UNIVERSITY OF OSLO

Faculty of Mathematics and Natural Sciences

Examination in MAT2400 - Real analysis
Day of examination: Thursday, June 2, 2015
Examination hours: 14:30-18:30
This problem set consists of 5 pages.
Appendices: None.
Permitted aids: None

Please make sure that your copy of the problem set is complete before you attempt to answer anything.

Problem 1

Let X be the space of bounded continuous functions from \mathbb{R} to \mathbb{R} with the supremum metric

$$
d_{\infty}(f, g)=\sup _{x \in \mathbb{R}}|f(x)-g(x)| .
$$

$1 \mathbf{a}$

Show that d_{∞} defines a metric on X.

Possible answer: This is easy.

1b

Set $f_{r}(x)=f(x+r)$ for $r \in \mathbb{R}$. Show that if $f \in X$ and f is uniformly continuous, then $\lim _{r \rightarrow 0} d_{\infty}\left(f_{r}, f\right)=0$.

Possible answer: Given $\varepsilon>0$, we have to find a δ such that $|r|<\delta$ implies that $d_{\infty}\left(f, f_{r}\right) \leq \varepsilon$. Since f is uniformly continuous, we can find a δ such that $|f(x)-f(x+r)| \leq \varepsilon$ for all $|r|<\delta$ and for all $x \in \mathbb{R}$. Then

$$
|r| \leq \delta \Rightarrow|f(x+r)-f(x)| \leq \varepsilon \text { for all } x
$$

Then this inequality holds also for the supremum.

1c

For $x \in \mathbb{R}$, let $g(x)=\cos \left(x^{2} \pi\right)$. Show that g is not uniformly continuous. (Hint: As x grows, g will oscillate more and more rapidly.)

Possible answer: For $n \in \mathbb{N}$ we have that

$$
\left|g\left(\sqrt{n}+\frac{1}{\sqrt{n+1}+\sqrt{n}}\right)-g(\sqrt{n})\right|=2
$$

Hence, for any $\delta>0$, we can find n such that

$$
p:=\frac{1}{\sqrt{n+1}+\sqrt{n}} \leq \delta
$$

and then

$$
\sup _{x \in \mathbb{R}} \sup _{r \mid \leq \delta}|g(x)-g(x+r)| \geq|g(\sqrt{n}+p)-g(\sqrt{n})|=2
$$

Thus g is not uniformly continuous.

1d

Is it true that $\lim _{r \rightarrow 0} d_{\infty}\left(f_{r}, f\right)=0$ for all $f \in X$?

Possible answer: No, not for the function in the previous question.

Problem 2

Let $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ be a measurable function, and set

$$
\operatorname{sign}(u)= \begin{cases}1 & u>0 \\ 0 & u=0 \\ -1 & u<0\end{cases}
$$

Show that the composite function $s(x)=\operatorname{sign}(f(x))$ is measurable.

Possible answer: The function s is measurable if $s^{-1}\{[-\infty, r)\}$ is measurable for all r. Now

$$
s^{-1}\{[-\infty, r)\}= \begin{cases}\mathbb{R}^{d} & r>1 \\ \{x \mid f(x)<0\} & -1<r \leq 1 \\ \emptyset & r \leq-1\end{cases}
$$

The upper and lower sets are measurable, and the middle set is measurable since f is measurable.

Problem 3

Let X be a vector space with norm $\|\cdot\|$, and let $V \subseteq X$ be a linear subspace (i.e., V is also a vector space with norm $\|\cdot\|$), such that $\operatorname{int}(V) \neq \emptyset$. Show that $V=X .(\operatorname{int}(V)$ is the set of interior points in $V)$

Possible answer: Let $u \in \operatorname{int}(V)$, then there is an $r>0$ such that $B_{r}(u) \subseteq V$. Let $z \in B_{r}(u)$, since V is a vector space, $z-u \in V$, but $z-u \in B_{r}(0)$. Hence $B_{r}(0) \subseteq V$. Let $x \in X$, then for $\rho \leq r, y \in B_{r}(0)$, where

$$
y=\frac{\rho}{\|x\|} x
$$

Since V is a vector space $x=\frac{\|x\|}{\rho} y \in V$. Hence $V=X$.

Problem 4

Let $C[0,1]$ denote the space of continuous functions from the interval $[0,1]$ with values in \mathbb{R}. Let $L u$ be defined by

$$
(L u)(t)=\int_{0}^{1} \frac{1}{1+t+s} f(u(s)) d s
$$

where $f: \mathbb{R} \rightarrow \mathbb{R}$ is a bounded continuous function.

4a
Show that L maps $C[0,1]$ into $C[0,1]$.

Possible answer: We have that

$$
\begin{aligned}
|(L u)(\tau)-(L u)(t)| & \leq \int_{0}^{1}\left|\frac{1}{1+\tau+s}-\frac{1}{1+t+s}\right| M d s \\
& \leq M|\tau-t| \int_{0}^{1}\left|\frac{1}{(1+s)^{2}}\right| d s \\
& =\frac{1}{2} M|\tau-t|
\end{aligned}
$$

where M is a bound on $|f|$. Thus $L u$ is continuous.

4b

Assume now that

$$
|f(u)-f(v)|<\frac{1}{\ln (2)}|u-v| \quad \text { for all } u \text { and } v
$$

Show that the equation $L u=u$ has a unique solution in $C[0,1]$.

Possible answer: We show that L is a contraction in the supremum norm.

$$
\begin{aligned}
|(L u)(t)-(L v)(t)| & <\int_{0}^{1} \frac{1}{1+t+s} \frac{1}{\ln (2)}|u(s)-v(s)| d s \\
& <\frac{1}{\ln (2)} \sup _{t \in[0,1]}|u(t)-v(t)| \int_{0}^{1} \frac{1}{1+t+s} d s \\
& =\frac{1}{\ln (2)} \sup _{t \in[0,1]}|u(t)-v(t)| \ln \left(\frac{2+t}{1+t}\right) \\
& \leq \sup _{t \in[0,1]}|u(t)-v(t)|
\end{aligned}
$$

since $t \geq 0$. Therefore L is a contraction, and $L u=u$ has a unique solution.

Problem 5

Let the function $f:[-\pi, \pi] \rightarrow \mathbb{R}$ be defined by

$$
f(x)= \begin{cases}\frac{\sin (x)}{x}, & x \neq 0 \\ 1 & x=0\end{cases}
$$

and for x outside $[-\pi, \pi] f$ is the periodic extension.

$5 a$

Show that

$$
f(x)=\sum_{n=-\infty}^{\infty} c_{n} e^{i n x}
$$

where

$$
c_{n}=\frac{1}{2 \pi} \int_{(n-1) \pi}^{(n+1) \pi} \frac{\sin (x)}{x} d x
$$

(Hint: write $\sin (x)=\left(e^{i x}-e^{-i x}\right) /(2 i)$ and use the change of variables $z=(n+1) x$ and $z=(n-1) x$.$) .$

Possible answer: The periodic extension is continuous, hence the Fourier series converges pointwise. Therefore we have the equality.
To compute the coefficients,

$$
\begin{aligned}
c_{n} & =\frac{1}{2 \pi} \int_{-\pi}^{\pi} \frac{\sin (x)}{x} e^{-i n x} d x=\frac{1}{2 \pi} \int_{-\pi}^{\pi} \frac{e^{i x(1-n)}-e^{-i x(1+n)}}{2 i x} d x \\
& =\frac{1}{2 \pi} \int_{-\pi}^{\pi} \frac{1}{2 i x} e^{-i x(n-1)} d x-\frac{1}{2 \pi} \int_{-\pi}^{\pi} \frac{1}{2 i x} e^{-i x(n+1)} d x
\end{aligned}
$$

Change variables $z=x(n-1)$ in the first integral, and $z=x(n+1)$ in the
second to get

$$
\begin{aligned}
c_{n} & =\frac{1}{2 \pi}\left(\int_{-(n-1) \pi}^{(n-1) \pi} \frac{1}{2 i z} e^{-i z} d z-\int_{-(n+1) \pi}^{(n+1) \pi} \frac{1}{2 i z} e^{-i z} d z\right) \\
& =\frac{1}{2 \pi}\left(\int_{-(n+1) \pi}^{-(n-1) \pi} \frac{1}{2 i z} e^{-i z} d z-\int_{(n-1) \pi}^{(n+1) \pi} \frac{1}{2 i z} e^{-i z} d z\right)(z \mapsto-z \text { in first integral) } \\
& =\frac{1}{2 \pi}\left(\int_{(n-1) \pi}^{(n+1) \pi} \frac{1}{2 i z} e^{i z} d z-\int_{(n-1) \pi}^{(n+1) \pi} \frac{1}{2 i z} e^{-i z} d z\right) \\
& =\frac{1}{2 \pi} \int_{(n-1) \pi}^{(n+1) \pi} \frac{\sin (z)}{z} d z .
\end{aligned}
$$

5b

Use this to compute the integral

$$
\int_{-\infty}^{\infty} \frac{\sin (x)}{x} d x
$$

Possible answer: We know that the series converges for $x=0$, hence

$$
\begin{aligned}
1 & =\frac{1}{2 \pi} \sum_{n=-\infty}^{\infty} \int_{-(n-1) \pi}^{(n+1) \pi} \frac{\sin (z)}{z} d z \\
& =\frac{1}{2 \pi} 2 \int_{-\infty}^{\infty} \frac{\sin (x)}{x} d x
\end{aligned}
$$

Therefore the integral equals π.

