UNIVERSITY OF OSLO

Faculty of Mathematics and Natural Sciences

Examination in MAT2400 - Real analysis
Day of examination: Thursday, June 2, 2015
Examination hours: 14:30-18:30
This problem set consists of 3 pages.
Appendices: None.
Permitted aids: None

Please make sure that your copy of the problem set is complete before you attempt to answer anything.

Problem 1

Let X be the space of bounded continuous functions from \mathbb{R} to \mathbb{R} with the supremum metric

$$
d_{\infty}(f, g)=\sup _{x \in \mathbb{R}}|f(x)-g(x)| .
$$

1a
Show that d_{∞} defines a metric on X.
1b
Set $f_{r}(x)=f(x+r)$ for $r \in \mathbb{R}$. Show that if $f \in X$ and f is uniformly continuous, then $\lim _{r \rightarrow 0} d_{\infty}\left(f_{r}, f\right)=0$.

1c
For $x \in \mathbb{R}$, let $g(x)=\cos \left(x^{2} \pi\right)$. Show that g is not uniformly continuous. (Hint: As x grows, g will oscillate more and more rapidly.)

1d

Is it true that $\lim _{r \rightarrow 0} d_{\infty}\left(f_{r}, f\right)=0$ for all $f \in X$?

Problem 2

Let $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ be a measurable function, and set

$$
\operatorname{sign}(u)= \begin{cases}1 & u>0 \\ 0 & u=0 \\ -1 & u<0\end{cases}
$$

Show that the composite function $s(x)=\operatorname{sign}(f(x))$ is measurable.

Problem 3

Let X be a vector space with norm $\|\cdot\|$, and let $V \subseteq X$ be a linear subspace (i.e., V is also a vector space with norm $\|\cdot\|$), such that $\operatorname{int}(V) \neq \emptyset$. Show that $V=X .(\operatorname{int}(V)$ is the set of interior points in $V)$

Problem 4

Let $C[0,1]$ denote the space of continuous functions from the interval $[0,1]$ with values in \mathbb{R}. Let $L u$ be defined by

$$
(L u)(t)=\int_{0}^{1} \frac{1}{1+t+s} f(u(s)) d s
$$

where $f: \mathbb{R} \rightarrow \mathbb{R}$ is a bounded continuous function.

4a

Show that L maps $C[0,1]$ into $C[0,1]$.

4b

Assume now that

$$
|f(u)-f(v)|<\frac{1}{\ln (2)}|u-v| \quad \text { for all } u \text { and } v
$$

Show that the equation $L u=u$ has a unique solution in $C[0,1]$.

Problem 5

Let the function $f:[-\pi, \pi] \rightarrow \mathbb{R}$ be defined by

$$
f(x)= \begin{cases}\frac{\sin (x)}{x}, & x \neq 0 \\ 1 & x=0\end{cases}
$$

and for x outside $[-\pi, \pi] f$ is the periodic extension.

$5 a$

Show that

$$
f(x)=\sum_{n=-\infty}^{\infty} c_{n} e^{i n x}
$$

where

$$
c_{n}=\frac{1}{2 \pi} \int_{(n-1) \pi}^{(n+1) \pi} \frac{\sin (x)}{x} d x
$$

(Hint: write $\sin (x)=\left(e^{i x}-e^{-i x}\right) /(2 i)$ and use the change of variables $z=(n+1) x$ and $z=(n-1) x$.$) .$

5b
Use this to compute the integral

$$
\int_{-\infty}^{\infty} \frac{\sin (x)}{x} d x .
$$

THE END

