Solutions to exam in MAT2400, Spring 2016

Problem 1: a) Since $|\arctan u|<\frac{\pi}{2}$ for all $u \in \mathbb{R}$, we have

$$
\frac{|\arctan (n x)|}{n^{2}}<\frac{\frac{\pi}{2}}{n^{2}}
$$

for all x. The series

$$
\sum_{n=1}^{\infty} \frac{\frac{\pi}{2}}{n^{2}}=\frac{\pi}{2} \sum_{n=1}^{\infty} \frac{1}{n^{2}}
$$

converges, and hence by Weierstrass' M-test, the original series $\sum_{n=1}^{\infty} \frac{\arctan (n x)}{n^{2}}$ converges uniformly on all of \mathbb{R}. As f is the uniform limit of a sequence of continuous functions, it must be continuous.
b) Differentiating the series term by term, we get

$$
\sum_{n=1}^{\infty} \frac{1}{n\left(1+n^{2} x^{2}\right)}
$$

If this series converges uniformly in a neighborhood of x, we know by Corollary 4.3.6 that f is differentiable at x with

$$
f^{\prime}(x)=\sum_{n=1}^{\infty} \frac{1}{n\left(1+n^{2} x^{2}\right)}
$$

Given an $x>0$, we choose an a such that $0<a<x$. Then for $u \in[a, \infty)$,

$$
\frac{1}{n\left(1+n^{2} u^{2}\right)} \leq \frac{1}{n\left(1+n^{2} a^{2}\right)} \leq \frac{1}{a^{2}} \cdot \frac{1}{n^{3}}
$$

As the series $\sum_{n=1}^{\infty} \frac{1}{a^{2}} \cdot \frac{1}{n^{3}}=\frac{1}{a^{2}} \sum_{n=1}^{\infty} \frac{1}{n^{3}}$ converges, Weierstrass' M-test tells us that $\sum_{n=1}^{\infty} \frac{1}{n\left(1+n^{2} u^{2}\right)}$ converges uniformly on $[a, \infty)$, and hence f is differentiable at x with

$$
f^{\prime}(x)=\sum_{n=1}^{\infty} \frac{1}{n\left(1+n^{2} x^{2}\right)}
$$

(By the way, a totally similar argument applies to $x<0$; we just have to choose a such that $x<a<0$ and work with the interval $(-\infty, a]$. On the other hand, one may show that the function is not differentiable at 0 .)

Problem 2: a) As any bounded, closed set in \mathbb{R}^{n} is compact, all closed balls $\bar{B}(a ; r)$ in \mathbb{R}^{n} are compact.
b) If $a \in X$, choose $r<|a|$. Then $\bar{B}(a ; r)$ is compact as the set and the metric are the same as in \mathbb{R}, and the closed and bounded set $\bar{B}(a ; r)$ is compact in \mathbb{R}. X is not complete as the Cauchy sequence $\left\{\frac{1}{n}\right\}$ does not converge in X.

Problem 3. a) Assume first that $x \in \bar{A}$. Then every ball $B\left(x, \frac{1}{n}\right)$ contains an element a_{n} from A, and clearly the sequence $\left\{a_{n}\right\}$ converges to x. On the other hand, if there is a sequence $\left\{a_{n}\right\}$ from A converging to x, every ball $B(x, r)$ contains an element $a_{n} \in A$, and hence x cannot be an exterior point of A. This means that x is either an interior point or a boundary point, and in either case $x \in \bar{A}$.
b) Observe first that if $x \in \bar{A}$, then there is a sequence $\left\{a_{n}\right\}$ from A converging to x. As this sequence is also in $A \cup B$, we see that $x \in \overline{A \cup B}$. Hence $\bar{A} \subset \overline{A \cup B}$. A totally similar argument shows that $\bar{B} \subset \overline{A \cup B}$, and hence $\bar{A} \cup \bar{B} \subseteq \overline{A \cup B}$.

To prove the opposite inclusion, assume that $x \in \overline{A \cup B}$. By a), there is a sequence $\left\{c_{n}\right\}$ from $A \cup B$ converging to x. This sequence must either have infinitely many terms from A or infinitely many terms from B (or both), say infinitely many from A. Let $\left\{c_{n_{k}}\right\}$ be the subsequence consisting of the terms that lie in A. As this is a sequence from A converging to x, we see that $x \in \bar{A}$. A similar argument shows that $x \in \bar{B}$ if infinitely many terms of $\left\{c_{n}\right\}$ belong to B. This means that if $x \in \overline{A \cup B}$, then $x \in \bar{A}$ or $x \in \bar{B}$, and hence $\overline{A \cup B} \subseteq \bar{A} \cup \bar{B}$. As we now have both inclusions, we see that

$$
\overline{A \cup B}=\bar{A} \cup \bar{B}
$$

To find an example of $\overline{A \cap B} \neq \bar{A} \cap \bar{B}$, we may let $X=\mathbb{R}$ and choose $A=$ $(-\infty, 0), B=(0, \infty)$. Then $\overline{A \cap B}=\bar{\emptyset}=\emptyset$ while $\bar{A} \cap \bar{B}=\{0\} \neq \emptyset$

Problem 4: a) Substituting $y=u-x$, we get $d y=-d x$ and

$$
\begin{aligned}
& (f * g)(u)=\frac{1}{\sqrt{2 \pi}} \int_{-\pi}^{\pi} f(u-x) g(x) d x \\
& =\frac{1}{\sqrt{2 \pi}} \int_{u+\pi}^{u-\pi} f(y) g(u-y)(-d y) \\
& \quad=\frac{1}{\sqrt{2 \pi}} \int_{u-\pi}^{u+\pi} f(y) g(u-y) d y \\
& =\frac{1}{\sqrt{2 \pi}} \int_{-\pi}^{\pi} f(y) g(u-y) d y=(g * f)(u)
\end{aligned}
$$

where we have used the periodicity of the functions to get back to $[-\pi, \pi]$ as the interval of integration.
b) We have

$$
\begin{aligned}
a_{n} b_{n} & =\left(\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(x) e^{-i n x} d x\right)\left(\frac{1}{2 \pi} \int_{-\pi}^{\pi} g(y) e^{-i n y} d y\right) \\
& =\frac{1}{4 \pi^{2}} \int_{-\pi}^{\pi}\left(\int_{-\pi}^{\pi} f(x) e^{-i n x} d x\right) g(y) e^{-i n y} d y
\end{aligned}
$$

$$
=\frac{1}{4 \pi^{2}} \int_{-\pi}^{\pi}\left(\int_{-\pi}^{\pi} f(x) g(y) e^{-i n(x+y)} d x\right) d y
$$

Introducing the new variable $u=x+y$ in the innermost integral, we get

$$
\begin{gathered}
a_{n} b_{n}=\frac{1}{4 \pi^{2}} \int_{-\pi}^{\pi}\left(\int_{y-\pi}^{y+\pi} f(u-y) g(y) e^{-i n u} d u\right) d y \\
=\frac{1}{4 \pi^{2}} \int_{-\pi}^{\pi}\left(\int_{-\pi}^{\pi} f(u-y) g(y) e^{-i n u} d u\right) d y
\end{gathered}
$$

Changing the order of integration, we have

$$
\begin{gathered}
a_{n} b_{n}=\frac{1}{4 \pi^{2}} \int_{-\pi}^{\pi}\left(\int_{-\pi}^{\pi} f(u-y) g(y) d y\right) e^{-i n u} d u \\
=\frac{1}{2 \pi} \int_{-\pi}^{\pi}\left(\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(u-y) g(y) d y\right) e^{-i n u} d u \\
=\frac{1}{2 \pi} \int_{-\pi}^{\pi}(f * g)(u) e^{-i n u} d u=c_{n}
\end{gathered}
$$

c) Assume that there is a function k as in the problem, and let a_{n} be the n-th Fourier coefficients of k. Applying b) to k and e_{n}, we get

$$
a_{n} \cdot 1=1
$$

i.e. $a_{n}=1$ for all n. This is impossible as $a_{n} \rightarrow \infty$ by the Riemann-Lebesgue lemma (or by Parseval's identity if you prefer).

Problem 5: a) We must show that $\|\cdot\|$ satisfies the three conditions for a norm:
(i) $\|x\| \geq 0$ with equality if and only if $\mathbf{x}=0$.
(ii) $\|\alpha \mathbf{x}\|=|\alpha|\|\mathbf{x}\|$ for all $\alpha \in \mathbb{R}, \mathbf{x} \in X$.
(iii) $\|\mathbf{x}+\mathbf{y}\| \leq\|\mathbf{x}\|+\|\mathbf{y}\|$ for all $\mathbf{x}, \mathbf{y} \in X$.

As $\|(x, y)\|=\max \{|x|,|y|\}=0$ if and only if both x and y are 0 , (i) is obvious. For (ii), note that if $|x| \geq|y|$, then $|\alpha||x| \geq|\alpha||y|$, and similarly that if $|y| \geq|x|$, then $|\alpha||y| \geq|\alpha||x|$. In either case,

$$
\|\alpha \mathbf{x}\|=\max \{|\alpha||x|, \alpha \| y \mid\}=|\alpha| \max \{|x|,|y|\}=|\alpha|\|\mathbf{x}\|
$$

For (iii), let $\mathbf{x}=\left(x_{1}, x_{2}\right), \mathbf{y}=\left(y_{1}, y_{2}\right)$. Then

$$
\left|x_{1}+y_{1}\right| \leq\left|x_{1}\right|+\left|y_{1}\right| \leq\|\mathbf{x}\|+\|\mathbf{y}\|
$$

and

$$
\left|x_{2}+y_{2}\right| \leq\left|x_{2}\right|+\left|y_{2}\right| \leq\|\mathbf{x}\|+\|\mathbf{y}\|
$$

Hence

$$
\|\mathbf{x}+\mathbf{y}\|=\max \left\{\left|x_{1}+y_{1}\right|,\left|x_{2}+y_{2}\right|\right\} \leq\|\mathbf{x}\|+\|\mathbf{y}\|
$$

b) Note that for $t>0$,

$$
\|\mathbf{a}+t \mathbf{r}\|=\|(1+t, 1+2 t)\|=1+2 t
$$

and hence $F(\mathbf{a}+t \mathbf{r})=(1+2 t)^{2}$. On the other hand, if $t<0$, then

$$
\|\mathbf{a}+t \mathbf{r}\|=\|(1+t, 1+2 t)\|=1+t
$$

and hence $F(\mathbf{a}+t \mathbf{r})=(1+t)^{2}$. If we try to compute the directional derivative $\mathbf{F}^{\prime}(\mathbf{a} ; \mathbf{r})=\lim _{t \rightarrow 0} \frac{\mathbf{F}(\mathbf{a}+t \mathbf{r})-\mathbf{F}(\mathbf{a})}{t}$ by taking one-sided limits, we get

$$
\lim _{t \rightarrow 0^{+}} \frac{\mathbf{F}(\mathbf{a}+t \mathbf{r})-\mathbf{F}(\mathbf{a})}{t}=\lim _{t \rightarrow 0^{+}} \frac{(1+2 t)^{2}-1}{t}=4
$$

and

$$
\lim _{t \rightarrow 0^{-}} \frac{\mathbf{F}(\mathbf{a}+t \mathbf{r})-\mathbf{F}(\mathbf{a})}{t}=\lim _{t \rightarrow 0^{-}} \frac{(1+t)^{2}-1}{t}=2
$$

As the one-sided limits are unequal, the directional derivative $\mathbf{F}^{\prime}(\mathbf{a}, \mathbf{r})$ does not exist. Differentiable functions have directional derivatives, and hence \mathbf{F} can not be differentiable at a.
c) We first compute the directional derivatives to find a candidate for the derivative:

$$
\begin{gathered}
\mathbf{F}^{\prime}(\mathbf{a} ; \mathbf{r})=\lim _{t \rightarrow 0} \frac{\mathbf{F}(\mathbf{a}+t \mathbf{r})-\mathbf{F}(\mathbf{a})}{t}=\lim _{t \rightarrow 0} \frac{\|\mathbf{a}+t \mathbf{r}\|^{2}-\|\mathbf{a}\|^{2}}{t} \\
\lim _{t \rightarrow 0} \frac{\langle\mathbf{a}+t \mathbf{r}, \mathbf{a}+t \mathbf{r}\rangle-\langle\mathbf{a}, \mathbf{a}\rangle}{t}=\lim _{t \rightarrow 0} \frac{2 t\langle\mathbf{a}, \mathbf{r}\rangle+t^{2}\langle\mathbf{r}, \mathbf{r}\rangle}{t}=2\langle\mathbf{a}, \mathbf{r}\rangle
\end{gathered}
$$

This shows that $\mathbf{F}^{\prime}(\mathbf{a})(\mathbf{r})=2\langle\mathbf{a}, \mathbf{r}\rangle$ is a promising candidate for the derivative. This function is obviously linear in \mathbf{r}, and since by Schwarz' inequality $|2\langle\mathbf{a}, \mathbf{r}\rangle| \leq$ $2\|\mathbf{a}\|\|\mathbf{r}\|$, it is a bounded, linear operator. It remains to show that

$$
\sigma(\mathbf{r})=\mathbf{F}(\mathbf{a}+\mathbf{r})-\mathbf{F}(\mathbf{a})-2\langle\mathbf{a}, \mathbf{r}\rangle
$$

goes to zero faster than \mathbf{r}. As

$$
\sigma(\mathbf{r})=\langle\mathbf{a}+\mathbf{r}, \mathbf{a}+\mathbf{r}\rangle-\langle\mathbf{a}, \mathbf{a}\rangle-2\langle\mathbf{a}, \mathbf{r}\rangle=\langle\mathbf{r}, \mathbf{r}\rangle=\|\mathbf{r}\|^{2}
$$

this is clearly the case, and hence \mathbf{F} is differentiable with $\mathbf{F}^{\prime}(\mathbf{a})(\mathbf{r})=2\langle\mathbf{a}, \mathbf{r}\rangle$.

