UNIVERSITY OF OSLO

Faculty of Mathematics and Natural Sciences

Examination in	MAT2400 — Real analysis
Day of examination:	Thursday, June 2, 2015
Examination hours:	14:30-18:30
This problem set consists of 5 pages.	
Appendices:	None.
Permitted aids:	None

Please make sure that your copy of the problem set is complete before you attempt to answer anything.

Problem 1

Let X be the space of bounded continuous functions from \mathbb{R} to \mathbb{R} with the supremum metric

$$d_{\infty}(f,g) = \sup_{x \in \mathbb{R}} |f(x) - g(x)|.$$

1a

Show that d_{∞} defines a metric on X.

Possible answer: This is easy.

1b

Set $f_r(x) = f(x+r)$ for $r \in \mathbb{R}$. Show that if $f \in X$ and f is uniformly continuous, then $\lim_{r\to 0} d_{\infty}(f_r, f) = 0$.

Possible answer: Given $\varepsilon > 0$, we have to find a δ such that $|r| < \delta$ implies that $d_{\infty}(f, f_r) \leq \varepsilon$. Since f is uniformly continuous, we can find a δ such that $|f(x) - f(x+r)| \leq \varepsilon$ for all $|r| < \delta$ and for all $x \in \mathbb{R}$. Then

$$|r| \le \delta \Rightarrow |f(x+r) - f(x)| \le \varepsilon$$
 for all x.

Then this inequality holds also for the supremum.

1c

For $x \in \mathbb{R}$, let $g(x) = \cos(x^2 \pi)$. Show that g is not uniformly continuous. (Hint: As x grows, g will oscillate more and more rapidly.) **Possible answer:** For $n \in \mathbb{N}$ we have that

$$\left|g\left(\sqrt{n} + \frac{1}{\sqrt{n+1} + \sqrt{n}}\right) - g(\sqrt{n})\right| = 2.$$

Hence, for any $\delta > 0$, we can find n such that

$$p := \frac{1}{\sqrt{n+1} + \sqrt{n}} \le \delta,$$

and then

$$\sup_{x \in \mathbb{R}} \sup_{|r| \le \delta} |g(x) - g(x+r)| \ge \left| g(\sqrt{n} + p) - g(\sqrt{n}) \right| = 2.$$

Thus g is not uniformly continuous.

1d

Is it true that $\lim_{r\to 0} d_{\infty}(f_r, f) = 0$ for all $f \in X$?

Possible answer: No, not for the function in the previous question.

Problem 2

Let $f : \mathbb{R}^d \to \mathbb{R}$ be a measurable function, and set

$$\operatorname{sign}(u) = \begin{cases} 1 & u > 0, \\ 0 & u = 0, \\ -1 & u < 0. \end{cases}$$

Show that the composite function s(x) = sign(f(x)) is measurable.

Possible answer: The function s is measurable if $s^{-1}\{[-\infty, r)\}$ is measurable for all r. Now

$$s^{-1}\left\{ [-\infty, r] \right\} = \begin{cases} \mathbb{R}^d & r > 1, \\ \{x \mid f(x) < 0\} & -1 < r \le 1, \\ \emptyset & r \le -1. \end{cases}$$

The upper and lower sets are measurable, and the middle set is measurable since f is measurable.

Problem 3

Let X be a vector space with norm $\|\cdot\|$, and let $V \subseteq X$ be a linear subspace (i.e., V is also a vector space with norm $\|\cdot\|$), such that $\operatorname{int}(V) \neq \emptyset$. Show that V = X. ($\operatorname{int}(V)$ is the set of interior points in V)

(Continued on page 3.)

Possible answer: Let $u \in int(V)$, then there is an r > 0 such that $B_r(u) \subseteq V$. Let $z \in B_r(u)$, since V is a vector space, $z - u \in V$, but $z - u \in B_r(0)$. Hence $B_r(0) \subseteq V$. Let $x \in X$, then for $\rho \leq r, y \in B_r(0)$, where

$$y = \frac{\rho}{\|x\|} x.$$

Since V is a vector space $x = \frac{||x||}{\rho} y \in V$. Hence V = X.

Problem 4

Let C[0,1] denote the space of continuous functions from the interval [0,1] with values in \mathbb{R} . Let Lu be defined by

$$(Lu)(t) = \int_0^1 \frac{1}{1+t+s} f(u(s)) \, ds,$$

where $f : \mathbb{R} \to \mathbb{R}$ is a bounded continuous function.

4a

Show that L maps C[0, 1] into C[0, 1].

Possible answer: We have that

$$\begin{split} |(Lu)(\tau) - (Lu)(t)| &\leq \int_0^1 \Bigl| \frac{1}{1 + \tau + s} - \frac{1}{1 + t + s} \Bigr| \, M \, ds \\ &\leq M \, |\tau - t| \int_0^1 \Bigl| \frac{1}{(1 + s)^2} \Bigr| \, ds \\ &= \frac{1}{2} M \, |\tau - t| \,, \end{split}$$

where M is a bound on |f|. Thus Lu is continuous.

4b

Assume now that

$$|f(u) - f(v)| < \frac{1}{\ln(2)} |u - v|$$
 for all u and v .

Show that the equation Lu = u has a unique solution in C[0, 1].

Possible answer: We show that L is a contraction in the supremum norm.

$$\begin{split} |(Lu)(t) - (Lv)(t)| &< \int_0^1 \frac{1}{1+t+s} \frac{1}{\ln(2)} |u(s) - v(s)| \ ds \\ &< \frac{1}{\ln(2)} \sup_{t \in [0,1]} |u(t) - v(t)| \int_0^1 \frac{1}{1+t+s} \ ds \\ &= \frac{1}{\ln(2)} \sup_{t \in [0,1]} |u(t) - v(t)| \ln\left(\frac{2+t}{1+t}\right) \\ &\leq \sup_{t \in [0,1]} |u(t) - v(t)| \,, \end{split}$$

since $t \ge 0$. Therefore L is a contraction, and Lu = u has a unique solution.

Problem 5

Let the function $f: [-\pi, \pi] \to \mathbb{R}$ be defined by

$$f(x) = \begin{cases} \frac{\sin(x)}{x}, & x \neq 0, \\ 1 & x = 0, \end{cases}$$

and for x outside $[-\pi,\pi] f$ is the periodic extension.

5a

Show that

$$f(x) = \sum_{n = -\infty}^{\infty} c_n e^{inx},$$

where

$$c_n = \frac{1}{2\pi} \int_{(n-1)\pi}^{(n+1)\pi} \frac{\sin(x)}{x} \, dx.$$

(Hint: write $\sin(x) = (e^{ix} - e^{-ix})/(2i)$ and use the change of variables z = (n+1)x and z = (n-1)x.).

Possible answer: The periodic extension is continuous, hence the Fourier series converges pointwise. Therefore we have the equality. To compute the coefficients,

$$c_n = \frac{1}{2\pi} \int_{-\pi}^{\pi} \frac{\sin(x)}{x} e^{-inx} dx = \frac{1}{2\pi} \int_{-\pi}^{\pi} \frac{e^{ix(1-n)} - e^{-ix(1+n)}}{2ix} dx$$
$$= \frac{1}{2\pi} \int_{-\pi}^{\pi} \frac{1}{2ix} e^{-ix(n-1)} dx - \frac{1}{2\pi} \int_{-\pi}^{\pi} \frac{1}{2ix} e^{-ix(n+1)} dx.$$

Change variables z = x(n-1) in the first integral, and z = x(n+1) in the

(Continued on page 5.)

second to get

$$c_n = \frac{1}{2\pi} \left(\int_{-(n-1)\pi}^{(n-1)\pi} \frac{1}{2iz} e^{-iz} dz - \int_{-(n+1)\pi}^{(n+1)\pi} \frac{1}{2iz} e^{-iz} dz \right)$$

$$= \frac{1}{2\pi} \left(\int_{-(n+1)\pi}^{-(n-1)\pi} \frac{1}{2iz} e^{-iz} dz - \int_{(n-1)\pi}^{(n+1)\pi} \frac{1}{2iz} e^{-iz} dz \right) \ (z \mapsto -z \text{ in first integral})$$

$$= \frac{1}{2\pi} \left(\int_{(n-1)\pi}^{(n+1)\pi} \frac{1}{2iz} e^{iz} dz - \int_{(n-1)\pi}^{(n+1)\pi} \frac{1}{2iz} e^{-iz} dz \right)$$

$$= \frac{1}{2\pi} \int_{(n-1)\pi}^{(n+1)\pi} \frac{\sin(z)}{z} dz.$$

5b

Use this to compute the integral

$$\int_{-\infty}^{\infty} \frac{\sin(x)}{x} \, dx.$$

Possible answer: We know that the series converges for x = 0, hence

$$1 = \frac{1}{2\pi} \sum_{n=-\infty}^{\infty} \int_{-(n-1)\pi}^{(n+1)\pi} \frac{\sin(z)}{z} dz$$
$$= \frac{1}{2\pi} 2 \int_{-\infty}^{\infty} \frac{\sin(x)}{x} dx.$$

Therefore the integral equals π .

THE END