UNIVERSITY OF OSLO

Faculty of Mathematics and Natural Sciences

Examination in: MAT2400 - Real analysis.
Day of examination: Thursday, August 14th, 2014.
Examination hours: 14.30-18.30
This problem set consists of 2 pages.

Appendices:
Permitted aids: None.

Please make sure that your copy of the problem set is complete before you attempt to answer anything.

All items (1a, 1b, 1c, 2a, etc.) count 10 points.

Problem 1

Define a function $d: \mathbb{R}^{2} \times \mathbb{R}^{2} \rightarrow \mathbb{R}$ by

$$
d(\mathbf{x}, \mathbf{y})=\max \left\{\left|y_{1}-x_{1}\right|,\left|y_{2}-x_{2}\right|\right\}
$$

where $\mathbf{x}=\left(x_{1}, x_{2}\right)$ and $\mathbf{y}=\left(y_{1}, y_{2}\right)$.
a) Show that d is a metric on \mathbb{R}^{2}.
b) Describe what a ball $\mathrm{B}(\mathbf{a} ; r)$ in the d-metric looks like.
c) Show that $\left(\mathbb{R}^{2}, d\right)$ is complete.

Problem 2

In this problem, \mathcal{A} is a σ-algebra on a nonempty set X, and \mathcal{M}^{+}is the set of all nonnegative, measurable functions $f: X \rightarrow[0, \infty]$. Also, $I: \mathcal{M}^{+} \rightarrow[0, \infty]$ is a function with the following properties:
(i) $I(\alpha f)=\alpha I(f)$ for all $\alpha \in[0, \infty)$ and all $f \in \mathcal{M}^{+}$.
(ii) $I(f+g)=I(f)+I(g)$ for all $f, g \in \mathcal{M}^{+}$.
(iii) If $\left\{f_{n}\right\}$ is an increasing sequence of functions in \mathcal{M}^{+}that converges pointwise to f, then $\lim _{n \rightarrow \infty} I\left(f_{n}\right)=I(f)$.
a) Show that if $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n} \in[0, \infty)$ and $f_{1}, f_{2}, \ldots, f_{n} \in \mathcal{M}^{+}$, then

$$
I\left(\alpha_{1} f_{1}+\alpha_{2} f_{2}+\cdots+\alpha_{n} f_{n}\right)=\alpha_{1} I\left(f_{1}\right)+\alpha_{2} I\left(f_{2}\right)+\cdots+\alpha_{n} I\left(f_{n}\right)
$$

Define $\mu: \mathcal{A} \rightarrow[0, \infty]$ by $\mu(A)=I\left(\mathbf{1}_{A}\right)$.
b) Show that $\mu(\emptyset)=0$ and that $\mu\left(A_{1} \cup A_{2} \cup \ldots \cup A_{n}\right)=\mu\left(A_{1}\right)+\mu\left(A_{2}\right)+$ $\ldots+\mu\left(A_{n}\right)$ for all disjoint sets $A_{1}, A_{2}, \ldots, A_{n} \in \mathcal{A}$.
c) Show that μ is a measure.
d) Show that $I(f)=\int f d \mu$ for all nonnegative, simple functions.
e) Show that $I(f)=\int f d \mu$ for all $f \in \mathcal{M}^{+}$.

Problem 3

In this problem we shall study the following result:
Theorem: Assume that (X, d) is a compact metric space and that $\left\{f_{n}\right\}$ is a decreasing sequence of continuous functions $f_{n}: X \rightarrow \mathbb{R}$ converging pointwise to 0 . Then $\left\{f_{n}\right\}$ converges uniformly.
a) Use the theorem to prove the following claim:

Claim: Assume that (X, d) is a compact metric space and that $\left\{g_{n}\right\}$ is an increasing sequence of continuous functions $g_{n}: X \rightarrow \mathbb{R}$ converging pointwise to a continuous function g. Then $\left\{g_{n}\right\}$ converges uniformly to g.

In the remainder of the problem, we shall prove the theorem by contradiction. We therefore assume that there exists a decreasing sequence $\left\{f_{n}\right\}$ of continuous functions converging pointwise, but not uniformly to 0 .
b) Explain that there is an $\epsilon>0$ such that for every $n \in \mathbb{N}$ there is a point $x_{n} \in X$ where $f_{n}\left(x_{n}\right) \geq \epsilon$.
c) Explain that $\left\{x_{n}\right\}$ has a subsequence $\left\{x_{n_{k}}\right\}$ converging to a point $x \in X$. Explain also that there is an $N \in \mathbb{N}$ such that $f_{N}(x)<\frac{\epsilon}{2}$.
d) Explain that there is a $\delta>0$ such that if $n \geq N$, then $f_{n}(u)<\epsilon$ for all u such that $d(x, u)<\delta$.
e) Show that for all sufficiently large $k \in \mathbb{N}$, we have $f_{n_{k}}\left(x_{n_{k}}\right)<\epsilon$, and explain why this gives us the contradiction we are looking for.

