, dY ) are complete spaces, and give X × Y the
metric d defined by

d((x1, y1), (x2, y2)) = dX(x1, x2) + dY (y1, y2)

Show that (X × Y, d) is complete.
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3. If A is a subset of a metric space (X, d), the diameter diam(A) of A is defined
by

diam(A) = sup{d(x, y) | x, y ∈ A}

Let {An} be a collection of subsets ofX such thatAn+1 ⊆ An and diam(An)→
0, and assume that {an} is a sequence such that an ∈ An for each n ∈ N.
Show that if X is complete, the sequence {an} converges.

4. Assume that d1 and d2 are two metrics on the same space X. We say that
d1 and d2 are equivalent if there are constants K and M such that d1(x, y) ≤
Kd2(x, y) and d2(x, y) ≤ Md1(x, y) for all x, y ∈ X. Show that if d1 and d2
are equivalent, and one of the spaces (X, d1), (X, d2) is complete, then so is
the other.

5. Assume that f : [0, 1] → [0, 1] is a differentiable function and that there is
a number s < 1 such that |f ′(x)| < s for all x ∈ (0, 1). Show that there is
exactly one point a ∈ [0, 1] such that f(a) = a.

6. You are standing with a map in your hand inside the area depicted on the
map. Explain that there is exactly one point on the map that is vertically
above the point it depicts.

7. Assume that (X, d) is a complete metric space, and that f : X → X is a
function such that f◦n is a contraction for some n ∈ N. Show that f has a
unique fixed point.

8. A subset D of a metric space X is dense if for all x ∈ X and all ε ∈ R+ there
is an element y ∈ D such that d(x, y) < ε. Show that if all Cauchy sequence
{yn} from a dense set D converge in X, then X is complete.

2.5 Compact sets

We now turn to the study of compact sets. These sets are related both to
closed sets and to the notion of completeness, and they are extremely useful
in many applications.

Assume that {xn} is a sequence in a metric space X. If we have a strictly
increasing sequence of natural numbers

n1 < n2 < n3 < . . . < nk < . . .

we call the sequence {yk} = {xnk
} a subsequence of {xn}. A subsequence

contains infinitely many of the terms in the original sequence, but usually
not all.

I leave the first result as an exercise:

Proposition 2.5.1 If the sequence {xn} converges to a, so does all subse-
quences.

We are now ready to define compact sets:
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Definition 2.5.2 A subset K of a metric space (X, d) is called compact if
every sequence in K has a subsequence converging to a point in K. The
space (X, d) is compact if X a compact set, i.e. if all sequences in X has a
convergent subsequence.

Compactness is a rather complex notion that it takes a while to get used to.
We shall start by relating it to other concepts we have already introduced.
First a definition:

Definition 2.5.3 A subset A of a metric space (X, d) is bounded if there
is a point b ∈ X and a constant K ∈ R such that d(a, b) ≤ K for all a ∈ A
(it does not matter which point b ∈ X we use in this definition).

Here is our first result on compact sets:

Proposition 2.5.4 Every compact set K in a metric space (X, d) is closed
and bounded.

Proof: We argue contrapositively. First we show that if a set K is not closed,
then it can not be compact, and then we show that if K is not bounded, it
can not be compact.

Assume that K is not closed. Then there is a boundary point a that does
not belong to K. For each n ∈ N, there is an xn ∈ K such that d(xn, a) < 1

n .
The sequence {xn} converges to a /∈ K, and so does all its subsequences,
and hence no subsequence can converge to a point in K.

Assume now that K is not bounded. For every n ∈ N there is an element
xn ∈ K such that d(xn, b) > n. If {yk} is a subsequence of xn, clearly
limk→∞ d(yk, b) = ∞. It is easy to see that {yk} can not converge to any
element y ∈ X: According to the triangle inequality

d(yk, b) ≤ d(yk, y) + d(y, b)

and since d(yk, b) → ∞, we must have d(yk, y) → ∞. Hence {xn} has no
convergent subsequences, and K can not be compact. 2

In Rn the converse of the result above holds: All closed and bounded sub-
sets of Rn are compact (this is just a reformulation of Bolzano-Weierstrass’
Theorem in MAT1110). The following example shows that this is not the
case for all metric space.

Example 1: Consider the metric space (N, d) where d is the discrete met-
ric. Then N is complete, closed and bounded, but the sequence {n} does
not have a convergent subsequence.
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We shall later see how we can strengthen the boundedness condition (to
something called total boundedness) to get a characterization of compact-
ness.

We next want to take a look at the relationship between completeness
and compactness. Not all complete spaces are compact (R is complete but
not compact), but it turns out that all compact spaces are complete. To
prove this, we need a lemma on subsequences of Cauchy sequences that is
useful also in other contexts.

Lemma 2.5.5 Assume that {xn} is a Cauchy sequence in a (not necessarily
complete) metric space (X, d). If there is a subsequence {xnk

} converging to
a point a, then the original sequence {xn} also converges to a

Proof: We must show that for any given ε > 0, there is an N ∈ N such that
d(xn, a) < ε for all n ≥ N . Since {xn} is a Cauchy sequence, there is an
N ∈ N such that d(xn, xm) < ε

2 for all n,m ≥ N . Since {xnk
} converges to

a, there is a K such that nK ≥ N and d(xnK , a) ≤ ε
2 . For all n ≥ N we then

have
d(xn, a) ≤ d(xn, xnK ) + d(xnK , a) <

ε

2
+
ε

2
= ε

by the triangle inequality. 2

Proposition 2.5.6 Every compact metric space is complete.

Proof: Let {xn} be a Cauchy sequence. Since X is compact, there is a
subsequence {xnk

} converging to a point a. By the lemma above, {xn} also
converges to a. Hence all Cauchy sequences converge, and X must be com-
plete. 2

Here is another useful result:

Proposition 2.5.7 A closed subset F of a compact set K is compact.

Proof: Assume that {xn} is a sequence in F — we must show that {xn} has
a subsequence converging to a point in F . Since {xn} is also a sequence in
K, and K is compact, there is a subsequence {xnk

} converging to a point
a ∈ K. Since F is closed, a ∈ F , and hence {xn} has a subsequence con-
verging to a point in F . 2

We have previously seen that if f is a continuous function, the inverse
images of open and closed sets are open and closed, respectively. The in-
verse image of a compact set need not be compact, but it turns out that
the (direct) image of a compact set under a continuous function is always
compact.
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Proposition 2.5.8 Assume that f : X → Y is a continuous function be-
tween two metric spaces. If K ⊆ X is compact, then f(K) is a compact
subset of Y .

Proof: Let {yn} be a sequence in f(K); we shall show that {yn} has sub-
sequence converging to a point in f(K). Since yn ∈ f(K), we can for each
n find an element xn ∈ K such that f(xn) = yn. Since K is compact, the
sequence {xn} has a subsequence {xnk

} converging to a point x ∈ K. But
then by Proposition 2.2.5, {ynk

} = {f(xnk
)} is a subsequence of {yn} con-

verging to y = f(x) ∈ f(K). 2

So far we have only proved technical results about the nature of compact
sets. The next result gives the first indication why these sets are useful.

Theorem 2.5.9 (The Extreme Value Theorem) Assume that K is a
non-empty, compact subset of a metric space (X, d) and that f : K → R is
a continuous function. Then f has maximum and minimum points in K,
i.e. there are points c, d ∈ K such that

f(d) ≤ f(x) ≤ f(c)

for all x ∈ K.

Proof: There is a quick way of proving this theorem by using the previous
proposition (see the remark below), but I choose a slightly longer proof as
I think it gives a better feeling for what is going on and how compactness
argumentness are used in practice. I only prove the maximum part and leave
the minimum as an exercise.

Let
M = sup{f(x) | x ∈ K}

(if F is unbounded, we put M =∞) and choose a sequence {xn} in K such
that limn→∞ f(xn) = M . Since K is compact, {xn} has a subsequence {xnk

}
converging to a point c ∈ K. Then on the one hand limk→∞ f(xnk

) = M ,
and on the other limk→∞ f(xnk

) = f(c) according to Proposition 2.2.9.
Hence f(c) = M , and since M = sup{f(x) | x ∈ K}, we see that c is a
maximum point for f on K. 2.

Remark: As already mentioned, it is possible to give a shorter proof of the
Extreme Value Theorem by using Proposition 2.5.7. According to it, the set
f(K) is compact and thus closed and bounded. This means that sup f(K)
and inf f(K) belong to f(K), and hence there are points c, d ∈ K such that
f(c) = sup f(K) and f(d) = inf f(K). Clearly, c is a maximum and d a
minimum point for f .

Let us finally turn to the description of compactness in terms of total
boundedness.
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Definition 2.5.10 A subset A of a metric space X is called totally bounded
if for each ε > 0 there is a finite number B(a1, ε),B(a2, ε), . . . ,B(an, ε) of
balls with centers in A and radius ε that cover A (i.e. A ⊆ B(a1, ε) ∪
B(a2, ε) ∪ . . . ∪ B(an, ε)).

We first observe that a compact set is always totally bounded.

Proposition 2.5.11 Let K be a compact subset of a metric space X. Then
K is totally bounded.

Proof: We argue contrapositively: Assume that A is not totally bounded.
Then there is an ε > 0 such that no finite collection of ε-balls cover A.
We shall construct a sequence {xn} in A that does not have a convergent
subsequence. We begin by choosing an arbitrary element x1 ∈ A. Since
B(x1, ε) does not cover A, we can choose x2 ∈ A \ B(x1, ε). Since B(x1, ε)
and B(x2, ε) do not cover A, we can choose x3 ∈ A \

(
B(x1, ε) ∪ B(x2, ε)

)
.

Continuing in this way, we get a sequence {xn} such that

xn ∈ A \
(
B(x1, ε) ∪ B(x2, ε) ∪ . . . ∪ (B(xn−1, ε)

)
This means that d(xn, xm) ≥ ε for all n,m ∈ N, n > m, and hence {xn} has
no convergent subsequence. 2

We are now ready for the final theorem. Note that we have now added
the assumption that X is complete — without this condition, the statement
is false.

Theorem 2.5.12 A subset A of a complete metric space X is compact if
and only if it is closed and totally bounded.

Proof: As we already know that a compact set is closed and totally bounded,
it suffices to prove that a closed and totally bounded set A is compact. Let
{xn} be a sequence in A. Our aim is to construct a convergent subsequence
{xnk

}. Choose balls B1
1 , B

1
2 , . . . , B

1
k1

of radius one that cover A. At least one
of these balls must contain infinitely many terms from the sequence. Call
this ball S1 (if there are more than one such ball, just choose one). We now
choose balls B2

1 , B
2
2 , . . . , B

2
k2

of radius 1
2 that cover A. At least one of these

ball must contain infinitely many of the terms from the sequence that lies in
S1. If we call this ball S2, S1 ∩ S2 contains infinitely many terms from the
sequence. Continuing in this way, we find a sequence of balls Sk of radius 1

k
such that

S1 ∩ S2 ∩ . . . ∩ Sk
always contains infinitely many terms from the sequence.

We can now construct a convergent subsequence of {xn}. Choose n1

to be the first number such that xn1 belongs to S1. Choose n2 to be first
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number larger that n1 such that xn2 belongs to S1 ∩ S2, then choose n3 to
be the first number larger than n2 such that xn3 belongs to S1 ∩ S2 ∩ S3.
Continuing in this way, we get a subsequence {xnk

} such that

xnk
∈ S1 ∩ S2 ∩ . . . ∩ Sk

for all k. Since the Sk’s are shrinking, {xnk
} is a Cauchy sequence, and

since X is complete, {xnk
} converges to a point a. Since A is closed, a ∈ A.

Hence we have proved that any sequence in A has a subsequence converging
to a point in A, and thus A is compact. 2

Problems to Section 2.5

1. Show that a space (X, d) with the discrete metric is compact if and only if
X is a finite set.

2. Prove Proposition 2.5.1.

3. Prove the minimum part of Theorem 2.5.9.

4. Let b and c be two points in a metric space (X, d), and let A be a subset of
X. Show that if there is a number K ∈ R such that d(a, b) ≤ K for all a ∈ A,
then there is a number M ∈ R such that d(a, c) ≤M for all a ∈ A. Hence it
doesn’t matter which point b ∈ X we use in Definition 2.5.3.

5. Assume that (X, d) is metric space and that f : X → [0,∞) is a continuous
function. Assume that for each ε > 0, there is a compact Kε ⊆ X such that
f(x) < ε when x /∈ Kε. Show that f has a maximum point.

6. Let (X, d) be a compact metric space, and assume that f : X → R is contin-
uous when we give R the usual metric. Show that if f(x) > 0 for all x ∈ X,
then there is a positive, real number a such that f(x) > a for all x ∈ X.

7. Assume that f : X → Y is a continuous function between metric spaces,
and let K be a compact subset of Y . Show that f−1(K) is closed. Find an
example which shows that f−1(K) need not be compact.

8. Show that a totally bounded subset of a metric space is always bounded. Find
an example of a bounded set in a metric space that is not totally bounded.

9. The Bolzano-Weierstrass’ Theorem says that any bounded sequence in Rn
has a convergent subsequence. Use it to prove that a subset of Rn is compact
if and only if it is closed and bounded.

10. Let (X, d) be a metric space.

a) Assume that K1,K2, . . . ,Kn is a finite collection of compact subsets of
X. Show that the union K1 ∪K2 ∪ . . . ∪Kn is compact.

b) Assume that K is a collection of compact subset of X. Show that the
intersection

⋂
K∈KK is compact.

11. Let (X, d) be a metric space. Assume that {Kn} is a sequence of non-empty,
compact subsets of X such that K1 ⊇ K2 ⊇ . . . ⊇ Kn ⊇ . . .. Prove that⋂
n∈NKn is non-empty.
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12. Let (X, dX) and (Y, dY ) be two metric spaces. Assume that (X, dX) is com-
pact, and that f : X → Y is bijective and continuous. Show that the inverse
function f−1 : Y → X is continuous.

13. Assume that C and K are disjoint, compact subsets of a metric space (X, d),
and define

a = inf{d(x, y) | x ∈ C, y ∈ K}

Show that a is strictly positive and that there are points x0 ∈ C, y0 ∈ K
such that d(x0, y0) = a. Show by an example that the result does not hold if
we only assume that one of the sets C and K is compact and the other one
closed.

14. Assume that (X, d) is compact and that f : X → X is continuous.

a) Show that the function g(x) = d(x, f(x)) is continuous and has a min-
imum point.

b) Assume in addition that d(f(x), f(y)) < d(x, y) for all x, y ∈ X, x 6= y.
Show that f has a unique fixed point. (Hint: Use the minimum from
a))

2.6 An alternative description of compactness

The descriptions of compactness we studied in the previous section, suffice
for most purposes in this book, but for some of the more advanced proofs
there is another description that is more convenient. This alternative de-
scription is also the right one to use if one wants to extend the concept of
compactness to even more general spaces, so-called topological spaces. In
such spaces, sequences are not always an efficient tool, and it is better to
have a description of compactness in terms of coverings by open sets.

To see what this means, assume that K is a subset of a metric space X.
An open covering of X is simply a (finite or infinite) collection O of open
sets whose union contains K, i.e.

K ⊆
⋃
{O : O ∈ O}

The purpose of this section is to show that in metric spaces, the following
property is equivalent to compactness.

Definition 2.6.1 (Open Covering Property) Let K be a subset of a
metric space X. Assume that for each open covering O of K, there is a
finite number of elements O1, O2, . . . , On in O such that

K ⊆ O1 ∪O2 ∪ . . . ∪On

(we say that each open covering of K has a finite subcovering). Then the
set K is said to have the open covering property.
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The open covering property is quite abstract and may take some time to
get used to, but it turns out to be a very efficient tool. Note that the term
“open covering property” is not standard terminology, and that it will more
or less disappear once we have proved that it is equivalent to compactness.

Let us first prove that a set with the open covering property is necessarily
compact. Before we begin, we need a simple observation: Assume that x is
a point in our metric space X, and that no subsequence of a sequence {xn}
converges to x. Then there must be an open ball B(x; r) around x which
only contains finitely many terms from {xn} (because if all balls around x
contained infinitely many terms, we could use these terms to construct a
subsequence converging to x).

Proposition 2.6.2 If a subset K of a metric space X has the open covering
property, then it is compact.

Proof: We argue contrapositively, i.e., we assume that K is not compact
and prove that it does not have the open covering property. Since K is not
compact, there is a sequence {xn} which does not have any subsequences
converging to points in K. By the observation above, this means that for
each element x ∈ K, there is an open ball B(x; rx) around x which only con-
tains finitely many terms of the sequence. The family {B(x, rx) : x ∈ K}
is an open covering of K, but it cannot have a finite subcovering since
any such subcovering B(x1, rx1),B(x2, rx2), . . . ,B(xm, rxm) can only contain
finitely many of the infinitely many terms in the sequence. 2

To prove the opposite implication, we shall use an elegant trick based on
the Extreme Value Theorem, but first we need a lemma (the strange cut-off
at 1 in the definition of f(x) below is just to make sure that the function is
finite):

Lemma 2.6.3 Let O be an open covering of a subset A of a metric spece
X. Define a function f : A→ R by

f(x) = sup{r ∈ R | r < 1 and B(x; r) ⊆ O for some O ∈ O}

Then f is continuous and strictly positive (i.e. f(x) > 0 for all x ∈ A).

Proof: The strict positivity is easy: Since O is a covering of A, there is a
set O ∈ O such that x ∈ O, and since O is open, there is an r, 0 < r < 1,
such that B(x; r) ⊆ O. Hence f(x) ≥ r > 0.

To prove the continuity, it suffices to show that |f(x) − f(y)| ≤ d(x, y)
as we can then choose δ = ε in the definition of continuity. Observe first
that if f(x), f(y) ≤ d(x, y), there is nothing to prove. Assume therefore
that at least one of these values is larger than d(x, y). Without out loss of
generality, we may assume that f(x) is the larger of the two. There must
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then be an r > d(x, y) and an O ∈ O such that B(x, r) ⊆ O. For any
such r, B(y, r − d(x, y)) ⊆ O since B(y, r − d(x, y)) ⊂ B(x, r). This means
that f(y) ≥ f(x) − d(x, y). Since by assumption f(x) ≥ f(y), we have
|f(x)− f(y)| ≤ d(x, y) which is what we set out to prove. 2

We are now ready for the main theorem:

Theorem 2.6.4 A subset K of a metric space is compact if and only if it
has the open covering property.

Proof: It remains to prove that if K is compact and O is an open covering
of K, then O has a finite subcovering. By the Extremal Value Theorem,
the function f in the lemma attains a minimal value r on K, and since f
is strictly positive, r > 0. This means that for all x ∈ K, the ball B(x, r)
is contained in a set O ∈ B. Since K is compact, it is totally bounded, and
hence there is a finite collection of balls B(x1, r1), B(x2, r2), . . . , B(xn, rn)
that cover K. Each ball B(xi, ri) is contained in a set Oi ∈ O, and hence
O1, O2, . . . , On is a finite subcovering of O. 2

As usual, there is a reformulation of the theorem above in terms of
closed sets. Let us first agree to say that a collection F of sets has the finite
intersection property over K if

K ∩ F1 ∩ F2 ∩ . . . ∩ Fn 6= ∅

for all finite collections F1, F2, . . . , Fn of sets from F .

Corollary 2.6.5 Assume that K is a subset of a metric space X. Then the
following are equivalent:

(i) K is compact.

(ii) If a collection F of closed sets has the finite intersection property over
K, then

K ∩

( ⋂
F∈F

F

)
6= ∅

Proof: Left to the reader (see Exercise 8). 2

Problems to Section 2.6

1. Assume that I is a collection of open intervals in R whose union contains
[0, 1]. Show that there exists a finite collection I1, I2, . . . , In of sets from I
such that

[0, 1] ⊆ I1 ∪ I1 ∪ . . . ∪ In



50 CHAPTER 2. METRIC SPACES

2. Let {Kn} be a decrasing sequence (i.e., Kn+1 ⊆ Kn for all n ∈ N) of
nonempty, compact sets. Show that

⋂
n∈NKn 6= ∅.

3. Assume that f : X → Y is a continuous function between two metric spaces.
Use the open covering property to show that if K is a compact subset of X,
then f(K) is a compact subset of Y .

4. Assume that K1,K2, . . . ,Kn are compact subsets of a metric space X. Use
the open covering property to show that K1 ∪K2 ∪ . . . ∪Kn is compact.

5. Use the open covering property to show that a closed subset of a compact
set is compact.

6. Assume that f : X → Y is a continuous function between two metric spaces,
and assume that K is a compact subset of X. We shall prove that f is
uniformly continuous, i.e. that for each ε > 0, there exists a δ > 0 such that
whenever x, y ∈ K and dX(x, y) < δ, then dY (f(x), f(y)) < ε (this looks very
much like ordinary continuity, but the point is that we can use the same δ
at all points x, y ∈ K).

a) Given ε > 0, explain that for each x ∈ K there is a δ(x) > 0 such that
dY (f(x), f(y)) < ε

2 for all y with d(x, y) < δ(x).

b) Explain that {B(x, δ(x)2 )}x∈K is an open cover of X, and that it has a

finite subcover B(x1,
δ(x1)

2 ), B(x2,
δ(x2)

2 ), . . . , B(xn,
δ(xn)

2 ).

c) Put δ = min{ δ(x1)
2 , δ(x2)

2 , . . . , δ(xn)
2 }, and show that if x, y ∈ K with

dX(x, y) < δ, then dY (f(x), f(y)) < ε.

2.7 The completion of a metric space

Completeness is probably the most important notion in this book as most
of the deep and important theorems about metric spaces only hold when
space is complete. In this section we shall see that it is always possible to
make an incomplete space complete by adding new elements, but before we
turn to this, we need to take a look at a concept that will be important in
many different contexts throughout the book.

Definition 2.7.1 Let (X, d) be a metric space and assume that D is a subset
of X. We say that D is dense in X if for each x ∈ X there is a sequence
{yn} from D converging to x.

We know that Q is dense in R — we may, e.g., approximate a real number
by longer and longer parts of its decimal expansion. For x =

√
2 this would

mean the approximating sequence

y1 = 1.4 =
14

10
, y2 = 1.41 =

141

100
, y3 = 1.414 =

1414

1000
, y4 = 1.4142 =

14142

10000
, . . .

There is an alternative description of dense that we shall also need.
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Proposition 2.7.2 A subset D of a metric space X is dense if and only if
for each x ∈ X and each δ > 0, there is a y ∈ D such that d(x, y) ≤ δ.

Proof: Left as an exercise. 2

We are now ready to return to our initial problem: How do we extend
an incomplete metric space to a complete one? The following definition
describes what we are looking for.

Definition 2.7.3 If (X, dX) is a metric space, a completion of (X, dX) is
a metric space (X̄, dX̄) such that:

(i) (X, dX) is a subspace of (X̄, dX̄); i.e. X ⊆ X̄ and d̄(x, y)) = d(x, y)
for all x, y ∈ X.

(ii) X is dense (X̄, dX̄).

The canonical example of a completion is that R is the completion Q. We
also note that a complete metric space is its own (unique) completion.

An incomplete metric space will have more than one completion, but as
they are all isometric2, they are the same for all practical purposes, and we
usually talk about the completion of a metric space.

Proposition 2.7.4 Assume that (Y, dY ) and (Z, dZ) are completions of the
metric space (X, dX). Then (Y, dY ) and (Z, dZ) are isometric.

Proof: We shall construct an isometry i : Y → Z. Since X is dense in
Y , there is for each y ∈ Y a sequence {xn} from X converging to y. This
sequence must be a Cauchy sequence in X and hence in Z. Since Z is
complete, {xn} converges to an element z ∈ Z. The idea is to define i by
letting i(y) = z. For the definition to work properly, we have to check that
if {x̂n} is another sequence in X converging to y, then {x̂n} converges to z
in Z. This is the case since dZ(xn, x̂n) = dX(xn, x̂n) = dY (xn, x̂n) → 0 as
n→∞.

To prove that i preserves distances, assume that y, ŷ are two points in Y ,
and that {xn}, {x̂n} are sequences in X converging to y and ŷ, respectively.
Then {xn}, {x̂n} converges to i(y) and i(ŷ), respectively, in Z, and we have

dZ(i(y), i(ŷ)) = lim
n→∞

dZ(xn, x̂n) = lim
n→∞

dX(xn, x̂n) =

= lim
n→∞

dY (xn, x̂n) = dY (y, ŷ)

2Recall from Section 2.1 that an isometry from (X, dX) to (Y, dY ) is a bijection i :
X → Y such that dY (i(x), i(y)) = dX(x, y) for all x, y ∈ X. Two metric spaces are
often considered “the same” when they are isomorphic; i.e. when there is an isomorphism
between them.
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It remains to prove that i is a bijection. Injectivity follows immediately
from distance preservation: If y 6= ŷ, then dZ(i(y), i(ŷ)) = dY (y, ŷ) 6= 0, and
hence i(y) 6= i(ŷ). To show that i is surjective, consider an arbitrary element
z ∈ Z. Since X is dense in Z, there is a sequence {xn} from X converging
to z. Since Y is complete, {xn} is also converging to an element y in Y . By
construction, i(y) = z, and hence i is surjective. 2

We shall use the rest of the section to show that all metric spaces (X, d)
have a completion. The construction is longer and more complicated than
most others in this book, but also quite instructive as it is typical of a type
of construction that is very common in mathematics. As what we want to
construct is a space where all Cauchy sequences from X has a limit, it is
not unnatural to start with the set X of all Cauchy sequences and see if we
can turn it into a metric space containing X.

The first lemma gives us the information we need to construct a metric.

Lemma 2.7.5 Assume that {xn} and {yn} are two Cauchy sequences in a
metric space (X, d). Then limn→∞ d(xn, yn) exists.

Proof: As R is complete, it suffices to show that {d(xn, yn)} is a Cauchy
sequence. We have

|d(xn, yn)− d(xm, ym)| = |d(xn, yn)− d(xm, yn) + d(xm, yn)− d(xm, ym)| ≤

≤ |d(xn, yn)− d(xm, yn)|+ |d(xm, yn)− d(xm, ym)| ≤ d(xn, xm) + d(yn, ym)

where we have used the inverse triangle inequality (Proposition 2.1.4) in the
final step. Since {xn} and {yn} are Cauchy sequences, we can get d(xn, xm)
and d(yn, ym) as small as we wish by choosing n and m sufficiently large,
and hence {d(xn, yn)} is a Cauchy sequence. 2

As already mentioned, we let X be the set of all Cauchy sequences on the
metric space (X, dX). We want to turn X into a metric space by using the
“metric” d̄({xn}, {yn}) = limn→∞ d(xn, yn) to measure the distance between
the sequences {xn} and {yn}, but before we can do this, we have to identify
Cauchy sequences that will converge to the same point in any completion.
To this end we introduce a relation ∼ on X by

{xn} ∼ {yn} ⇐⇒ lim
n→∞

d(xn, yn) = 0

Lemma 2.7.6 ∼ is an equivalence relation.

Proof: We have to check the three properties in Definition 1.5.2:
Reflexivity: Since limn→∞ d(xn, xn) = 0, the relation is reflexiv.
Symmetry: Since limn→∞ d(xn, yn) = limn→∞ d(yn, xn), the relation is sym-
metric.
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Transitivity: Assume that {xn} ∼ {yn} og {yn} ∼ {zn}. Then limn→∞ d(xn, yn)
= limn→∞ d(yn, zn) = 0, and consequently

0 ≤ lim
n→∞

d(xn, zn) ≤ lim
n→∞

(
d(xn, yn) + d(yn, zn)

)
=

= lim
n→∞

d(xn, yn) + lim
n→∞

d(yn, zn) = 0

which shows that {xn} = {yn}. 2

We shall denote the equivalence class of {xn} by [xn], and we let X̄ be
the set of all equivalence classes. The next lemma will allow us to define a
natural metric on X̄.

Lemma 2.7.7 If {xn} ∼ {x̂n} and {yn} ∼ {ŷn}, then limn→∞ d(xn, yn) =
limn→∞ d(x̂n, ŷn).

Proof: Since d(xn, yn) ≤ d(xn, x̂n) + d(x̂n, ŷn) + d(ŷn, yn) by the triangle
inequality, and limn→∞ d(xn, x̂n) = limn→∞ d(ŷn, yn) = 0, we get

lim
n→∞

d(xn, yn) ≤ lim
n→∞

d(x̂n, ŷn)

By reversing the roles of elements with and without hats, we get the oppo-
site inequality. 2

We may now define a function d̄ : X̄ × X̄ → [0,∞) by

d̄([xn], [yn]) = lim
n→∞

d(xn, yn)

Note that by the previous lemma d̄ is well-defined ; i.e. the value of d̄([xn], [yn])
does not depend on which representatives {xn} and {yn} we choose from
the equivalence classes [xn] and [yn].

Lemma 2.7.8 (X̄, d̄) is a metric space.

Proof : We need to check the three conditions in the definition of a metric
space.
Positivity: Clearly d̄([xn], [yn]) = limn→∞ d(xn, yn) ≥ 0, and by definition
of the equivalence relation, we have equality if and only if [xn] = [yn].
Symmetry: Since the underlying metric d is symmetric, we have

d̄([xn], [yn]) = lim
n→∞

d(xn, yn) = lim
n→∞

d(yn, xn) = d̄([yn], [xn])

Triangle inequality: For all equivalence classes [xn], [yn], [zn], we have

d̄([xn], [zn]) = lim
n→∞

d(xn, zn) ≤ lim
n→∞

d(xn, yn) + lim
n→∞

d(yn, zn) =
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= d̄([xn], [yn]) + d̄([yn], [zn])

2

For each x ∈ X, let x̄ be the equivalence class of the constant sequence
{x, x, x, . . .}. Since d̄(x̄, ȳ) = limn→∞ d(x, y) = d(x, y), the mapping x → x̄
is an embedding3 of X into X̄. Hence X̄ contains a copy of X, and the next
lemma shows that this copy is dense in X̄.

Lemma 2.7.9 The set

D = {x̄ : x ∈ X}

is dense in X̄.

Proof: Assume that [xn] ∈ X̄. It suffices to show (see Problem 4) that for
each ε > 0 there is an x̄ ∈ D such that d̄(x̄, [xn]) < ε. Since {xn} is a Cauchy
sequence, there is an N ∈ N such that d(xn, xN ) < ε

2 for all n ≥ N . Put
x = xN . Then d̄([xn], x̄) = limn→∞ d(xn, xN ) ≤ ε

2 < ε. 2

It still remains to prove that (X̄, d̄) is complete. The next lemma is the first
step in this direction.

Lemma 2.7.10 All Cauchy sequences in D converges to an element in X̄.

Proof: Let {ūk} be a Cauchy sequence in D. Since d(un, um) = d̄(ūn, ūm),
{un} is a Cauchy sequence in X, and gives rise to an element [un] in X̄. To
see that {ūk} converges to [un], note that d̄(ūk, [un]) = limn→∞ d(uk, un).
Since {un} is a Cauchy sequence, this limit decreases to 0 as k goes to in-
finity. 2

We are now ready to prove completeness:

Lemma 2.7.11 (X̄, d̄) is complete.

Proof: Let {xn} be a Cauchy sequence in X̄. Since D is dense in X̄, there
is for each n a yn ∈ D such that d̄(xn, yn) < 1

n . It is easy to check that
since {xn} is a Cauchy sequence, so is {yn}. By the previous lemma, {yn}
converges to an element in X̄, and by construction {xn} must converge to
the same element. Hence (X̄, d̄) is complete. 2

We have reached the main theorem.

Theorem 2.7.12 Every metric space (X, d) has a completion.

3Recall Definition 2.1.3
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Proof: We have already proved that (X̄, d̄) is a complete metric space that
contains D = {x̄ : x ∈ X} as a dense subset. In addition, we know that D
is a copy of X (more precisel, x → x̄ is an isometry from X to D). All we
have to do, is to replace the elements x̄ in D by the original elements x in
X, and we have found a completion of X. 2

Remark: The theorem above doesn’t solve all problems with incomplete
spaces as there may be additional structure we want the completion to re-
flect. If, e.g., the original space consists of functions, we may want the
completion also to consist of functions, but there is nothing in the construc-
tion above that guarantees that this is possible. We shall return to this
question in later chapters.

Problems to Section 2.7

1. Prove Proposition 2.7.2.

2. Let us write (X, dX) ∼ (Y, dY ) to indicate that the two spaces are isometric.
Show that

(i) (X, dX) ∼ (X, dX)

(ii) If (X, dX) ∼ (Y, dY ), then (Y, dY ) ∼ (X, dX)

(iii) If (X, dX) ∼ (Y, dY ) and (Y, dY ) ∼ (Z, dZ), then (X, dX) ∼ (Z, dZ).

3. Show that the only completion of a complete metric space is the space itself.

4. Show that R is the completion of Q (in the usual metrics).

5. Assume that i : X → Y is an isometry between two metric spaces (X, dX)
and (Y, dY ).

(i) Show that a sequence {xn} converges in X if and only if {i(xn)} con-
verges in Y .

(ii) Show that a set A ⊆ X is open/closed/compact if and only if i(A) is
open/closed/compact.



56 CHAPTER 2. METRIC SPACES



Chapter 3

Spaces of continuous
functions

In this chapter we shall apply the theory we developed in the previous chapter to
spaces where the elements are continuous functions. We shall study completeness
and compactness of such spaces and take a look at some applications.

3.1 Modes of continuity

If (X, dX) and (Y, dY ) are two metric spaces, the function f : X → Y is continuous
at a point a if for each ε > 0 there is a δ > 0 such that dY (f(x), f(a)) < ε whenever
dX(x, a) < δ. If f is also continuous at another point b, we may need a different
δ to match the same ε. A question that often comes up is when we can use the
same δ for all points x in the space X. The function is then said to be uniformly
continuous in X. Here is the precise definition:

Definition 3.1.1 Let f : X → Y be a function between two metric spaces. We
say that f is uniformly continuous if for each ε > 0 there is a δ > 0 such that
dY (f(x), f(y)) < ε for all points x, y ∈ X such that dX(x, y) < δ.

A function which is continuous at all points in X, but not uniformly continu-
ous, is often called pointwise continuous when we want to emphasize the distinction.

Example 1 The function f : R→ R defined by f(x) = x2 is pointwise continuous,
but not uniformly continuous. The reason is that the curve becomes steeper and
steeper as |x| goes to infinity, and that we hence need increasingly smaller δ’s to
match the same ε (make a sketch!) See Exercise 1 for a more detailed discussion. ♣

If the underlying space X is compact, pointwise continuity and uniform conti-
nuity are the same. This means that a continuous function defined on a closed and
bounded subset of Rn is always uniformly continuous.

Proposition 3.1.2 Assume that X and Y are metric spaces. If X is compact, all
continuous functions f : X → Y are uniformly continuous.

57
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Proof: We argue contrapositively: Assume that f is not uniformly continuous; we
shall show that f is not continuous.

Since f fails to be uniformly continuous, there is an ε > 0 we cannot match;
i.e. for each δ > 0 there are points x, y ∈ X such that dX(x, y) < δ, but
dY (f(x), f(y)) ≥ ε. Choosing δ = 1

n , there are thus points xn, yn ∈ X such that
dX(xn, yn) < 1

n and dY (f(xn), f(yn)) ≥ ε. Since X is compact, the sequence {xn}
has a subsequence {xnk

} converging to a point a. Since dX(xnk
, ynk

) < 1
nk

, the

corresponding sequence {ynk
} of y’s must also converge to a. We are now ready to

show that f is not continuous at a: Had it been, the two sequences {f(xnk
)} and

{f(ynk
)} would both have converged to f(a), something they clearly can not since

dY (f(xn), f(yn)) ≥ ε for all n ∈ N. 2

There is an even more abstract form of continuity that will be important later.
This time we are not considering a single function, but a whole collection of func-
tions:

Definition 3.1.3 Let (X, dX) and (Y, dY ) be metric spaces, and let F be a collec-
tion of functions f : X → Y . We say that F is equicontinuous if for all ε > 0,
there is a δ > 0 such that for all f ∈ F and all x, y ∈ X with dX(x, y) < δ, we have
dY (f(x), f(y)) < ε.

Note that in the case, the same δ should not only hold at all points x, y ∈ X,
but also for all functions f ∈ F .

Example 2 Let F be the set of all contractions f : X → X. Then F is equicontin-
uous, since we can can choose δ = ε. To see this, just note that if dX(x, y) < δ = ε,
then dX(f(x), f(y)) ≤ dX(x, y) < ε for all x, y ∈ X and all f ∈ F . ♣

Equicontinuous families will be important when we study compact sets of con-
tinuous functions in Section 3.5.

Exercises for Section 3.1

1. Show that the function f(x) = x2 is not uniformly continuous on R. (Hint:
You may want to use the factorization f(x)−f(y) = x2−y2 = (x+y)(x−y)).

2. Prove that the function f : (0, 1) → R given by f(x) = 1
x is not uniformly

continuous.

3. A function f : X → Y between metric spaces is said to be Lipschitz-
continuous with Lipschitz constant K if dY (f(x), f(y)) ≤ KdX(x, y) for
all x, y ∈ X. Asume that F is a collection of functions f : X → Y with
Lipschitz constant K. Show that F is equicontinuous.

4. Let f : R→ R be a differentiable function and assume that the derivative f ′

is bounded. Show that f is uniformly continuous.

3.2 Modes of convergence

In this section we shall study two ways in which a sequence {fn} of continu-
ous functions can converge to a limit function f : pointwise convergence and
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uniform convergence. The distinction is rather simililar to the distinction
between pointwise and uniform continuity in the previous section — in the
pointwise case, a condition can be satisfied in different ways for different x’s;
in the uniform, case it must be satisfied in the same way for all x. We begin
with pointwise convergence:

Definition 3.2.1 Let (X, dX) and (Y, dY ) be two metric spaces, and let
{fn} be a sequence of functions fn : X → Y . We say that {fn} con-
verges pointwise to a function f : X → Y if fn(x) → f(x) for all x ∈ X.
This means that for each x and each ε > 0, there is an N ∈ N such that
dY (fn(x), f(x)) < ε when n ≥ N .

Note that the N in the last sentence of the definition depends on x —
we may need a much larger N for some x’s than for others. If we can use
the same N for all x ∈ X, we have uniform convergence. Here is the precise
definition:

Definition 3.2.2 Let (X, dX) and (Y, dY ) be two metric spaces, and let
{fn} be a sequence of functions fn : X → Y . We say that {fn} converges
uniformly to a function f : X → Y if for each ε > 0, there is an N ∈ N
such that if n ≥ N , then dY (fn(x), f(x)) < ε for all x ∈ X.

At first glance, the two definitions may seem confusingly similar, but the
difference is that in the last one, the same N should work simultaneously for
all x, while in the first we can adapt N to each individual x. Hence uniform
convergence implies pointwise convergence, but a sequence may converge
pointwise but not uniformly. Before we look at an example, it will be useful
to reformulate the definition of uniform convergence.

Proposition 3.2.3 Let (X, dX) and (Y, dY ) be two metric spaces, and let
{fn} be a sequence of functions fn : X → Y . For any function f : X → Y
the following are equivalent:

(i) {fn} converges uniformly to f .

(ii) sup{dY (fn(x), f(x)) |x ∈ X} → 0 as n→∞.

Hence uniform convergence means that the “maximal” distance between f
and fn goes to zero.

Proof: (i) =⇒ (ii) Assume that {fn} converges uniformly to f . For any
ε > 0, we can find an N ∈ N such that dY (fn(x), f(x)) < ε for all x ∈ X and
all n ≥ N . This means that sup{dY (fn(x), f(x)) |x ∈ X} ≤ ε for all n ≥ N
(note that we may have unstrict inequality ≤ for the supremum although
we have strict inequality < for each x ∈ X), and since ε is arbitrary, this
implies that sup{dY (fn(x), f(x)) |x ∈ X} → 0.
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(ii) =⇒ (i) Assume that sup{dY (fn(x), f(x)) |x ∈ X} → 0 as n → ∞.
Given an ε > 0, there is an N ∈ N such that sup{dY (fn(x), f(x)) |x ∈ X} <
ε for all n ≥ N . But then we have dY (fn(x), f(x)) < ε for all x ∈ X and all
n ≥ N , which means that {fn} converges uniformly to f . 2

Here is an example which shows clearly the distinction between point-
wise and uniform convergence:

Example 1 Let fn : [0, 1] → R be the function in Figure 1. It is constant
zero except on the interval [0, 1

n ] where it looks like a tent of height 1.
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If you insist, the function is defined by

fn(x) =


2nx if 0 ≤ x < 1

2n

−2nx+ 2 if 1
2n ≤ x <

1
n

0 if 1
n ≤ x ≤ 1

but it is much easier just to work from the picture.

The sequence {fn} converges pointwise to 0, because at every point x ∈
[0, 1] the value of fn(x) eventually becomes 0 (for x = 0, the value is always
0, and for x > 0 the “tent” will eventually pass to the left of x.) However,
since the maximum value of all fn is 1, sup{dY (fn(x), f(x)) |x ∈ [0, 1]} = 1
for all n, and hence {fn} does not converge uniformly to 0. ♣

When we are working with convergent sequences, we would often like
the limit to inherit properties from the elements in the sequence. If, e.g.,
{fn} is a sequence of continuous functions converging to a limit f , we are
often interested in showing that f is also continuous. The next example
shows that this is not always the case when we are dealing with pointwise
convergence.

Example 2: Let fn : R→ R be the function in Figure 2.
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It is defined by

fn(x) =


−1 if x ≤ − 1

n

nx if − 1
n < x < 1

n

1 if 1
n ≤ x

The sequence {fn} converges pointwise to the function, f defined by

f(x) =


−1 if x < 0

0 if x = 0

1 if x > 0

but although all the functions {fn} are continuous, the limit function f is
not. ♣

If we strengthen the convergence from pointwise to uniform, the limit of
a sequence of continuous functions is always continuous.

Proposition 3.2.4 Let (X, dX) and (Y, dY ) be two metric spaces, and as-
sume that {fn} is a sequence of continuous functions fn : X → Y converging
uniformly to a function f . Then f is continuous.

Proof: Let a ∈ X. Given an ε > 0, we must find a δ > 0 such that
dY (f(x), f(a)) < ε whenever dX(x, a) < δ. Since {fn} converges uniformly
to f , there is an N ∈ N such that when n ≥ N , dY (f(x), fn(x)) < ε

3
for all x ∈ X. Since fN is continuous at a, there is a δ > 0 such that
dY (fN (x), fN (a)) < ε

3 whenever dX(x, a) < δ. If dX(x, a) < δ, we then have

dY (f(x), f(a)) ≤ dY (f(x), fN (x)) + dY (fN (x), fN (a)) + dY (fN (a), f(a)) <

<
ε

3
+
ε

3
+
ε

3
= ε
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and hence f is continuous at a. 2

The technique in the proof above is quite common, and arguments of
this kind are often referred to as ε

3 -arguments.

Exercises for Section 3.2

1. Let fn : R → R be defined by fn(x) = x
n . Show that {fn} converges point-

wise, but not uniformly to 0.

2. Let fn : (0, 1) → R be defined by fn(x) = xn. Show that {fn} converges
pointwise, but not uniformly to 0.

3. The function fn : [0,∞)→ R is defined by fn(x) = e−x
(
x
n

)ne
.

a) Show that {fn} converges pointwise.

b) Find the maximum value of fn. Does {fn} converge uniformly?

4. The function fn : (0,∞)→ R is defined by

fn(x) = n(x1/n − 1)

Show that {fn} converges pointwise to f(x) = lnx. Show that the conver-
gence is uniform on each interval ( 1

k , k), k ∈ N, but not on (0,∞).

5. Let fn : R → R and assume that the sequence {fn} of continuous functions
converges uniformly to f : R→ R on all intervals [−k, k], k ∈ N. Show that
f is continuous.

6. Assume that X is a metric space and that fn, gn are functions from X to R.
Show that if {fn} and {gn} converge uniformly to f and g, respectively, then
{fn + gn} converges uniformly to f + g.

7. Assume that fn : [a, b] → R are continuous functions converging uniformly
to f . Show that ∫ b

a

fn(x) dx→
∫ b

a

f(x) dx

Find an example which shows that this is not necessarily the case if {fn}
only converges pointwise to f .

8. Let fn : R → R be given by fn(x) = 1
n sin(nx). Show that {fn} converges

uniformly to 0, but that the sequence {f ′n} of derivates does not converge.
Sketch the graphs of fn to see what is happening.

9. Let (X, d) be a metric space and assume that the sequence {fn} of continuous
functions converges uniformly to f . Show that if {xn} is a sequence in X
converging to x, then fn(xn) → f(x). Find an example which shows that
this is not necessarily the case if {fn} only converges pointwise to f .

10. Assume that the functions fn : X → Y converges uniformly to f , and that
g : Y → Z is uniformly continuous. Show that the sequence {g ◦ fn} con-
verges uniformly. Find an example which shows that the conclusion does not
necessarily hold if g is only pointwise continuous.
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11. Assume that
∑∞
n=0Mn is a convergent series of positive numbers. Assume

that fn : X → R is a sequence of continuous functions defined on a metric
space (X, d). Show that if |fn(x)| ≤ Mn for all x ∈ X and all n ∈ N , then

the partial sums sN (x) =
∑N
n=0 fn(x) converge uniformly to a continuous

function s : X → R as N →∞. (This is called Weierstrass’ M-test).

12. Assume that (X, d) is a compact space and that {fn} is a decreasing se-
quence of continuous functions converging pointwise to a continuous function
f . Show that the convergence is uniform (this is called Dini’s theorem).

3.3 The spaces C(X, Y )

If (X, dX) and (Y, dY ) are metric spaces, we let

C(X,Y ) = {f : X → Y | f is continuous}

be the collection of all continuous functions from X to Y . In this section
we shall see how we can turn C(X,Y ) into a metric space. To avoid certain
technicalities, we shall restrict ourselves to the case where X is compact as
this is sufficient to cover most interesting applications (see Exercise 4 for
one possible way of extending the theory to the non-compact case).

The basic idea is to measure the distance between two functions by
looking at the point they are the furthest apart; i.e. by

ρ(f, g) = sup{dY (f(x), g(x)) |x ∈ X}

Our first task is to show that ρ is a metric on C(X,Y ). But first we need a
lemma:

Lemma 3.3.1 Let (X, dX) and (Y, dY ) be metric spaces, and assume that
X is compact. If f, g : X → Y are continuous functions, then

ρ(f, g) = sup{dY (f(x), g(x)) |x ∈ X}

is finite, and there is a point x ∈ X such that dY (f(x), g(x)) = ρ(f, g).

Proof: The result will follow from the Extreme Value Theorem (Theorem
2.5.9) if we can only show that the function

h(x) = dY (f(x), g(x))

is continiuous. By the triangle inequality for numbers and the inverse tri-
angle inequality 2.1.4, we get

|h(x)− h(y)| = |dY (f(x), g(x))− dY (f(y), g(y))| =

= |dY (f(x), g(x))− dY (f(x), g(y)) + dY (f(x), g(y))− dY (f(y), g(y))| ≤
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≤ |dY (f(x), g(x))− dY (f(x), g(y))|+ |dY (f(x), g(y))− dY (f(y), g(y))| ≤
≤ dY (g(x), g(y)) + dY (f(x), f(y))

To prove that h is continuous at x, just observe that since f and g are contin-
uous at x, there is for any given ε > 0 a δ > 0 such that dY (f(x), f(y)) < ε

2
and dY (g(x), g(y)) < ε

2 when dX(x, y) < δ. But then

|h(x)− h(y)| ≤ dY (f(x), f(y)) + dY (g(y), g(x)) <
ε

2
+
ε

2
= ε

whenever dX(x, y) < δ, and hence h is continuous. 2

We are now ready to prove that ρ is a metric on C(X,Y ):

Proposition 3.3.2 Let (X, dX) and (Y, dY ) be metric spaces, and assume
that X is compact. Then

ρ(f, g) = sup{dY (f(x), g(x)) |x ∈ X}

defines a metric on C(X,Y ).

Proof: By the lemma, ρ(f, g) is always finite, and we only have to prove
that ρ satisfies the three properties of a metric: positivity, symmetry, and
the triangle inequality. The first two are more or less obvious, and we
concentrate on the triangle inequality:

Assume that f, g, h are three functions in C(X,Y ); we must show that

ρ(f, g) ≤ ρ(f, h) + ρ(h, g)

According to the lemma, there is a point x ∈ X such that ρ(f, g) =
dY (f(x), g(x)). But then

ρ(f, g) = dY (f(x), g(x)) ≤ dY (f(x), h(x))+dY (h(x), g(x)) ≤ ρ(f, h)+ρ(h, g)

where we have used the triangle inequality in Y and the definition of ρ. 2

Not surprisingly, convergence in C(X,Y ) is exactly the same as uniform
convergence.

Proposition 3.3.3 A sequence {fn} converges to f in (C(X,Y ), ρ) if and
only if it converges uniformly to f .

Proof: According to Proposition 3.2.3, {fn} converges uniformly to f if and
only if

sup{dY (fn(x), f(x)) |x ∈ X} → 0

This just means that ρ(fn, f)→ 0, which is to say that {fn} converges to f
in (C(X,Y ), ρ). 2

The next result is the starting point for many applications; it shows that
C(X,Y ) is complete if Y is.
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Theorem 3.3.4 Assume that (X, dX) is a compact and (Y, dY ) a complete
metric space. Then C(X,Y ), ρ) is complete.

Proof: Assume that {fn} is a Cauchy sequence in C(X,Y ). We must prove
that fn converges to a function f ∈ C(X,Y ).

Fix an element x ∈ X. Since dY (fn(x), fm(x)) ≤ ρ(fn, fm) and {fn} is a
Cauchy sequence in (C(X,Y ), ρ), the function values {fn(x)} form a Cauchy
sequence in Y . Since Y is complete, {fn(x)} converges to a point f(x) in
Y. This means that {fn} converges pointwise to a function f : X → Y . We
must prove that f ∈ C(X,Y ) and that {fn} converges to f in the ρ-metric.

Since {fn} is a Cauchy sequence, we can for any ε > 0 find an N ∈ N
such that ρ(fn, fm) < ε

2 when n,m ≥ N . This means that all x ∈ X and
all n,m ≥ N , dY (fn(x), fm(x)) < ε

2 . If we let m → ∞, we see that for all
x ∈ X and all n ≥ N

dY (fn(x), f(x)) = lim
m→∞

dY (fn(x), fm(x)) ≤ ε

2
< ε

This means that {fn} converges uniformly to f . According to Proposition
3.2.4, f is continuos and belongs to C(X,Y ), and according to the proposi-
tion above, {fn} converges to f in (C(X,Y ), ρ). 2

In the next section we shall combine the result above with Banach’s
Fixed Point Theorem to obtain our first real application.

Exercises to Section 3.3

1. Let f, g : [0, 1]→ R be given by f(x) = x, g(x) = x2. Find ρ(f, g).

2. Let f, g : [0, 2π]→ R be given by f(x) = sinx, g(x) = cosx. Find ρ(f, g).

3. Complete the proof of Proposition 3.3.2 by showing that ρ satisfies the first
two conditions of a metric (positivity and symmetry).

4. The main reason why we have restricted the theory above to the case where
X is compact, is that if not,

ρ(f, g) = sup{dY (f(x), g(x)) |x ∈ X}

may be infinite, and then ρ is not a metric. In this problem we shall sketch
a way to avoid this problem.

A function f : X → Y is called bounded if there is a point a ∈ Y and a
constant K ∈ R such that dY (a, f(x)) ≤ K for all x ∈ X (it doesn’t matter
which point a we use in this definition). Let C0(X,Y ) be the set of all
bounded, continuous functions f : X → Y , and define

ρ(f, g) = sup{dY (f(x), g(x)) |x ∈ X}

a) Show that ρ(f, g) <∞ for all f, g ∈ C0(X,Y ).
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b) Show by an example that there need not be a point x in X such that
ρ(f, g) = dY (f(x), g(x)).

c) Show that ρ is a metric on C0(X,Y ).

d) Show that if a sequence {fn} of functions in C0(X,Y ) converges uni-
formly to a function f , then f ∈ C0(X,Y ).

e) Assume that (Y, dY ) is complete. Show that (C0(X,Y ), ρ) is complete.

f) Let c0 be the set of all bounded sequences in R. If {xn}, {yn} are in
c0, define

ρ({xn}, {yn}) = sup(|xn − yn| : n ∈ N}

Prove that (c0, ρ) is a complete metric space. (Hint: You may think of
c0 as C0(N,R) where N has the discrete metric).

3.4 Applications to differential equations

Consider a system of differential equations

y′1(t) = f1(t, y1(t), y2(t), . . . , yn(t))

y′2(t) = f2(t, y1(t), y2(t), . . . , yn(t))

...
...

...
...

y′n(t) = fn(t, y1(t), y2(t), . . . , yn(t))

with initial conditions y1(0) = Y1, y2(0) = Y2, . . . , yn(0) = Yn. In this sec-
tion we shall use Banach’s Fixed Point Theorem 2.4.5 and the completeness
of C([0, a],Rn) to prove that under reasonable conditions such systems have
a unique solution.

We begin by introducing vector notation to make the formulas easier to
read:

y(t) =


y1(t)
y2(t)

...
yn(t)



y0 =


Y1

Y2
...
Yn


and

f(t,y(t)) =


f1(t, y1(t), y2(t), . . . , yn(t))
f2(t, y1(t), y2(t), . . . , yn(t))

...
fn(t, y1(t), y2(t), . . . , yn(t))


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In this notation, the system becomes

y′(t) = f(t,y(t)), y(0) = y0 (3.4.1)

The next step is to rewrite the differential equation as an integral equa-
tion. If we integrate on both sides of (3.4.1), we get

y(t)− y(0) =

∫ t

0
f(s,y(s)) ds

i.e.

y(t) = y0 +

∫ t

0
f(s,y(s)) ds (3.4.2)

On the other hand, if we start with a solution of (3.4.2) and differentiate,
we arrive at (3.4.1). Hence solving (3.4.1) and (3.4.2) amounts to exactly
the same thing, and for us it will be convenient to concentrate on (3.4.2).

Let us begin by putting an arbitrary, continuous function z into the right
hand side of (3.4.2). What we get out is another function u defined by

u(t) = y0 +

∫ t

0
f(s, z(s)) ds

We can think of this as a function F mapping continuous functions z to
continuous functions u = F (z). From this point of view, a solution y of
the integral equation (3.4.2) is just a fixed point for the function F — we
are looking for a y such that y = F (y). (Don’t worry if you feel a little
dizzy; that’s just normal at this stage! Note that F is a function acting on
a function z to produce a new function u = F (z) — it takes some time to
get used to such creatures!)

Our plan is to use Banach’s Fixed Point Theorem to prove that F has a
unique fixed point, but first we have to introduce a crucial condition. We say
that the function f : [a, b] × Rn → Rn is uniformly Lipschitz with Lipschitz
constant K on the interval [a, b] if K is a real number such that

|f(t,y)− f(t, z)| ≤ K|y − z|

for all t ∈ [a, b] and all y, z ∈ Rn. Here is the key observation in our
argument.

Lemma 3.4.1 Assume that y0 ∈ Rn and that f : [0,∞) × Rn → Rn is
continuous and uniformly Lipschitz with Lipschitz constant K on [0,∞). If
a < 1

K , the map
F : C([0, a],Rn)→ C([0, a],Rn)

defined by

F (z)(t) = y0 +

∫ t

0
f(t, z(t)) dt

is a contraction.
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Remark: The notation here is rather messy. Remember that F (z) is a
function from [0, a] to Rn. The expression F (z)(t) denotes the value of this
function at point t ∈ [0, a].

Proof: Let v,w be two elements in C([0, a],Rn), and note that for any
t ∈ [0, a]

|F (v)(t)− F (w)(t)| = |
∫ t

0

(
f(s,v(s))− f(s,w(s))

)
ds| ≤

≤
∫ t

0
|f(s,v(s))− f(s,w(s))| ds ≤

∫ t

0
K|v(s)−w(s)| ds ≤

≤ K
∫ t

0
ρ(v,w) ds ≤ K

∫ a

0
ρ(v,w) ds = Kaρ(v,w)

Taking the supremum over all t ∈ [0, a], we get

ρ(F (v), F (w)) ≤ Kaρ(v,w).

Since Ka < 1, this means that F is a contraction. 2

We are now ready for the main theorem.

Theorem 3.4.2 Assume that y0 ∈ Rn and that f : [0,∞) × Rn → Rn is
continuous and uniformly Lipschitz on [0,∞). Then the initial value problem

y′(t) = f(t,y(t)), y(0) = y0 (3.4.3)

has a unique solution y on [0,∞).

Proof: Let K be the uniform Lipschitz constant, and choose a number
a < 1/K. According to the lemma, the function

F : C([0, a],Rn)→ C([0, a],Rn)

defined by

F (z)(t) = y0 +

∫ t

0
f(t, z(t)) dt

is a contraction. Since C([0, a],Rn) is complete by Theorem 3.3.4, Banach’s
Fixed Point Theorem tells us that F has a unique fixed point y. This means
that the integral equation

y(t) = y0 +

∫ t

0
f(s,y(s)) ds (3.4.4)

has a unique solution on the interval [0, a]. To extend the solution to a
longer interval, we just repeat the argument on the interval [a, 2a], using
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y(a) as initial value. The function we then get, is a solution of the integral
equation (3.4.4) on the extended interval [0, 2a] as we for t ∈ [a, 2a] have

y(t) = y(a) +

∫ t

a
f(s,y(s)) ds =

= y0 +

∫ a

0
f(s,y(s)) ds+

∫ t

a
f(s,y(s)) ds = y0 +

∫ t

0
f(s,y(s)) ds

Continuing this procedure to new intervals [2a, 3a], [3a, 4a], we see that the
integral equation (3.4.3) has a unique solution on all of [0,∞). As we have
already observed that equation (3.4.3) has exactly the same solutions as
equation (3.4.4), the theorem is proved. 2

In the exercises you will see that the conditions in the theorem are im-
portant. If they fail, the equation may have more than one solution, or a
solution defined only on a bounded interval.

Exercises to Section 3.4

1. Solve the initial value problem

y′ = 1 + y2, y(0) = 0

and show that the solution is only defined on the interval [0, π/2).

2. Show that the functions

y(t) =


0 if 0 ≤ t ≤ a

(t− a)
3
2 if t > a

where a ≥ 0 are all solutions of the initial value problem

y′ =
3

2
y

1
3 , y(0) = 0

Remember to check that the differential equation is satisfied at t = a.

3. In this problem we shall sketch how the theorem in this section can be used
to study higher order systems. Assume we have a second order initial value
problem

u′′(t) = g(t, u(t), u′(t)) u(0) = a, u′(0) = b (∗)

where g : [0,∞)×R2 → R is a given function. Define a function f : [0,∞)×
R2 → R2 by

f(t, u, v) =

(
v

g(t, u, v)

)
Show that if

y(t) =

(
u(t)
v(t)

)
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is a solution of the initial value problem

y′(t) = f(t,y(t)). y(0) =

(
a
b

)
,

then u is a solution of the original problem (∗).

3.5 Compact subsets of C(X,Rm)

The compact subsets of Rm are easy to describe — they are just the closed
and bounded sets. This characterization is extremely useful as it is much
easier to check that a set is closed and bounded than to check that it satisfies
the definition of compactness. In the present section we shall prove a similar
kind of characterization of compact sets in C(X,Rm) — we shall show that
a subset of C(X,Rm) is compact if and only if it it closed, bounded and
equicontinuous. This is known as the Arzelà-Ascoli Theorem. But before
we turn to it, we have a question of independent interest to deal with. We
have already encountered the notion of a dense set in Section 2.7, but repeat
it here:

Definition 3.5.1 Let (X, d) be a metric space and assume that A is a subset
of X. We say that A is dense in X if for each x ∈ X there is a sequence
from A converging to x.

Recall (Proposition 2.7.2) that dense sets can also be described in a slightly
different way: A subset D of a metric space X is dense if and only if for
each x ∈ X and each δ > 0, there is a y ∈ D such that d(x, y) ≤ δ.

We know that Q is dense in R — we may, e.g., approximate a real number
by longer and longer parts of its decimal expansion. For x =

√
2 this would

mean the approximating sequence

a1 = 1.4 =
14

10
, a2 = 1.41 =

141

100
, a3 = 1.414 =

1414

1000
, a4 = 1.4142 =

14142

10000
, . . .

Recall that Q is countable, but that R is not. Still every element in the
uncountable set R can be approximated arbitrarily well by elements in the
much smaller set Q. This property turns out to be so useful that it deserves
a name.

Definition 3.5.2 A metric set (X, d) is called separable if it has a count-
able, dense subset A.

Our first result is a simple, but rather surprising connection between
separability and compactness.
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Proposition 3.5.3 All compact metric (X, d) spaces are separable. We can
choose the countable dense set A in such a way that for any δ > 0, there is
a finite subset Aδ of A such that all elements of X are within distance less
than δ of Aδ, i.e. for all x ∈ X there is an a ∈ Aδ such that d(x, a) < δ.

Proof: We use that a compact space X is totally bounded (recall Theorem
2.5.12). This mean that for all n ∈ N, there is a finite number of balls of
radius 1

n that cover X. The centers of all these balls form a countable subset
A of X (to get a listing of A, first list the centers of the balls of radius 1,
then the centers of the balls of radius 1

2 etc.). We shall prove that A is dense
in X.

Let x be an element of X. To find a sequence {an} from A converging to
x, we first pick the center a1 of (one of) the balls of radius 1 that x belongs
to, then we pick the center a2 of (one of) the balls of radius 1

2 that x belong
to, etc. Since d(x, an) < 1

n , {an} is a sequence from A converging to x.
To find the set Aδ, just choose m ∈ N so big that 1

m < δ, and let Aδ
consist of the centers of the balls of radius 1

m . 2

We are now ready to turn to C(X,Rm). First we recall the definition of
equicontinuous sets of functions from Section 3.1.

Definition 3.5.4 Let (X, dX) and (Y, dY ) be metric spaces, and let F be a
collection of functions f : X → Y . We say that F is equicontinuous if for
all ε > 0, there is a δ > 0 such that for all f ∈ F and all x, y ∈ X with
dX(x, y) < δ, we have dY (f(x), f(y)) < ε.

We begin with a lemma that shows that for equicontinuous sequences,
it suffices to check convergence on dense sets of the kind described above.

Lemma 3.5.5 Assume that (X, dX) is a compact and (Y, dY ) a complete
metric space, and let {gk} be an equicontinuous sequence in C(X,Y ). As-
sume that A ⊆ X is a dense set as described in Proposition 3.5.3 and that
{gk(a)} converges for all a ∈ A. Then {gk} converges in C(X,Y ).

Proof: Since C(X,Y ) is complete, it suffices to prove that {gk} is a Cauchy
sequence. Given an ε > 0, we must thus find an N ∈ N such that ρ(gn, gm) <
ε when n,m ≥ N . Since the sequence is equicontinuous, there exists a δ > 0
such that if dX(x, y) < δ, then dY (gk(x), gk(y)) < ε

4 for all k. Choose a
finite subset Aδ of A such that any element in X is within less than δ of an
element in Aδ. Since the sequences {gk(a)}, a ∈ Aδ, converge, they are all
Cauchy sequences, and we can find an N ∈ N such that when n,m ≥ N ,
dY (gn(a), gm(a)) < ε

4 for all a ∈ Aδ (here we are using that Aδ is finite).
For any x ∈ X, we can find an a ∈ Aδ such that dX(x, a) < δ. But then

for all n,m ≥ N ,
dY (gn(x), gm(x)) ≤
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≤ dY (gn(x), gn(a)) + dY (gn(a), gm(a)) + dY (gm(a), gm(x)) <

<
ε

4
+
ε

4
+
ε

4
=

3ε

4

Since this holds for any x ∈ X, we must have ρ(gn, gm) ≤ 3ε
4 < ε for all

n,m ≥ N , and hence {gk} is a Cauchy sequence and converges in the com-
plete space C(X,Y ). 2

We are now ready to prove the hard part of the Arzelà-Ascoli Theorem.

Proposition 3.5.6 Assume that (X, d) is a compact metric space, and let
{fn} be a bounded and equicontinuous sequence in C(X,Rm). Then {fn}
has a subsequence converging in C(X,Rm).

Proof: Since X is compact, there is a countable, dense subset

A = {a1, a2. . . . , an, . . .}

as in Proposition 3.5.3. According to the lemma, it suffices to find a subse-
quence {gk} of {fn} such that {gk(a)} converges for all a ∈ A.

We begin a little less ambitiously by showing that {fn} has a subsequence

{f (1)
n } such that {f (1)

n (a1)} converges (recall that a1 is the first element in our

listing of the countable set A). Next we show that {f (1)
n } has a subsequence

{f (2)
n } such that both {f (2)

n (a1)} and {f (2)
n (a2)} converge. Continuing taking

subsequences in this way, we shall for each j ∈ N find a sequence {f (j)
n } such

that {f (j)
n (a)} converges for a = a1, a2, . . . , aj . Finally, we shall construct

the sequence {gk} by combining all the sequences {f (j)
n } in a clever way.

Let us start by constructing {f (1)
n }. Since the sequence {fn} is bounded,

{fn(a1)} is a bounded sequence in Rm, and by Bolzano-Weierstrass’ Theo-

rem, it has a convergent subsequence {fnk
(a1)}. We let {f (1)

n } consist of the

functions appearing in this subsequence. If we now apply {f (1)
n } to a2, we get

a new bounded sequence {f (1)
n (a2)} in Rm with a convergent subsequence.

We let {f (2)
n } be the functions appearing in this subsequence. Note that

{f (2)
n (a1)} still converges as {f (2)

n } is a subsequence of {f (1)
n }. Continuing

in this way, we see that we for each j ∈ N have a sequence {f (j)
n } such that

{f (j)
n (a)} converges for a = a1, a2, . . . , aj . In addition, each sequence {f (j)

n }
is a subsequence of the previous ones.

We are now ready to construct a sequence {gk} such that {gk(a)} con-
verges for all a ∈ A. We do it by a diagonal argument, putting g1 equal

to the first element in the first sequence {f (1)
n }, g2 equal to the second el-

ement in the second sequence {f (2)
n } etc. In general, the k-th term in the

g-sequence equals the k-th term in the k-th f -sequence {fkn}, i.e. gk = f
(k)
k .

Note that except for the first few elements, {gk} is a subsequence of any
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sequence {f (j)
n }. This means that {gk(a)} converges for all a ∈ A, and the

proof is complete. 2

As a simple consequence of this result we get:

Corollary 3.5.7 If (X, d) is a compact metric space, all bounded, closed
and equicontinuous sets K in C(X,Rm) are compact.

Proof: According to the proposition, any sequence in K has a convergent
subsequence. Since K is closed, the limit must be in K, and hence K is
compact. 2

As already mentioned, the converse of this result is also true, but before
we prove it, we need a technical lemma that is quite useful also in other
situations:

Lemma 3.5.8 Assume that (X, dX) and (Y, dY ) are metric spaces and that
{fn} is a sequence of continuous function from X to Y which converges
uniformly to f . If {xn} is a sequence in X converging to a, then {fn(xn)}
converges to f(a).

Remark: This lemma is not as obvious as it may seem — it is not true if
we replace uniform convergence by pointwise!

Proof of Lemma 3.5.8: Given ε > 0, we must show how to find an N ∈ N
such that dY (fn(xn), f(a)) < ε for all n ≥ N . Since we know from Proposi-
tion 3.2.4 that f is continuous, there is a δ > 0 such that dY (f(x), f(a)) < ε

2
when dX(x, a) < δ. Since {xn} converges to x, there is an N1 ∈ N such
that dX(xn, a) < δ when n ≥ N1. Also, since {fn} converges uniformly to
f , there is an N2 ∈ N such that if n ≥ N2, then dY (fn(x), f(x)) < ε

2 for all
x ∈ X. If we choose N = max{N1, N2}, we see that if n ≥ N ,

dY (fn(xn), f(a)) ≤ dY (fn(xn), f(xn)) + dY (f(xn), f(a)) <
ε

2
+
ε

2
= ε

and the lemma is proved. 2

We are finally ready to prove the main theorem:

Theorem 3.5.9 (Arzelà-Ascoli’s Theorem) Let (X, dX) be a compact
metric space. A subset K of C(X,Rm) is compact if and only if it is closed,
bounded and equicontinuous.

Proof: It remains to prove that a compact set K in C(X,Rm) is closed,
bounded and equicontinuous. Since compact sets are always closed and
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bounded according to Proposition 2.5.4, if suffices to prove that K is equicon-
tinuous. We argue by contradiction: We assume that the compact set K is
not equicontinuous and show that this leads to a contradiction.

Since K is not equicontinuous, there must be an ε > 0 which can not
be matched by any δ; i.e. for any δ > 0, there is a function f ∈ K and
points x, y ∈ X such that dX(x, y) < δ, but dRm(f(x), f(y)) ≥ ε. If we
put δ = 1

n , we get at function fn ∈ K and points xn, yn ∈ X such that
dX(xn, yn) < 1

n , but dRm(fn(xn), fn(yn)) ≥ ε. Since K is compact, there is a
subsequence {fnk

} of {fn} which converges (uniformly) to a function f ∈ K.
Since X is compact, the corresponding subsequence {xnk

} of {xn}, has a
subsequence {xnkj

} converging to a point a ∈ X. Since dX(xnkj
, ynkj

) < 1
nkj

,

the corresponding sequence {ynkj
} of y’s also converges to a.

Since {fnkj
} converges uniformly to f , and {xnkj

}, {ynkj
} both converge

to a, the lemma tells us that

fnkj
(xnkj

)→ f(a) and fnkj
(ynkj

)→ f(a)

But this is impossible since dRm(f(xnkj
), f(ynkj

)) ≥ ε for all j. Hence we

have our contradiction, and the theorem is proved. 2

Exercises for Section 3.5

1. Show that Rn is separable for all n.

2. Show that a subset A of a metric space (X, d) is dense if and only if all open
balls B(a, r), a ∈ X, r > 0, contain elements from X.

3. Assume that (X, d) is a complete metric space, and that A is a dense subset
of X. We let A have the subset metric dA.

a) Assume that f : A→ R is uniformly continuous. Show that if {an} is a
sequence from A converging to a point x ∈ X, then {f(an)} converges.
Show that the limit is the same for all such sequences {an} converging
to the same point x.

b) Define f̄ : X → R by putting f̄(x) = limn→∞ f(an) where {an} is a
sequence from a converging to x. We call f the continuous extension
of f to X. Show that f̄ is uniformly continuous.

c) Let f : Q→ R be defined by

f(q) =

 0 if q <
√

2

1 if q >
√

2

Show that f is continuous on Q (we are using the usual metric dQ(q, r) =
|q − r|). Is f uniformly continuous?

d) Show that f does not have a continuous extension to R.
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4. Let K be a compact subset of Rn. Let {fn} be a sequence of contractions of
K. Show that {fn} has uniformly convergent subsequence.

5. A function f : [−1, 1] → R is called Lipschitz continuous with Lipschitz
constant K ∈ R if

|f(x)− f(y)| ≤ K|x–y|

for all x, y ∈ [−1, 1]. Let K be the set of all Lipschitz continuous functions
with Lipschitz constant K such that f(0) = 0. Show that K is a compact
subset of C([−1, 1],R).

6. Assume that (X, dX) and (Y, dY ) are two metric spaces, and let σ : [0,∞)→
[0,∞) be a nondecreasing, continuous function such that σ(0) = 0. We say
that σ is a modulus of continuity for a function f : X → Y if

dY (f(u), f(v)) ≤ σ(dX(u, v))

for all u, v ∈ X.

a) Show that a family of functions with the same modulus of continuity is
equicontinuous.

b) Assume that (X, dX) is compact, and let x0 ∈ X. Show that if σ is a
modulus of continuity, then the set

K = {f : X → Rn : f(x0) = 0 and σ is modulus of continuity for f}

is compact.

c) Show that all functions in C([a, b],Rm) has a modulus of continuity.

7. A metric space (X, d) is called locally compact if for each point a ∈ X,
there is a closed ball B(a; r) centered at a that is compact. (Recall that
B(a; r) = {x ∈ X : d(a, x) ≤ r}). Show that Rm is locally compact, but
that C([0, 1],R) is not.

3.6 Differential equations revisited

In Section 3.4, we used Banach’s Fixed Point Theorem to study initial value
problems of the form

y′(t) = f(t,y(t)), y(0) = y0 (3.6.1)

or equivalently

y(t) = y0 +

∫ t

0
f(s,y(s)) ds (3.6.2)

In this section we shall see how Arzelà-Ascoli’s Theorem can be used to prove
existence of solutions under weaker conditions than before. But in the new
approach we shall also lose something — we can only prove that the solutions
exist in small intervals, and we can no longer guarantee uniqueness.

The starting point is Euler’s method for finding approximate solutions
to differential equations. If we want to approximate the solution starting at
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y0 at time t = 0, we begin by partitioning time into discrete steps of length
∆t; hence we work with the time line

T = {t0, t1, t2, t3 . . .}

where t0 = 0 and ti+1− ti = ∆t. We start the approximate solution ŷ at y0

and move in the direction of the derivative f(t0,y0), i.e. we put

ŷ(t) = y0 + f(t0,y0)(t− t0)

for t ∈ [t0, t1]. Once we reach t1, we change directions and move in the
direction of the new derivative f(t1, ŷ(t1)) so that we have

ŷ(t) = ŷ(t1) + f(t0, ŷ(t1))(t− t1)

for t ∈ [t1, t2]. If we insert the expression for ŷ(t1), we get:

ŷ(t) = y0 + f(t0,y0)(t1 − t0) + f(t1, ŷ(t1))(t− t1)

If we continue in this way, changing directions at each point in T , we get

ŷ(t) = y0 +
k−1∑
i=0

f(ti, ŷ(ti))(ti+1 − ti) + f(tk, ŷ(tk))(t− tk)

for t ∈ [tk, tk+1]. If we observe that

f(ti, ŷ(ti))(ti+1 − ti) =

∫ ti+1

ti

f(ti, ŷ(ti) ds ,

we can rewrite this expression as

ŷ(t) = y0 +
k−1∑
i=0

∫ ti+1

ti

f(ti, ŷ(ti) ds+

∫ t

tk

f(tk, ŷ(tk) ds

If we also introduce the notation

s = the largest ti ∈ T such that ti ≤ s,

we may express this more compactly as

ŷ(t) = y0 +

∫ t

0
f(s, ŷ(s)) ds

Note that we can also write this as

ŷ(t) = y0 +

∫ t

0
f(s, ŷ(s)) ds+

∫ t

0

(
f(s, ŷ(s))− f(s, ŷ(s))

)
ds
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(observe that there is one s and one s term in the last integral) where the
last term measures how much ŷ “deviates” from being a solution of equation
(3.6.2).

Intuitively, one would think that the approximate solution ŷ will con-
verge to a real solution y when the step size ∆t goes to zero. To be more
specific, if we let ŷn be the approximate solution we get when we choose
∆t = 1

n , we would expext the squence {ŷn} to converge to a solution of (2).
It turns out that in the most general case we can not quite prove this, but we
can instead use the Arzelà-Ascoli Theorem to find a subsequence converging
to a solution.

Before we turn to the proof, it will useful to see how intergals of the form

Ik(t) =

∫ t

0
f(s, ŷk(s)) ds

behave when the functions ŷk converge uniformly to a limit y.

Lemma 3.6.1 Let f : [0,∞) × Rm be a continuous function, and assume
that {ŷk} is a sequence of continuous functions ŷk : [0, a]→ Rm converging
uniformly to a function y. Then the integral functions

Ik(t) =

∫ t

0
f(s, ŷk(s)) ds

converge uniformly to

I(t) =

∫ t

0
f(s,y(s)) ds

on [0, a].

Proof: Since the sequence {ŷk} converges uniformly, it is bounded, and
hence there is a constant K such that |ŷk(t)| ≤ K for all k ∈ N and all
t ∈ [0, a] (prove this!). The continuous function f is uniformly continuous
on the compact set [0, a]× [−K,K]m, and hence for every ε > 0, there is a
δ > 0 such that if |y − y′| < δ, then |f(s,y)− f(s,y′)| < ε

a for all s ∈ [0, a].
Since {ŷk} converges uniformly to y, there is an N ∈ N such that if n ≥ N ,
|ŷn(s)− y(s)| < δ for all s ∈ [0, a]. But then

|In(t)− I(t)| = |
∫ t

0

(
f(s, ŷn(s))− f(s,y(s))

)
ds| ≤

≤
∫ t

0

∣∣f(s, ŷn(s))− f(s,y(s))
∣∣ ds < ∫ a

0

ε

a
ds = ε

for all t ∈ [0, a], and hence {Ik} converges uniformly to I. 2

We are now ready for the main result.
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Theorem 3.6.2 Assume that f : [0,∞)× Rm → Rm is a continuous func-
tion and that y0 ∈ Rm. Then there exists a positive real number a and a
function y : [0, a]→ Rm such that y(0) = y0 and

y′(t) = f(t,y(t)) for all t ∈ [0, a]

Remark: Note that there is no uniqueness statement (the problem may
have more than one solution), and that the solution is only guaranteed to
exist on a bounded intervall (it may disappear to infinity after finite time).

Proof of Theorem 3.6.2: Choose a big, compact subset C = [0, R]×[−R,R]m

of [0,∞) × Rm containing (0,y0) in its interior. By the Extreme Value
Theorem, the components of f have a maximum value on C, and hence
there exists a number M ∈ R such that |fi(t,y)| ≤M for all (t,y) ∈ C and
all i = 1, 2, . . . ,m. If the initial value has components

y0 =


Y1

Y2
...
Ym


we choose a ∈ R so small that the set

A = [0, a]×[Y1−Ma, Y1+Ma]×[Y2−Ma, Y2+Ma]×· · ·×[Ym−Ma, Ym+ma]

is contained in C. This may seem mysterious, put the point is that our
approximate solutions of the differential equation can never leave the area

[Y1 −Ma, Y1 +Ma]× [Y2 −Ma, Y2 +Ma]× · · · × [Ym −Ma, Y +ma]

while t ∈ [0, a] since all the derivatives are bounded by M .

Let ŷn be the approximate solution obtained by using Euler’s method
on the interval [0, a] with time step a

n . The sequence {ŷn} is bounded
since (t, ŷn(t)) ∈ A, and it is equicontinuous since the components of f
are bounded by M . By Proposition 3.5.5, ŷn has a subsequence {ŷnk

}
converging uniformly to a function y. If we can prove that y solves the
integral equation

y(t) = y0 +

∫ t

0
f(s,y(s)) ds

for all t ∈ [0, a], we shall have proved the theorem.

From the calculations at the beginning of the section, we know that

ŷnk
(t) = y0 +

∫ t

0
f(s, ŷnk

(s)) ds+

∫ t

0

(
f(s, ŷnk

(s))−f(s, ŷnk
(s))

)
ds (3.6.3)
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and according to the lemma∫ t

0
f(s, ŷnk

(s)) ds→
∫ t

0
f(s,y(s)) ds uniformly for t ∈ |0, a]

If we can only prove that∫ t

0

(
f(s, ŷnk

(s))− f(s, ŷnk
(s))

)
ds→ 0 (3.6.4)

we will get

y(t) = y0 +

∫ t

0
f(s,y(s)) ds

as k →∞ in (3.6.3), and the theorem will be proved

To prove (3.6.4), observe that since A is a compact set, f is uniformly
continuous on A. Given an ε > 0, we thus find a δ > 0 such that |f(s,y)−
f(s′,y′)| < ε

a when |(s,y) − (s′,y)| < δ (we are measuring the distance in
the ordinary Rm+1-metric). Since

|(s, ŷnk
(s))− (s, ŷnk

(s))| ≤ |(∆t,M∆t, . . . ,M∆t)| =
√

1 + nM2 ∆t ,

we can clearly get |(s, ŷnk
(s))− (s, ŷnk

(s))| < δ by choosing k large enough
(and hence ∆t small enough). For such k we then have

|
∫ t

0

(
f(s, ŷnk

(s))− f(s, ŷnk
(s))

∣∣ < ∫ a

0

ε

a
ds = ε

and hence ∫ t

0

(
f(s, ŷnk

(s))− f(s, ŷnk
(s))

)
ds→ 0

as k →∞. As already observed, this completes the proof. 2

Remark: An obvious question at this stage is why didn’t we extend our
solution beyond the interval [0, a] as we did in the proof of Theorem 3.4.2?
The reason is that in the present case we do not have control over the length
of our intervals, and hence the second interval may be very small compared
to the first one, the third one even smaller, and so one. Even if we add an
infinite number of intervals, we may still only cover a finite part of the real
line. There are good reasons for this: the differential equation may only
have solutions that survive for a finite amount of time. A typical example
is the equation

y′ = (1 + y2), y(0) = 0

where the (unique) solution y(t) = tan t goes to infinity when t→ π
2
−.
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The proof above is a simple, but typical example of a wide class of
compactness arguments in the theory of differential equations. In such ar-
guments one usually starts with a sequence of approximate solutions and
then uses compactness to extract a subsequence converging to a solution.
Compactness methods are strong in the sense that they can often prove lo-
cal existence of solutions under very general conditions, but they are weak
in the sense that they give very little information about the nature of the
solution. But just knowing that a solution exists, is often a good starting
point for further explorations.

Exercises for Section 3.6

1. Prove that if fn : [a, b]→ Rm are continuous functions converging uniformly
to a function f , then the sequence {fn} is bounded in the sense that there is
a constant K ∈ R such that |fn(t)| ≤ K for all n ∈ N and all t ∈ [a, b] (this
property is used in the proof of Lemma 3.6.1).

2. Go back to exercises 1 and 2 in Section 3.4. Show that the differential equa-
tions satisfy the conditions of Theorem 3.6.2. Comment.

3. It is occasionally useful to have a slightly more general version of Theorem
3.6.2 where the solution doesn’t just start a given point, but passes through it:

Teorem Assume that f : R × Rm → Rm is a continuous function. For any
t0 ∈ R and y0 ∈ Rm, there exists a positive real number a and a function
y : [t0 − a, t0 + a]→ Rm such that y(t0) = y0 and

y′(t) = f(t,y(t)) for all t ∈ [t0 − a, t0 + a]

Prove this theorem by modifying the proof of Theorem 3.6.2 (run Euler’s
method “backwards” on the interval [t0 − a, t0]).

3.7 Polynomials are dense in C([a, b],R)

From calculus we know that many continuous functions can be approxi-
mated by their Taylor polynomials, but to have Taylor polynomials of all
orders, a function f has to be infinitely differentiable, i.e. the higher order
derivatives f (k) have to exist for all k. Most continuous functions are not dif-
ferentiable at all, and the question is whether they still can be approximated
by polynomials. In this section we shall prove:

Theorem 3.7.1 (Weierstrass’ Theorem) The polynomials are dense in
C([a, b],R) for all a, b ∈ R, a < b. In other words, for each continuous
function f : [a, b] → R, there is a sequence of polynomials {pn} converging
uniformly to f .
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The proof I shall give (due to the Russian mathematician Sergei Bern-
stein (1880-1968)) is quite surprising; it uses probability theory to establish
the result for the interval [0, 1], and then a straight forward scaling argument
to extend it to all closed and bounded intervals.

The idea is simple: Assume that you are tossing a biased coin which has
probability x of coming up “heads”. If you toss it more and more times,
you expect the proportion of times it comes up “heads” to stabilize around
x. If somebody has promised you an award of f(X) dollars, where X is the
actually proportion of “heads” you have had during your (say) 1000 first
tosses, you would expect your award to be close to f(x). If the number of
tosses was increased to 10 000, you would feel even more certain.

Let us fomalize this: Let Yi be the outcome of the i-th toss in the sense
that Yi has the value 0 if the coin comes up “tails” and 1 if it comes up
“heads”. The proportion of “heads” in the first N tosses is then given by

XN =
1

N
(Y1 + Y2 + · · ·+ YN )

Each Yi is binomially distributed with mean E(Yi) = x and variance Var(Yi) =
x(1− x). We thus have

E(XN ) =
1

N
(E(Y1) + E(Y2) + · · ·E(YN )) = x

and (using that the Yi’s are independent)

Var(XN ) =
1

N2
(Var(Y1) + Var(Y2) + · · ·+ Var(YN )) =

1

N
x(1− x)

(if you don’t remember these formulas from probability theory, we shall
derive them by analytic methods in the exercises). As N goes to infinity,
we would expect XN to converge to x with probability 1. If the “award
function” f is continuous, we would also expect our average award E(f(XN ))
to converge to f(x).

To see what this has to do with polynomials, let us compute the average
award E(f(XN )). Since the probability of getting exactly k heads in N
tosses is

(
N
k

)
xk(1− x)n−k, we get

E(f(XN )) =

N∑
k=0

f(
k

N
)

(
N

k

)
xk(1− x)N−k

Our expectation that E(f(XN )) → f(x) as N → ∞, can therefore be
rephrased as

N∑
k=0

f(
k

N
)

(
N

k

)
xk(1− x)N−k → f(x) N →∞
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If we expand the parentheses (1−x)N−k, we see that the expressions on the
right hand side are just polynomials in x, and hence we have arrived at the
hypothesis that the polynomials

pN (x) =

N∑
k=0

f(
k

N
)

(
N

k

)
xk(1− x)N−k

converge to f(x). We shall prove that this is indeed the case, and that the
convergence is uniform.

Before we turn to the proof, we need some notation and a lemma. For
any random variable X with expectation x and any δ > 0, we shall write

1{|x−X|<δ} =


1 if |x−X| < δ

0 otherwise

and oppositely for 1{|x−X|≥δ}.

Lemma 3.7.2 (Chebyshev’s Inequality) For a bounded random vari-
able X with mean x

E(1{|x−X|≥δ}) ≤
1

δ2
Var(X)

Proof: Since δ21{|x−X|≥δ}) ≤ (x−X)2, we have

δ2E(1{|x−X|≥δ}) ≤ E((x−X)2) = Var(X)

Dividing by δ2, we get the lemma. 2

We are now ready to prove that the Bernstein polynomials converge.

Proposition 3.7.3 If f : [0, 1]→ R is a continuous function, the Bernstein
polynomials

pN (x) =
N∑
k=0

f(
k

N
)

(
N

k

)
xk(1− x)N−k

converge uniformly to f on [0, 1].

Proof: Given ε > 0, we must show how to find an N such that |f(x) −
pn(x)| < ε for all n ≥ N and all x ∈ [0, 1]. Since f is continuous on the
compact set [0, 1], it has to be uniformly continuous, and hence we can
find a δ > 0 such that |f(u) − f(v)| < ε

2 whenever |u − v| < δ. Since
pn(x) = E(f(Xn)), we have

|f(x)−pn(x)| = |f(x)−E(f(Xn))| = |E(f(x)−f(Xn))| ≤ E(|f(x)−f(Xn)|)
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We split the last expectation into two parts: the cases where |x −Xn| < δ
and the rest:

E(|f(x)−f(Xn)|) = E(1{|x−Xn|<δ}|f(x)−f(Xn)|)+E(1{|x−Xn|≥δ}|f(x)−f(Xn)|)

The idea is that the first term is always small due to the choice of δ and that
the second part will be small when N is large because XN then is unlikely
to deviate much from x. Here are the details:

By choice of δ, we have for the first term

E(1{|x−Xn|<δ}|f(x)− f(Xn)|) ≤ E
(
1{|x−Xn|<δ}

ε

2

)
≤ ε

2

For the second term, we first note that since f is a continuous function
on a compact interval, it must be bounded by a constant M . Hence by
Chebyshev’s inequality

E(1{|x−Xn|≥δ}|f(x)− f(Xn)|) ≤ 2ME(1{|x−Xn|≥δ}) ≤

≤ 2M

δ2
Var(Xn) =

2Mx(1− x)

δ2n
≤ M

2δ2n

where we in the last step used that 1
4 is the maximal value of x(1 − x) on

[0, 1]. If we now choose N ≥ M
δ2ε

, we see that we get

E(1{|x−Xn|≥δ}|f(x)− f(Xn)|) < ε

2

for all n ≥ N . Combining all the inequalities above, we see that if n ≥ N ,
we have for all x ∈ [0, 1]

|f(x)− pn(x)| ≤ E(|f(x)− f(Xn)|) =

= E(1{|x−Xn|<δ}|f(x)− f(Xn)|) + E(1{|x−Xn|≥δ}|f(x)− f(Xn)|) <

<
ε

2
+
ε

2
= ε

and hence the Bernstein polynomials pn converge uniformly to f . 2

To get Weierstrass’ result, we just have to move functions from arbitrary
intervals [a, b] to [0, 1] and back. The function

T (x) =
x− a
b− a

maps [a, b] bijectively to [0, 1], and the inverse function

T−1(y) = a+ (b− a)y

maps [0, 1] back to [a, b]. If f is a continuous function on [a, b], the function
f̂ = f ◦T−1 is a continuous function on [0, 1] taking exactly the same values
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in the same order. If {qn} is a sequence of pynomials converging uniformly
to f̂ on [0, 1], then the functions pn = qn ◦ T converge uniformly to f on
[a, b]. Since

pn(x) = qn(
x− a
b− a

)

the pn’s are polynomials, and hence Weierstrass’ theorem is proved.

Remark: Weierstrass’ theorem is important because many mathematical
arguments are easier to perform on polynomials than on continuous func-
tions in general. If the property we study is preserved under uniform limits
(i.e. if the if the limit function f of a uniformly convergent sequence of func-
tions {fn} always inherits the property from the fn’s), we can use Weier-
strass’ Theorem to extend the argument from polynomials to all continuous
functions. There is an extension of the result called the Stone-Weierstrass
Theorem which generalizes the result to much more general settings.

Exercises for Section 3.7

1. Show that there is no sequence of polynomials that converges uniformly to
the continuous function f(x) = 1

x on (0, 1).

2. Show that there is no sequence of poynomials that converges uniformly to
the function f(x) = ex on R.

3. In this problem

f(x) =

 e−1/x
2

if x 6= 0

0 if x = 0

a) Show that if x 6= 0, then the n-th derivative has the form

f (n)(x) = e−1/x
2 Pn(x)

xNn

where Pn is a polynomial and Nn ∈ N.

b) Show that f (n)(0) = 0 for all n.

c) Show that the Taylor polynomials of f at 0 do not converge to f except
in the point 0.

4. Assume that f : [a, b]→ R is a continuous function such that
∫ b
a
f(x)xn dx =

0 for all n = 0, 1, 2, 3, . . ..

a) Show that
∫ b
a
f(x)p(x) dx = 0 for all polynomials p.

b) Use Weierstrass’ theorem to show that
∫ b
a
f(x)2 dx = 0. Conclude that

f(x) = 0 for all x ∈ [a, b].

5. In this exercise we shall show that C([a, b],R) is a separable metric space.

a) Assume that (X, d) is a metric space, and that S ⊆ T are subsets of X.
Show that if S is dense in (T, dT ) and T is dense in (X, d), then S is
dense in (X, d).
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b) Show that for any polynomial p, there is a sequence {qn} of polynomials
with rational coefficients that converges uniformly to p on [a, b].

c) Show that the polynomials with rational coefficients are dense in C([a, b],R).

d) Show that C([a, b],R) is separable.

6. In this problem we shall reformulate Bernstein’s proof in purely analytic
terms, avoiding concepts and notation from probability theory. You should
keep the Binomial Formula

(a+ b)N =

N∑
k=0

(
n

k

)
akbN−k

and the definition
(
N
k

)
= N(N−1)(N−2)·...·(N−k+1)

1·2·3·...·k in mind.

a) Show that
∑N
k=0

(
N
k

)
xk(1− x)N−k = 1.

b) Show that
∑N
k=0

k
N

(
N
k

)
xk(1 − x)N−k = x (this is the analytic version

of E(XN ) = 1
N (E(Y1) + E(Y2) + · · ·E(YN )) = x)

c) Show that
∑N
k=0

(
k
N − x

)2 (N
k

)
xk(1 − x)N−k = 1

N x(1 − x) (this is the

analytic version of Var(XN ) = 1
N x(1 − x)). Hint: Write ( kN − x)2 =

1
N2

(
k(k − 1) + (1− 2xN)k +N2x2

)
and use points b) and a) on the

second and third term in the sum.

d) Show that if pn is the n-th Bernstein polynomial, then

|f(x)− pn(x)| ≤
n∑
k=0

|f(x)− f(k/n)|
(
n

k

)
xn(1− x)n−k

e) Given ε > 0, explain why there is a δ > 0 such that |f(u)− f(v)| < ε/2
for all u, v ∈ [0, 1] such that |u− v| < δ. Explain why

|f(x)− pn(x)| ≤
∑

{k:| kn−x|<δ}

|f(x)− f(k/n)|
(
n

k

)
xn(1− x)n−k+

+
∑

{k:| kn−x|≥δ}

|f(x)− f(k/n)|
(
n

k

)
xn(1− x)n−k ≤

<
ε

2
+

∑
{k:| kn−x|≥δ}

|f(x)− f(k/n)|
(
n

k

)
xn(1− x)n−k

f) Show that there is a constant M such that |f(x)| ≤M for all x ∈ [0, 1].
Explain all the steps in the calculation:∑

{k:| kn−x|≥δ}

|f(x)− f(k/n)|
(
n

k

)
xn(1− x)n−k ≤

≤ 2M
∑

{k:| kn−x|≥δ}

(
n

k

)
xn(1− x)n−k ≤

≤ 2M

n∑
k=0

(
k
n − x
δ

)2(
n

k

)
xn(1− x)n−k ≤ 2M

nδ2
x(1− x) ≤ M

2nδ2
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g) Explain why we can get |f(x)− pn(x)| < ε by chosing n large enough,
and explain why this proves Proposition 3.7.2.

3.8 Baire’s Category Theorem

Recall that a subset A of a metric space (X, d) is dense if for all x ∈ X there
is a sequence from A converging to x. An equivalent definition is that all
balls in X contain elements from A. To show that a set S is not dense, we
thus have to find an open ball that does not intersect S. Obviously, a set
can fail to be dense in parts of X, and still be dense in other parts. If G
is a nonempty, open subset of X, we say that A is dense in G if every ball
B(x; r) ⊆ G contains elements from A. The following definition catches our
intiution of a set set that is not dense anywhere.

Definition 3.8.1 A subset S of a metric space (X, d) is said to be nowhere
dense if it isn’t dense in any nonempty, open set G. In other words, for
all nonempty, open sets G ⊆ X, there is a ball B(x; r) ⊆ G that does not
intersect S.

This definition simply says that no matter how much we restrict our atten-
tion, we shall never find an area in X where S is dense.

Example 1. N is nowhere dense in R. ♣

Nowhere dense sets are sparse in an obvious way. The following definition
indicates that even countable unions of nowhere dense sets are unlikely to
be very large.

Definition 3.8.2 A set is called meager if it is a countable union of nowhere
dense sets. The complement of a meager set is called comeager.1

Example 2. Q is a meager set in R as it can be written as a countable union
Q =

⋃
a∈Q{a} of the nowhere dense singletons {a}. By the same argument,

Q is also meager in Q.

The last part of the example shows that a meager set can fill up a metric
space. However, in complete spaces the meager sets are always “meager” in
the following sense:

1Most books refer to meager sets as “sets of first category” while comeager sets are
called “residual sets”. Sets that are not of first category, are said to be of “second cat-
egory”. Although this is the original terminology of René-Louis Baire (1874-1932) who
introduced the concepts, it is in my opinion so nondescriptive that it should be abandoned
in favor of more evocative terms.
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Theorem 3.8.3 (Baire’s Category Theorem) Assume that M is a mea-
ger subset of a complete metric space (X, d). Then M does not contain any
open balls, i.e. M c is dense in X.

Proof: Since M is meager, it can be written as a union M =
⋃
k∈NNk of

nowhere dense sets Nk. Given a ball B(a; r), our task is to find an element
x ∈ B(a; r) which does not belong to M .

We first observe that since N1 is nowhere dense, there is a ball B(a1; r1)
inside B(a; r) which does not intersectN1. By shrinking the radius r1 slightly
if necessary, we may assume that the closed ball B(a1; r1) is contained in
B(a; r), does not intersect N1, and has radius less than 1. Since N2 is
nowhere dense, there is a ball B(a2; r2) inside B(a1; r1) which does not in-
tersect N2. By shrinking the radius r2 if necessary, we may assume that
the closed ball B(a2; r2) does not intersect N2 and has radius less than 1

2 .
Continuing in this way, we get a sequence {B(ak; rk)} of closed balls, each
contained in the previous, such that B(ak; rk) has radius less than 1

k and
does not intersect Nk.

Since the balls are nested and the radii shrink to zero, the centers ak
form a Cauchy sequence. Since X is complete, the sequence converges to a
point x. Since each ball B(ak; rk) is closed, and the “tail” {an}∞n=k of the
sequence belongs to B(ak; rk), the limit x also belongs to B(ak; rk). This
means that for all k, x /∈ Nk , and hence x /∈ M . Since B(a1; r1) ⊆ B(a; r),
we see that x ∈ B(a; r), and the theorem is proved. 2

As an immediate consequence we have:

Corollary 3.8.4 A complete metric space is not a countable union of nowhere
dense sets.

Baire’s Category Theorem is a surprisingly strong tool for proving the-
orems about sets and families of functions. Before we take a look at some
examples, we shall prove the following lemma which gives a simpler descrip-
tion of closed, nowhere dense sets.

Lemma 3.8.5 A closed set F is nowhere dense if and only if it does not
contain any open balls.

Proof: If F contains an open ball, it obviously isn’t nowhere dense. We
therefore assume that F does not contain an open ball, and prove that it is
nowhere dense. Given a nonempty, open set G, we know that F cannot be
contained in G as G contains open balls and F does not. Pick an element
x in G that is not in F . Since F is closed, there is a ball B(x; r1) around x
that does not intersect F . Since G is open, there is a ball B(x; r2) around
x that is contained in G. If we choose r = min{r1, r2}, the ball B(x; r) is
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contained in G and does not intersect F , and hence F is nowhere dense. 2

Remark: Without the assumption that F is closed, the lemma is false,
but it is still possible to prove a related result: A (general) set S is nowhere
dense if and only if its closure S̄ doesn’t contain any open balls. See Exercise
5.

We are now ready to take a look at our first application.

Definition 3.8.6 Let (X, d) be a metric space. A family F of functions
f : X → R is called pointwise bounded if for each x ∈ X, there is a
constant Mx ∈ R such that |f(x)| ≤Mx for all f ∈ F .

Note that the constant Mx may vary from point to point, and that there
need not be a constant M such that |f(x)| ≤M for all f and all x (a simple
example is F = {f : R → R | f(x) = kx for k ∈ [−1, 1}, where Mx = |x|).
The next result shows that although we cannot guarantee boundedness on
all X, we can under reasonable assumptions guarantee boundedness on a
part of X.

Proposition 3.8.7 Let (X, d) be a complete metric space, and assume that
F is a pointwise bounded family of continuous functions f : X → R. Then
there exists an open, nonempty set G and a constant M ∈ R such that
|f(x)| ≤M for all f ∈ F and all x ∈ G.

Proof: For each n ∈ N and f ∈ F , the set f−1([−n, n]) is closed as it is the
inverse image of a closed set under a continuous function (recall Proposition
2.3.10). As intersections of closed sets are closed (Proposition 2.3.12)

An =
⋂
f∈F

f−1([−n, n])

is also closed. Since F is pointwise bounded, X =
⋃
n∈NAn, and Corollary

3.8.4 tells us that not all An can be nowhere dense. If An0 is not nowhere
dense, it contains an open set G by the lemma above. By definition of An0 ,
we see that |f(x)| ≤ n0 for all f ∈ F and all x ∈ An0 (and hence all x ∈ G).
2

You may doubt the usefulness of this theorem as we only know that the result
holds for some open set G, but the point is that if we have extra information
on the the family F , the sole existence of such a set may be exactly what we
need to pull through a more complex argument. In functional analysis, there
is a famous (and most useful) example of this called the Banach-Steinhaus
Theorem (see Exercise 4.7.11).
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For our next application, we first observe that although Rn is not com-
pact, it can be written as a countable union of compact sets:

Rn =
⋃
k∈N

[−k, k]n

We shall show that this is not the case for C([0, 1],R) — this space can not
be written as a countable union of compact sets. We need a lemma.

Lemma 3.8.8 A compact subset K of C([0, 1],R) is nowhere dense.

Proof: Since compact sets are closed, it suffices (by the previous lemma)
to show that each ball B(f ; ε) contains elements that are not in K. By
Arzelà-Ascoli’s Theorem, we know that compact sets are equicontinuous,
and hence we need only prove that B(f ; ε) contains a family of functions
that is not equicontinuous. We shall produce such a family by perturbing f
by functions that are very steep on small intervals.

For each n ∈ N, let gn be the function

gn(x) =


nx for x ≤ ε

2n

ε
2 for x ≥ ε

2n

Then f + gn is in B(f, ε), but since {f + gn} is not equicontinuous (see
Exercise 9 for help to prove this), all these functions can not be in K, and
hence B(f ; ε) contains elements that are not in K. 2

Proposition 3.8.9 C([0, 1],R) is not a countable union of compact sets.

Proof: Since C([0, 1],R) is complete, it is not the countable union of nowhere
dense sets by Corollary 3.8.4. Since the lemma tells us that all compact sets
are nowhere dense, the theorem follows. 2

Remark: The basic idea in the proof above is that the compact sets are
nowhere dense since we can obtain arbitrarily steep functions by perturbing
a given function just a little. The same basic idea can be used to prove more
sophisticated results, e.g. that the set of nowhere differentiable functions is
comeager in C([0, 1],R). The key idea is that starting with any continuous
function, we can perturb it into functions with arbitrarily large derivatives
by using small, but rapidly oscillating functions. With a little bit of technical
work, this implies that the set of functions that are differentiable at at least
one point, is meager.
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Exercises for Section 3.8

1. Show that N is a nowhere dense subset of R.

2. Show that the set A = {g ∈ C([0, 1],R) | g(0) = 0} is nowhere dense in
C([0, 1],R).

3. Show that a subset of a nowhere dense set is nowhere dense and that a subset
of a meager set is meager.

4. Show that a subset S of a metric space X is nowhere dense if and only if for
each open ball B(a0; r0) ⊆ X, there is a ball B(x; r) ⊆ B(a0; r0) that does
not intersect S.

5. Recall that the closure N of a set N consist of N plus all its boundary points.

a) Show that if N is nowhere dense, so is N .

b) Find an example of a meager set M such that M is not meager.

c) Show that a set is nowhere dense if and only if N does not contain any
open balls.

6. Show that a countable union of meager sets is meager.

7. Show that if N1, N2, . . . , Nk are nowhere dense, so is N1 ∪N2 ∪ . . . Nk.

8. Prove that S is nowhere dense if and only if Sc contains an open, dense
subset.

9. In this problem we shall prove that the set {f + gn} in the proof of Lemma
3.8.8 is not equicontinuous.

a) Show that the set {gn : n ∈ N} is not equicontinuous.

b) Show that if {hn} is an equicontinous family of functions hn : [0, 1]→ R
and k : [0, 1]→ R is continuous, then {hn + k} is equicontinuous.

c) Prove that the set {f + gn} in the lemma is not equicontinuous. (Hint:
Assume that the sequence is equicontinuous, and use part b) with hn =
f + gn and k = −f to get a contradiction with a)).

10. Let N have the discrete metric. Show that N is complete and that N =⋃
n∈N{n}. Why doesn’t this contradict Baire’s Category Theorem?

11. Show that in a complete space, a closed set is meager if and only if it is
nowhere dense.

12. Let (X, d) be a metric space.

a) Show that if G ⊆ X is open and dense, then Gc is nowhere dense.

b) Assume that (X, d) is complete. Show that if {Gn} is a countable
collection of open, dense subsets of X, then

⋂
n∈NGn is dense in X

13. Assume that a sequence {fn} of continuous functions fn : [0, 1] → R con-
verges pointwise to f . Show that f must be bounded on a subinterval of
[0, 1]. Find an example which shows that f need not be bounded on all of
[0, 1].
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14. In this problem we shall study sequences {fn} of functions converging point-
wise to 0.

a) Show that if the functions fn are continuous, then there exists a nonempty
subinterval (a, b) of [0, 1] and an N ∈ N such that for n ≥ N , |fn(x)| ≤ 1
for all x ∈ (a, b).

b) Find a sequence of functions {fn} converging to 0 on [0, 1] such that for
each nonempty subinterval (a, b) there is for each N ∈ N an x ∈ (a, b)
such that fN (x) > 1.

15. Let (X, d) be a metric space. A point x ∈ X is called isolated if there is an
ε > 0 such that B(x; ε) = {x}.

a) Show that if x ∈ X, the singleton {x} is nowhere dense if and only if x
is not an isolated point.

b) Show that if X is a complete metric space without isolated points, then
X is uncountable.

We shall now prove:

Theorem: The unit interval [0, 1] can not be written as a countable, disjoint
union of closed, proper subintervals In = [an, bn].

c) Assume for contradictions that [0, 1] can be written as such a union.
Show that the set of all endpoints, F = {an, bn |n ∈ N} is a closed
subset of [0, 1], and that so is F0 = F \ {0, 1}. Explain that since F0

is countable and complete in the subspace metric, F0 must have an
isolated point, and use this to force a contradiction.
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Chapter 4

Series of functions

In this chapter we shall see how the theory in the previous chapters can be
used to study functions. We shall be particularly interested in how general
functions can be written as sums of series of simple functions such as power
functions and trigonometric functions. This will take us to the theories of
power series and Fourier series.

4.1 lim sup and lim inf

In this section we shall take a look at a useful extension of the concept
of limit. Many sequences do not converge, but still have a rather regular
asymptotic behavior as n goes to infinity — they may, for instance, oscillate
between an upper set of values and a lower set. The notions of limit superior,
lim sup, and limit inferior, lim inf, are helpful to describe such behavior.
They also have the advantage that they always exist (provided we allow
them to take the values ±∞).

We start with a sequence {an} of real numbers, and define two new
sequences {Mn} and {mn} by

Mn = sup{ak | k ≥ n}

and

mn = inf{ak | k ≥ n}

We allow that Mn = ∞ and that mn = −∞ as may well occur. Note that
the sequence {Mn} is decreasing (as we are taking suprema over smaller
and smaller sets), and that {mn} is increasing (as we are taking infima over
increasingly smaller sets). Since the sequences are monotone, the limits

lim
n→∞

Mn and lim
n→∞

mn

93
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clearly exist, but they may be ±∞. We now define the limit superior of the
original sequence {an} to be

lim sup
n→∞

an = lim
n→∞

Mn

and the limit inferior to be

lim inf
n→∞

an = lim
n→∞

mn

The intuitive idea is that as n goes to infinity, the sequence {an} may oscil-
late and not converge to a limit, but the oscillations will be asymptotically
bounded by lim sup an above and lim inf an below.

The following relationship should be no surprise:

Proposition 4.1.1 Let {an} be a sequence of real numbers. Then

lim
n→∞

an = b

if and only if

lim sup
n→∞

an = lim inf
n→∞

an = b

(we allow b to be a real number or ±∞.)

Proof: Assume first that lim supn→∞ an = lim infn→∞ an = b. Since mn ≤
an ≤Mn, and

lim
n→∞

mn = lim inf
n→∞

an = b ,

lim
n→∞

Mn = lim sup
n→∞

an = b ,

we clearly have limn→∞ an = b by “squeezing”.

We now assume that limn→∞ an = b where b ∈ R (the cases b = ±∞
are left to the reader). Given an ε > 0, there exists an N ∈ N such that
|an − b| < ε for all n ≥ N . In other words

b− ε < an < b+ ε

for all n ≥ N . But then

b− ε ≤ mn < b+ ε

and

b− ε < Mn ≤ b+ ε

for n ≥ N . Since this holds for all ε > 0, we have lim supn→∞ an =
lim infn→∞ an = b 2
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Exercises for section 4.1

1. Let an = (−1)n. Find lim supn→∞ an and lim infn→∞ an.

2. Let an = cos nπ2 . Find lim supn→∞ an and lim infn→∞ an.

3. Let an = arctan(n) sin
(
nπ
2

)
. Find lim supn→∞ an and lim infn→∞ an.

4. Complete the proof of Proposition 4.1.1 for the case b =∞.

5. Show that
lim sup
n→∞

(an + bn) ≤ lim sup
n→∞

an + lim sup
n→∞

bn

and
lim inf
n→∞

(an + bn) ≥ lim inf
n→∞

an + lim inf
n→∞

bn

and find examples which show that we do not in general have equality. State
and prove a similar result for the product {anbn} of two positive sequences.

6. Assume that the sequence {an} is nonnegative and converges to a, and that
b = lim sup bn is finite and positive. Show that lim supn→∞ anbn = ab (the
result holds without the condition that b is positive, but the proof becomes
messy). What happens if the sequence {an} is negative?

7. We shall see how we can define lim sup and lim inf for functions f : R → R.
Let a ∈ R, and define

Mε = sup{f(x) |x ∈ (a− ε, a+ ε)}

mε = inf{f(x) |x ∈ (a− ε, a+ ε)}

for ε > 0 (we allow Mε =∞ and mε = −∞).

a) Show that Mε decreases and mε increases as ε→ 0.

b) Show that lim supx→a f(x) = limε→0+ Mε and lim infx→a f(x) = limε→0+ mε

exist (we allow ±∞ as values).

c) Show that limx→a f(x) = b if and only if lim supx→a f(x) = lim infx→a f(x) =
b

d) Find lim infx→0 sin 1
x and lim supx→0 sin 1

x

4.2 Integrating and differentiating sequences

Assume that we have a sequence of functions {fn} converging to a limit
function f . If we integrate the functions fn, will the integrals converge
to the integral of f? And if we differentiate the fn’s, will the derivatives
converge to f ′?

In this section, we shall see that without any further restrictions, the
answer to both questions are no, but that it is possible to put conditions on
the sequences that turn the answers into yes.

Let us start with integration and the following example.

Example 1: Let fn : [0, 1]→ R be the function in the figure.
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It is given by the formula

fn(x) =


2n2x if 0 ≤ x < 1

2n

−2n2x+ 2n if 1
2n ≤ x <

1
n

0 if 1
n ≤ x ≤ 1

but it is much easier just to work from the picture. The sequence {fn} con-
verges pointwise to 0, but the integrals do not not converge to 0. In fact,∫ 1

0 fn(x) dx = 1
2 since the value of the integral equals the area under the

function graph, i.e. the area of a triangle with base 1
n and height n. ♣

The example above shows that if the functions fn converge pointwise to a
function f on an interval [a, b], the integrals

∫ b
a fn(x) dx need not converge

to
∫ b
a f(x) dx. The reason is that with pointwise convergence, the difference

between f and fn may be very large on small sets — so large that the
integrals of fn do not converge to the integral of f . If the convergence is
uniform, this can not happen (note that the result below is actually a special
case of Lemma 3.6.1):

Proposition 4.2.1 Assume that {fn} is a sequence of continuous functions
converging uniformly to f on the interval [a, b]. Then the functions

Fn(x) =

∫ x

a
fn(t) dt

converge uniformly to

F (x) =

∫ x

a
f(t) dt

on [a, b].

Proof: We must show that for a given ε > 0, we can always find an N ∈ N
such that |F (x) − Fn(x)| < ε for all n ≥ N and all x ∈ [a, b]. Since {fn}
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converges uniformly to f , there is an N ∈ N such that |f(t)− fn(t)| < ε
b−a

for all t ∈ [a, b]. For n ≥ N , we then have for all x ∈ [a, b]:

|F (x)− Fn(x)| = |
∫ x

a
(f(t)− fn(t)) dt | ≤

∫ x

a
|f(t)− fn(t)| dt ≤

≤
∫ x

a

ε

b− a
dt ≤

∫ b

a

ε

b− a
dt = ε

This shows that {Fn} converges uniformly to F on [a, b]. 2

In applications it is often useful to have the result above with a flexible
lower limit.

Corollary 4.2.2 Assume that {fn} is a sequence of continuous functions
converging uniformly to f on the interval [a, b]. For any x0 ∈ [a, b], the
functions

Fn(x) =

∫ x

x0

fn(t) dt

converge uniformly to

F (x) =

∫ x

x0

f(t) dt

on [a, b].

Proof: Recall that∫ x

a
fn(t) dt =

∫ x0

a
fn(t) dt+

∫ x

x0

fn(t) dt

regardless of the order of the numbers a, x0, x, and hence∫ x

x0

fn(t) dt =

∫ x

a
fn(t) dt−

∫ x0

a
fn(t) dt

The first integral on the right converges uniformly to
∫ x
a f(t) dt according to

the proposition, and the second integral converges (as a sequence of num-
bers) to

∫ x0
a f(t) dt. Hence

∫ x
x0
fn(t) dt converges uniformly to∫ x

a
f(t) dt−

∫ x0

a
f(t) dt =

∫ x

x0

f(t) dt

as was to be proved. 2

Let us reformulate this result in terms of series. Recall that a series of
functions

∑∞
n=0 vn(x) converges pointwise/unifomly to a function f on an

interval I if an only if the sequence {sn} of partial sum sn(x) =
∑n

k=0 vk(x)
converges pointwise/uniformly to f on I.
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Corollary 4.2.3 Assume that {vn} is a sequence of continuous functions
such that the series

∑∞
n=0 vn(x) converges uniformly on the interval [a, b].

Then for any x0 ∈ [a, b], the series
∑∞

n=0

∫ x
x0
vn(t) dt converges uniformly

and
∞∑
n=0

∫ x

x0

vn(t) dt =

∫ x

x0

∞∑
n=0

vn(t) dt

The corollary tell us that if the series
∑∞

n=0 vn(x) converges uniformly,
we can integrate it term by term to get∫ x

x0

∞∑
n=0

vn(t) dt =
∞∑
n=0

∫ x

x0

vn(t) dt

This formula may look obvious, but it does not in general hold for series
that only converge pointwise. As we shall see later, interchanging integrals
and infinite sums is quite a tricky business.

To use the corollary efficiently, we need to be able to determine when a
series of functions converges uniformly. The following simple test is often
helpful:

Proposition 4.2.4 (Weierstrass’ M-test) Let {vn} be a sequence of con-
tinuous functions on the interval [a, b], and assume that there is a convergent
series

∑∞
n=0Mn of positive numbers such that |vn(x)| ≤ Mn for all n ∈ N

and all x ∈ [a, b]. Then series
∑∞

n=0 vn(x) converges uniformly on [a, b].

Proof: Since (C([a, b],R), ρ) is complete, we only need to check that the
partial sums sn(x) =

∑n
k=0 vk(x) form a Cauchy sequence. Since the series∑∞

n=0Mn converges, we know that its partial sums Sn =
∑n

k=0Mk form a
Cauchy sequence. Since for all x ∈ [a, b] and all m > n,

|sm(x)− sn(x)| = |
m∑

k=n+1

vk(x) | ≤
m∑

k=n+1

|vk(x)| ≤
m∑

k=n+1

Mk = |Sm − Sn| ,

this implies that {sn} is a Cauchy sequence. 2

Example 1: Consider the series
∑∞

n=1
cosnx
n2 . Since | cosnx

n2 | ≤ 1
n2 , and∑∞

n=0
1
n2 converges, the original series

∑∞
n=1

cosnx
n2 converges uniformly to a

function f on any closed and bounded interval [a, b]. Hence we may inter-
grate termwise to get∫ x

0
f(t) dt =

∞∑
n=1

∫
x

cosnt

n2
dt =

∞∑
n=1

sinnx

n3

♣
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Let us now turn to differentiation of sequences. This is a much trickier
business than integration as integration often helps to smoothen functions
while differentiation tends to make them more irregular. Here is a simple
example.

Example 2: The sequence (not series!) { sinnx
n } obviously converges uni-

formly to 0, but the sequence of derivatives {cosnx} does not converge at
all. ♣

The example shows that even if a sequence {fn} of differentiable functions
converges uniformly to a differentiable function f , the derivatives f ′n need
not converge to the derivative f ′ of the limit function. If you draw the graphs
of the functions fn, you will see why — although they live in an increasingly
narrower strip around the x-axis, they all wriggle equally much, and the
derivatives do not converge.

To get a theorem that works, we have to put the conditions on the
derivatives. The following result may look ugly and unsatisfactory, but it
gives us the information we shall need.

Proposition 4.2.5 Let {fn} be a sequence of differentiable functions on
the interval [a, b]. Assume that the derivatives f ′n are continuous and that
they converge uniformly to a function g on [a, b]. Assume also that there
is a point x0 ∈ [a, b] such that the sequence {f(x0)} converges. Then the
sequence {fn} converges uniformly on [a, b] to a differentiable function f
such that f ′ = g.

Proof: The proposition is just Corollary 4.2.2 in a convenient disguise. If
we apply that proposition to the sequence {f ′n}, we se that the integrals∫ x
x0
f ′n(t) dt converge uniformly to

∫ x
x0
g(t) dt. By the Fundamental Theorem

of Calculus, we get

fn(x)− fn(x0)→
∫ x

x0

g(t) dt uniformly on [a, b]

Since fn(x0) converges to a limit b, this means that fn(x) converges uni-
formly to the function f(x) = b+

∫ x
x0
g(t) dt. Using the Fundamental Theo-

rem of Calculus again, we see that f ′(x) = g(x). 2

Also in this case it is useful to have a reformulation in terms of series:

Corollary 4.2.6 Let
∑∞

n=0 un(x) be a series where the functions un are
differentiable with continuous derivatives on the interval [a, b]. Assume that
the series of derivatives

∑∞
n=0 u

′
n(x) converges uniformly on [a, b]. Assume

also that there is a point x0 ∈ [a, b] where the series
∑∞

n=0 un(x0) converges.
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Then the series
∑∞

n=0 un(x) converges uniformly on [a, b], and( ∞∑
n=0

un(x)

)′
=
∞∑
n=0

u′n(x)

The corollary tells us that under rather strong conditions, we can differ-
entiate the series

∑∞
n=0 un(x) term by term.

Example 3: Summing a geometric series, we see that

1

1− e−x
=
∞∑
n=0

e−nx for x > 0 (4.2.1)

If we can differentiate term by term on the right hand side, we shall get

e−x

(1− e−x)2
=

∞∑
n=1

ne−nx for x > 0 (4.2.2)

To check that this is correct, we must check the convergence of the dif-
ferentiated series (4.2.2). Choose an interval [a, b] where a > 0, then
ne−nx ≤ ne−na for all x ∈ [a, b]. Using, e.g., the ratio test, it is easy to
see that the series

∑∞
n=0 ne

−na converges, and hence
∑∞

n=0 ne
−nx converges

uniformly on [a, b] by Weierstrass’ M -test. The corollary now tells us that
the sum of the sequence (4.2.2) is the derivative of the sum of the sequence
(4.2.1), i.e.

e−x

(1− e−x)2
=

∞∑
n=1

ne−nx for x ∈ [a, b]

Since [a, b] is an arbitrary subinterval of (0,∞), we have

e−x

(1− e−x)2
=
∞∑
n=1

ne−nx for all x > 0

♣

Exercises for Section 4.2

1. Show that
∑∞
n=0

cos(nx)
n2+1 converges uniformly on R.

2. Does the series
∑∞
n=0 ne

−nx in Example 3 converge uniformly on (0,∞)?

3. Let fn : [0, 1]→ R be defined by fn(x) = nx(1− x2)n. Show that fn(x)→ 0

for all x ∈ [0, 1], but that
∫ 1

0
fn(x) dx→ 1

2 .

4. Explain in detail how Corollary 4.2.3 follows from Corollary 4.2.2.

5. Explain in detail how Corollary 4.2.6 follows from Proposition 4.2.5.
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6. a) Show that series
∑∞
n=1

cos x
n

n2 converges uniformly on R.

b) Show that
∑∞
n=1

sin x
n

n converges to a continuous function f , and that

f ′(x) =

∞∑
n=1

cos xn
n2

7. One can show that

x =

∞∑
n=1

2(−1)n+1

n
sin(nx) for x ∈ (−π, π)

If we differentiate term by term, we get

1 =

∞∑
n=1

2(−1)n+1 cos(nx) for x ∈ (−π, π)

Is this a correct formula?

8. a) Show that the sequence
∑∞
n=1

1
nx converges uniformly on all intervals

[a,∞) where a > 1.

b) Let f(x) =
∑∞
n=1

1
nx for x > 1. Show that f ′(x) = −

∑∞
n=1

ln x
nx .

4.3 Power series

Recall that a power series is a function of the form

f(x) =
∞∑
n=0

cn(x− a)n

where a is a real number and {cn} is a sequence of real numbers. It is
defined for the x-values that make the series converge. We define the radius
of convergence of the series to be the number R such that

1

R
= lim sup

n→∞
n
√
|cn|

with the interpretation that R = 0 if the limit is infinite, and R =∞ if the
limit is 0. To justify this terminology, we need the the following result.

Proposition 4.3.1 If R is the radius of convergence of the power series∑∞
n=0 cn(x − a)n, the series converges for |x − a| < R and diverges for

|x− a| > R. If 0 < r < R, the series converges uniformly on [a− r, a+ r].

Proof: Let us first assume that |x − a| > R. This means that 1
|x−a| <

1
R ,

and since lim supn→∞
n
√
|cn| = 1

R , there must be arbitrarily large values of

n such that n
√
|cn[ > 1

|x−a| . Hence |cn(x − a)n| > 1, and consequently the
series must diverge as the terms do not decrease to zero.
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To prove the (uniform) convergence, assume that r is a number between
0 and R. Since 1

r > 1
R , we can pick a positive number b < 1 such that

b
r >

1
R . Since lim supn→∞

n
√
|cn| = 1

R , there must be an N ∈ N such that
n
√
|cn| < b

r when n ≥ N . This means that |cnrn| < bn for n ≥ N , and
hence that |cn(x − a)|n < bn for all x ∈ [a − r, a + r]. Since

∑∞
n=N b

n is
a convergent, geometric series, Weierstrass’ M-test tells us that the series∑∞

n=N cn(x − a)n converges uniformly on [a − r, a + r]. Since only the tail
of a sequence counts for convergence, the full series

∑∞
n=0 cn(x − a)n also

converges uniformly on [a−r, a+r]. Since r is an arbitrary number less than
R, we see that the series must converge on the open interval (a−R, a+R),
i.e. whenever |x− a| < R. 2

Remark: When we want to find the radius of convergence, it is occasion-
ally convenient to compute a slightly different limit such as limn→∞ n+1

√
cn

or limn→∞ n−1
√
cn instead of limn→∞ n

√
cn. This corresponds to finding the

radius of convergence of the power series we get by either multiplying or di-
viding the original one by (x− a), and gives the correct answer as multiply-
ing or dividing a series by a non-zero number doesn’t change its convergence
properties.

The proposition above does not tell us what happens at the endpoints
a±R of the interval of convergence, but we know from calculus that a series
may converge at both, one or neither endpoint. Although the convergence
is uniform on all subintervals [a − r, a + r], it is not in general uniform on
(a−R, a+R).

Corollary 4.3.2 Assume that the power series f(x) =
∑∞

n=0 cn(x−a)n has
radius of convergence R larger than 0. Then the function f is continuous
and differentiable on the open interval (a−R, a+R) with

f ′(x) =
∞∑
n=1

ncn(x−a)n−1 =
∞∑
n=0

(n+1)cn+1(x−a)n for x ∈ (a−R, a+R)

and∫ x

a
f(t) dt =

∞∑
n=0

cn
n+ 1

(x−a)n+1 =

∞∑
n=1

cn−1

n
(x−a)n for x ∈ (a−R, a+R)

Proof: Since the power series converges uniformly on each subinterval [a −
r, a+r], the sum is continuous on each such interval according to Proposition
3.2.4. Since each x in (a− R, a+ R) is contained in the interior of some of
the subintervals [a− r, a+ r], we see that f must be continuous on the full
interval (a−R, a+R). The formula for the integral follows immediately by
applying Corollary 4.2.3 on each subinterval [a− r, a+ r] in a similar way.
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To get the formula for the derivative, we shall apply Corollary 4.2.6. To
use this result, we need to know that the differentiated series

∑∞
n=1(n +

1)cn+1(x− a)n has the same radius of convergence as the original series; i.e.
that

lim sup
n→∞

n+1
√
|(n+ 1)cn+1| = lim sup

n→∞
n
√
|cn| =

1

R

(note that by the remark above, we may use the n + 1-st root on the left
hand side instead of the n-th root). Since limn→∞

n+1
√

(n+ 1) = 1, this is
not hard to show (see Exercise 6). Applying Corollary 4.2.6 on each subin-
terval [a− r, a+ r], we now get the formula for the derivative at each point
x ∈ [a− r, a+ r]. Since each point in (a−R, a+R) belongs to the interior
of some of the subintervals, the formula for the derivative must hold at all
points x ∈ (a−R, a+R). 2

A function that is the sum of a power series, is called a real analytic
function. Such functions have derivatives of all orders.

Corollary 4.3.3 Let f(x) =
∑∞

n=0 cn(x− a)n for x ∈ (a−R, a+R). Then
f is k times differentiable in (a−R, a+R) for any k ∈ N, and f (k)(a) = k!ck.
Hence

∑∞
n=0 cn(x− a)n is the Taylor series

f(x) =
∞∑
n=0

f (n)(a)

n!
(x− a)n

Proof: Using the previous corollary, we get by induction that f (k) exists on
(a−R, a+R) and that

f (k)(x) =

∞∑
n=k

n(n− 1) · . . . · (n− k + 1)cn(x− a)n−k

Putting x = a, we get f (k)(a) = k!ck, and the corollary follows. 2

Exercises for Section 4.3

1. Find power series with radius of convergence 0, 1, 2, and ∞.

2. Find power series with radius of convergence 1 that converge at both,
one and neither of the endpoints.

3. Show that for any polynomial P , limn→∞
n
√
|P (n)| = 1.

4. Use the result in Exercise 3 to find the radius of convergence:

a)
∑∞

n=0
2nxn

n3+1
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b)
∑∞

n=0
2n2+n−1

3n+4 xn

c)
∑∞

n=0 nx
2n

5. a) Explain that 1
1−x2 =

∑∞
n=0 x

2n for |x| < 1,

b) Show that 2x
(1−x2)2

=
∑∞

n=0 2nx2n−1 for |x| < 1.

c) Show that 1
2 ln

∣∣∣1+x
1−x

∣∣∣ =
∑∞

n=0
x2n+1

2n+1 for |x| < 1.

6. Let
∑∞

n=0 cn(x− a)n be a power series.

a) Show that the radius of convergence is given by

1

R
= lim sup

n→∞
n+k
√
|cn|

for any integer k.

b) Show that limn→∞
n+1
√
n+ 1 = 1 (write n+1

√
n+ 1 = (n+ 1)

1
n+1 ).

c) Prove the formula

lim sup
n→∞

n+1
√
|(n+ 1)cn+1| = lim sup

n→∞
n
√
|cn| =

1

R

in the proof of Corollary 4.3.2.

4.4 Abel’s Theorem

We have seen that the sum f(x) =
∑∞

n=0 cn(x − a)n of a power series is
continuous in the interior (a−R, a+R) of its interval of convergence. But
what happens if the series converges at an endpoint a ± R? It turns out
that the sum is also continuous at the endpoint, but that this is surprisingly
intricate to prove.

Before we turn to the proof, we need a lemma that can be thought of as
a discrete version of integration by parts.

Lemma 4.4.1 (Abel’s Summation Formula) Let {an}∞n=0 and {bn}∞n=0

be two sequences of real numbers, and let sn =
∑n

k=0 ak. Then

N∑
n=0

anbn = sNbN +
N−1∑
n=0

sn(bn − bn+1).

If the series
∑∞

n=0 an converges, and bn → 0 as n→∞, then

∞∑
n=0

anbn =
∞∑
n=0

sn(bn − bn+1)

in the sense that either the two series both diverge or they converge to the
same limit.
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Proof: Note that an = sn−sn−1 for n ≥ 1, and that this formula even holds
for n = 0 if we define s−1 = 0. Hence

N∑
n=0

anbn =

N∑
n=0

(sn − sn−1)bn =

N∑
n=0

snbn −
N∑
n=0

sn−1bn

Changing the index of summation and using that s−1 = 0, we see that∑N
n=0 sn−1bn =

∑N−1
n=0 snbn+1. Putting this into the formula above, we get

N∑
n=0

anbn =
N∑
n=0

snbn −
N−1∑
n=0

snbn+1 = sNbN +
N−1∑
n=0

sn(bn − bn+1)

and the first part of the lemma is proved. The second follows by letting
N →∞. 2

We are now ready to prove:

Theorem 4.4.2 (Abel’s Theorem) The sum of a power series f(x) =∑∞
n=0 cn(x − a)n is continuous in its entire interval of convergence. This

means in particular that if R is the radius of convergence, and the power se-
ries converges at the right endpoint a+R, then limx↑a+R f(x) = f(a+R), and
if the power series converges at the left endpoint a−R, then limx↓a−R f(x) =
f(a−R).1

Proof: We already know that f is continuous in the open interval (a−R, a+
R), and that we only need to check the endpoints. To keep the notation
simple, we shall assume that a = 0 and concentrate on the right endpoint
R. Thus we want to prove that limx↑R f(x) = f(R).

Note that f(x) =
∑∞

n=0 cnR
n
(
x
R

)n
. If we assume that |x| < R, we may

apply the second version of Abel’s summation formula with an = cnR
n and

bn =
(
x
n

)n
to get

f(x) =
∞∑
n=0

fn(R)

(( x
R

)n
−
( x
R

)n+1
)

=
(

1− x

R

) ∞∑
n=0

fn(R)
( x
R

)n
where fn(R) =

∑n
k=0 ckR

k. Summing a geometric series, we see that we
also have

f(R) =
(

1− x

R

) ∞∑
n=0

f(R)
( x
R

)n
Hence

|f(x)− f(R)| =

∣∣∣∣∣(1− x

R

) ∞∑
n=0

(fn(R)− f(R))
( x
R

)n∣∣∣∣∣
1I use limx↑b and limx↓b for one-sided limits, also denoted by limx→b− and limx→b+ .
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Given an ε > 0, we must find a δ > 0 such that this quantity is less than ε
when R − δ < x < R. This may seem obvious due to the factor (1− x/R),
but the problem is that the infinite series may go to infinity when x → R.
Hence we need to control the tail of the sequence before we exploit the factor
(1 − x/R). Fortunately, this is not difficult: Since fn(R) → f(R), we first
pick an N ∈ N such that |fn(R)− f(R)| < ε

2 for n ≥ N . Then

|f(x)− f(R)| ≤
(

1− x

R

)N−1∑
n=0

|fn(R)− f(R)|
( x
R

)n
+

+
(

1− x

R

) ∞∑
n=N

|fn(R)− f(R)|
( x
R

)n
≤

≤
(

1− x

R

)N−1∑
n=0

|fn(R)− f(R)|
( x
R

)n
+
(

1− x

R

) ∞∑
n=0

ε

2

( x
R

)n
=

=
(

1− x

R

)N−1∑
n=0

|fn(R)− f(R)|
( x
R

)n
+
ε

2

where we have summed a geometric series. Now the sum is finite, and
the first term clearly converges to 0 when x ↑ R. Hence there is a δ > 0
such that this term is less than ε

2 when R − δ < x < R, and consequently
|f(x)− f(R)| < ε for such values of x. 2

Let us take a look at a famous example.

Example 1: Summing a geometric series, we clearly have

1

1 + x2
=

∞∑
n=0

(−1)nx2n for |x| < 1

Integrating, we get

arctanx =
∞∑
n=0

(−1)n
x2n+1

2n+ 1
for |x| < 1

Using the Alternating Series Test, we see that the series converges even for
x = 1. By Abel’s Theorem

π

4
= arctan 1 = lim

x↑1
arctanx = lim

x↑1

∞∑
n=0

(−1)n
x2n+1

2n+ 1
=
∞∑
n=0

(−1)n
1

2n+ 1

Hence we have proved

π

4
= 1− 1

3
+

1

5
− 1

7
+ . . .
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This is often called Leibniz’ or Gregory’s formula for π, but it was actually
first discovered by the Indian mathematician Madhava (ca. 1350 – ca. 1425).
♣

This example is rather typical; the most interesting information is often
obtained at an endpoint, and we need Abel’s Theorem to secure it.

It is natural to think that Abel’s Theorem must have a converse saying
that if limx↑a+R

∑∞
n=0 cnx

n exists, then the sequence converges at the right
endpoint x = a + R. This, however, is not true as the following simple
example shows.

Example 2: Summing a geometric series, we have

1

1 + x
=
∞∑
n=0

(−x)n for |x| < 1

Obviously, limx↑1
∑∞

n=0(−x)n = limx↑1
1

1+x = 1
2 , but the series does not

converge for x = 1. ♣

It is possible to put extra conditions on the coefficients of the series to
ensure convergence at the endpoint, see Exercise 2.

Exercises for Section 4.4

1. a) Explain why 1
1+x =

∑∞
n=0(−1)nxn for |x| < 1.

b) Show that ln(1 + x) =
∑∞
n=0(−1)n x

n+1

n+1 for |x| < 1.

c) Show that ln 2 =
∑∞
n=0(−1)n 1

n+1 .

2. In this problem we shall prove the following partial converse of Abel’s The-
orem:

Tauber’s Theorem Assume that s(x) =
∑∞
n=0 cnx

n is a power series with
radius of convergence 1. Assume that s = limx↑1

∑∞
n=0 cnx

n is finite. If in
addition limn→∞ ncn = 0, then the power series converges for x = 1 and
s = s(1).

a) Explain that if we can prove that the power series converges for x = 1,
then the rest of the theorem will follow from Abel’s Theorem.

b) Show that limN→∞
1
N

∑N
n=0 n|cn| = 0.

c) Let sN =
∑N
n=0 cn. Explain that

s(x)− sN = −
N∑
n=0

cn(1− xn) +

∞∑
n=N+1

cnx
n

d) Show that 1− xn ≤ n(1− x) for |x| < 1.
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e) Let Nx be the integer such that Nx ≤ 1
1−x < Nx + 1 Show that

Nx∑
n=0

cn(1− xn) ≤ (1− x)

Nx∑
n=0

n|cn| ≤
1

Nx

Nx∑
n=0

n|cn| → 0

as x ↑ 1.

f) Show that ∣∣∣∣∣
∞∑

n=Nx+1

cnx
n

∣∣∣∣∣ ≤
∞∑

n=Nx+1

n|cn|
xn

n
=

dx
Nx

∞∑
n=0

xn

where dx → 0 as x ↑ 1. Show that
∑∞
n=Nx+1 cnx

n → 0 as x ↑ 1.

g) Prove Tauber’s theorem.

4.5 Normed spaces

In a later chapter we shall continue our study of how general functions can
be expressed as series of simpler functions. This time the “simple functions”
will be trigonometric functions and not power functions, and the series will
be called Fourier series and not power series. Before we turn to Fourier series,
we shall take a look at normed spaces and inner product spaces. Strictly
speaking, it is not necessary to know about such spaces to study Fourier
series, but a basic understanding will make it much easier to appreciate the
basic ideas and put them into a wider framework.

In Fourier analysis, one studies vector spaces of functions, and let me
begin by reminding you that a vector space is just a set where you can
add elements and multiply them by numbers in a reasonable way. More
precisely:

Definition 4.5.1 Let K be either R or C, and let V be a nonempty set.
Assume that V is equipped with two operations:

• Addition which to any two elements u,v ∈ V assigns an element u +
v ∈ V .

• Scalar multiplication which to any element u ∈ V and any number
α ∈ K assigns an element αu ∈ V .

We call V a vector space over K if the following axioms are satisfied:

(i) u + v = v + u for all u,v ∈ V .

(ii) (u + v) + w = u + (v + w) for all u,v,w ∈ V .

(iii) There is a zero vector 0 ∈ V such that u + 0 = u for all u ∈ V .

(iv) For each u ∈ V , there is an element −u ∈ V such that u + (−u) = 0.
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(v) α(u + v) = αu + αv for all u,v ∈ V and all α ∈ K.

(vi) (α+ β)u = αu + βu for all u ∈ V and all α, β ∈ K:

(vii) α(βu) = (αβ)u for all u ∈ V and all α, β ∈ K:

(viii) 1u = u for all u ∈ V .

To make it easier to distinguish, we sometimes refer to elements in V as
vectors and elements in K as scalars.

I’ll assume that you are familar with the basic consequences of these
axioms as presented in a course on linear algebra. Recall in particular that
a subset U ⊆ V is a vector space if it closed under addition and scalar
multiplication, i.e. that whenever u,v ∈ U and α ∈ K, then u + v, αu ∈ U .

To measure the seize of an element in a metric space, we introduce norms:

Definition 4.5.2 If V is a vector space over K, a norm on V is a function
|| · || : V → R such that:

(i) ||u|| ≥ 0 with equality if and only if u = 0.

(ii) ||αu|| = |α|||u|| for all α ∈ K and all u ∈ V .

(iii) ||u + v|| ≤ ||u||+ ||v|| for all u,v ∈ V .

Example 1: The classical example of a norm on a real vector space, is the
euclidean norm on Rn given by

||x|| =
√
x2

1 + x2
2 + · · ·+ x2

n

where x = (x1, x2. . . . , xn). The corresponding norm on the complex vector
space Cn is

||z|| =
√
|z1|2 + |z2|2 + · · ·+ |zn|2

where z = (z1, z2. . . . , zn). ♣

The spaces above are the most common vector spaces and norms in lin-
ear algebra. More relevant for our purposes in this chapter are:

Example 2: Let (X, d) be a compact metric space, and let V = C(X,R)
be the set of all continuous, real valued functions on X. Then V is a vector
space over R and

||f || = sup{|f(x)| |x ∈ X}

is a norm on V . To get a complex example, let V = C(X,C) and define the
norm by the same formula as before. ♣

From a norm we can always get a metric in the following way:
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Proposition 4.5.3 Assume that V is a vector space over K and that || · ||
is a norm on V . Then

d(u,v) = ||u− v||

is a metric on V .

Proof: We have to check the three properties of a metric:

Positivity: Since d(u,v) = ||u − v||, we see from part (i) of the definition
above that d(u,v) ≥ 0 with equality if and only if u − v = 0, i.e. if and
only if u = v.

Symmetry: Since

||u− v|| = ||(−1)(v − u)|| = |(−1)|||v − u|| = ||v − u||

by part (ii) of the definition above, we see that d(u,v) = d(v,u).

Triangle inequality: By part (iii) of the definition above, we see that for all
u,v,w ∈ V :

d(u,v) = ||u− v|| = ||(u−w) + (w − v)|| ≤

≤ ||u−w||+ ||w − v|| = d(u,w) + d(w,v)

2

Whenever we refer to notions such as convergence, continuity, openness,
closedness, completeness, compactness etc. in a normed vector space, we
shall be refering to these notions with respect to the metric defined by the
norm. In practice, this means that we continue as before, but write ||u− v||
instead of d(u,v) for the distance between the points u and v.

Remark: The inverse triangle inequality (recall Proposition 2.1.4)

|d(x, y)− d(x, z)| ≤ d(y, z) (4.5.1)

is a useful tool in metric spaces. In normed spaces, it is most conveniently
expressed as

| ||u|| − ||v|| | ≤ ||u− v|| (4.5.2)

(use formula (4.5.1) with x = 0, y = u and z = v).

Note that if {un}∞n=1 is a sequence of elements in a normed vector space,
we define the infinite sum

∑∞
n=1 un as the limit of the partial sums sn =∑n

k=1 uk provided this limit exists; i.e.

∞∑
n=1

un = lim
n→∞

n∑
k=1

uk
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When the limit exists, we say that the series converges.

Remark: The notation u =
∑∞

n=1 un is rather treacherous — it seems to
be a purely algebraic relationship, but it does, in fact, depend on which
norm we are using. If we have a two different norms || · ||1 and || · ||2 on the
same space V , we may have u =

∑∞
n=1 un with respect to || · ||1, but not with

respect to || · ||2, as ||u− sn||1 → 0 does not necesarily imply ||u− sn||2 → 0.
This phenomenon is actually quite common, and we shall meet it on several
occasions later in the book.

Recall from linear algebra that at vector space V is finite dimensional
if there is a finite set e1, e2, . . . , en of elements in V such that each element
x ∈ V can be written as a linear combination x = α1e1 +α2e2 + · · ·+αnen
in a unique way. We call e1, e2, . . . , en a basis for V , and say that V has
dimension n. A space that is not finite dimensional is called infinte dimen-
sional. Most of the spaces we shall be working with are infinite dimensional,
and we shall now extend the notion of basis to (some) such spaces.

Definition 4.5.4 Let {en}∞n=1 be a sequence of elements in a normed vector
space V . We say that {en} is a basis2 for V if for each x ∈ V there is a
unique sequence {αn}∞n=1 from K such that

x =

∞∑
n=1

αnen

Not all normed spaces have a basis; there are, e.g., spaces so big that
not all elements can be reached from a countable set of basis elements. Let
us take a look at an infinite dimensional space with a basis.

Example 3: Let c0 be the set of all sequences x = {xn}n∈N of real numbers
such that limn→∞ xn = 0. It is not hard to check that {c0} is a vector space
and that

||x|| = sup{|xn| : n ∈ N}

is a norm on c0. Let en = (0, 0, . . . , 0, 1, 0, . . .) be the sequence that is 1
on element number n and 0 elsewhere. Then {en}n∈N is a basis for c0 with
x =

∑∞
n=1 xnen. ♣

If a normed vector space is complete, we call it a Banach space. The
next theorem provides an efficient method for checking that a normed space

2Strictly speaking, there are two notions of basis for an infinite dimensional space.
The type we are introducing here is sometimes called a Schauder basis and only works
in normed spaces where we can give meaning to infinite sums. There ia another kind of
basis called a Hamel basis which does not require the space to be normed, but which is
less practical for applications.
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is complete. We say that a series
∑∞

n=1 un in V converges absolutely if∑∞
n=1 ||un|| converges (note that

∑∞
n=1 ||un|| is a series of positive numbers).

Proposition 4.5.5 A normed vector space V is complete if and only if
every absolutely convergent series converges.

Proof: Assume first that V is complete and that the series
∑∞

n=0 un con-
verges absolutely. We must show that the series converges in the ordinary
sense. Let Sn =

∑n
k=0 ||uk|| and sn =

∑n
k=0 uk be the partial sums of the

two series. Since the series converges absolutely, the sequence {Sn} is a
Cauchy sequence, and given an ε > 0, there must be an N ∈ N such that
|Sn − Sm| < ε when n,m ≥ N . Without loss of generality, we may assume
that m > n. By the triangle inequality

||sm − sn|| = ||
m∑

k=n+1

uk|| ≤
m∑

k=n+1

||uk|| = |Sm − Sn| < ε

when n,m ≥ N , and hence {sn} is a Cauchy sequence. Since V is complete,
the series

∑∞
n=0 un converges.

For the converse, assume that all absolutely convergent series converge,
and let {xn} be a Cauchy sequence. We must show that {xn} converges.
Since {xn} is a Cauchy sequence, we can find an increasing sequence {ni} in
N such that ||xn − xm|| < 1

2i
for all n,m ≥ ni. In particular ||xni+1 − xni || <

1
2i

, and clearly
∑∞

i=1 ||xni+1 − xni || converges. This means that the series∑∞
i=1(xni+1 − xni) converges absolutely, and by assumption it converges in

the ordinary sense to some element s ∈ V . The partial sums of this sequence
are

sN =

N∑
i=1

(xni+1 − xni) = xnN+1 − xn1

(the sum is “telescoping” and almost all terms cancel), and as they converge
to s, we see that xnN+1 must converge to s + xn1 . This means that a
subsequence of the Cauchy sequence {xn} converges, and thus the sequence
itself converges according to Lemma 2.5.5. 2

Exercises for Section 4.5

1. Check that the norms in Example 1 really are norms (i.e. that they satisfy
the conditions in Definition 4.5.2).

2. Check that the norms in Example 2 really are norms (i.e. that they satisfy
the conditions in Definition 4.5.2).

3. Let V be a normed vector space over K. Assume that {un}, {vn} are se-
quences in V converging to u og v, respectively, and that {αn}, {βn} are
sequences in K converging to α og β, respectively.
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a) Show that {un + vn} converges to u + v.

b) Show that {αnun} converges to αu

c) Show that {αnun + βnvn} converges to αu + βv.

4. Let V be a normed vector space over K.

a) Prove the inverse triangle inequality |||u||−||v||| ≤ ||u−v|| for all u,v ∈ V .

b) Assume that {un} is a sequence in V converging to u. Show that {||un||}
converges to ||u||

5. Show that

||f || =
∫ 1

0

|f(t)| dt

is a norm on C([0, 1],R).

6. Prove that the set {en}n∈N in Example 3 really is a basis for c0.

7. Let V 6= {0} be a vector space, and let d be the discrete metric on V . Show
that d is not generated by a norm (i.e. there is no norm on V such that
d(x,y) = ||x− y||).

8. Let V 6= {0} be a normed vector space. Show that V is complete if and only
if the unit sphere S = {x ∈ V : ||x|| = 1} is complete.

9. Show that if a normed vector space V has a basis (as defined in Definition
4.5.4), then it is separable (i.e. it has a countable, dense subset).

10. l1 is the set of all sequences x = {xn}n∈N of real numbers such that
∑∞
n=1 |xn|

converges.

a) Show that

||x|| =
∞∑
n=1

|xn|

is a norm on l1.

b) Show that the set {en}n∈N in Example 3 is a basis for l1.

c) Show that l1 is complete.

4.6 Inner product spaces

The usual (euclidean) norm in Rn can be defined in terms of the scalar (dot)
product:

||x|| =
√

x · x

This relationship is extremely important as it connects length (defined by
the norm) and orthogonality (defined by the scalar product), and it is the
key to many generalizations of geometric arguments from R2 and R3 to Rn.
In this section we shall see how we can extend this generalization to certain
infinite dimensional spaces called inner product spaces.
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The basic observation is that some norms on infinite dimensional spaces
can be defined in terms of an inner product just as the euclidean norm is
defined in terms of the scalar product. Let us begin by taking a look at such
products. As in the previous section, we assume that all vector spaces are
over K which is either R or C. As we shall be using complex spaces in our
study of Fourier series, it is important that you don’t neglect the complex
case.

Definition 4.6.1 An inner product 〈·, ·〉 on a vector space V over K is a
function 〈·, ·〉 : V × V → K such that:

(i) 〈u,v〉 = 〈v,u〉 for all u,v ∈ V (the bar denotes complex conjugation;
if the vector space is real, we just have 〈u,v〉 = 〈v,u〉).

(ii) 〈u + v,w〉 = 〈u,w〉+ 〈v,w〉 for all u,v,w ∈ V .

(iii) 〈αu,v〉 = α〈u,v〉 for all α ∈ K, u,v ∈ V .

(iv) For all u ∈ V , 〈u,u〉 ≥ 0 with equality if and only if u = 0 (by (i),
〈u,u〉 is always a real number).3

As immediate consequences of (i)-(iv), we have

(v) 〈u,v + w〉 = 〈u,v〉+ 〈u,w〉 for all u,v,w ∈ V .

(vi) 〈u, αv〉 = α〈u,v〉 for all α ∈ K, u,v ∈ V (note the complex conju-
gate!).

(vii) 〈αu, αv〉 = |α|2〈u,v〉 (combine (i) and(vi) and recall that for complex
numbers |α|2 = αα).

Example 1: The classical examples are the dot products in Rn and Cn. If
x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn) are two real vectors, we define

〈x,y〉 = x · y = x1y1 + x2y2 + . . .+ xnyn

If z = (z1, z2, . . . , zn) and w = (w1, w2, . . . , wn) are two complex vectors, we
define

〈z,w〉 = z ·w = z1w1 + z2w2 + . . .+ znwn

Before we look at the next example, we need to extend integration to
complex valued functions. If a, b ∈ R, a < b, and f, g : [a, b] → R are
continuous functions, we get a complex valued function h : [a, b] → C by
letting

h(t) = f(t) + i g(t)

3Strictly speaking, we are defining positive definite inner products, but they are the
only inner products we have use for.
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We define the integral of h in the natural way:∫ b

a
h(t) dt =

∫ b

a
f(t) dt+ i

∫ b

a
g(t) dt

i.e., we integrate the real and complex parts separately.

Example 2: Again we look at the real and complex case separately. For
the real case, let V be the set of all continuous functions f : [a, b]→ R, and
define the inner product by

〈f, g〉 =

∫ b

a
f(t)g(t) dt

For the complex case, let V be the set of all continuous, complex valued
functions h : [a, b]→ C as descibed above, and define

〈h, k〉 =

∫ b

a
h(t)k(t) dt

Then 〈·, ·〉 is an inner product on V .
Note that these inner products may be thought of as natural extensions

of the products in Example 1; we have just replaced discrete sums by con-
tinuous products.

Given an inner product 〈·, ·〉, we define || · || : V → [0,∞) by

||u|| =
√
〈u,u〉

in analogy with the norm and the dot product in Rn and Cn. For simplicity,
we shall refer to || · || as a norm, although at this stage it is not at all clear
that it is a norm in the sense of Definition 4.5.2.

On our way to proving that || · || really is a norm, we shall pick up a few
results of a geometric nature that will be useful later. We begin by defining
two vectors u,v ∈ V to be orthogonal if 〈u,v〉 = 0. Note that if this is the
case, we also have 〈v,u〉 = 0 since 〈v,u〉 = 〈u,v〉 = 0 = 0.

With these definitions, we can prove the following generalization of the
Pythagorean theorem:

Proposition 4.6.2 (Pythagorean Theorem) For all orthogonal u1, u2,
. . . , un in V ,

||u1 + u2 + . . .+ un||2 = ||u1||2 + ||u2||2 + . . .+ ||un||2

Proof: We have

||u1 + u2 + . . .+ un||2 = 〈u1 + u2 + . . .+ un,u1 + u2 + . . .+ un〉 =
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=
∑

1≤i,j≤n
〈ui,uj〉 = ||u1||2 + ||u2||2 + . . .+ ||un||2

where we have used that by orthogonality, 〈ui,uj〉 = 0 whenever i 6= j. 2

Two nonzero vectors u, v are said to be parallel if there is a number
α ∈ K such that u = αv. As in Rn, the projection of u on v is the vector p
parallel with v such that u−p is orthogonal to v. Figure 1 shows the idea.

-
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Figure 1: The projection p of u on v

Proposition 4.6.3 Assume that u and v are two nonzero elements of V .
Then the projection p of u on v is given by:

p =
〈u,v〉
||v||2

v

The norm of the projection is ||p|| = |〈u,v〉|
||v||

Proof: Since p is parallel to v, it must be of the form p = αv. To determine
α, we note that in order for u − p to be orthogonal to v, we must have
〈u− p,v〉 = 0. Hence α is determined by the equation

0 = 〈u− αv,v〉 = 〈u,v〉 − 〈αv,v〉 = 〈u,v〉 − α||v||2

Solving for α, we get α = 〈u,v〉
||v||2 , and hence p = 〈u,v〉

||v||2 v.

To calculate the norm, note that

||p||2 = 〈p,p〉 = 〈αv, αv〉 = |α|2〈v,v〉 =
|〈u,v〉|2

||v||4
〈v,v〉 =

|〈u,v〉|2

||v||2

(recall property (vi) just after Definition 4.6.1). 2

We can now extend Cauchy-Schwarz’ inequality to general inner prod-
ucts:
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Proposition 4.6.4 (Cauchy-Schwarz’ inequality) For all u,v ∈ V ,

|〈u,v〉| ≤ ||u||||v||

with equality if and only if u and v are parallel or at least one of them is
zero.

Proof: The proposition clearly holds with equality if one of the vectors is
zero. If they are both nonzero, we let p be the projection of u on v, and
note that by the pythagorean theorem

||u||2 = ||u− p||2 + ||p||2 ≥ ||p||2

with equality only if u = p, i.e. when u and v are parallel. Since ||p|| = |〈u,v〉|
||v||

by Proposition 4.6.3, we have

||u||2 ≥ |〈u,v〉|
2

||v||2

and the proposition follows. 2

We may now prove:

Proposition 4.6.5 (Triangle inequality for inner products) For all u,
v ∈ V

||u + v|| ≤ ||u||+ ||v||

Proof: We have (recall that Re(z) refers to the real part a of a complex
number z = a+ ib):

||u + v||2 = 〈u + v,u + v〉 = 〈u,u〉+ 〈u,v〉+ 〈v,u〉+ 〈v,v〉 =

= 〈u,u〉+ 〈u,v〉+ 〈u,v〉+ 〈v,v〉 = 〈u,u〉+ 2Re(〈u,v〉) + 〈v,v〉 ≤

≤ ||u||2 + 2||u||||v||+ ||v||2 = (||u||+ ||v||)2

where we have used that according to Cauchy-Schwarz’ inequality, we have
Re(〈u,v〉) ≤ |〈u,v〉| ≤ ||u||||v||. 2

We are now ready to prove that || · || really is a norm:

Proposition 4.6.6 If 〈·, ·〉 is an inner product on a vector space V , then

||u|| =
√
〈u,u〉

defines a norm on V , i.e.

(i) ||u|| ≥ 0 with equality if and only if u = 0.



118 CHAPTER 4. SERIES OF FUNCTIONS

(ii) ||αu|| = |α|||u|| for all α ∈ C and all u ∈ V .

(iii) ||u + v|| ≤ ||u||+ ||v|| for all u,v ∈ V .

Proof: (i) follows directly from the definition of inner products, and (iii)
is just the triangle inequality. We have actually proved (ii) on our way to
Cauchy-Scharz’ inequality, but let us repeat the proof here:

||αu||2 = 〈αu, αu〉 = |α|2||u||2

where we have used property (vi) just after Definition 4.6.1. 2

The proposition above means that we can think of an inner product
space as a metric space with metric defined by

d(x,y) = ||x− y|| =
√
〈x− y,x− y〉

Example 3: Returning to Example 2, we see that the metric in the real as
well as the complex case is given by

d(f, g) =

(∫ b

a
|f(t)− g(t)|2 dt

) 1
2

The next proposition tells us that we can move limits and infinite sums
in and out of inner products.

Proposition 4.6.7 Let V be an inner product space.

(i) If {un} is a sequence in V converging to u, then the sequence {||un||}
of norms converges to ||u||.

(ii) If the series
∑∞

n=0 wn converges in V , then

||
∞∑
n=0

wn|| = lim
N→∞

||
N∑
n=0

wn||

(iii) If {un} is a sequence in V converging to u, then the sequence 〈un,v〉
of inner products converges to 〈u,v〉 for all v ∈ V . In symbols,
limn→∞〈un,v〉 = 〈limn→∞ un,v〉 for all v ∈ V .

(iv) If the series
∑∞

n=0 wn converges in V , then

〈
∞∑
n=1

wn,v〉 =

∞∑
n=1

〈wn,v〉

.
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Proof: (i) follows directly from the inverse triangle inequality

| ||u|| − ||un|| | ≤ ||u− un||

(ii) follows immediately from (i) if we let un =
∑n

k=0 wk

(iii) Assume that un → u. To show that 〈un,v〉 → 〈u,v〉, is suffices
to prove that 〈un,v〉 − 〈u,v〉 = 〈un − u,v〉 → 0. But by Cauchy-Schwarz’
inequality

|〈un − u,v〉| ≤ ||un − u||||v|| → 0

since ||un − u|| → 0 by assumption.
(iv) We use (iii) with u =

∑∞
n=1 wn and un =

∑n
k=1 wk. Then

〈
∞∑
n=1

wn,v〉 = 〈u,v〉 = lim
n→∞

〈un,v〉 = lim
n→∞

〈
n∑
k=1

wk,v〉 =

= lim
n→∞

n∑
k=1

〈wk,v〉 =

∞∑
n=1

〈wn,v〉

2

We shall now generalize some notions from linear algebra to our new
setting. If {u1,u2, . . . ,un} is a finite set of elements in V , we define the
span

Sp{u1,u2, . . . ,un}

of {u1,u2, . . . ,un} to be the set of all linear combinations

α1u1 + α2u2 + . . .+ αnun, where α1, α2, . . . , αn ∈ K

A set A ⊆ V is said to be orthonormal if it consists of orthogonal elements
of length one, i.e. if for all a,b ∈ A, we have

〈a,b〉 =


0 if a 6= b

1 if a = b

If {e1, e2, . . . , en} is an orthonormal set and u ∈ V , we define the projection
of u on Sp{e1, e2, . . . , en} by

Pe1,e2,...,en(u) = 〈u, e1〉e1 + 〈u, e2〉e2 + · · ·+ 〈u, en〉en

This terminology is justified by the following result.

Proposition 4.6.8 Let {e1, e2, . . . , en} be an orthonormal set in V . For ev-
ery u ∈ V , the projection Pe1,e2,...,en(u) is the element in Sp{e1, e2, . . . , en}
closest to u. Moreover, u − Pe1,e2,...,en(u) is orthogonal to all elements in
Sp{e1, e2, . . . , en}.
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Proof: We first prove the orthogonality. It suffices to prove that

〈u− Pe1,e2,...,en(u), ei〉 = 0 (4.6.1)

for each i = 1, 2, . . . , n, as we then have

〈u− Pe1,e2,...,en(u), α1e1 + · · ·+ αnen〉 =

= α1〈u− Pe1,e2,...,en(u), e1〉+ . . .+ αn〈u− Pe1,e2,...,en(u), en〉 = 0

for all α1e1 + · · ·+αnen ∈ Sp{e1, e2, . . . , en}. To prove formula (4.6.1), just
observe that for each ei

〈u− Pe1,e2,...,en(u), ei〉 = 〈u, ei〉 − 〈Pe1,e2,...,en(u), ei〉

= 〈u, ei〉 −
(
〈u, ei〉〈e1, ei〉+ 〈u, e2〉〈e2, ei〉+ · · ·+ 〈u, en〉〈en, ei〉

)
=

= 〈u, ei〉 − 〈u, ei〉 = 0

To prove that the projection is the element in Sp{e1, e2, . . . , en} closest to
u, let w = α1e1 +α2e2 +· · ·+αnen be another element in Sp{e1, e2, . . . , en}.
Then Pe1,e2,...,en(u) − w is in Sp{e1, e2, . . . , en}, and hence orthogonal to
u−Pe1,e2,...,en(u) by what we have just proved. By the Pythagorean theorem

||u−w||2 = ||u−Pe1,e2,...,en(u)||2+||Pe1,e2,...,en(u)−w||2 > ||u−Pe1,e2,...,en(u)||2

2

As an immediate consequence of the proposition above, we get:

Corollary 4.6.9 (Bessel’s inequality) Let {e1, e2, . . . , en, . . .} be an or-
thonormal sequence in V . For any u ∈ V ,

∞∑
i=1

|〈u, ei〉|2 ≤ ||u||2

Proof: Since u−Pe1,e2,...,en(u) is orthogonal to Pe1,e2,...,en(u), we get by the
Pythagorean theorem that for any n

||u||2 = ||u− Pe1,e2,...,en(u)||2 + ||Pe1,e2,...,en(u)||2 ≥ ||Pe1,e2,...,en(u)||2

Using the Pythagorean Theorem again, we see that

||Pe1,e2,...,en(u)||2 = ||〈u, e1〉e1 + 〈u, e2〉e2 + · · ·+ 〈u, en〉en||2 =

= ||〈u, e1〉e1||2 + ||〈u, e2〉e2||2 + · · ·+ ||〈u, en〉en||2 =

= |〈u, e1〉|2 + |〈u, e2〉|2 + · · ·+ |〈u, en〉|2
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and hence
||u||2 ≥ |〈u, e1〉|2 + |〈u, e2〉|2 + · · ·+ |〈u, en〉|2

for all n. Letting n→∞, the corollary follows. 2

We have now reached the main result of this section. Recall from Defi-
nition 4.5.4 that {ei} is a basis for V if any element u in V can be written
as a linear combination u =

∑∞
i=1 αiei in a unique way. The theorem tells

us that if the basis is orthonormal, the coeffisients αi are easy to find; they
are simply given by αi = 〈u, ei〉.

Theorem 4.6.10 (Parseval’s Theorem) If {e1, e2, . . . , en, . . .} is an or-
thonormal basis for V , then for all u ∈ V , we have u =

∑∞
i=1〈u, ei〉ei and

||u||2 =
∑∞

i=1 |〈u, ei〉|2.

Proof: Since {e1, e2, . . . , en, . . .} is a basis, we know that there is a unique
sequence α1, α2, . . . , αn, . . . from K such that u =

∑∞
n=1 αnen. This means

that ||u−
∑N

n=1 αnen|| → 0 as N →∞. Since the projection Pe1,e2,...,eN (u) =∑N
n=1〈u, en〉en is the element in Sp{e1, e2, . . . , eN} closest to u, we have

||u−
N∑
n=1

〈u, en〉en|| ≤ ||u−
N∑
n=1

αnen|| → 0 as N →∞

and hence u =
∑∞

n=1〈u, en〉en. To prove the second part, observe that since

u =
∑∞

n=1〈u, en〉en = limN→∞
∑N

n=1〈u, en〉en, we have (recall Proposition
4.6.7(ii))

||u||2 = lim
N→∞

||
N∑
n=1

〈u, en〉en||2 = lim
N→∞

N∑
n=1

|〈u, en〉|2 =
∞∑
n=1

|〈u, en〉|2

2

The coefficients 〈u, en〉 in the arguments above are often called (abstract)
Fourier coefficients. By Parseval’s theorem, they are square summable in
the sense that

∑∞
n=1 |〈u, en〉|2 < ∞. A natural question is whether we can

reverse this procedure: Given a square summable sequence {αn} of elements
in K, does there exist an element u in V with Fourier coefficients αn, i.e.
such that 〈u, en〉 = αn for all n? The answer is affirmative provided V is
complete.

Proposition 4.6.11 Let V be a complete inner product space over K with
an orthonormal basis {e1, e2, . . . , en, . . .}. Assume that {αn}n∈N is a se-
quence from K which is square summable in the sense that

∑∞
n=1 |αn|2 con-

verges. Then the series
∑∞

n=1 αnen converges to an element u ∈ V , and
〈u, en〉 = αn for all n ∈ N.
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Proof: We must prove that the partial sums sn =
∑n

k=1 αkek form a Cauchy
sequence. If m > n, we have

||sm − sn||2 = ||
m∑

k=n+1

αnen||2 =

m∑
k=n+1

|αn|2

Since
∑∞

n=1 |αn|2 converges, we can get this expression less than any ε > 0
by choosing n,m large enough. Hence {sn} is a Cauchy sequence, and the
series

∑∞
n=1 αnen converges to some element u ∈ V . By Proposition 4.6.7,

〈u, ei〉 = 〈
∞∑
n=1

αnen, ei〉 =
∞∑
n=1

〈αnen, ei〉 = αi

2

Completeness is necessary in the proposition above — if V is not com-
plete, there will always be a square summable sequence {αn} such that∑∞

n=1 αnen does not converge (see exercise 13).

A complete inner product space is called a Hilbert space.

Exercises for Section 4.6

1. Show that the inner products in Example 1 really are inner products (i.e.
that they satisfy Definition 4.6.1).

2. Show that the inner products in Example 2 really are inner products.

3. Prove formula (v) just after Definition 4.6.1.

4. Prove formula (vi) just after Definition 4.6.1.

5. Prove formula (vii) just after Definition 4.6.1.

6. Show that if A is a symmetric (real) matrix with strictly positive eigenvalues,
then

〈u,v〉 = (Au) · v

is an inner product on Rn.

7. If h(t) = f(t) + i g(t) is a complex valued function where f and g are dif-
ferentiable, define h′(t) = f ′(t) + i g′(t). Prove that the integration by parts
formula ∫ b

a

u(t)v′(t) dt =

[
u(t)v(t)

]b
a

−
∫ b

a

u′(t)v(t) dt

holds for complex valued functions.

8. Assume that {un} and {vn} are two sequences in an inner product space
converging to u and v, respectively. Show that 〈un,vn〉 → 〈u,v〉.
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9. Show that if the norm || · || is defined from an inner product by ||u|| = 〈u,u〉 12 ,
we have the parallelogram law

||u + v||2 + ||u− v||2 = 2||u||2 + 2||v||2

for all u,v ∈ V . Show that the norms on R2 defined by ||(x, y)|| = max{|x|, |y|}
and ||(x, y)|| = |x|+ |y| do not come from inner products.

10. Let {e1, e2, . . . , en} be an orthonormal set in an inner product space V . Show
that the projection P = Pe1,e2,...,en

is linear in the sense that P (αu) = αP (u)
and P (u + v) = P (u) + P (v) for all u,v ∈ V and all α ∈ K.

11. In this problem we prove the polarization identities for real and complex
inner products. These identities are useful as they express the inner product
in terms of the norm.

a) Show that if V is an inner product space over R, then

〈u,v〉 =
1

4

(
||u + v||2 − ||u− v||2

)
b) Show that if V is an inner product space over C, then

〈u,v〉 =
1

4

(
||u + v||2 − ||u− v||2 + i||u + iv||2 − i||u− iv||2

)
12. If S is a nonempty subset of an inner product space, let

S⊥ = {u ∈ V : 〈u, s〉 = 0 for all s ∈ S}

a) Show that S⊥ is a closed subspace of S.

b) Show that if S ⊆ T , then S⊥ ⊇ T⊥.

13. Let l2 be the set of all real sequences x = {xn}n∈N such that
∑∞
n=1 x

2
n <∞.

a) Show that if x = {xn}n∈N and y = {yn}n∈N are in l2, then the series∑∞
n=1 xnyn converges. (Hint: For each N ,

N∑
n=1

xnyn ≤

(
N∑
n=1

x2n

) 1
2
(

N∑
n=1

y2n

) 1
2

by Cauchy-Schwarz’ inequality)

b) Show that l2 is a vector space.

c) Show that 〈x,y〉 =
∑∞
n=1 xnyn is an inner product on l2.

d) Show that l2 is complete.

e) Let en be the sequence where the n-th component is 1 and all the other
components are 0. Show that {en}n∈N is an orthonormal basis for l2.

f) Let V be an inner product space with an orthonormal basis {v1, v2,
. . . , vn, . . .}. Assume that for every square summable sequence {αn},
there is an element u ∈ V such that 〈u,vi〉 = αi for all i ∈ N. Show
that V is complete.
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4.7 Linear operators

In linear algebra the important functions are the linear maps. The same
holds for infinitely dimensional spaces, but the maps are then usually re-
ferred to as linear operators or linear transformations:

Definition 4.7.1 Assume that V and W are two vector spaces over K. A
function A : V →W is called a linear operator if it satisfies:

(i) A(αu) = αA(u) for all α ∈ K and u ∈ V .

(ii) A(u + v) = A(u) +A(v) for all u,v ∈ V .

Combining (i) and (ii), we see that

A(αu + βv) = αA(u) + βA(v)

Using induction, this can be generalized to

A(α1u1 +α2u2+ · · ·+αnun) = α1A(u1)+α2A(u2)+ · · ·+αnA(un) (4.7.1)

It is also useful to observe that since A(0) = A(00) = 0A(0) = 0, we have
A(0) = 0 for all linear operators.

As K may be regarded as a vector space over itself, the definition above
covers the case where W = K. The map is then usually referred to as a
(linear) functional.

Example 1: Let V = C([a, b],R) be the space of continuous functions from
the interval [a, b] to R. The function A : V → R defined by

A(u) =

∫ b

a
u(x) dx

is a linear functional, while the function B : V → V defined by

B(u)(x) =

∫ x

a
u(t) dt

is a linear operator. ♣

Example 2: Just as integration, differentiation is a linear operation, but
as the derivative of a differentiable function is not necessarily differentiable,
we have to be careful which spaces we work with. A function f : (a, b)→ R
is said to be infinitely differentiable if it has derivatives of all orders at all
points in (a, b), i.e. if f (n)(x) exists for all n ∈ N and all x ∈ (a, b). Let U
be the space of all infinitely differentiable functions, and define D : U → U
by Du(x) = u′(x). Then D is a linear operator. ♣

We shall mainly be interested in linear operators between normed spaces,
and the following notion is of central importance:
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Definition 4.7.2 Assume that (V, || · ||v) and (W, || · ||W ) are two normed
spaces. A linear operator A : V → W is bounded if there is a constant
M ∈ R such that ||A(u)||W ≤M ||u||V for all u ∈ V .

Remark: The terminology here is rather treacherous as a bounded operator
is not a bounded function in the sense of, e.g., the Extremal Value Theorem.
To see this, note that if A(u) 6= 0, we can get ||A(αu)||W = |α|||A(u)||W as
large as we want by increasing the size of α.

The best (i.e. smallest) value of the constant M in the definition above
is denoted by ||A|| and is given by

||A|| = sup

{
||A(u)||W
||u||V

: u 6= 0

}
An alternative formulation (see Exercise 4) is

||A|| = sup {||A(u)||W : ||u||V = 1} (4.7.2)

We call ||A|| the operator norm of A. The name is justified in Exercise 7.
It’s instructive to take a new look at the operators in Examples 1 and 2:

Example 3: The operators A and B in Example 1 are bounded if we use
the (usual) supremum norm on V . To see this for B, note that

|B(u)(x)| = |
∫ x

a
u(t) dt| ≤

∫ x

a
|u(t)| dt ≤

∫ x

a
||u|| du = ||u||(x−a) ≤ ||u||(b−a)

which implies that ||B(u)|| ≤ (b− a)||u|| for all u ∈ V . ♣

Example 4: If we let U have the supremum norm, the operator D in Ex-
ample 2 is not bounded. If we let un = sinnx, we have ||un|| = 1, but
||D(un)|| = ||n cosnx|| → ∞ as n → ∞. That D is an unbounded operator
is the source of a lot of trouble, e,g. the rather unsatisfactory conditions
we had to enforce in our treatment of differentiation of series in Proposition
4.2.5. ♣

We shall end this section with a brief study of the connection between
boundedness and continuity. One way is easy:

Lemma 4.7.3 A bounded linear operator A is uniformly continuous.

Proof: If ||A|| = 0, A is constant zero and there is nothing to prove. If
||A|| 6= 0, we may for a given ε > 0, choose δ = ε

||A|| . For ||u − v||V < δ, we
then have

||A(u)−A(v)||W = ||A(u− v)||W ≤ ||A||||u− v||V < ||A|| · ε

||A||
< ε
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which shows that A is uniformly continuous. 2

The result in the opposite direction is perhaps more surprising:

Lemma 4.7.4 If a linear map A is continuous at 0, it is bounded.

Proof: We argue contrapositively; i.e. we assume that A is not bounded
and prove that A is not continuous at 0. Since A is not bounded, there
must for each n ∈ N exist a un such that ||Aun||W

||un||V = Mn ≥ n. If we put

vn = un
Mn||un||V , we see that vn → 0, while A(vn) does not converge to

A(0) = 0 since ||A(vn)||W = ||A( un
Mn||un||V )|| = ||A(un)||W

Mn||un||V = Mn||un||V
Mn||un||V = 1. By

Proposition 2.2.5, this means that A is not contiuous at 0. 2

Let us sum up the two lemmas in a theorem:

Theorem 4.7.5 For linear operators A : V → W between normed spaces,
the following are equivalent:

(i) A is bounded.

(ii) A is uniformly continuous.

(iii) A is continuous at 0.

Proof: It suffices to prove (i)=⇒(ii)=⇒(iii)=⇒(i). As (ii)=⇒(iii) is obvious,
we just have to observe that (i)=⇒(ii) by Lemma 4.7.3 and (iii)=⇒(i) by
Lemma 4.7.4. 2

Exercises for Section 4.7

1. Prove Formula (4.7.1).

2. Check that the operator A in Example 1 is a linear functional and that B is
a linear operator.

3. Check that the operator D in Example 2 is a linear operator.

4. Prove formula (4.7.2).

5. Define F : C([0, 1],R) → R by F (u) = u(0). Show that F is a linear func-
tional. Is F continuous?

6. Assume that (U, || · ||U ), (V, || · ||V ) and (W, || · ||W ) are three normed vector
spaces over R. Show that if A : U → V and B : V → W are bounded,
linear operators, then C = B ◦ A is a bounded, linear operator. Show that
||C|| ≤ ||A||||B|| and find an example where we have strict inequality (it is
possible to find simple, finite dimensional examples)

7. Assume that (V, || · ||V ) and (W, || · ||W ) are two normed vector spaces over R,
and let B(V,W ) be the set of all bounded, linear operators from V to W .
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a) Show that if A,B ∈ B(V,W ), then A+B ∈ B(V,W ).

b) Show that if A ∈ B(V,W ) and α ∈ R, then αA ∈ B(V,W ).

c) Show that B(V,W ) is a vector space.

d) Show that

||A|| = inf

{
||A(u)||W
||u||V

: u 6= 0

}
is a norm on B(V,W ).

8. Assume that (W, || · ||W ) is a normed vector space. Show that all linear
operators A : Rd →W are bounded.

9. In this problem we shall give another characterization of boundedness for
functionals. We assume that V is a normed vector space over K and let
A : V → K be a linear functional. The kernel of A is defined by

ker(A) = {v ∈ V : A(v) = 0} = A−1({0})

a) Show that if A is bounded, ker(A) is closed. (Hint: Recall Proposition
2.3.10)

We shall use the rest of the problem to prove the converse: If kerA is closed,
then A is bounded. As this is obvious when A is identically zero, we may
assume that there is an element a in ker(A)c. Let b = a

A(a) (since A(a) is a

number, this makes sense).

b) Show that A(b) = 1 and that there is a ball B(b; r) around b contained
in kerAc.

c) Show that if u ∈ B(0; r) (where r is as in b) above), then ||A(u)||W ≤ 1.
(Hint: Assume for contradiction that u ∈ B(0, r), but ||A(u)||W > 1,
and show that A(b− u

A(u) ) = 0 although b− u
A(u) ∈ B(b; r).)

d) Use a) and c) to prove:

Teorem: Assume that (V, || · ||V ) is a normed spaces over K. A linear
functional A : V → K is bounded if and only if ker(A) is closed.

10. Let (V, 〈·, ·〉) be a complete inner product space over R with an orthonormal
basis {en}.

a) Show that for each y ∈ V , the map B(x) = 〈x,y〉 is a bounded linear
functional.

b) Assume now that A : V → R is a bounded linear functional, and let
βn = A(en). Show that A(

∑n
i=1 βiei) =

∑n
i=1 β

2
i and conclude that(∑∞

i=1 β
2
i

) 1
2 ≤ ||A||.

c) Show that the series
∑∞
i=1 βiei converges in V .

d) Let y =
∑∞
i=1 βiei. Show that A(x) = 〈x,y〉 for all x ∈ V , and that

||A|| = ||y||V . (Note: This is a special case of the Riesz-Fréchet Repre-
sentation Theorem which says that all linear functionals A on a Hilbert
space H is of the form A(x) = 〈x,y〉 for some y ∈ H. The assumption
that V has an orthonormal basis is not needed for the theorem to be
true).
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11. Assume that (V, ||·||V ) and (W, ||·||W ) are two normed vector spaces over R, and
let {An} be a sequence of bounded, linear operators from V to W . Assume
that limn→∞An(v) exists for all v ∈ V , and define A(v) = limn→∞An(v).

a) Show that A is a linear operator.

b) Assume from now on that U is complete and show that there is a closed
ball B(a; r), r > 0, and a constant M ∈ R such that ||An(u)||W ≤ M
for all u ∈ B(a; r) and all n ∈ N. (Hint: Use Proposition 3.8.7).

c) Show that there is a number K ∈ R such that ||An(u)||W ≤ K||u||V for
all u ∈ V and all n ∈ N. (Hint: a + r

||u||U u ∈ B(a; r) for all nonzero

u ∈ V ).

d) Show that the linear operator A is bounded. (Note: This result is often
referred to as the Banach-Steinhaus Theorem.)


