UNIVERSITY OF OSLO

Faculty of Mathematics and Natural Sciences

Examination in:	MAT2400 — Real analysis.
Day of examination:	Thursday, August 14th, 2014.
Examination hours:	14.30-18.30
This problem set consists of 2 pages.	
Appendices:	None.
Permitted aids:	None.

Please make sure that your copy of the problem set is complete before you attempt to answer anything.

All items (1a, 1b, 1c, 2a, etc.) count 10 points.

Problem 1

Define a function $d: \mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R}$ by

 $d(\mathbf{x}, \mathbf{y}) = \max\{|y_1 - x_1|, |y_2 - x_2|\}$

where $\mathbf{x} = (x_1, x_2)$ and $\mathbf{y} = (y_1, y_2)$.

- a) Show that d is a metric on \mathbb{R}^2 .
- b) Describe what a ball $B(\mathbf{a}; r)$ in the *d*-metric looks like.
- c) Show that (\mathbb{R}^2, d) is complete.

Problem 2

In this problem, \mathcal{A} is a σ -algebra on a nonempty set X, and \mathcal{M}^+ is the set of all nonnegative, measurable functions $f: X \to [0, \infty]$. Also, $I: \mathcal{M}^+ \to [0, \infty]$ is a function with the following properties:

- (i) $I(\alpha f) = \alpha I(f)$ for all $\alpha \in [0, \infty)$ and all $f \in \mathcal{M}^+$.
- (ii) I(f+g) = I(f) + I(g) for all $f, g \in \mathcal{M}^+$.
- (iii) If $\{f_n\}$ is an increasing sequence of functions in \mathcal{M}^+ that converges pointwise to f, then $\lim_{n\to\infty} I(f_n) = I(f)$.
 - a) Show that if $\alpha_1, \alpha_2, \ldots, \alpha_n \in [0, \infty)$ and $f_1, f_2, \ldots, f_n \in \mathcal{M}^+$, then

$$I(\alpha_1 f_1 + \alpha_2 f_2 + \dots + \alpha_n f_n) = \alpha_1 I(f_1) + \alpha_2 I(f_2) + \dots + \alpha_n I(f_n)$$

(Continued on page 2.)

- b) Show that $\mu(\emptyset) = 0$ and that $\mu(A_1 \cup A_2 \cup \ldots \cup A_n) = \mu(A_1) + \mu(A_2) + \ldots + \mu(A_n)$ for all *disjoint* sets $A_1, A_2, \ldots, A_n \in \mathcal{A}$.
- c) Show that μ is a measure.
- d) Show that $I(f) = \int f d\mu$ for all nonnegative, simple functions.
- e) Show that $I(f) = \int f d\mu$ for all $f \in \mathcal{M}^+$.

Problem 3

In this problem we shall study the following result:

Theorem: Assume that (X, d) is a compact metric space and that $\{f_n\}$ is a decreasing sequence of continuous functions $f_n: X \to \mathbb{R}$ converging pointwise to 0. Then $\{f_n\}$ converges uniformly.

a) Use the theorem to prove the following claim:

Claim: Assume that (X, d) is a compact metric space and that $\{g_n\}$ is an increasing sequence of continuous functions $g_n : X \to \mathbb{R}$ converging pointwise to a continuous function g. Then $\{g_n\}$ converges uniformly to g.

In the remainder of the problem, we shall prove the theorem by contradiction. We therefore assume that there exists a decreasing sequence $\{f_n\}$ of continuous functions converging pointwise, but not uniformly to 0.

- b) Explain that there is an $\epsilon > 0$ such that for every $n \in \mathbb{N}$ there is a point $x_n \in X$ where $f_n(x_n) \ge \epsilon$.
- c) Explain that $\{x_n\}$ has a subsequence $\{x_{n_k}\}$ converging to a point $x \in X$. Explain also that there is an $N \in \mathbb{N}$ such that $f_N(x) < \frac{\epsilon}{2}$.
- d) Explain that there is a $\delta > 0$ such that if $n \ge N$, then $f_n(u) < \epsilon$ for all u such that $d(x, u) < \delta$.
- e) Show that for all sufficiently large $k \in \mathbb{N}$, we have $f_{n_k}(x_{n_k}) < \epsilon$, and explain why this gives us the contradiction we are looking for.

GOOD LUCK!