
Solutions to exam in MAT2400, Spring 2016

Problem 1: a) Since | arctanu| < π
2 for all u ∈ R, we have

| arctan(nx)|
n2

<
π
2

n2

for all x. The series
∞∑
n=1

π
2

n2
=
π

2

∞∑
n=1

1

n2

converges, and hence by Weierstrass’ M-test, the original series
∑∞
n=1

arctan(nx)
n2

converges uniformly on all of R. As f is the uniform limit of a sequence of
continuous functions, it must be continuous.

b) Differentiating the series term by term, we get

∞∑
n=1

1

n(1 + n2x2)

If this series converges uniformly in a neighborhood of x, we know by Corollary
4.3.6 that f is differentiable at x with

f ′(x) =

∞∑
n=1

1

n(1 + n2x2)

Given an x > 0, we choose an a such that 0 < a < x. Then for u ∈ [a,∞),

1

n(1 + n2u2)
≤ 1

n(1 + n2a2)
≤ 1

a2
· 1

n3

As the series
∑∞
n=1

1
a2 ·

1
n3 = 1

a2

∑∞
n=1

1
n3 converges, Weierstrass’ M-test tells us

that
∑∞
n=1

1
n(1+n2u2) converges uniformly on [a,∞), and hence f is differentiable

at x with

f ′(x) =

∞∑
n=1

1

n(1 + n2x2)

(By the way, a totally similar argument applies to x < 0; we just have to choose
a such that x < a < 0 and work with the interval (−∞, a]. On the other hand,
one may show that the function is not differentiable at 0.)

Problem 2: a) As any bounded, closed set in Rn is compact, all closed balls
B(a; r) in Rn are compact.

b) If a ∈ X, choose r < |a|. Then B(a; r) is compact as the set and the
metric are the same as in R, and the closed and bounded set B(a; r) is compact
in R. X is not complete as the Cauchy sequence { 1n} does not converge in X.
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Problem 3. a) Assume first that x ∈ Ā. Then every ball B(x, 1
n ) contains an

element an from A, and clearly the sequence {an} converges to x. On the other
hand, if there is a sequence {an} from A converging to x, every ball B(x, r)
contains an element an ∈ A, and hence x cannot be an exterior point of A. This
means that x is either an interior point or a boundary point, and in either case
x ∈ Ā.

b) Observe first that if x ∈ Ā, then there is a sequence {an} from A con-
verging to x. As this sequence is also in A ∪ B, we see that x ∈ A ∪B. Hence
Ā ⊂ A ∪B. A totally similar argument shows that B̄ ⊂ A ∪B, and hence
Ā ∪ B̄ ⊆ A ∪B.

To prove the opposite inclusion, assume that x ∈ A ∪B. By a), there is
a sequence {cn} from A ∪ B converging to x. This sequence must either have
infinitely many terms from A or infinitely many terms from B (or both), say
infinitely many from A. Let {cnk

} be the subsequence consisting of the terms
that lie in A. As this is a sequence from A converging to x, we see that x ∈ Ā. A
similar argument shows that x ∈ B̄ if infinitely many terms of {cn} belong to B.
This means that if x ∈ A ∪B, then x ∈ Ā or x ∈ B̄, and hence A ∪B ⊆ Ā∪ B̄.
As we now have both inclusions, we see that

A ∪B = Ā ∪ B̄

To find an example of A ∩B 6= Ā ∩ B̄, we may let X = R and choose A =
(−∞, 0), B = (0,∞). Then A ∩B = ∅̄ = ∅ while Ā ∩ B̄ = {0} 6= ∅

Problem 4: a) Substituting y = u− x, we get dy = −dx and

(f ∗ g)(u) =
1√
2π

∫ π

−π
f(u− x)g(x) dx

=
1√
2π

∫ u−π

u+π

f(y)g(u− y) (−dy)

=
1√
2π

∫ u+π

u−π
f(y)g(u− y) dy

=
1√
2π

∫ π

−π
f(y)g(u− y) dy = (g ∗ f)(u)

where we have used the periodicity of the functions to get back to [−π, π] as
the interval of integration.

b) We have

anbn =

(
1

2π

∫ π

−π
f(x)e−inx dx

)(
1

2π

∫ π

−π
g(y)e−iny dy

)

=
1

4π2

∫ π

−π

(∫ π

−π
f(x)e−inx dx

)
g(y)e−iny dy
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=
1

4π2

∫ π

−π

(∫ π

−π
f(x)g(y)e−in(x+y) dx

)
dy

Introducing the new variable u = x+ y in the innermost integral, we get

anbn =
1

4π2

∫ π

−π

(∫ y+π

y−π
f(u− y)g(y)e−inu du

)
dy

=
1

4π2

∫ π

−π

(∫ π

−π
f(u− y)g(y)e−inu du

)
dy

Changing the order of integration, we have

anbn =
1

4π2

∫ π

−π

(∫ π

−π
f(u− y)g(y) dy

)
e−inu du

=
1

2π

∫ π

−π

(
1

2π

∫ π

−π
f(u− y)g(y) dy

)
e−inu du

=
1

2π

∫ π

−π
(f ∗ g)(u)e−inu du = cn

c) Assume that there is a function k as in the problem, and let an be the
n-th Fourier coefficients of k. Applying b) to k and en, we get

an · 1 = 1

i.e. an = 1 for all n. This is impossible as an → ∞ by the Riemann-Lebesgue
lemma (or by Parseval’s identity if you prefer).

Problem 5: a) We must show that || · || satisfies the three conditions for a norm:

(i) ||x|| ≥ 0 with equality if and only if x = 0.

(ii) ||αx|| = |α|||x|| for all α ∈ R, x ∈ X.

(iii) ||x + y|| ≤ ||x||+ ||y|| for all x,y ∈ X.

As ||(x, y)|| = max{|x|, |y|} = 0 if and only if both x and y are 0, (i) is obvious.
For (ii), note that if |x| ≥ |y|, then |α||x| ≥ |α||y|, and similarly that if |y| ≥ |x|,
then |α||y| ≥ |α||x|. In either case,

||αx|| = max{|α||x|, α||y|} = |α|max{|x|, |y|} = |α|||x||

For (iii), let x = (x1, x2), y = (y1, y2). Then

|x1 + y1| ≤ |x1|+ |y1| ≤ ||x||+ ||y||

and
|x2 + y2| ≤ |x2|+ |y2| ≤ ||x||+ ||y||
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Hence
||x + y|| = max{|x1 + y1|, |x2 + y2|} ≤ ||x||+ ||y||

b) Note that for t > 0,

||a + tr|| = ||(1 + t, 1 + 2t)|| = 1 + 2t

and hence F (a + tr) = (1 + 2t)2. On the other hand, if t < 0, then

||a + tr|| = ||(1 + t, 1 + 2t)|| = 1 + t

and hence F (a + tr) = (1 + t)2. If we try to compute the directional derivative

F′(a; r) = limt→0
F(a+tr)−F(a)

t by taking one-sided limits, we get

lim
t→0+

F(a + tr)− F(a)

t
= lim
t→0+

(1 + 2t)2 − 1

t
= 4

and

lim
t→0−

F(a + tr)− F(a)

t
= lim
t→0−

(1 + t)2 − 1

t
= 2

As the one-sided limits are unequal, the directional derivative F′(a, r) does not
exist. Differentiable functions have directional derivatives, and hence F can not
be differentiable at a.

c) We first compute the directional derivatives to find a candidate for the
derivative:

F′(a; r) = lim
t→0

F(a + tr)− F(a)

t
= lim
t→0

||a + tr||2 − ||a||2

t

lim
t→0

〈a + tr,a + tr〉 − 〈a,a〉
t

= lim
t→0

2t〈a, r〉+ t2〈r, r〉
t

= 2〈a, r〉

This shows that F′(a)(r) = 2〈a, r〉 is a promising candidate for the derivative.
This function is obviously linear in r, and since by Schwarz’ inequality |2〈a, r〉| ≤
2||a||||r||, it is a bounded, linear operator. It remains to show that

σ(r) = F(a + r)− F(a)− 2〈a, r〉

goes to zero faster than r. As

σ(r) = 〈a + r,a + r〉 − 〈a,a〉 − 2〈a, r〉 = 〈r, r〉 = ||r||2

this is clearly the case, and hence F is differentiable with F′(a)(r) = 2〈a, r〉.
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