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Problem 1

1a

Let ωn : R→ R be defined by

ωn(x) =

{
n(1− n |x|) |x| ≤ 1/n,

0 otherwise,

for n = 1, 2, 3, . . .. Find limn→∞ ωn(x). Does {ωn} converge in the L1(R)
norm (‖f‖1 =

∫
|f | dµ)?

Possible answer:

lim
n→∞

ωn(x) =

{
0 x 6= 0,

∞ x = 0.

We have that
∫
|ωn| dµ = 1, therefore ωn does not converge in L1.

1b

Let g : R → R be an integrable function such that supx∈R |g(x)| ≤ K, and∫
|g| dµ = L <∞. Define

gn(x) =

∫
g(y)ωn(x− y) dµ(y).

Show that supx∈R |gn(x)| ≤ K, and that gn is continuous for each (finite) n.

(Continued on page 2.)
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Possible answer: We have that

|gn(x)| ≤
∫
|g(y)|ωn(x− y) dµ(y)

≤ sup
z∈Rd

|g(z)|
∫
ωn(x− y) dµ(y) = K,

for all x. Hence supx∈R |gn(x)| ≤ 1. To show continuity, we observe that ωn

is (Lipschitz) continuous,

|ωn(a)− ωn(b)| ≤
1

n2
|a− b| .

Then

|gn(x)− gn(z)| ≤
∫
|g(y)| |ωn(x− y)− ωn(z − y)| dµ(y)

≤ |x− z|
n2

∫
|g| dµ =

L

n2
|x− z| .

1c

Assume now that g is continuous. Show that gn(x) → g(x) for each x
(pointwise convergence) and that gn → g in L1(R) as n → ∞. (This means
that ‖gn − g‖1 =

∫
|gn − g| dµ→ 0 as n→∞.)

Possible answer: We have that

|g(x)− gn(x)| ≤
∫
ωn(x− y) |g(x)− g(y)| dµ ≤ sup

y∈B(x,1/n)
|g(x)− g(y)| .

Therefore
inf

y∈B(x,1/n)
g(y) ≤ gn(x) ≤ sup

y∈B(x,1/n)
g(y).

Since g is continuous both of these will converge to g(x) as n→∞.
Set fn = |g − gn|, then fn → 0, and∫

fn dµ ≤
∫
|g| dµ+

∫
|gn| dµ ≤ 2

∫
g dµ

since ∫
|gn| dµ ≤

∫ ∫
ωn(x− y) |g(y)| dµ(y) dµ(x) =

∫
|g(y)| dµ(y),

because
∫
ωn(x − y) dµ(x) = 1. Therefore we can use the dominated

convergence theorem to conclude that∫
|g − gn| dµ→ 0.

(Continued on page 3.)
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Problem 2

For n ∈ N, define the function

ϕn(x) =

{
(1− en |x|) |x| ≤ e−n,
0 otherwise.

Let Rn = {rn,1, rn,2, . . . , rn,K} be the set of rational numbers in (0, 1) with
denominator less than or equal to n. Note that K depends on n. Define the
functions

gn(x) =
K∑
k=1

ϕn(x− rn,k).

2a

Sketch the graph of g3.

Possible answer: The rational numbers in (0, 1) with denominator less
than 3 are 1

2 ,
1
3 and 2

3 . Therefore R3 =
{
1
3 ,

1
2 ,

2
3

}
. Furthermore e−3 ≈ 0.05 <

1
2(

1
2 −

1
3) =

1
12 . The graph looks like this

x
1/3 1/2 2/3 1/3 1/2

g3

0

1

2b

Show that if r ∈ Q ∩ (0, 1) then gn(r)→ 1.

Possible answer: If (0, 1) 3 r = p/q with p ≤ q, then r ∈ Rq ⊆ Rn for
n ≥ q. Also, ϕN (rq,k − rq,j) = 0 for j 6= k since

|rq,j − rq,k| ≥
1

q − 1
− 1

q
> e−q.

Therefore gq(rq,k) = 1, and by the same argument gn(r) = 1 for all
n ≥ q. If r ∈ Q ∩ (0, 1) then r ∈ Rn for all n ≥ N for some N . Thus
limn→∞ gn(r) = 1.hag

(Continued on page 4.)
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2c

Show that ∫ 1

0
|gn(x)| dx→ 0,

as n→∞.

Possible answer: Regarding the integral∫
gn dx ≤

K∑
k=1

∫
ϕn(x− rn,k) dx ≤ K2e−n.

Now we must estimate K, i.e., how many rational numbers there are in (0, 1)
with denominator less than n. We can overestimate this by 1+2+ · · ·+n =
n(n+ 1)/2. Then∫ 1

0
|gn(x)| dx ≤ n(n+ 1)e−n → 0, as n→∞.

Problem 3

Let R∗ denote the extended real numbers, i.e., R∗ = {−∞} ∪R ∪ {∞}, and
define f : R∗ → [−1, 1] by

f(x) =


−1 x = −∞,

x
1+|x| x ∈ R,
1 x =∞.

3a

Show that f is 1− 1 and onto.

Possible answer: For x ∈ R, f is strictly increasing and f(R) = (−1, 1),
furthermore f−1(±1) = ±∞. Therefore f is a bijection.

3b

For x and y in R∗, define d(x, y) = |f(x)− f(y)|. Show that d is a distance
on R∗.

Possible answer: Clearly d ≥ 0, d(x, y) = d(y, x) and d(x, y) = 0 if and
only if x = y since f is increasing. We must show the triangle inequality. By
symmetry, we can assume that x < y (x and y in R∗). If x ≤ z ≤ y then

d(x, y) = f(y)− f(x) = f(y)− f(z) + f(z)− f(x) = d(x, z) + d(z, y).

(Continued on page 5.)
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Then assume that x ≤ y ≤ z, then

d(x, y) = f(y)− f(x) = f(z)− f(x) + f(y)− f(z)
= d(x, z)− d(y, z) ≤ d(x, z) + d(z, y),

since f is increasing. The case where z ≤ x ≤ y is similar.

Problem 4

LetX be a compact metric space and let {fn}∞n=0 be a sequence of continuous
functions fn : X → R such that

0 ≤ f0 ≤ f1 ≤ f2 ≤ · · · ≤ fn ≤ fn+1 ≤ · · · .

Assume that f(x) = limn→∞ fn(x) is continuous and f(x) <∞ for all x ∈ X.

4a

Show that fn converges uniformly to f .

Possible answer: Since both fn and f are continuous, so is |f − fn|.
Therefore, given an ε > 0, the set

Un = {x ∈ X | |fn(x)− f(x)| < ε}

is open. Since fn converges to f for all x ∈ X, X =
⋃∞

n=0 Un, but since X is
compact a finite union will coverX, i.e.,X =

⋃N(ε)
n=0 Un. Since fn ≤ fn+1 ≤ f ,

Un ⊆ Un+1. Hence X =
⋃N(ε)

n=0 Un = UN(ε). Therefore, for n ≥ N(ε),
|f(x)− fn(x)| ≤ ε for all x ∈ X. This is uniform convergence.

4b

Define a sequence of polynomials on [0, 1] as follows: p0(x) = 0,

pn+1(x) = pn(x) +
1

2

(
x− p2n(x)

)
, n ≥ 0.

Show that pn(x) converges uniformly to f(x) =
√
x.

Possible answer: To use the previous question, we must show that pn ≤
pn+1. Assume inductively that 0 ≤ pn(x) ≤

√
x ≤ 1. This holds for n = 0.

Assume that it holds for n, then x ≥ p2n and we get

pn+1(x) = pn(x) +
1

2

(
x− pn(x)2

)
≥ pn(x) ≥ 0,

and

pn+1(x) = pn(x) +
1

2

(√
x+ pn(x)

) (√
x− pn(x)

)
≤ pn(x) +

1

2
(1 + 1)

(√
x− pn(x)

)
=
√
x ≤ 1.

(Continued on page 6.)
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Set f(x) = limn pn(x) (which exists since pn ≤ pn+1 ≤ 1) then f =
f − 1

2(x − f
2) which means that f(x) =

√
x. This is a continuous function

on [0, 1], and then the previous question implies that the convergence is
uniform.

THE END


