UNIVERSITY OF OSLO

Faculty of Mathematics and Natural Sciences

Examination in MAT2400 - Real analysis
Day of examination: Thursday, August 13, 2015
Examination hours: 14:30-18:30
This problem set consists of 6 pages.
Appendices: None.
Permitted aids: None

Please make sure that your copy of the problem set is complete before you attempt to answer anything.

Problem 1

1a
Let $\omega_{n}: \mathbb{R} \rightarrow \mathbb{R}$ be defined by

$$
\omega_{n}(x)= \begin{cases}n(1-n|x|) & |x| \leq 1 / n \\ 0 & \text { otherwise }\end{cases}
$$

for $n=1,2,3, \ldots$. Find $\lim _{n \rightarrow \infty} \omega_{n}(x)$. Does $\left\{\omega_{n}\right\}$ converge in the $L^{1}(\mathbb{R})$ norm $\left(\|f\|_{1}=\int|f| d \mu\right)$?

Possible answer:

$$
\lim _{n \rightarrow \infty} \omega_{n}(x)= \begin{cases}0 & x \neq 0 \\ \infty & x=0\end{cases}
$$

We have that $\int\left|\omega_{n}\right| d \mu=1$, therefore ω_{n} does not converge in L^{1}.

1b
Let $g: \mathbb{R} \rightarrow \mathbb{R}$ be an integrable function such that $\sup _{x \in \mathbb{R}}|g(x)| \leq K$, and $\int|g| d \mu=L<\infty$. Define

$$
g_{n}(x)=\int g(y) \omega_{n}(x-y) d \mu(y)
$$

Show that $\sup _{x \in \mathbb{R}}\left|g_{n}(x)\right| \leq K$, and that g_{n} is continuous for each (finite) n.

Possible answer: We have that

$$
\begin{aligned}
\left|g_{n}(x)\right| & \leq \int|g(y)| \omega_{n}(x-y) d \mu(y) \\
& \leq \sup _{z \in \mathbb{R}^{d}}|g(z)| \int \omega_{n}(x-y) d \mu(y)=K,
\end{aligned}
$$

for all x. Hence $\sup _{x \in \mathbb{R}}\left|g_{n}(x)\right| \leq 1$. To show continuity, we observe that ω_{n} is (Lipschitz) continuous,

$$
\left|\omega_{n}(a)-\omega_{n}(b)\right| \leq \frac{1}{n^{2}}|a-b| .
$$

Then

$$
\begin{aligned}
\left|g_{n}(x)-g_{n}(z)\right| & \leq \int|g(y)|\left|\omega_{n}(x-y)-\omega_{n}(z-y)\right| d \mu(y) \\
& \leq \frac{|x-z|}{n^{2}} \int|g| d \mu=\frac{L}{n^{2}}|x-z| .
\end{aligned}
$$

1c

Assume now that g is continuous. Show that $g_{n}(x) \rightarrow g(x)$ for each x (pointwise convergence) and that $g_{n} \rightarrow g$ in $L^{1}(\mathbb{R})$ as $n \rightarrow \infty$. (This means that $\left\|g_{n}-g\right\|_{1}=\int\left|g_{n}-g\right| d \mu \rightarrow 0$ as $n \rightarrow \infty$.)

Possible answer: We have that

$$
\left|g(x)-g_{n}(x)\right| \leq \int \omega_{n}(x-y)|g(x)-g(y)| d \mu \leq \sup _{y \in B(x, 1 / n)}|g(x)-g(y)| .
$$

Therefore

$$
\inf _{y \in B(x, 1 / n)} g(y) \leq g_{n}(x) \leq \sup _{y \in B(x, 1 / n)} g(y) .
$$

Since g is continuous both of these will converge to $g(x)$ as $n \rightarrow \infty$.
Set $f_{n}=\left|g-g_{n}\right|$, then $f_{n} \rightarrow 0$, and

$$
\int f_{n} d \mu \leq \int|g| d \mu+\int\left|g_{n}\right| d \mu \leq 2 \int g d \mu
$$

since

$$
\int\left|g_{n}\right| d \mu \leq \iint \omega_{n}(x-y)|g(y)| d \mu(y) d \mu(x)=\int|g(y)| d \mu(y)
$$

because $\int \omega_{n}(x-y) d \mu(x)=1$. Therefore we can use the dominated convergence theorem to conclude that

$$
\int\left|g-g_{n}\right| d \mu \rightarrow 0
$$

Problem 2

For $n \in \mathbb{N}$, define the function

$$
\varphi_{n}(x)= \begin{cases}\left(1-e^{n}|x|\right) & |x| \leq e^{-n} \\ 0 & \text { otherwise }\end{cases}
$$

Let $R_{n}=\left\{r_{n, 1}, r_{n, 2}, \ldots, r_{n, K}\right\}$ be the set of rational numbers in $(0,1)$ with denominator less than or equal to n. Note that K depends on n. Define the functions

$$
g_{n}(x)=\sum_{k=1}^{K} \varphi_{n}\left(x-r_{n, k}\right)
$$

2a
Sketch the graph of g_{3}.

Possible answer: The rational numbers in $(0,1)$ with denominator less than 3 are $\frac{1}{2}, \frac{1}{3}$ and $\frac{2}{3}$. Therefore $R_{3}=\left\{\frac{1}{3}, \frac{1}{2}, \frac{2}{3}\right\}$. Furthermore $e^{-3} \approx 0.05<$ $\frac{1}{2}\left(\frac{1}{2}-\frac{1}{3}\right)=\frac{1}{12}$. The graph looks like this

2b

Show that if $r \in \mathbb{Q} \cap(0,1)$ then $g_{n}(r) \rightarrow 1$.

Possible answer: If $(0,1) \ni r=p / q$ with $p \leq q$, then $r \in R_{q} \subseteq R_{n}$ for $n \geq q$. Also, $\varphi_{N}\left(r_{q, k}-r_{q, j}\right)=0$ for $j \neq k$ since

$$
\left|r_{q, j}-r_{q, k}\right| \geq \frac{1}{q-1}-\frac{1}{q}>e^{-q}
$$

Therefore $g_{q}\left(r_{q, k}\right)=1$, and by the same argument $g_{n}(r)=1$ for all $n \geq q$. If $r \in \mathbb{Q} \cap(0,1)$ then $r \in R_{n}$ for all $n \geq N$ for some N. Thus $\lim _{n \rightarrow \infty} g_{n}(r)=1$.hag

2c
Show that

$$
\int_{0}^{1}\left|g_{n}(x)\right| d x \rightarrow 0
$$

as $n \rightarrow \infty$.

Possible answer: Regarding the integral

$$
\int g_{n} d x \leq \sum_{k=1}^{K} \int \varphi_{n}\left(x-r_{n, k}\right) d x \leq K 2 e^{-n}
$$

Now we must estimate K, i.e., how many rational numbers there are in $(0,1)$ with denominator less than n. We can overestimate this by $1+2+\cdots+n=$ $n(n+1) / 2$. Then

$$
\int_{0}^{1}\left|g_{n}(x)\right| d x \leq n(n+1) e^{-n} \rightarrow 0, \text { as } n \rightarrow \infty
$$

Problem 3

Let \mathbb{R}^{*} denote the extended real numbers, i.e., $\mathbb{R}^{*}=\{-\infty\} \cup \mathbb{R} \cup\{\infty\}$, and define $f: \mathbb{R}^{*} \rightarrow[-1,1]$ by

$$
f(x)= \begin{cases}-1 & x=-\infty \\ \frac{x}{1+|x|} & x \in \mathbb{R} \\ 1 & x=\infty\end{cases}
$$

3a
Show that f is $1-1$ and onto.

Possible answer: For $x \in \mathbb{R}, f$ is strictly increasing and $f(\mathbb{R})=(-1,1)$, furthermore $f^{-1}(\pm 1)= \pm \infty$. Therefore f is a bijection.

3b

For x and y in \mathbb{R}^{*}, define $d(x, y)=|f(x)-f(y)|$. Show that d is a distance on \mathbb{R}^{*}.

Possible answer: Clearly $d \geq 0, d(x, y)=d(y, x)$ and $d(x, y)=0$ if and only if $x=y$ since f is increasing. We must show the triangle inequality. By symmetry, we can assume that $x<y\left(x\right.$ and y in $\left.\mathbb{R}^{*}\right)$. If $x \leq z \leq y$ then

$$
d(x, y)=f(y)-f(x)=f(y)-f(z)+f(z)-f(x)=d(x, z)+d(z, y)
$$

Then assume that $x \leq y \leq z$, then

$$
\begin{aligned}
d(x, y) & =f(y)-f(x)=f(z)-f(x)+f(y)-f(z) \\
& =d(x, z)-d(y, z) \leq d(x, z)+d(z, y)
\end{aligned}
$$

since f is increasing. The case where $z \leq x \leq y$ is similar.

Problem 4

Let X be a compact metric space and let $\left\{f_{n}\right\}_{n=0}^{\infty}$ be a sequence of continuous functions $f_{n}: X \rightarrow \mathbb{R}$ such that

$$
0 \leq f_{0} \leq f_{1} \leq f_{2} \leq \cdots \leq f_{n} \leq f_{n+1} \leq \cdots
$$

Assume that $f(x)=\lim _{n \rightarrow \infty} f_{n}(x)$ is continuous and $f(x)<\infty$ for all $x \in X$.

$4 \mathbf{a}$

Show that f_{n} converges uniformly to f.

Possible answer: Since both f_{n} and f are continuous, so is $\left|f-f_{n}\right|$. Therefore, given an $\varepsilon>0$, the set

$$
U_{n}=\left\{x \in X| | f_{n}(x)-f(x) \mid<\varepsilon\right\}
$$

is open. Since f_{n} converges to f for all $x \in X, X=\bigcup_{n=0}^{\infty} U_{n}$, but since X is compact a finite union will cover X, i.e., $X=\bigcup_{n=0}^{N(\varepsilon)} U_{n}$. Since $f_{n} \leq f_{n+1} \leq f$, $U_{n} \subseteq U_{n+1}$. Hence $X=\bigcup_{n=0}^{N(\varepsilon)} U_{n}=U_{N(\varepsilon)}$. Therefore, for $n \geq N(\varepsilon)$, $\left|f(x)-f_{n}(x)\right| \leq \varepsilon$ for all $x \in X$. This is uniform convergence.

4b

Define a sequence of polynomials on $[0,1]$ as follows: $p_{0}(x)=0$,

$$
p_{n+1}(x)=p_{n}(x)+\frac{1}{2}\left(x-p_{n}^{2}(x)\right), \quad n \geq 0
$$

Show that $p_{n}(x)$ converges uniformly to $f(x)=\sqrt{x}$.
Possible answer: To use the previous question, we must show that $p_{n} \leq$ p_{n+1}. Assume inductively that $0 \leq p_{n}(x) \leq \sqrt{x} \leq 1$. This holds for $n=0$. Assume that it holds for n, then $x \geq p_{n}^{2}$ and we get

$$
p_{n+1}(x)=p_{n}(x)+\frac{1}{2}\left(x-p_{n}(x)^{2}\right) \geq p_{n}(x) \geq 0
$$

and

$$
\begin{aligned}
p_{n+1}(x) & =p_{n}(x)+\frac{1}{2}\left(\sqrt{x}+p_{n}(x)\right)\left(\sqrt{x}-p_{n}(x)\right) \\
& \leq p_{n}(x)+\frac{1}{2}(1+1)\left(\sqrt{x}-p_{n}(x)\right)=\sqrt{x} \leq 1
\end{aligned}
$$

Set $f(x)=\lim _{n} p_{n}(x)$ (which exists since $p_{n} \leq p_{n+1} \leq 1$) then $f=$ $f-\frac{1}{2}\left(x-f^{2}\right)$ which means that $f(x)=\sqrt{x}$. This is a continuous function on $[0,1]$, and then the previous question implies that the convergence is uniform.

