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Preface

The writing of this book started as an emergency measure when the textbook
for the course MAT2400 failed to show up in the spring of 2011. Since
then the project has been modified several times according to wishes and
demands from students and faculty. In the 2016 version, I have added two
new chapters (Chapter 2 on the foundation of calculus and Chapter 6 on
differentiation in normed spaces) and removed all the material on measure
and integration theory. I have also added two new sections to Chapter 5
on normed spaces and linear operators – some of this material is needed for
the new Chapter 6. With these changes, the organization of the material
on power series and function spaces had become rather absurd, and I have
reorganized it for the current version in what seems a more logical and
pedagogical way. This means that the only chapters that are relatively
unaltered from last year, are Chapters 1, 3, and 7, although I have made
some minor changes (and improvements?) to them as well.

I would like to thank everybody who has pointed out mistakes and weak-
nesses in previous versions, in particular Geir Ellingsrud, Erik Løw, Nils Hen-
rik Risebro, Nikolai Bjørnestøl Hansen, Bernt Ivar Nødland, Simon Foldvik,
Marius Jonsson (who also made the figure of vibrating strings in Chapter
7), Daniel Aubert, Lisa Eriksen, and Imran Ali.

If you find a misprint or an even more serious mistake, please send a
note to lindstro@math.uio.no.

Blindern, May 25th, 2016

Tom Lindstrøm
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Chapter 1

Preliminaries: Proofs, Sets,
and Functions

Chapters with the word "preliminaries" in the title are never much fun, but
they are useful — they provide the reader with the background information
necessary to enjoy the rest of the text. This chapter is no exception, but I
have tried to keep it short and to the point; everything you find here will
be needed at some stage, and most of the material will show up throughout
the book.

Mathematical analysis is a continuation of calculus, but it is more ab-
stract and therefore in need of a larger vocabulary and more precisely defined
concepts. You have undoubtedly dealt with proofs, sets, and functions in
your previous mathematics courses, but probably in a rather casual way.
Now they become the centerpiece of the theory, and there is no way to un-
derstand what is going on if you don’t have a good grasp of them: The
subject matter is so abstract that you can no longer rely on drawings and
intuition; you simply have to be able to understand the concepts and to
read, make and write proofs. Fortunately, this is not as difficult as it may
sound if you have never tried to take proofs and formal definitions seriously
before.

1.1 Proofs

There is nothing mysterious about mathematical proofs; they are just chains
of logically irrefutable arguments that bring you from things you already
know to whatever you want to prove. Still there are a few tricks of the trade
that are useful to know about.

Many mathematical statements are of the form “If A, then B". This
simply means that whenever statement A holds, statement B also holds,
but not necessarily vice versa. A typical example is: "If n ∈ N is divisible
by 14, then n is divisible by 7”. This is a true statement since any natural

1



2 CHAPTER 1. PROOFS, SETS, AND FUNCTIONS

number that is divisible by 14, is also divisible by 7. The opposite statement
is not true as there are numbers that are divisible by 7, but not by 14 (e.g.
7 and 21).

Instead of “If A, then B”, we often say that “A implies B” and write
A =⇒ B. As already observed, A =⇒ B and B =⇒ A mean two different
things. If they are both true, A and B hold in exactly the same cases, and
we say that A and B are equivalent. In words, we say “A if and only if B”,
and in symbols, we write A⇐⇒ B. A typical example is:

“A triangle is equilateral if and only if all three angels are 60◦”

When we want to prove that A ⇐⇒ B, it is often convenient to prove
A =⇒ B and B =⇒ A separately.

If you think a little, you will realize that “A =⇒ B” and “not-B =⇒
not-A” mean exactly the same thing — they both say that whenever A
happens, so does B. This means that instead of proving “A =⇒ B”, we
might just a well prove “not-B =⇒ not-A”. This is called a contrapositive
proof, and is convenient when the hypothesis “not-B” gives us more to work
on than the hypothesis “A”. Here is a typical example.

Proposition 1.1.1 If n2 is an even number, so is n.

Proof: We prove the contrapositive statement: ”If n is odd, so is n2”: If n is
odd, it can be written as n = 2k + 1 for a nonnegative integer k. But then

n2 = (2k + 1)2 = 4k2 + 4k + 1 = 2(2k2 + 2k) + 1

which is clearly odd. 2

It should be clear why a contrapositive proof is best in this case: The hy-
pothesis “n is odd” is much easier to work with than the original hypothesis
“n2 is even”.

A related method of proof is proof by contradiction or reductio ad absur-
dum. In these proofs, we assume the opposite of what we want to show, and
prove that it leads to a contradiction. Hence our assumption must be false,
and the original claim is established. Here is a well-known example.

Proposition 1.1.2
√

2 is an irrational number.

Proof: We assume for contradiction that
√

2 is rational. This means that
√

2 =
m

n

for natural numbers m and n. By cancelling as much as possible, we may
assume that m and n have no common factors.
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If we square the equality above and multiply by n2 on both sides, we get

2n2 = m2

This means that m2 is even, and by the previous proposition, so is m. Hence
m = 2k for some natural number k, and if we substitute this into the last
formula above and cancel a factor 2, we see that

n2 = 2k2

This means that n2 is even, and by the previous proposition n is even. Thus
we have proved that both m and n are even, which is impossible as we as-
sumed that they have no common factors. The assumption that

√
2 is ratio-

nal hence leads to a contradiction, and
√

2 must therefore be irrational. 2

Let me end this section by reminding you of a technique you have cer-
tainly seen before, proof by induction. We use this technique when we
want to prove that a certain statement P (n) holds for all natural num-
bers n = 1, 2, 3, . . .. A typical statement one may want to prove in this way,
is

P (n) : 1 + 2 + 3 + · · ·+ n =
n(n+ 1)

2

The basic observation behind the technique is:

1.1.3 (Induction Principle) Assume that P (n) is a statement about nat-
ural numbers n = 1, 2, 3, . . .. Assume that the following two conditions are
satisfied:

(i) P (1) is true

(ii) If P (k) is true for a natural number k, then P (k + 1) is also true.

Then P (n) holds for all natural numbers n.

Let us see how we can use the principle to prove that

P (n) : 1 + 2 + 3 + · · ·+ n =
n(n+ 1)

2

holds for all natural numbers n.
First we check that the statement holds for n = 1: In this case the

formula says

1 =
1 · (1 + 1)

2

which is obviously true. Assume now that P (k) holds for some natural
number k, i.e.

1 + 2 + 3 + · · ·+ k =
k(k + 1)

2
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We then have

1 + 2 + 3 + · · ·+ k + (k + 1) =
k(k + 1)

2
+ (k + 1) =

(k + 1)(k + 2)

2

which means that P (k + 1) is true. By the Induction Principle, P (n) holds
for all natural numbers n.

Remark: If you are still uncertain about what constitutes a proof, the best
advice is to read proofs carefully and with understanding – you have to grasp
why they force the conclusion. And then you have to start making your own
(the exercises in this book will give you plenty of opportunities)!

Exercises for Section 1.1

1. Assume that the product of two integers x and y is even. Show that at least
one of the numbers is even.

2. Assume that the sum of two integers x and y is even. Show that x and y are
either both even or both odd.

3. Show that if n is a natural number such that n2 is divisible by 3, then n is
divisible by 3. Use this to show that

√
3 is irrational.

4. In this problem, we shall prove some basic properties of rational numbers.
Recall that a real number r is rational if r = a

b where a, b are integers and
b 6= 0. A real number that is not rational, is called irrational.

a) Show that if r, s are rational numbers, so are r + s, r − s, rs, and
(provided s 6= 0) r

s .

b) Assume that r is a rational number and a is an irrational number. Show
that r+ a and r− a are irrational. Show also that if r 6= 0, then ra, ra ,
and a

r are irrational.

c) Show by example that if a, b are irrational numbers, then a+ b and ab
can be rational or irrational depending on a and b.

1.2 Sets and boolean operations

In the systematic development of mathematics, set is usually taken as the
fundamental notion from which all other concepts are developed. We shall
not be so ambitious, but just think naively of a set as a collection of math-
ematical objects. A set may be finite, such as the set

{1, 2, 3, 4, 5, 6, 7, 8, 9}

of all natural numbers less than 10, or infinite as the set (0, 1) of all real
numbers between 0 and 1.

We shall write x ∈ A to say that x is an element of the set A, and x /∈ A
to say that x is not an element of A. Two sets are equal if they have exactly
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the same elements, and we say that A is subset of B (and write A ⊆ B) if
all elements of A are elements of B, but not necessarily vice versa. Note
that there is no requirement that A is strictly included in B, and hence it
is correct to write A ⊆ B when A = B (in fact, a standard technique for
showing that A = B is first to show that A ⊆ B and then that B ⊆ A). By
∅ we shall mean the empty set, i.e. the set with no elements (you may feel
that a set with no elements is a contradiction in terms, but mathematical
life would be much less convenient without the empty set).

Many common sets have a standard name and notation such as

N = {1, 2, 3, . . .}, the set of natural numbers

Z = {. . .− 3,−2,−1, 0, 1, 2, 3, . . .}, the set of all integers

Q, the set of all rational numbers

R, the set of all real numbers

C, the set of all complex numbers

Rn, the set of all real n-tuples

To specify other sets, we shall often use expressions of the kind

A = {a |P (a)}

which means the set of all objects satisfying condition P . Often it is more
convenient to write

A = {a ∈ B |P (a)}

which means the set of all elements in B satisfyíng the condition P . Exam-
ples of this notation are

[−1, 1] = {x ∈ R | − 1 ≤ x ≤ 1}

and
A = {2n− 1 | n ∈ N}

where A is the set of all odd numbers. To increase readability, I shall
occasionally replace the vertical bar | by a colon : and write A = {a : P (a)}
and A = {a ∈ B : P (a)} instead of A = {a |P (a)} and A = {a ∈ B |P (a)},
e.g. in expressions like {||αx|| : |α| < 1} where there are lots of vertical bars
already.

If A1, A2, . . . , An are sets, their union and intersection are given by

A1∪A2∪. . .∪An = {a | a belongs to at least one of the sets A1, A2, . . . , An}
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and

A1 ∩A2 ∩ . . . ∩An = {a | a belongs to all the sets A1, A2, . . . , An},

respectively. Two sets are called disjoint if they do not have elements in
common, i.e. if A ∩B = ∅.

When we calculate with numbers, the distributive law tells us how to
move common factors in and out of parentheses:

b(a1 + a2 + · · ·+ an) = ba1 + ba2 + · · · ban

Unions and intersections are distributive both ways, i.e. we have:

Proposition 1.2.1 For all sets B,A1, A2, . . . , An

B ∩ (A1 ∪A2 ∪ . . . ∪An) = (B ∩A1) ∪ (B ∩A2) ∪ . . . ∪ (B ∩An) (1.2.1)

and

B ∪ (A1 ∩A2 ∩ . . . ∩An) = (B ∪A1) ∩ (B ∪A2) ∩ . . . ∩ (B ∪An) (1.2.2)

Proof: I’ll prove the first formula and leave the second as an exercise. The
proof is in two steps: first we prove that the set on the left is a subset of the
one on the right, and then we prove that the set on the right is a subset of
the one on the left.

Assume first that x is an element of the set on the left, i.e. x ∈ B ∩
(A1 ∪ A2 ∪ . . . ∪ An). Then x must be in B and at least one of the sets Ai.
But then x ∈ B ∩ Ai, and hence x ∈ (B ∩ A1) ∪ (B ∩ A2) ∪ . . . ∪ (B ∩ An).
This proves that

B ∩ (A1 ∪A2 ∪ . . . ∪An) ⊆ (B ∩A1) ∪ (B ∩A2) ∪ . . . ∪ (B ∩An)

To prove the opposite inclusion, assume that x ∈ (B ∩ A1) ∪ (B ∩ A2) ∪
. . . ∪ (B ∩ An). Then x ∈ B ∩ Ai for at least one i, and hence x ∈ B and
x ∈ Ai. But if x ∈ Ai for some i, then x ∈ A1 ∪ A2 ∪ . . . ∪ An, and hence
x ∈ B ∩ (A1 ∪A2 ∪ . . . ∪An). This proves that

B ∩ (A1 ∪A2 ∪ . . . ∪An) ⊇ (B ∩A1) ∪ (B ∩A2) ∪ . . . ∪ (B ∩An)

As we now have inclusion in both directions, (1.2.1) follows. 2

Remark: It is possible to prove formula (1.2.1) in one sweep by noticing
that all steps in the argument are equivalences and not only implications,
but most people are more prone to making mistakes when they work with
chains of equivalences than with chains of implications.
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There are also other algebraic rules for unions and intersections, but
most of them are so obvious that we do not need to state them here (an
exception is De Morgan’s laws which we shall return to in a moment).

The set theoretic difference A \B (also written A−B) is defined by

A \B = {a | a ∈ A, a /∈ B}

In many situations we are only interested in subsets of a given set U (often
referred to as the universe). The complement Ac of a set A with respect to
U is defined by

Ac = U \A = {a ∈ U | a /∈ A}

We can now formulate De Morgan’s laws:

Proposition 1.2.2 (De Morgan’s laws) Assume that A1, A2, . . . , An are
subsets of a universe U . Then

(A1 ∪A2 ∪ . . . ∪An)c = Ac1 ∩Ac2 ∩ . . . ∩Acn (1.2.3)

and
(A1 ∩A2 ∩ . . . ∩An)c = Ac1 ∪Ac2 ∪ . . . ∪Acn (1.2.4)

(These rules are easy to remember if you observe that you can distribute
the c outside the parentheses on the individual sets provided you turn all
∪’s into ∩’s and all ∩’s into ∪’s).

Proof of De Morgan’s laws: Again I’ll prove the first part and leave the
second as an exercise. The strategy is as indicated above; we first show that
any element of the set on the left must also be an element of the set on the
right, and then vice versa.

Assume that x ∈ (A1 ∪ A2 ∪ . . . ∪ An)c. Then x /∈ A1 ∪ A2 ∪ . . . ∪ An,
and hence for all i, x /∈ Ai. This means that for all i, x ∈ Aci , and hence
x ∈ Ac1 ∩Ac2 ∩ . . . ∩Acn.

Assume next that x ∈ Ac1 ∩ Ac2 ∩ . . . ∩ Acn. This means that x ∈ Aci for
all i, in other words: for all i, x /∈ Ai . Thus x /∈ A1 ∪ A2 ∪ . . . ∪ An which
means that x ∈ (A1 ∪A2 ∪ . . . ∪An)c. 2

We end this section with a brief look at cartesian products. If we have
two sets, A and B, the cartesian product A × B consists of all pairs (a, b)
where a ∈ A and b ∈ B. If we have more sets A1, A2, . . . , An, the cartesian
product A1 × A2 × · · · × An consists of all n-tuples (a1, a2, . . . , an) where
a1 ∈ A1, a2 ∈ A2, . . . , an ∈ An. If all the sets are the same (i.e. Ai = A for
all i), we usually write An instead of A× A× · · · × A. Hence Rn is the set
of all n-tuples of real numbers, just as you are used to, and Cn is the set of
all n-tuples of complex numbers.
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Exercises for Section 1.2

1. Show that [0, 2] ∪ [1, 3] = [0, 3] and that [0, 2] ∩ [1, 3] = [1, 2]

2. Let U = R be the universe. Explain that (−∞, 0)c = [0,∞)

3. Show that A \B = A ∩Bc.

4. The symmetric difference A 4 B of two sets A,B consists of the elements
that belong to exactly one of the sets A,B. Show that

A4B = (A \B) ∪ (B \A)

5. Prove formula (1.2.2).

6. Prove formula (1.2.4).

7. Prove that A1 ∪A2 ∪ . . . ∪An = U if and only if Ac1 ∩Ac2 ∩ . . . ∩Acn = ∅.

8. Prove that (A∪B)×C = (A×C)∪(B×C) and (A∩B)×C = (A×C)∩(B×C).

1.3 Families of sets

A collection of sets is usually called a family. An example is the family

A = {[a, b] | a, b ∈ R}

of all closed and bounded intervals on the real line. Families may seem
abstract, but you have to get used to them as they appear in all parts of
higher mathematics. We can extend the notions of union and intersection
to families in the following way: If A is a family of sets, we define⋃

A∈A
A = {a | a belongs to at least one set A ∈ A}

and ⋂
A∈A

A = {a | a belongs to all sets A ∈ A}

The distributive laws extend to this case in the obvious way, i.e.,

B ∩ (
⋃
A∈A

A) =
⋃
A∈A

(B ∩A) and B ∪ (
⋂
A∈A

A) =
⋂
A∈A

(B ∪A)

and so do the laws of De Morgan:

(
⋃
A∈A

A)c =
⋂
A∈A

Ac and (
⋂
A∈A

A)c =
⋃
A∈A

Ac

Families are often given as indexed sets. This means we we have a basic
set I, and that the family consists of one set Ai for each element i in I. We
then write the family as

A = {Ai | i ∈ I},
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and use notation such as⋃
i∈I

Ai and
⋂
i∈I

Ai

or alternatively⋃
{Ai : i ∈ I} and

⋂
{Ai : i ∈ I}

for unions and intersections
A rather typical example of an indexed set is A = {Br | r ∈ [0,∞)}

where Br = {(x, y) ∈ R2 |x2 + y2 = r2}. This is the family of all circles in
the plane with centre at the origin.

Exercises for Section 1.3

1. Show that
⋃
n∈N[−n, n] = R

2. Show that
⋂
n∈N(− 1

n ,
1
n ) = {0}.

3. Show that
⋃
n∈N[ 1n , 1] = (0, 1]

4. Show that
⋂
n∈N(0, 1

n ] = ∅
5. Prove the distributive laws for families. i.e.,

B ∩ (
⋃
A∈A

A) =
⋃
A∈A

(B ∩A) and B ∪ (
⋂
A∈A

A) =
⋂
A∈A

(B ∪A)

6. Prove De Morgan’s laws for families:

(
⋃
A∈A

A)c =
⋂
A∈A

Ac and (
⋂
A∈A

A)c =
⋃
A∈A

Ac

7. Later in the book we shall often study families of sets with given properties,
and it may be worthwhile to take a look at an example here. If X is a
nonempty set and A is a family of subsets of X, we call A an algebra of sets
if the following three properties are satisfied:

(i) ∅ ∈ A.
(ii) If A ∈ A, then Ac ∈ A (all complements are with respect to the universe

X; hence Ac = X \A).
(iii) If A,B ∈ A, the A ∪B ∈ A.

In the rest of the problem, we assume that A is an algebra of sets on X.

a) Show that X ∈ A.
b) Show that if A1, A2, . . . , An ∈ A for an n ∈ N, then

A1 ∪A2 ∪ . . . ∪An ∈ A

(Hint: Use induction.)

c) Show that if A1, A2, . . . , An ∈ A for an n ∈ N, then

A1 ∩A2 ∩ . . . ∩An ∈ A

(Hint: Use b), property (ii), and one of De Morgan’s laws.)
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1.4 Functions

Functions can be defined in terms of sets, but for our purposes it suffices to
think of a function f : X → Y from X to Y as a rule which to each element
x ∈ X assigns an element y = f(x) in Y .1 A function is also called a map or
a mapping. Formally, functions and maps are exactly the same thing, but
people tend to use the word “map” when they are thinking geometrically,
and the word “function” when they are thinking more in terms of formulas
and calculations.

If we have three sets X,Y, Z and functions f : X → Y and g : Y → Z,
we can define a composite function h : X → Z by h(x) = g(f(x)). This
composite function is often denoted by g ◦ f , and hence g ◦ f(x) = g(f(x)).

If A is subset of X, the set f(A) ⊆ Y defined by

f(A) = {f(a) | a ∈ A}

is called the image of A under f . If B is subset of Y , the set f−1(B) ⊆ X
defined by

f−1(B) = {x ∈ X | f(x) ∈ B}
is called the inverse image of B under f . In analysis, images and inverse
images of sets play important parts, and it is useful to know how these
operations relate to the boolean operations of union and intersection. Let
us begin with the good news.

Proposition 1.4.1 Let B be a family of subset of Y . Then for all functions
f : X → Y we have

f−1(
⋃
B∈B

B) =
⋃
B∈B

f−1(B) and f−1(
⋂
B∈B

B) =
⋂
B∈B

f−1(B)

We say that inverse images commute with arbitrary unions and intersec-
tions.

Proof: I prove the first part; the second part is proved similarly. Assume first
that x ∈ f−1(

⋃
B∈B B). This means that f(x) ∈

⋃
B∈B B, and consequently

there must be at least one B′ ∈ B such that f(x) ∈ B′. But then x ∈
f−1(B′), and hence x ∈

⋃
B∈B f

−1(B). This proves that f−1(
⋃
B∈B B) ⊆⋃

B∈B f
−1(B).

To prove the opposite inclusion, assume that x ∈
⋃
B∈B f

−1(B). There
must be at least one B′ ∈ B such that x ∈ f−1(B′), and hence f(x) ∈ B′.
This implies that f(x) ∈

⋃
B∈B B, and hence x ∈ f−1(

⋃
B∈B B). 2

For forward images the situation is more complicated:
1Set theoretically, a function from X to Y is a subset f of X × Y such that for each

x ∈ A, there is exactly one y ∈ Y such that (x, y) ∈ f . For x ∈ X, we then define f(x)
to be the unique element in y ∈ Y such that (x, y) ∈ f , and we are back to our usual
notation.
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Proposition 1.4.2 Let A be a family of subset of X. Then for all functions
f : X → Y we have

f(
⋃
A∈A

A) =
⋃
A∈A

f(A) and f(
⋂
A∈A

A) ⊆
⋂
A∈A

f(A)

In general, we do not have equality in the latter case. Hence forward images
commute with unions, but not always with intersections.

Proof: To prove the statement about unions, we first observe that since
A ⊆

⋃
A∈AA for all A ∈ A, we have f(A) ⊆ f(

⋃
A∈AA) for all such A. Since

this inclusion holds for all A, we must also have
⋃
A∈A f(A) ⊆ f(

⋃
A∈A). To

prove the opposite inclusion, assume that y ∈ f(
⋃
A∈AA). This means that

there exists an x ∈
⋃
A∈AA such that f(x) = y. This x has to belong to at

least one A′ ∈ A, and hence y ∈ f(A′) ⊆
⋃
A∈A f(A).

To prove the inclusion for intersections, just observe that since
⋂
A∈AA ⊆

A for all A ∈ A, we must have f(
⋂
A∈AA) ⊆ f(A) for all such A. Since

this inclusion holds for all A, it follows that f(
⋂
A∈AA) ⊆

⋂
A∈A f(A). The

example below shows that the opposite inclusion does not always hold. 2

Example 1: Let X = {x1, x2} and Y = {y}. Define f : X → Y by
f(x1) = f(x2) = y, and let A1 = {x1}, A2 = {x2}. Then A1 ∩ A2 = ∅ and
consequently f(A1∩A2) = ∅. On the other hand f(A1) = f(A2) = {y}, and
hence f(A1)∩f(A2) = {y}. This means that f(A1∩A2) 6= f(A1)∩f(A2). ♣

The problem in this example stems from the fact that y belongs to both
f(A1) and f(A2), but only as the image of two different elements x1 ∈ A1

og x2 ∈ A2; there is no common element x ∈ A1 ∩A2 which is mapped to y.
To see how it’s sometimes possible to avoid this problem, define a function
f : X → Y to be injective if f(x1) 6= f(x2) whenever x1 6= x2.

Corollary 1.4.3 Let A be a family of subset of X. Then for all injective
functions f : X → Y we have

f(
⋂
A∈A

A) =
⋂
A∈A

f(A)

Proof: To prove the missing inclusion f(
⋂
A∈AA) ⊇

⋂
A∈A f(A), assume

that y ∈
⋂
A∈A f(A). For each A ∈ A there must be an element xA ∈ A

such that f(xA) = y. Since f is injective, all these xA ∈ A must be the same
element x, and hence x ∈ A for all A ∈ A. This means that x ∈

⋂
A∈AA,

and since y = f(x), we have proved that y ∈ f(
⋂
A∈AA). 2

Taking complements is another operation that commutes with inverse
images, but not (in general) with forward images.
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Proposition 1.4.4 Assume that f : X → Y is a function and that B ⊆
Y . Then f−1(Bc)) = (f−1(B))c. (Here, of course, Bc = Y \ B is the
complement with respect to the universe Y , while (f−1(B))c = X \ f−1(B)
is the complemet with respect to the universe X).

Proof: An element x ∈ X belongs to f−1(Bc) if and only if f(x) ∈ Bc. On
the other hand, it belongs to (f−1(B))c if and only if f(x) /∈ B, i.e. if and
only if f(x) ∈ Bc. 2

We also observe that being disjoint is a property that is conserved under
inverse images; if A ∩ B = ∅, then f−1(A) ∩ f−1(B) = ∅. Again the corre-
sponding property for forward images does not hold in general.

We end this section by taking a look at three important properties a
function can have. We have already defined a function f : X → Y to be
injective (or one-to-one) if f(x1) 6= f(x2) whenever x1 6= x2. It is called
surjective (or onto) if for all y ∈ Y , there is an x ∈ X such that f(x) = y, and
it is called bijective (or a one-to-one correspondence) if it is both injective
and surjective. Injective, surjective, and bijective functions are someimes
called injections, surjections, and bijections, respectively.

If f : X → Y is bijective, there is for each y ∈ Y exactly one x ∈ X such
that f(x) = y. Hence we can define a function g : Y → X by

g(y) = x if and only if f(x) = y

This function g is called the inverse function of f and is often denoted by
f−1. Note that the inverse function g is necessarily a bijection, and that
g−1 = f .

Remark: Note that the inverse function f−1 is only defined when the
function f is bijective, but that the inverse images f−1(B) that we studied
earlier in this section, are defined for all functions f .

If f : X → Y and g : Y → Z are bijective, so is their composition g ◦ f ,
and (g ◦ f)−1 = (f−1) ◦ (g−1) (see Exercise 7 below).

Exercises for Section 1.4

1. Let f : R→ R be the function f(x) = x2. Find f([−1, 2]) and f−1([−1, 2]).

2. Let g : R2 → R be the function g(x, y) = x2 + y2. Find g([−1, 1] × [−1, 1])
and g−1([0, 4]).

3. Show that the function f : R → R defined by f(x) = x2 is neither injective
nor surjective. What if we change the definition fo f(x) = x3?

4. Show that a strictly increasing function f : R→ R is injective. Does it have
to be surjective?
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5. Prove the second part of Proposition 1.4.1.

6. Find a function f : X → Y and a set A ⊆ X such that we have neither
f(Ac) ⊆ f(A)c nor f(A)c ⊆ f(Ac).

7. In this problem f, g are functions f : X → Y and g : Y → Z.

a) Show that if f and g are injective, so is g ◦ f .
b) Show that if f and g are surjective, so is g ◦ f .
c) Explain that if f and g are bijective, so is g◦f , and show that (g◦f)−1 =

(f−1) ◦ (g−1).

8. Given a set Z, we let idZ : Z → Z be the identity map id(z) = z for all
z ∈ Z.

a) Show that if f : X → Y is bijective with inverse function g : Y → X,
then g ◦ f = idX and f ◦ g = idY .

b) Assume that f : X → Y and g : Y → X are two functions such that
g ◦ f = idX and f ◦ g = idY . Show that f and g are bijective, and that
g = f−1.

9. As pointed out in the remark above, we are using the symbol f−1 in two
slightly different ways. It may refer to the inverse of a bijective function
f : X → Y , but it may also be used to denote inverse images f−1(B) of sets
under arbitrary functions f : X → Y . The only instances where this might
have caused real confusion, is when f : X → Y is a bijection and we write
C = f−1(B) for a subset B of Y . This can then be interpreted as: a) C is
the inverse image of B under f and b) C is the (direct) image of B under
f−1. Show that these two interpretation of C always coincide.

1.5 Relations and partitions

In mathematics there are lots of relations between objects; numbers may
be smaller or larger than each other, lines may be parallell, vectors may be
orthogonal, matrices may be similar and so on. Sometimes it is convenient
to have an abstract definition of what we mean by a relation.

Definition 1.5.1 By a relation on a set X, we mean a subset R of the
cartesian product X × X. We usually write xRy instead of (x, y) ∈ R to
denote that x and y are related. The symbols ∼ and ≡ are often used to
denote relations, and we then write x ∼ y and x ≡ y.

At first glance this definition may seem strange as very few people think
of relations as subsets of X ×X, but a little thought will convince you that
it gives us a convenient starting point, especially if I add that in practice
relations are rarely arbitrary subsets of X ×X, but have much more struc-
ture than the definition indicates.



14 CHAPTER 1. PROOFS, SETS, AND FUNCTIONS

Example 1. Equality = and “less than“ < are relations on R. To see that
they fit into the formal definition above, note that they can be defined as

R = {(x, y) ∈ R2 |x = y}

for equality and
S = {(x, y) ∈ R2 |x < y}

for “less than”. ♣

We shall take a look at an important class of relations, the equivalence
relations. Equivalence relations are used to partition sets into subsets, and
from a pedagogical point of view, it is probably better to start with the
related notion of a partition.

Informally, a partition is what we get if we divide a set into non-overlapping
pieces. More precisely, if X is a set, a partition P of X is a family of subset
of X such that each element in x belongs to exactly one set P ∈ P. The
elements P of P are called partition classes of P.

Given a partition of X, we may introduce a relation ∼ on X by

x ∼ y ⇐⇒ x and y belong to the same set P ∈ P

It is easy to check that ∼ has the following three properties:

(i) x ∼ x for all x ∈ X.

(ii) If x ∼ y, then y ∼ x.

(iii) If x ∼ y and y ∼ z, then x ∼ z.

We say that ∼ is the relation induced by the partition P.
Let us now turn the tables around and start with a relation on X satis-

fying conditions (i)-(iii):

Definition 1.5.2 An equivalence relation on X is a relation ∼ satisfying
the following conditions:

(i) Reflexivity: x ∼ x for all x ∈ X,

(ii) Symmetry: If x ∼ y, then y ∼ x,

(iii) Transitivity: If x ∼ y and y ∼ z, then x ∼ z.

Given an equivalence relation ∼ on X, we may for each x ∈ X define
the equivalence class (also called the partition class) [x] of x by:

[x] = {y ∈ X |x ∼ y}

The following result tells us that there is a one-to-one correspondence be-
tween partitions and equivalence relations – just as all partitions induce an
equivalence relation, all equivalence relations define a partition.
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Proposition 1.5.3 If ∼ is an equivalence relation on X, the collection of
equivalence classes

P = {[x] : x ∈ X}

is a partition of X.

Proof: We must prove that each x in X belongs to exactly one equivalence
class. We first observe that since x ∼ x by (i), x ∈ [x] and hence belongs to
at least one equivalence class. To finish the proof, we have to show that if
x ∈ [y] for some other element y ∈ X, then [x] = [y].

We first prove that [y] ⊆ [x]. To this end assume that z ∈ [y]. By
definition, this means that y ∼ z. On the other hand, the assumption that
x ∈ [y] means that y ∼ x, which by (ii) implies that x ∼ y. We thus have
x ∼ y and y ∼ z, which by (iii) means that x ∼ z. Thus z ∈ [x], and hence
we have proved that [y] ⊆ [x].

The opposite inclusion [x] ⊆ [y] is proved similarly: Assume that z ∈ [x].
By definition, this means that x ∼ z. On the other hand, the assumption
that x ∈ [y] means that y ∼ x. We thus have y ∼ x and x ∼ z, which by
(iii) implies that y ∼ z. Thus z ∈ [y], and we have proved that [x] ⊆ [y]. 2

The main reason why this theorem is useful is that it is often more
natural to describe situations through equivalence relations than through
partitions. The following example assumes that you remember a little linear
algebra:

Example 1: Let V be a vector space and U a subspace. Define a relation
on V by

x ∼ y ⇐⇒ x− y ∈ U

Let us show that∼ is an equivalence relation by checking the three conditions
(i)-(iii) in the definition:

(i) Reflexive: Since x− x = 0 ∈ U , we see that x ∼ x for all x ∈ V .
(ii) Symmetric: Assume that x ∼ y. This means that x − y ∈ U ,

and concequently y − x = (−1)(x − y) ∈ U as subspaces are closed under
multiplication by scalars. Hence y ∼ x.

(iii) Transitive: If x ∼ y and y ∼ z, then x−y ∈ U and y− z ∈ U . Since
subspaces are closed under addition, this means that x−z = (x−y)+(y−z) ∈
U , and hence x ∼ z.

As we have now proved that ∼ is an equivalence relation, the equivalence
classes of ∼ form a partition of V . ♣
.

If ∼ is an equivalence relation on X, we let X/∼ denote the set of all
equivalence classes of ∼. Such quotient constructions are common in all
parts of mathematics, and you will see a few examples later in the book.
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Exercises to Section 1.5

1. Let P be a partition of a set A, and define a relation ∼ on A by

x ∼ y ⇐⇒ x and y belong to the same set P ∈ P

Check that ∼ really is an equivalence relation.

2. Assume that P is the partition defined by an equivalence relation ∼. Show
that ∼ is the equivalence relation induced by P.

3. Let L be the collection of all lines in the plane. Define a relation on L by
saying that two lines are equivalent if and only if they are parallel or equal.
Show that this an equivalence relation on L.

4. Define a relation on C by

z ∼ y ⇐⇒ |z| = |w|

Show that ∼ is an equivalence relation. What does the equivalence classes
look like?

5. Define a relation ∼ on R3 by

(x, y, z) ∼ (x′, y′, z′) ⇐⇒ 3x− y + 2z = 3x′ − y′ + 2z′

Show that ∼ is an equivalence relation and describe the equivalence classes
of ∼.

6. Let m be a natural number. Define a relation ≡ on Z by

x ≡ y ⇐⇒ x− y is divisible by m

Show that ≡ is an equivalence relation on Z. How many equivalence classes
are there, and what do they look like?

7. LetM be the set of all n× n matrices. Define a relation on ∼ onM by

A ∼ B ⇐⇒ if there exists an invertible matrix P such that A = P−1BP

Show that ∼ is an equivalence relation.

1.6 Countability

A set A is called countable if it possible to make a list a1, a2, . . . , an, . . . which
contains all elements of A. A set that is not countable is called uncountable.
The infinite countable sets are the smallest infinite sets, and we shall later in
this section see that the set R of real numbers is too large to be countable.

Finite sets A = {a1, a2, . . . , am} are obviously countable2 as they can be
listed

a1, a2, . . . , am, am, am, . . .

2Some books exclude the finite sets from the countable and treat them as a separate
category, but that would be impractical for our purposes.
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(you may list the same elements many times). The set N of all natural
numbers is also countable as it is automatically listed by

1, 2, 3, . . .

It is a little less obvious that the set Z of all integers is countable, but we
may use the list

0, 1,−1, 2,−2, 3,−3 . . .

It is also easy to see that a subset of a countable set must be countable, and
that the image f(A) of a countable set is countable (if {an} is a listing of
A, then {f(an)} is a listing of f(A)).

The next result is perhaps more surprising:

Proposition 1.6.1 If the sets A,B are countable, so is the cartesian prod-
uct A×B.

Proof: Since A and B are countable, there are lists {an}, {bn} containing
all the elements of A and B, respectively. But then

{(a1, b1), (a2, b1), (a1, b2), (a3, b1), (a2, b2), (a1, b3), (a4, b1), (a3, b2), . . . , }

is a list containing all elements of A×B (observe how the list is made; first
we list the (only) element (a1, b1) where the indicies sum to 2, then we list
the elements (a2, b1), (a1, b2) where the indicies sum to 3, then the elements
(a3, b1), (a2, b2), (a1, b3) where the indicies sum to 4 etc.) 2

Remark: If A1, A2, . . . , An is a finite collection of countable sets, then the
cartesian product A1 × A2 × · · · × An is countable. This can be proved di-
rectly by using the “index trick” in the proof above, or by induction using
that A1×· · ·×Ak×Ak+1 is essentially the same set as (A1×· · ·×Ak)×Ak+1.

The “index trick” can also be used to prove the next result:

Proposition 1.6.2 If the sets A1, A2, . . . , An, . . . are countable, so is their
union

⋃
n∈NAn. Hence a countable union of countable sets is itself countable.

Proof: Let Ai = {ai1, ai2, . . . , ain, . . .} be a listing of the i-th set. Then

{a11, a21, a12, a31, a22, a13, a41, a32, . . .}

is a listing of
⋃
i∈NAi. 2

Proposition 1.6.1 can also be used to prove that the rational numbers
are countable:

Proposition 1.6.3 The set Q of all rational numbers is countable.
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Proof: According to Proposition 1.6.1, the set Z × N is countable and can
be listed (a1, b1), (a2, b2), (a3, b3), . . .. But then a1

b1
, a2b2 ,

a3
b3
, . . . is a list of all

the elements in Q (due to cancellations, all rational numbers will appear
infinitely many times in this list, but that doesn’t matter). 2

Finally, we prove an important result in the opposite direction:

Theorem 1.6.4 The set R of all real numbers is uncountable.

Proof: (Cantor’s diagonal argument) Assume for contradiction that R is
countable and can be listed r1, r2, r3, . . .. Let us write down the decimal
expansions of the numbers on the list:

r1 = w1.a11a12a13a14 . . .

r2 = w2.a21a22a23a24 . . .

r3 = w3.a31a32a33a34 . . .

r4 = w4.a41a42a43a44 . . .
...

...
...

(wi is the integer part of ri, and ai1, ai2, ai3, . . . are the decimals). To get our
contradiction, we introduce a new decimal number c = 0.c1c2c3c4 . . . where
the decimals are defined by:

ci =


1 if aii 6= 1

2 if aii = 1

This number has to be different from the i-th number ri on the list as the
decimal expansions disagree in the i-th place (as c has only 1 and 2 as dec-
imals, there are no problems with nonuniqueness of decimal expansions).
This is a contradiction as we assumed that all real numbers were on the
list. 2

Exercises to Section 1.6

1. Show that a subset of a countable set is countable.

2. Show that if A1, A2, . . . An are countable, then A1×A2×· · ·An is countable.

3. Show that the set of all finite sequences (q1, q2, . . . , qk), k ∈ N, of rational
numbers is countable.

4. Show that if A is an infinite, countable set, then there is a list a1, a2, a3, . . .
which only contains elements in A and where each element in A appears
only once. Show that if A and B are two infinite, countable sets, there is a
bijection (i.e. an injective and surjective function) f : A→ B.

5. Show that the set of all subsets of N is uncountable (Hint: Try to modify the
proof of Theorem 1.6.4.)



Chapter 2

The Foundation of Calculus

In this chapter we shall take a look at some of the fundamental ideas of
calculus that we shall build on in the rest of the book. How much new you
will find here, depends on your calculus courses. Have you followed a fairly
theoretical calculus sequence, almost everything may be familiar, but if your
calculus courses were only geared towards calculations and applications, you
should work through this chapter before you approach the more abstract
theory in Chapter 3.

What we shall study here is a mixture of theory and technique. We
begin by looking at the ε-δ-technique for making definitions and proving
theorems. You may have found this an incomprehensible nuisance in your
calculus courses, but when you get to mathematical analysis, it becomes an
indispensable tool that you have to master – the subject matter becomes so
complicated that there is no other way to get a good grasp of it. We shall
see how the ε-δ-technique can be used to treat such fundamental notions as
convergence and continuity.

The next topic we shall look at is completeness of R and Rn. Although
it is often undercommunicated in calculus courses, this is the property that
makes calculus work – it guarantees that there are enough real numbers to
support our belief in a one-to-one correspondence between real numbers and
points on a line. There are two ways to introduce the completeness of R –
by least upper bounds and Cauchy sequences – and we shall look at them
both. Least upper bounds will be an important tool throughout the book,
and Cauchy sequences will show us how completeness can be extended to
more general structures.

In the last section we shall take a look at four important theorems from
calculus: the Intermediate Value Theorem, the Bolzano-Weierstrass Theo-
rem, the Extreme Value Theorem, and the Mean Value Theorem. All these
theorems are based on the completeness of the real numbers, and they in-
troduce themes that will be important later in the book.

19
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2.1 ε-δ and all that

One often hears that the fundamental concept of calculus is that of a limit,
but the notion of limit is based on an even more fundamental concept,
that of the distance between points. When something approaches a limit,
the distance between this object and the limit point decreases to zero. To
understand limits, we first of all have to understand the notion of distance.

Norms and distances

As you know, the distance between two points x = (x1, x2, . . . , xm) and
y = (y1, y2, . . . , ym) in Rm is

||x− y|| =
√

(x1 − y1)2 + (x2 − y2)2 + · · ·+ (xm − ym)2

If we have two numbers x, y on the real line, this expression reduces to

|x− y|

Note that the order of the points doesn’t matter: ||x − y|| = ||y − x|| and
|x− y| = |y − x|.

That the concept of distance between points is based on the notions of
absolute values and norms may seem bad news to you if you are uncom-
fortable with these notions, but don’t despair: there isn’t really that much
about absolute values and norms that you need to know to begin with.

The first thing I would like to emphasize is:

Whenever you see expressions of the form ||x− y||,
think of the distance between x and y.

Don’t think of norms or individual point; think of the distance between the
points! The same goes for expressions of the form |x − y| where x, y ∈ R:
Don’t think of numbers and absolute values; think of the distance between
two points on the real line!

The next thing you need to know, is the triangle inequality which says
that if x,y ∈ Rm, then

||x + y|| ≤ ||x||+ ||y||

If we put x = u−w and y = w − v, this inequality becomes

||u− v|| ≤ ||u−w||+ ||w − v||

Try to understand this inequality geometrically. It says that if you are given
three points u,v,w in Rm, the distance ||u− v|| of going directly from u to
v is always less than or equal to the combined distance ||u−w||+ ||w − v||
of first going from u to w and then continuing from w to v.
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The triangle inequality is important because it allows us to control the
size of the sum x + y if we know the size of the individual parts x and y.

Remark: It turns out that the notion of distance is so central that we can
build a theory of convergence and continuity on it alone. This is what we
are going to do in the next chapter where we introduce the concept of a
metric space. Roughly speaking, a metric space is a set with a measure of
distance that satisfies the triangle inequality.

Convergence of sequences

As a first example of how our notion of distance can be used to define limits,
we’ll take a look at convergence of sequences. How do we express that a
sequence {xn} of real numbers converges to a number a? The intuitive idea
is that we can get xn as close to a as we want by going sufficiently far out
in the sequence; i.e., we can get the distance |xn − a| as small as we want
by choosing n sufficiently large. This means that if our wish is to get the
distance |xn− a| smaller than some chosen number ε > 0, there is a number
N ∈ N (indicating what it means to be “sufficiently large”) such that if
n ≥ N , then |xn − a| < ε. Let us state this as a formal definition.

Definition 2.1.1 A sequence {xn} of real numbers converges to a ∈ R if
for every ε > 0, there is an N ∈ N such that |xn− a| < ε for all n ≥ N . We
write limn→∞ xn = a.

The definition says that for every ε > 0, there should be N ∈ N satisfying
a certain requirement. This N will usually depend on ε – the smaller ε gets,
the larger we have to choose N . Some books emphasize this relationship by
writing N(ε) for N . This may be a good pedagogical idea in the beginning,
but as it soon becomes a burden, I shall not follow it in this book.

If we think of |xn−a| as the distance between xn and a, it’s fairly obvious
how to extend this definition to sequences {xn} of points in Rm.

Definition 2.1.2 A sequence {xn} of points in Rm converges to a ∈ Rm if
for every ε > 0, there is an N ∈ N such that ||xn − a|| < ε for all n ≥ N .
Again we write limn→∞ xn = a

Note that if we want to show that {xn} does not converge to a ∈ Rm,
we have to find an ε > 0 such that no matter how large we choose N ∈ N,
there is always an n ≥ N such that ||xn − a|| ≥ ε.

Remark: Some people like to think of the definition above as a game
between two players, I and II. Player I wants to show that the sequence
{xn} does not converge to a, while player wants to show that it does. The
game is very simple: Player I chooses a number ε > 0, and player II responds



22 CHAPTER 2. THE FOUNDATION OF CALCULUS

with a number N ∈ N. Player II wins if ||xn−a|| < ε for all n ≥ N , otherwise
player I wins.

If the sequence {xn} converges to a, player II has a winning strategy in
this game: No matter which ε > 0 player I chooses, player II has a response
N that wins the game. If the sequence does not converge to a, it’s player I
that has a winning strategy – she can play an ε > 0 that player II cannot
parry.

Let us take a look at a simple example of how the triangle inequality can
be used to prove results about limits.

Proposition 2.1.3 Assume that {xn} og {yn} are two sequences in Rm
converging to a and b, respectively. Then the sequence {xn +yn} converges
to a + b.

Proof: We must show that given an ε > 0, we can always find an N ∈ N
such that ||(xn + yn) − (a + b)|| < ε for all n ≥ N . We start by collecting
the terms that “belong together”, and then use the triangle inequality:

||(xn + yn)− (a + b)|| = ||(xn − a) + (yn − b)|| ≤ ||xn − a||+ ||yn − b||

As xn converges to a, we know that there is anN1 ∈ N such that ||xn−a|| < ε
2

for all n ≥ N1 (if you don’t understand this, see the remark below). As yn
converges to b, we can in the same way find anN2 ∈ N such that ||yn−b|| < ε

2
for alle n ≥ N2. If we put N = max{N1, N2}, we see that when n ≥ N ,
then

||(xn + yn)− (a− b)|| ≤ ||xn − a||+ ||yn − b|| < ε

2
+
ε

2
= ε

This is what we set out to show, and the proposition is proved. 2

Remark: Many get confused when ε
2 shows up in the proof above and

takes over the rôle of ε: We are finding an N1 such that ||xn− a|| < ε
2 for all

n ≥ N1. But there is nothing irregular in this; since xn → a, we can tackle
any “epsilon-challenge”, including half of the original epsilon.

Continuity

Let us now see how we can use the notion of distance to define continuity.
Intuitively, one often says that a function f : R → R is continuous at a
point a if f(x) approaches f(a) as x approaches a, but this is not a precise
definition (at least not until one has agreed on what it means for f(x) to
“approach” f(a)). A better alternative is to say that f is continuous at a
if we can get f(x) as close to f(a) as we want by choosing x sufficiently
close to a. This means that if we want f(x) to be so close to f(a) that the



2.1. ε-δ AND ALL THAT 23

distance |f(x)− f(a)| is less than some number ε > 0 that we have chosen,
it should be possible to find a δ > 0 such that if the distance |x − a| from
x to a is less than δ, then |f(x) − f(a)| is indeed less than ε. This is the
formal definition of continuity:

Definition 2.1.4 A function f : R → R is continuous at a point a ∈ R if
for every ε > 0 there is a δ > 0 such that if |x−a| < δ, then |f(x)−f(a)| < ε.

Again we may think of a game between two players: player I who wants
to show that the function is discontinuous at a, and player II who wants to
show that it is continuous at a. The game is simple: Player I first picks a
number ε > 0, and player II responds with a δ > 0. Player I wins if there
is an x such that |x − a| < δ and |f(x) − f(a)| ≥ ε, and player II wins
if |f(x) − f(a)| < ε whenever |x − a| < δ. If the function is continuous
at a, player II has a winning strategy – she can always parry an ε with
a judiciuos choice of δ. If the function is discontinuous at a, player II has
a winning strategy – he can choose an ε > 0 that no choice of δ > 0 can parry.

Let us for a change take a look at a situation where player I wins, i.e.
where the function f is not continuous.

Example 1: Let

f(x) =


1 if x ≤ 0

2 if x > 0

Intuitively this function has a discontinuity at 0 as it makes a jump there,
but how is this caught by the ε-δ-definition? We see that f(0) = 1, but that
there are points arbitrarily near 0 where the function value is 2. If we now
(acting as player I) choose an ε < 1, player II cannot parry: No matter how
small she chooses δ > 0, there will be points x, 0 < x < δ where f(x) = 2,
and consequently |f(x)− f(0)| = |2− 1| = 1 > ε. Hence f is discontinuous
at 0.

Let us now take a look at a more complex example of the ε-δ-technique
where we combine convergence and continuity.

Proposition 2.1.5 The function f : R→ R is continuous at a if and only
if limn→∞ f(xn) = f(a) for all sequences {xn} that converge to a.

Proof: Assume first that f is continuous at a, and that limn→∞ xn = a. We
must show that f(xn) converges to f(a), i.e., that for a given ε > 0, there
is always an N ∈ N such that |f(xn) − f(a)| < ε when n ≥ N . Since f
is continuous at a, there is a δ > 0 such that |f(x) − f(a)| < ε whenever
|x − a| < δ. But we know that xn converges to a, and hence there is an
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N ∈ N such that |xn − a| < δ when n ≥ N (observe that δ now plays the
part that usually belongs to ε, but that’s unproblematic). We now see that
if n ≥ N , then |xn−a| < δ, and hence |f(xn)− f(a)| < ε, which proves that
{f(xn)} converges to f(a).

It remains to show that if f is not continuous at a, then there is at
least one sequence {xn} that converges to a without {f(xn)} converging to
f(a). Since f is discontinuous at a, there is an ε > 0 such that no matter
how small we choose δ > 0, there is a point x such that |x − a| < δ, but
|f(x) − f(a)| ≥ ε. If we choose δ = 1

n , there is thus a point xn such that
|xn−a| < 1

n , but |f(xn)− f(a)| ≥ ε. The sequence {xn} converges to a, but
{f(xn)} does not converge to f(a) (since f(xn) always has distance at least
ε to f(a)). 2

The proof above shows how we can combine different forms of depen-
dence. Note in particular how old quantities reappear in new rôles – suddenly
δ is playing the part that usually belongs to ε. This is unproblematic as what
symbol we are using to denote a quantity, is irrelevant; what we usually call
ε, could just as well have been called a, b – or δ. The reason why we are
always trying to use the same symbol for quantities playing fixed rôles, is
that it simplifies our mental processes – we don’t have to waste effort on
remembering what the symbols stand for.

Let us also take a look at continuity in Rn. With our “distance philoso-
phy”, this is just a question of reinterpreting the definition in one dimension:

Definition 2.1.6 A function F : Rn → Rm is continuous at the point a if
for every ε > 0, there is a δ > 0 such that ||F(x) − F(a)|| < ε whenever
||x− a|| < δ.

You can test your understanding by proving the following higher dimen-
sional version of Proposition 2.1.5:

Proposition 2.1.7 The function F : Rn → Rm is continuous at a if and
only if limk→∞F(xk) = F(a) for all sequences {xk} that converge to a.

For simplicity, I have so far only defined continuity for functions defined
on all of R or all of Rn, but later in the chapter we shall meet functions that
are only defined on subsets, and we need to know what it means for them
to be continuous. All we have to do, is to relativize the definition above:

Definition 2.1.8 Assume that A is a subset of Rn and that a is an element
of A. A function F : A→ Rm is continuous at the point a if for every ε > 0,
there is a δ > 0 such that ||F(x)−F(a)|| < ε whenever ||x−a|| < δ and x ∈ A.

All the results above continue to hold as long as we restrict our attention
to points in A.
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Estimates

There are several reasons why many students find ε-δ-arguments difficult.
One reason is that they find the basic definitions hard to grasp, but I hope
the explanations above have helped you overcome these difficulties, at least
to a certain extent. Another reason is that ε-δ-arguments are often techni-
cally complicated and involve a lot of estimation, something most student
find difficult. I’ll try to give you some help with this part by working care-
fully through an example.

Before we begin, I would like to emphasize that when we doing an ε-δ-
argument, we are looking for some δ > 0 that does the job, and there is
usually no sense in looking for the best (i.e. the largest) δ. This means that
we can often simplify the calculations by using estimates instead of exact
values, e.g., by saying things like “this factor can never be larger than 10,
and hence it suffices to choose δ equal to ε

10 .”
Let’s take a look at the example:

Proposition 2.1.9 Assume that g : R → R is continuous at the point a,
and that g(a) 6= 0. Then the function h(x) = 1

g(x) is continuous at a.

Proof: Given an ε > 0, we must show that there is a δ > 0 such that
| 1
g(x) −

1
g(a) | < ε when |x− a| < δ.

Let us first write the expression on a more convenient form. Combining
the fractions, we get ∣∣∣∣ 1

g(x)
− 1

g(a)

∣∣∣∣ =
|g(a)− g(x)|
|g(x)||g(a)|

Since g(x)→ g(a), we can get the numerator as small as we wish by choosing
x sufficiently close to a. The problem is that if the denominator is small,
the fraction can still be large (remember that small denominators produce
large fractions – we have to think upside down here!) One of the factors
in the denominator, |g(a)|, we can control quite easily as it is a constant.
What about the other factor |g(x)|? Since g(x)→ g(a) 6= 0, this factor can’t
be too small when x is close to a; there must, e.g., be a δ1 > 0 such that
|g(x)| > |g(a)]

2 when |x− a| < δ1 (think through what is happening here – it
is actually a separate little ε-δ-argument). For all x such that |x− a| < δ1,
we thus have∣∣∣∣ 1

g(x)
− 1

g(a)

∣∣∣∣ =
|g(a)− g(x)|
|g(x)||g(a)|

<
|g(a)− g(x)|
|g(a)|

2 |g(a)|
=

2

|g(a)|2
|g(a)− g(x)|

How can we get this impression less than ε? We obviously need to get
|g(a) − g(x)| < |g(a)|2

2 ε, and since g is continuous at a, we know there is a
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δ2 > 0 such that |g(a)− g(x)| < |g(a)|2
2 ε whenever |x− a| < δ2. If we choose

δ = min{δ1, δ2}, we get∣∣∣∣ 1

g(x)
− 1

g(a)

∣∣∣∣ ≤ 2

|g(a)|2
|g(a)− g(x)| < 2

|g(a)|2
|g(a)|2

2
ε = ε

and the proof is complete. 2

Exercises for Section 2.1

1. Show that if the sequence {xn} converges to a, then the sequence {Mxn}
(where M is a constant) converges to Ma. Use the definition of convergence
and explain carefully how you find N when ε is given.

2. Use the definition of continuity to show that if f : R → R is continuous at
a point a, then the function g(x) = Mf(x), where M is a constant, is also
continuous at a.

3. Use the definition of continuity to show that if f, g : R → R are continuous
at a point a, then so is f + g.

4. Use the definition of continuity to show that if f, g : R → R is continu-
ous at the point a, then so is fg. (Hint: Write |f(x)g(x) − f(a)g(a)| =
|(f(x)g(x)− f(a)g(x)) + (f(a)g(x)− f(a)g(a))| and use the triangle inequal-
ity.) Then combine this result with Proposition 2.1.9 to show that if f and
g are continuous at a and g(a) 6= 0, then f

g is continuous at a.

5. Use the definition of continuity to show that if f(x) = 1√
x
is continuous at

all points a > 0.

6. Use the triangle inequality to prove that | ||a|−|b|| | ≤ ||a−b|| for all a,b ∈ Rn.

2.2 Completeness

Completeness is probably the most important concept in this book. It will
be introduced in full generality in the next chapter, but in this section we
shall take a brief look at what it’s like in R and Rn.

The Completeness Principle

Assume that A is a nonempty subset of R. We say that A is upper bounded
if there is a number b ∈ R such that b ≥ a for all a ∈ A, and we say that A
is lower bounded if there is a number c ∈ R such that c ≤ a for all a ∈ A.
We call b and c an upper and lower bound of A, respectively.

If b is an upper bound for A, all larger numbers will also be upper
bounds. How far can we push it in the opposite direction? Is there a least
upper bound, i.e. an upper bound d such that d < b for all other upper
bounds b? The Completeness Principle says that there is:
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The Completeness Principle: Every nonempty, upper bounded subset A
of R has a least upper bound.

The least upper bound of A is also called the supremum of A and is denoted
by

supA

We shall sometimes use this notation even when A in not upper bounded,
and we then put

supA =∞

This doesn’t mean that we count ∞ as a number; it is just a short way of
expressing that A stretches all the way to infinity.

We also have a completeness property for lower bounds, but we don’t
have to state that as a separate principle as it follows from the Completeness
Principle above (see Exercise 2 for help with the proof).

Proposition 2.2.1 (The Completeness Principle for Lower Bounds)
Every nonempty, lower bounded subset A of R has a greatest lower bound.

The greatest lower bound of A is also called the infimum of A and is denoted
by

inf A

We shall sometimes use this notation even when A in not lower bounded,
and we then put

inf A = −∞

Here is a simply example showing some of the possibilities:

Example 1: We shall describe supA and inf A for the following sets.

(i) A = [0, 1]: We have supA = 1 and inf A = 0. Note that in this case
both supA and inf A are elements of A.

(ii) A = (0, 1]: We have supA = 1 and inf A = 0 as above, but in this case
supA ∈ A while inf A /∈ A.

(iii) A = N: We have supA = ∞ and inf A = 1. In this case supA /∈ A
(supA isn’t even a real number) while inf A ∈ A. ♣

The first obstacle in understanding the Completeness Principle is that
it seems so obvious – doesn’t it just tell us the trivial fact that a bounded
set has to stop somewhere? Well, it actually tells us a little bit more; it
says that there is a real number that marks where the set ends. To see the
difference, let’s take a look at an example.
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Example 2: The set
A = {x ∈ R |x2 < 2}

has
√

2 as its least upper bound. Although this number is not an element
of A, it marks in a natural way where the set ends. Consider instead the set

B = {x ∈ Q |x2 < 2}
If we are working in R,

√
2 is still the least upper bound. However, if we

insist on working with only the rational numbers Q, the set B will not have
a least upper bound (in Q) – the only candidate is

√
2 which isn’t a rational

number. The point is that there isn’t a number in Q that marks where B
ends – only a gap that is filled by

√
2 when we extend Q to R. This means

that Q doesn’t satisfy the Completeness Principle, but that the principle
guarantees that we don’t find similar gaps in R. ♣

Now that we have realized that the Completeness Principle isn’t obvi-
ous, we may wonder why it is true. This depends on our approach to real
numbers. In some books, the real numbers are constructed from the ratio-
nal numbers, and the Completeness Principle is then a consequence of the
construction that has to be proved. In other books, the real numbers are
described by a list of axioms (a list of properties we want the system to
have), and the Completeness Principle is then one of these axioms. A more
everyday approach is to think of the real numbers as the set of all decimal
numbers, and the argument in the following example then gives us a good
feeling for why the Completeness Principle is true.

Example 3: Let A be a nonempty set of real numbers that has an upper
bound b, say b = 134.27. We now take a look at the integer parts of the
numbers in A. Clearly none of the integer parts can be larger than 134, and
probably they don’t even go that high. Let’s say 87 is the largest integer
part we find. We next look at all the elements in A with integer part 87
and ask what is the largest first decimal among these numbers. It cannot be
more than 9, and is probably smaller, say 4. We then look at all numbers
in A that starts with 87.4 and ask for the biggest second decimal. If it is
2, we next look at all numbers in A that starts with 87.42 and ask for the
largest third decimal. Continuing in this way, we produce an infinite decimal
expansion 87.42... which gives us the least upper bound of A.

Although I have chosen to work with specific numbers in this example,
it is clear that the procedure will work for all bounded sets. ♣

Which of the approaches to the Completeness Principle you prefer, doesn’t
matter for the rest of the book – we shall just take it to be an established
property of the real numbers. To understand the importance of this prop-
erty, one has to look at its consequences in different areas of calculus, and
we start with sequences.
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Monotone sequences, lim sup, and lim inf

A sequence {an} of real numbers is increasing if an+1 ≥ an for all n, and its
decreasing if an+1 ≤ an for all n. We say that a sequence is monotone if it’s
either increasing or decreasing. We also say that {an} is bounded if there is
a number M ∈ R such that |an| ≤M for all n.

Our first result on sequences looks like a trivilality, but is actually a very
powerful tool.

Theorem 2.2.2 All monotone, bounded sequences in R converge to a num-
ber in R.

Proof: We consider increasing sequences; the decreasing ones can be dealt
with in the same manner. Since the sequense {an} is bounded, the set

A = {a1, a2, a3, . . . , an, . . .}

consisting of all the elements in the sequence, is also bounded and hence has
a least upper bound a = supA. To show that the sequence converges to a,
we must show that for each ε > 0, there is an N ∈ N such that |a− an| < ε
whenever n ≥ N .

This is not so hard. As a is the least upper bound of A, a− ε can not be
an upper bound, and hence there must be an aN such that at aN > a − ε.
Since the sequence is increasing, this means that a − ε < an ≤ a for all
n ≥ N , and hence |a− an| < ε for such n. 2

Note that the theorem does not hold if we replace R by Q: The sequence

1, 1.4, 1.41, 1.414, 1.4142, . . . ,

consisting of longer and longer decimal approximations to
√

2, is a bounded,
increasing sequence of rational numbers, but it does not converge to a num-
ber in Q (it converges to

√
2 which is not in Q).

The theorem above doesn’t mean that all sequences converge – un-
bounded sequences may go to ∞ or −∞, and oscillating sequences may
refuse to settle down anywhere. They will, however, always have upper and
lower limits captured by the notions of limit superior, lim sup, and limit in-
ferior, lim inf. You may not have seen these notions in your calculus courses,
but we shall need them now and then later in the book.

Given a sequence {an} of real numbers, we define two new sequences
{Mn} and {mn} by

Mn = sup{ak | k ≥ n}

and
mn = inf{ak | k ≥ n}
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We allow that Mn = ∞ and that mn = −∞ as may well occur. Note that
the sequence {Mn} is decreasing (as we are taking suprema over smaller
and smaller sets), and that {mn} is increasing (as we are taking infima over
increasingly smaller sets). Since the sequences are monotone, the limits

lim
n→∞

Mn and lim
n→∞

mn

exist (we allow them to be ∞ or −∞ if the sequences are unbounded). We
now define the limit superior of the original sequence {an} to be

lim sup
n→∞

an = lim
n→∞

Mn

and the limit inferior to be

lim inf
n→∞

an = lim
n→∞

mn

The intuitive idea is that as n goes to infinity, the sequence {an} may oscil-
late and not converge to a limit, but the oscillations will be asymptotically
bounded by lim sup an above and lim inf an below.

The following relationship should be no surprise:

Proposition 2.2.3 Let {an} be a sequence of real numbers. Then

lim
n→∞

an = b

if and only if
lim sup
n→∞

an = lim inf
n→∞

an = b

(we allow b to be a real number or ±∞.)

Proof: Assume first that lim supn→∞ an = lim infn→∞ an = b. Since mn ≤
an ≤Mn, and

lim
n→∞

mn = lim inf
n→∞

an = b ,

lim
n→∞

Mn = lim sup
n→∞

an = b ,

we clearly have limn→∞ an = b by “squeezing”.
We now assume that limn→∞ an = b where b ∈ R (the cases b = ±∞

are left to the reader). Given an ε > 0, there exists an N ∈ N such that
|an − b| < ε for all n ≥ N . In other words

b− ε < an < b+ ε

for all n ≥ N . But then

b− ε ≤ mn < b+ ε

and
b− ε < Mn ≤ b+ ε

for n ≥ N . Since this holds for all ε > 0, we have lim supn→∞ an =
lim infn→∞ an = b 2
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Cauchy sequences

As there is no natural way to order the points in Rm when m > 1, it is not
natural to use upper and lower bounds to describe the completeness of Rm.
Instead we shall use the notion of Cauchy sequences that also generalizes
nicely to the more abstract structures we shall study later in the book. Let
us begin with the definition.

Definition 2.2.4 A sequence {xn} in Rm is called a Cauchy sequence if
for every ε > 0 there is an N ∈ N such that ||xn − xk|| < ε when n, k ≥ N .

Intuitively, a Cauchy sequence is a sequence where the terms are squeezed
tighter and tighter the further out in the sequence we get.

The completeness of Rm will be formulated as a theorem:

Theorem 2.2.5 (Completeness of Rm) A sequence {xn} in Rm con-
verges if and only if it is a Cauchy sequence.

At first glance it is not easy to see the relationship between this theorem and
the Completeness Principle for R, but there is at least a certain similarity on
the idea level – in a space “without holes”, the terms in a Cauchy sequence
ought to be squeezed towards a limit point.

We shall use the Completeness Principle to prove the theorem above,
first for R and then for Rm. Note that the theorem doesn’t hold in Q (or in
Qm for m > 1); the sequence

1, 1.4, 1.41, 1.414, 1.4142, . . . ,

of approximations to
√

2 is a Cauchy sequence in Q that doesn’t converge
to a number in Q.

We begin by proving the easy implication.

Proposition 2.2.6 All convergent sequences in Rm are Cauchy sequences.

Proof: Assume that {an} converges to a. Given an ε < 0, there is an N ∈ N
such that ||an − a|| < ε

2 for all n ≤ N . If n, k ≥ N , we then have

||an − ak|| = ||(an − a) + (a− ak|| ≤ ||an − a||+ ||a− ak|| <
ε

2
+
ε

2
= ε ,

and hence {an} is a Cauchy sequence. 2

Note that the proof above doesn’t rely on the Completeness Principle; it
works equally well in Qm. The same holds for the next result which we only
state for sequences in R, although it holds for sequences in Rm (and Qm).

Lemma 2.2.7 Every Cauchy sequence in R is bounded.



32 CHAPTER 2. THE FOUNDATION OF CALCULUS

Proof: We can use the definition of a Cauchy sequence with any ε, say
ε = 1. According to the definition, there is an N ∈ N such that |an−ak| < 1
whenever n, k ≥ N . In particular, we have |an − aN | < 1 for all n > N .
This means that

K = max{a1, a2, . . . , aN−1, aN + 1}

is an upper bound for the sequence and that

k = min{a1, a2, . . . aN−1, xN − 1}

is a lower bound. 2

We can now complete the first part of our program. The proof relies on
the Completeness Principle through Theorem 2.2.2 and Proposition 2.2.4.

Proposition 2.2.8 All Cauchy sequences in R converge.

Proof: Let {an} be a Cauchy sequence. Since {an} is bounded, the upper
and lower limits

M = lim sup
n→∞

an og m = lim inf
n→∞

an

are finite, and according to Proposition 2.2.3, it suffices to show thatM = m.
Given an ε > 0, there is an N ∈ N such that |an − ak| < ε whenever

n, k ≥ N . In particular, we have |an − aN | < ε for all n ≥ N . This means
that mk ≥ aN − ε and Mk ≤ aN + ε for k ≥ N . Consequently Mk−mk ≤ 2ε
for all k ≥ N . Hence M −m ≤ 2ε for every ε > 0, and this is only possible
if M = m. 2

We are now ready to prove the main theorem:

Proof of Theorem 2.2.5: As we have already proved that all convergent
sequences are Cauchy sequences, it only remains to prove that any Cauchy
sequence {an} converges. If we write out the components of an as

an = (a(1)
n , a(2)

n , . . . , a(m)
n )

the component sequences {a(k)
n } are Cauchy sequences in R and hence con-

vergent according to the previous result. But if the components converge,
so does the original sequence {an}. 2

The argument above shows how we can use the Completeness Principle
to prove that all Cauchy sequences converge. It’s possible to turn the argu-
ment around – to start by assuming that all Cauchy sequences converge and
deduce the Completeness Principle. The Complete Principle and Theorem
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2.2.5 can therefore be seen as describing the same notion from two differ-
ent angles – they capture the phenomenon of completeness in alternative
ways. They both have their advantages and disadvantages: The Complete-
ness Principle is simpler and easier to grasp, but convergence of Cauchy
sequences is easier to generalixe to other structures. In the next chapter we
shall generalize it to the setting of metric spaces.

It is probably not clear at this point why completeness is such an im-
portant property, but in the next section we shall prove four natural and
important theorems that all rely on completeness.

Exercises for section 2.2

1. Explain that sup [0, 1) = 1 and sup [0, 1] = 1. Note that 1 is an element in
the latter set, but not in the former.

2. Prove Proposition 2.2.1. (Hint: Define B = {−a : a ∈ A} and let b = supB.
Show that −b is the greatest lower bound of A).

3. Prove Theorem 2.2.2 for decreasing sequences.

4. Let an = (−1)n. Find lim supn→∞ an and lim infn→∞ an.

5. Let an = cos nπ2 . Find lim supn→∞ an and lim infn→∞ an.

6. Complete the proof of Proposition 2.2.3 for the cases b =∞ and b = −∞.

7. Show that
lim sup
n→∞

(an + bn) ≤ lim sup
n→∞

an + lim sup
n→∞

bn

and
lim inf
n→∞

(an + bn) ≥ lim inf
n→∞

an + lim inf
n→∞

bn

and find examples which show that we do not in general have equality. State
and prove a similar result for the product {anbn} of two positive sequences.

8. Assume that the sequence {an} is nonnegative and converges to a, and that
b = lim sup bn is finite and positive. Show that lim supn→∞ anbn = ab (the
result holds without the condition that b is positive, but the proof becomes
messy). What happens if the sequence {an} is negative?

9. We shall see how we can define lim sup and lim inf for functions f : R → R.
Let a ∈ R, and define (note that we exclude x = a in these definitions)

Mε = sup{f(x) |x ∈ (a− ε, a+ ε), x 6= a}

mε = inf{f(x) |x ∈ (a− ε, a+ ε), x 6= a}

for ε > 0 (we allow Mε =∞ and mε = −∞).

a) Show that Mε decreases and mε increases as ε→ 0.

b) Show that lim supx→a f(x) = limε→0+ Mε and lim infx→a f(x) = limε→0+ mε

exist (we allow ±∞ as values).

c) Show that limx→a f(x) = b if and only if lim supx→a f(x) = lim infx→a f(x) =
b
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d) Find lim infx→0 sin 1
x and lim supx→0 sin 1

x

10. Assume that {an} is a sequence in Rm, and write the terms on component
form

an = (a(1)n , a(2)n , . . . , a(m)
n )

Show that {an} converges if and only if all of the component sequences {a(k)n },
k = 1, 2, . . . ,m converge.

2.3 Four important theorems

We shall end this chapter by taking a look at some famous and important
theorems of single- and multivariable calculus: The Intermediate Value The-
orem, the Bolzano-Weierstrass Theorem, the Extreme Value Theorem, and
the Mean Value Theorem. These results are both a foundation and an in-
spiration for much of what is going to happen later in the book. Some of
them you have probably seen before, others you may not.

The Intermediate Value Theorem

This theorem says that a continuous function cannot change sign without
intersecting the x-axis.

Theorem 2.3.1 (The Intermediate Value Theorem) Assume that f :
[a, b] → R is continuous and that f(a) and f(b) have opposite sign. Then
there is a point c ∈ (a, b) such that f(c) = 0.

Proof: We shall consider the case where f(a) < 0 < f(b); the other case can
be treated similarly. Let

A = {x ∈ [a, b] : f(x) < 0}

and put c = supA. We shall show that f(c) = 0. Observe first that since f
is continuous and f(b) is strictly positive, our point c has to be strictly less
than b. This means that the elements of the sequence xn = c+ 1

n lie in the
interval [a, b] for all sufficiently large n. Hence f(xn) > 0 for all such n. By
Proposition 2.1.5, f(c) = limn→∞ f(xn), and as f(xn) > 0, we must have
f(c) ≥ 0.

On the other hand, by definition of c there must for each n ∈ N be an el-
ement zn ∈ A such that c− 1

n < zn ≤ c. Hence f(zn) < 0 and zn → c. Using
proposition 2.1.5 again, we get f(c) = limn→∞ f(zn), and since f(zn) < 0,
this means that f(c) ≤ 0. But then we have both f(c) ≥ 0 and f(c) ≤ 0,
which means that f(c) = 0. 2

The Intermediate Value Theorem may seem geometrically obvious, but
the next example indicates that it isn’t.
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Example 1: Define a function f : Q → Q by f(x) = x2 − 2. Then
f(0) = −2 < 0 and f(2) = 2 > 0, but still there isn’t a rational number c
between 0 and 2 such that f(c) = 0. Hence the Intermediate Value Theorem
doesn’t hold if we replace R by Q.

What is happening here? The function graph sneaks trough the x-axis
at
√

2 where the rational line has a gap. The Intermediate Theorem tells us
that this isn’t possible when we are using the real numbers. If you look at
the proof, you will see that the reason is that the Completeness Principle
allows us to locate a point c where the function value is 0.

The Bolzano-Weierstrass Theorem

To state and prove this theorem, we need the notion of a subsequence. If
we are given a sequence {xn} in Rm, we get a subsequence {yk} by picking
infinitely many (but usually not all) of the terms in {xn} and then combining
them to a new sequence. {yk}. More precisely, if

n1 < n2 < . . . < nk < . . .

are the indicies of the terms we pick, then our subsequence is {yk} = {xnk}.
Recall that a sequence {xn} in Rm is bounded if there is a number K ∈ R

such that ||xn|| ≤ K for all n. The Bolzano-Weierstrass Theorem says that all
bounded sequences in Rm have a convergent subsequence. This is a preview
of the notion of compactness that will play an important part later in the
book.

Let us first prove the Bolzano-Weierstrass Theorem for R.

Proposition 2.3.2 Every bounded sequence in R has a convergent subse-
quence.

Proof: Since the sequence is bounded, there is a finite interval I0 = [a0, b0]
that contains all the terms xn. If we divide this interval into two equally
long subintervals [a0,

a0+b0
2 ], [a0+b0

2 , b0], at least one of them must contain in-
finitely many terms from the sequence. Call this interval I1 (if both subin-
tervals contain infinitely many terms, just choose one of them). We now
divide I1 into two equally long subintervals in the same way, and observe
that at least one of them contains infinitely many terms of the sequence.
Call this interval I2. Continuing in this way, we get an infinite succession
of intervals {In}, all containing infinitely many terms of the sequence. Each
interval is a subinterval of the previous one, and the lengths of the intervals
tend to 0.

We are now ready to define the subsequence. Let y1 be the first element
of the original sequence {xn} that lies in I1. Next, let y2 be the first element
after y1 that lies in I2, then let y3 be the first element after y2 that lies in I3
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etc. Since all intervals contain infinitely many terms of the sequence, such a
choice is always possible, and we obtain a subsequence {yk} of the original
sequence. As the yk’s lie nestet in shorter and shorter intervals, {yk} is a
Cauchy sequence and hence converges. 2

We are now ready for the main theorem.

Theorem 2.3.3 (The Bolzano-Weierstrass Theorem) Every bounded
sequence in Rm has a convergent subsequence.

Proof: Let {xn} be our sequence, and write it on component form

xn = (x(1)
n , x(2)

n , . . . , x(m)
n )

According to the proposition above, there is a subsequence {xnk} where the
first components {x(1)

nk } converge. If we use the proposition again, we get a
subsequence of {xnk} where the second components converge (the first com-
ponents will continue to converge to the same limit as before). Continuing
in this way, we end up with a subsequence where all components converge,
and then the subsequence itself converges. 2

We shall see a typical example of how the Bolzano-Weierstrass Theorem
is used in the proof of the next result.

The Extreme Value Theorem

Finding maximal and minimal values of functions are important in many
parts of mathematics. Before one sets out to find them, it’s often smart to
check that they exist, and then the Extreme Value Theorem is a useful tool.
The theorem has a version that works in Rm, but as I don’t want to introduce
extra concepts just for this theorem, I’ll stick to the one-dimensional version.

Theorem 2.3.4 (The Extreme Value Theorem) Assume that [a, b] is
a closed, bounded interval, and that f : [a, b]→ R is a continuous function.
Then f has maximum and minimum points, i.e. there are points c, d ∈ [a, b]
such that

f(d) ≤ f(x) ≤ f(c)

for all x ∈ [a, b].

Proof: We show that f has a maximum point; the argument for a minimum
point is similar.

Let
M = sup{f(x) | x ∈ [a, b]}

(as we don’t know yet that f is bounded, we have to consider the possibility
that M = ∞). Choose a sequence {xn} in [a, b] such that f(xn) → M
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(such a sequence exists regardless of whether M is finite or not). Since
[a, b] is bounded, {xn} has a convergent subsequence {yk} by the Bolzano-
Weierstrass Theorem, and since [a, b] is closed, the limit c = limk→∞ yk
belongs to [a, b]. By construction f(yk) → M , but on the other hand,
f(yk) → f(c) according to Proposition 2.1.5. Hence f(c) = M , and as
M = sup{f(x) | x ∈ [a, b]}, we have found a maximum point c for f on
[a, b]. 2.

The Mean Value Theorem

The last theorem we are going to look at, differs from the others in that it
involves differentiable (and not only continuous) functions. Recall that the
derivative of a function f at a point a is defined by

f ′(a) = lim
x→a

f(x)− f(a)

x− a

The function f is differentiable at a if the limit on the right exists (otherwise
the function doesn’t have a derivative at a).

We need a few lemmas. The first should come as no surprise.

Lemma 2.3.5 Assume that f : [a, b] → R has a maximum or minimum at
an inner point c ∈ (a, b) where the function is differentiable. Then f ′(c) = 0.

Proof: Assume for contradiction that f ′(c) > 0 (the case where f ′(c) < 0
can be treated similarly). Since

f ′(c) = lim
x→c

f(x)− f(c)

x− c
,

we must have f(x)−f(c)
x−c > 0 for all x sufficiently close to c. If x > c, this

means that f(x) > f(c), and if x < c, it means that f(x) < f(c). Hence c
is neither a maximum nor a minimum for f , contradiction. 2

For the proof of the next lemma, we bring in the Extreme Value Theorem.

Lemma 2.3.6 (Rolle’s Theorem) Assume that f : [a, b]→ R is continu-
ous in all of [a, b] and differentiable at all inner points x ∈ (a, b). Assume
further that f(a) = f(b). Then there is a point c ∈ (a, b) where f ′(c) = 0,

Proof: If f is constant, f ′(x) = 0 at all inner points x, and there is nothing
more to prove. According to the Extreme Value Theorem, the function has
minimum and maximum points, and if it is not constant, at least one of
these must be at an inner point c (here we are using that the value at the
end points are equal). According to the previous lemma, f ′(c) = 0. 2
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We are now ready to prove the theorem. It says that for differentiable
functions there is in each interval a point where the instantaneous growth
of the function equals it average growth over the interval.

Theorem 2.3.7 (The Mean Value Theorem) Assume that f : [a, b] →
R is continuous in all of [a, b] and differentiable at all inner points x ∈ (a, b).
Then there is a point c ∈ (a, b) such that

f ′(c) =
f(b)− f(a)

b− a

Proof: Let g be the function

g(x) = f(x)− f(b)− f(a)

b− a
(x− a)

It is easy to check that g(a) and g(b) are both equal to f(a), and according
to Rolle’s Theorem there is a point c ∈ (a, b) where g′(c) = 0. As

g′(x) = f ′(x)− f(b)− f(a)

b− a

this means that
f ′(c) =

f(b)− f(a)

b− a
2

The Mean Value Theorem is an extremely useful tool in single variable
calculus, and in Chapter 6 we shall meet a version of it that also works in
higher (including infinite!) dimensions.

Exercises for section 2.3

In exercises 1-4 you are asked to show that the results above would not have hold if
had insisted on only working with rational numbers. As the Completeness Principle
is the only property that really separates R from Q, they underline the importance
of this principle.

1. Show that the function f : Q → Q defined by f(x) = 1
x2−2 is continuous at

all x ∈ Q, but that it is unbounded on [0, 2]. Compare to the Extremal Value
Theorem.

2. Show that the function f : Q → Q defined by f(x) = x3 − 6x is continuous
at all x ∈ Q, but that it does not have a maximum in [0, 2]Q, where [0, 2]Q =
[0, 2] ∩Q. Compare to the Extremal Value Theorem.

3. Show that the function f : Q → Q defined by f(x) = x3 − 9x satisfies
f(0) = f(3) = 0, but that there are no rational points in the interval [0, 3]
where the derivative is 0. Compare to the Mean Value Theorem. .

4. Find a bounded sequence in Q which does not have a subsequence converging
to a point in Q. Compare to the Bolzano-Weierstrass Theorem.
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5. Carry out the proof of the Intermediate Value Theorem in the case where
f(a) > 0 > f(b).

6. Explain why the sequence {yk} in the proof of Proposition 2.3.2 is a Cauchy
sequence.

7. Explain why there has to be a sequence {xn} as in the proof of the Extremal
Value Theorem.

8. Carry out the proof of Lemma 2.3.5 when f ′(c) < 0.

9. Assume that f og f ′ are continuous on the interval [a, b]. Show that there is
a constant M such that |f(x)− f(y)| ≤M |x− y| for all x, y ∈ [a, b].
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Chapter 3

Metric Spaces

Many of the arguments you have seen in several variable calculus are almost
identical to the corresponding arguments in one variable calculus, especially
arguments concerning convergence and continuity. The reason is that the
notions of convergence and continuity can be formulated in terms of dis-
tance, and that the notion of distance between numbers that you need in
one variable theory, is very similar to the notion of distance between points
or vectors that you need in the theory of functions of severable variables.
In more advanced mathematics, we need to find the distance between more
complicated objects than numbers and vectors, e.g. between sequences, sets
and functions. These new notions of distance leads to new notions of con-
vergence and continuity, and these again lead to new arguments suprisingly
similar to those we have already seen in one and several variable calculus.

After a while it becomes quite boring to perform almost the same argu-
ments over and over again in new settings, and one begins to wonder if there
is general theory that covers all these examples — is it possible to develop
a general theory of distance where we can prove the results we need once
and for all? The answer is yes, and the theory is called the theory of metric
spaces.

A metric space is just a set X equipped with a function d of two variables
which measures the distance between points: d(x, y) is the distance between
two points x and y in X. It turns out that if we put mild and natural
conditions on the function d, we can develop a general notion of distance
that covers distances between numbers, vectors, sequences, functions, sets
and much more. Within this theory we can formulate and prove results
about convergence and continuity once and for all. The purpose of this
chapter is to develop the basic theory of metric spaces. In later chapters we
shall meet some of the applications of the theory.

41
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3.1 Definitions and examples

As already mentioned, a metric space is just a setX equipped with a function
d : X×X → R which measures the distance d(x, y) beween points x, y ∈ X.
For the theory to work, we need the function d to have properties similar
to the distance functions we are familiar with. So what properties do we
expect from a measure of distance?

First of all, the distance d(x, y) should be a nonnegative number, and it
should only be equal to zero if x = y. Second, the distance d(x, y) from x to
y should equal the distance d(y, x) from y to x. Note that this is not always
a reasonable assumption — if we, e.g., measure the distance from x to y by
the time it takes to walk from x to y, d(x, y) and d(y, x) may be different —
but we shall restrict ourselves to situations where the condition is satisfied.
The third condition we shall need, says that the distance obtained by going
directly from x to y, should always be less than or equal to the distance we
get when we go via a third pont z, i.e.

d(x, y) ≤ d(x, z) + d(z, x)

It turns out that these conditions are the only ones we need, and we sum
them up in a formal definition.

Definition 3.1.1 A metric space (X, d) consists of a non-empty set X and
a function d : X ×X → [0,∞) such that:

(i) (Positivity) For all x, y ∈ X, d(x, y) ≥ 0 with equality if and only if
x = y.

(ii) (Symmetry) For all x, y ∈ X, d(x, y) = d(y, x).

(iii) (Triangle inequality) For all x, y, z ∈ X

d(x, y) ≤ d(x, z) + d(z, y)

A function d satisfying conditions (i)-(iii), is called a metric on X.

Comment: When it is clear – or irrelevant – which metric d we have in
mind, we shall often refer to “the metric space X” rather than “the metric
space (X, d)”.

Let us take a look at some examples of metric spaces.

Example 1: If we let d(x, y) = |x−y|, (R, d) is a metric space. The first two
conditions are obviously satisfied, and the third follows from the ordinary
triangle inequality for real numbers:

d(x, y) = |x− y| = |(x− z) + (z − y)| ≤ |x− z|+ |z − y| = d(x, z) + d(z, y)
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Example 2: If we let

d(x,y) = ||x− y|| =

√√√√ n∑
i=1

(xi − yi)2

then (Rn, d) is a metric space. The first two conditions are obviously satis-
fied, and the third follows from the triangle inequality for vectors the same
way as above :

d(x,y) = ||x−y|| = ||(x−z)+(z−y)|| ≤ ||x−z||+ ||z−y|| = d(x, z)+d(z,y)

Example 3: Assume that we want to move from one point x = (x1, x2)
in the plane to another y = (y1, y2), but that we are only allowed to move
horizontally and vertically. If we first move horizontally from (x1, x2) to
(y1, x2) and then vertically from (y1, x2) to (y1, y2), the total distance is

d(x,y) = |y1 − x1|+ |y2 − x2|

This gives us a metric on R2 which is different from the usual metric in
Example 2. It is often referred to as the Manhattan metric or the taxi cab
metric.

Also in this case the first two conditions of a metric space are obviously
satisfied. To prove the triangle inequality, observe that for any third point
z = (z1, z2), we have

d(x,y) = |y1 − x1|+ |y2 − x1| =

= |(y1 − z1) + (z1 − x1)|+ |(y2 − z2) + (z2 − x2)| ≤

≤ |y1 − z1|+ |z1 − x1|+ |y2 − z2|+ |z2 − x2| =

= |z1 − x1|+ |z2 − x2|+ |y1 − z1|+ |y2 − z2| =

= d(x, z) + d(z,y)

where we have used the ordinary triangle inequality for real numbers to get
from the second to the third line. ♣

Example 4: We shall now take a look at an example of a different kind.
Assume that we want to send messages in a language with N symbols (letters,
numbers, punctuation marks, space, etc.) We assume that all messages have
the same length K (if they are too short or too long, we either fill them out
or break them into pieces). We let X be the set of all messages, i.e. all
sequences of symbols from the language of length K. If x = (x1, x2, . . . , xK)
and y = (y1, y2, . . . , yK) are two messages, we define

d(x,y) = the number of indices n such that xn 6= yn
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It is not hard to check that d is a metric. It is usually referred to as the
Hamming-metric, and is much used in coding theory where it serves as a
measure of how much a message gets distorted during transmission. ♣

Example 5: There are many ways to measure the distance between func-
tions, and in this example we shall look at some. Let X be the set of all
continuous functions f : [a, b]→ R. Then

d1(f, g) = sup{|f(x)− g(x)| : x ∈ [a, b]}

is a metric on X. This metric determines the distance beween two functions
by measuring the distance at the x-value where the graphs are most apart.
This means that the distance between two functions may be large even if
the functions in average are quite close. The metric

d2(f, g) =

∫ b

a
|f(x)− g(x)| dx

instead sums up the distance between f(x) og g(x) at all points. A third
popular metric is

d3(f, g) =

(∫ b

a
|f(x)− g(x)|2 dx

) 1
2

This metric is a generalization of the usual (euclidean) metric in Rn:

d(x,y) =

√√√√ n∑
i=1

(xi − yi)2 =

(
n∑
i=1

(xi − yi)2

) 1
2

(think of the integral as a generalized sum). That we have more than one
metric onX, doesn’t mean that one of them is “right” and the others “wrong”,
but that they are useful for different purposes. ♣

Example 6: The metrics in this example may seem rather strange. Al-
though they are not very useful in applications, they are important to as
they are totally different from the metrics we are used to from Rn and may
help sharpen our intuition of how a metric can be. Let X be any non-empty
set, and define:

d(x, y) =


0 if x = y

1 if x 6= y

It is not hard to check that d is a metric on X, usually referred to as the
discrete metric. ♣
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Example 7: There are many ways to make new metric spaces from old.
The simplest is the subspace metric: If (X, d) is a metric space and A
is a non-empty subset of X, we can make a metric dA on A by putting
dA(x, y) = d(x, y) for all x, y ∈ A — we simply restrict the metric to A. It
is trivial to check that dA is a metric on A. In practice, we rarely bother to
change the name of the metric and refer to dA simply as d, but remember
in the back of our head that d is now restricted to A. ♣

There are many more types of metric spaces than we have seen so far,
but the hope is that the examples above will give you a certain impres-
sion of the variety of the concept. In the next section we shall see how we
can define convergence and continuity for sequences and functions in metric
spaces. When we prove theorems about these concepts, they automatically
hold in all metric spaces, saving us the labor of having to prove them over
and over again each time we introduce a new class of spaces.

An important question is when two metric spaces (X, dX) and (Y, dY )
are the same. The easy answer is to say that we need the sets X,Y and
the functions dX , dY to be equal. This is certainly correct if one interprets
“being the same” in the strictest sense, but it is often more appropriate to
use a looser definition — in mathematics we are usually not interested in
what the elements of a set are, but only in the relationship between them
(you may, e.g., want to ask yourself what the natural number 3 “is”).

An isometry between two metric spaces is a bijection which preserves
what is important for metric spaces: the distance between points. More
precisely:

Definition 3.1.2 Assume that (X, dX) and (Y, dY ) are metric spaces. An
isometry from (X, dX) to (Y, dY ) is a bijection i : X → Y such that dX(x, y) =
dY (i(x), i(y)) for all x, y ∈ X. We say that (X, dX) and (Y, dY ) are isomet-
ric if there exists an isometry from (X, dX) to (Y, dY ).

In many situations it is convenient to think of two metric spaces as “the
same” if they are isometric. Note that if i is an isometry from (X, dX) to
(Y, dY ), then the inverse i−1 is an isometry from (Y, dY ) to (X, dX), and
hence being isometric is a symmetric relation.

A map which preserves distance, but does not necessarily hit all of Y , is
called an embedding :

Definition 3.1.3 Assume that (X, dX) and (Y, dY ) are metric spaces. An
embedding of (X, dX) into (Y, dY ) is an injection i : X → Y such that
dX(x, y) = dY (i(x), i(y)) for all x, y ∈ X.

Note that an embedding i can be regarded as an isometry between X
and its image i(X).
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We end this section with an important consequence of the triangle in-
equality.

Proposition 3.1.4 (Inverse Triangle Inequality) For all elements x, y, z
in a metric space (X, d), we have

|d(x, y)− d(x, z)| ≤ d(y, z)

Proof: Since the absolute value |d(x, y) − d(x, z)| is the largest of the two
numbers d(x, y)− d(x, z) and d(x, z)− d(x, y), it suffices to show that they
are both less than or equal to d(y, z). By the triangle inequality

d(x, y) ≤ d(x, z) + d(z, y)

and hence d(x, y) − d(x, z) ≤ d(z, y) = d(y, z). To get the other inequality,
we use the triangle inequality again,

d(x, z) ≤ d(x, y) + d(y, z)

and hence d(x, z)− d(x, y) ≤ d(y, z). 2

Exercises for Section 3.1

1. Show that (X, d) in Example 4 is a metric space.

2. Show that (X, d1) in Example 5 is a metric space.

3. Show that (X, d2) in Example 5 is a metric space.

4. Show that (X, d) in Example 6 is a metric space.

5. A sequence {xn}n∈N of real numbers is called bounded if there is a number
M ∈ R such that |xn| ≤ M for all n ∈ N. Let X be the set of all bounded
sequences. Show that

d({xn}, {yn}) = sup{|xn − yn| : n ∈ N}

is a metric on X.

6. If V is a (real) vector space, a function || · || : V → R is called a norm if the
following conditions are satisfied:

(i) For all x ∈ V , ||x|| ≥ 0 with equality if and only if x = 0.

(ii) ||αx|| = |α|||x|| for all α ∈ R and all x ∈ V .

(iii) ||x+ y|| ≤ ||x||+ ||y|| for all x, y ∈ V .

Show that if || · || is a norm, then d(x, y) = ||x− y|| defines a metric on V .

7. Show that if x1, x2, . . . , xn are points in a metric space (X, d), then

d(x1, xn) ≤ d(x1, x2) + d(x2, x3) + · · ·+ d(xn−1, xn)
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8. In this problem you can use the Inverse Triangle Inequality.

a) Assume that {xn} is a sequence in a metric space X converging to x.
Show that d(xn, y)→ d(x, y) for all y ∈ X.

b) Assume that {xn} and {yn} are sequences in X converging to x and y,
respectively. Show that d(xn, yn)→ d(x, y).

9. Assume that d1 og d2 are two metrics on X. Show that

d(x, y) = d1(x, y) + d2(x, y)

is a metric on X.

10. Assume that (X, dX) and (Y, dY ) are two metric spaces. Define a function

d : (X × Y )× (X × Y )→ R

by
d((x1, y1), (x2, y2)) = dX(x1, x2) + dY (y1, y2)

Show that d is a metric on X × Y .

11. Let X be a non-empty set, and let ρ : X ×X → R be a function satisfying:

(i) ρ(x, y) ≥ 0 with equality if and only if x = y.

(ii) ρ(x, y) ≤ ρ(x, z) + ρ(z, y) for all x, y, z ∈ X.

Define d : X ×X → R by

d(x, y) = max{ρ(x, y), ρ(y, x)}

Show that d is a metric on X.

12. Let a ∈ R. Show that the function f(x) = x+ a is an isometry from R to R.

13. Recall that an n × n matrix U is orthogonal if U−1 = UT . Show that if
U is orthogonal and b ∈ Rn, then the mapping i : Rn → Rn given by
i(x) = Ux + b is an isometry.

3.2 Convergence and continuity

We begin our study of metric spaces by defining convergence. A sequence
{xn} in a metric space X is just an ordered collection {x1, x2, x3, . . . , xn, . . .}
of elements in X enumerated by the natural numbers.

Definition 3.2.1 Let (X, d) be a metric space. A sequencee {xn} in X
converges to a point a ∈ X if there for every ε > 0 exists an N ∈ N such
that d(xn, a) < ε for all n ≥ N . We write limn→∞ xn = a or xn → a.

Note that this definition exactly mimics the definition of convergence in
R and Rn. Here is an alternative formulation.
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Lemma 3.2.2 A sequence {xn} in a metric space (X, d) converges to a if
and only if limn→∞ d(xn, a) = 0.

Proof: The distances {d(xn, a)} form a sequence of nonnegative numbers.
This sequence converges to 0 if and only if there for every ε > 0 exists an
N ∈ N such that d(xn, a) < ε when n ≥ N . But this is exactly what the
definition above says. 2

May a sequence converge to more than one point? We know that it
cannot in Rn, but some of these new metric spaces are so strange that we
can not be certain without a proof.

Proposition 3.2.3 A sequence in a metric space can not converge to more
than one point.

Proof: Assume that limn→∞ xn = a and limn→∞ xn = b. We must show
that this is only possible if a = b. According to the triangle inequality

d(a, b) ≤ d(a, xn) + d(xn, b)

Taking limits, we get

d(a, b) ≤ lim
n→∞

d(a, xn) + lim
n→∞

d(xn, b) = 0 + 0 = 0

Consequently, d(a, b) = 0, and according to point (i) (positivity) in the def-
inition of metric spaces, a = b. 2

Note how we use the conditions in Definition 3.1.1 in the proof above. So
far they are all we know about metric spaces. As the theory develops, we
shall get more and more tools to work with.

We can also phrase the notion of convergence in more geometric terms.
If a is an element of a metric space X, and r is a positive number, the (open)
ball centered at a with radius r is the set

B(a; r) = {x ∈ X | d(x, a) < r}

As the terminology suggests, we think of B(a; r) as a ball around a with
radius r. Note that x ∈ B(a; r) means exactly the same as d(x, a) < r.

The definition of convergence can now be rephrased by saying that {xn}
converges to a if the elements of the sequence {xn} eventually end up inside
any ball B(a; ε) around a.

Let us now see how we can define continuity in metric spaces.

Definition 3.2.4 Assume that (X, dX), (Y, dY ) are two metric spaces. A
function f : X → Y is continuous at a point a ∈ X if for every ε > 0 there
is a δ > 0 such that dY (f(x), f(a)) < ε whenever dX(x, a) < δ.
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This definition says exactly the same as as the usual definitions of continuity
for functions of one or several variables; we can get the distance between
f(x) and f(a) smaller than ε by choosing x such that the distance between
x and a is smaller than δ. The only difference is that we are now using the
metrics dX og dY to measure the distances.

A more geometric formulation of the definition is to say that for any open
ball B(f(a); ε) around f(a), there is an open ball B(a, δ) around a such that
f(B(a; δ)) ⊆ B(f(a); ε) (make a drawing!).

There is a close connection between continuity and convergence which
reflects our intuitive feeling that f is continuous at a point a if f(x) ap-
proaches f(a) whenever x approaches a.

Proposition 3.2.5 The following are equivalent for a function f : X → Y
between metric spaces:

(i) f is continuous at a point a ∈ X.

(ii) For all sequences {xn} converging to a, the sequence {f(xn)} converges
to f(a).

Proof: (i) =⇒ (ii): We must show that for any ε > 0, there is an N ∈ N
such that dY (f(xn), f(a)) < ε when n ≥ N . Since f is continuous at a,
there is a δ > 0 such that dY (f(xn), f(a)) < ε whenever dX(x, a) < δ. Since
xn converges to a, there is an N ∈ N such that dX(xn, a) < δ when n ≥ N .
But then dY (f(xn), f(a)) < ε for all n ≥ N .

(ii) =⇒ (i) We argue contrapositively: Assume that f is not continuous
at a. We shall show that there is a sequence {xn} converging to a such that
{f(xn)} does not converge to f(a). That f is not continuous at a, means
that there is an ε > 0 such that no matter how small we choose δ > 0, there
is an x such that dX(x, a) < δ, but dY (f(x), f(a)) ≥ ε. In particular, we can
for each n ∈ N find an xn such that dX(xn, a) < 1

n , but dY (f(xn), f(a)) ≥ ε.
Then {xn} converges to a, but {f(xn)} does not converge to f(a). 2

The composition of two continuous functions is continuous.

Proposition 3.2.6 Let (X, dX), (Y, dY ), (Z, dZ) be three metric spaces.
Assume that f : X → Y and g : Y → Z are two functions, and let h : X → Z
be the composition h(x) = g(f(x)). If f is continuous at the point a ∈ X
and g is continuous at the point b = f(a), then h is continuous at a.

Proof: Assume that {xn} converges to a. Since f is continuous at a, the
sequence {f(xn)} converges to f(a), and since g is continuous at b = f(a),
the sequence {g(f(xn))} converges to g(f(a)), i.e {h(xn)} converges to h(a).
By the proposition above, h is continuous at a. 2
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As in calculus, a function is called continuous if it is continuous at all
points:

Definition 3.2.7 A function f : X → Y between two metrics spaces is
called continuous if it continuous at all points x in X.

Occasionally, we need to study functions which are only defined on a
subset A of our metric space X. We define continuity of such functions by
restricting the conditions to elements in A:

Definition 3.2.8 Assume that (X, dX), (Y, dY ) are two metric spaces and
that A is a subset of X. A function f : A → Y is continuous at a point
a ∈ A if for every ε > 0 there is a δ > 0 such that dY (f(x), f(a)) < ε
whenever x ∈ A and dX(x, a) < δ. We say that f is continuous if it is
continuous at all a ∈ A.

There is another way of formulating this definition that is often useful: We
can think of f as a function from the metric space (A, dA) (recall Example
7 in Section 3.1) to (Y, dY ) and use the original definition of continuity in
3.2.4. By just writing it out, it is easy to see that this definition says exactly
the same as the one above. The advantage of the second definition is that
it makes it easier to transfer results from the full to the restricted setting,
e.g., it is now easy to see that Proposition 3.2.5 can be generalized to:

Proposition 3.2.9 Assume that (X, dX) and (Y, dY ) are metric spaces and
that A ⊆ X. Then the following are equivalent for a function f : A→ Y :

(i) f is continuous at a point a ∈ A.

(ii) For all sequences {xn} in A converging to a, the sequence {f(xn)}
converges to f(a).

Exercises to Section 3.2

1. Assume that (X, d) is a discrete metric space (recall Example 6 in Section
3.1). Show that the sequence {xn} converges to a if and only if there is an
N ∈ N such that xn = a for all n ≥ N .

2. Prove Proposition 3.2.6 without using Proposition 3.2.5, i.e. use only the
definition of continuity.

3. Prove Proposition 3.2.9.

4. Assume that (X, d) is a metric space, and let R have the usual metric
dR(x, y) = |x− y|. Assume that f, g : X → R are continuous functions.

a) Show that cf is continuous for all constants c ∈ R.
b) Show that f + g is continuous.
c) Show that fg is continuous.
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5. Let (X, d) be a metric space and choose a point a ∈ X. Show that the
function f : X → R given by f(x) = d(x, a) is continuous (we are using the
usual metric dR(x, y) = |x− y| on R).

6. Let (X, dX) and (Y, dY ) be two metric spaces. A function f : X → Y
is said to be a Lipschitz function if there is a constant K ∈ R such that
dY (f(u), f(v)) ≤ KdX(u, v) for all u, v ∈ X. Show that all Lipschitz func-
tions are continuous.

7. Let dR be the usual metric on R and let ddisc be the discrete metric on R.
Let id : R→ R be the identity function id(x) = x. Show that

id : (R, ddisc)→ (R, dR)

is continuous, but that

id : (R, dR)→ (R, ddisc)

is not continuous. Note that this shows that the inverse of a bijective, con-
tinuous function is not necessarily continuous.

8. Assume that d1 and d2 are two metrics on the same space X. We say that
d1 and d2 are equivalent if there are constants K and M such that d1(x, y) ≤
Kd2(x, y) and d2(x, y) ≤Md1(x, y) for all x, y ∈ X.

a) Assume that d1 and d2 are equivalent metrics on X. Show that if {xn}
converges to a in one of the metrics, it also converges to a in the other
metric.

b) Assume that d1 and d2 are equivalent metrics on X, and that (Y, d) is
a metric space. Show that if f : X → Y is continuous when we use the
d1-metric on X, it is also continuous when we use the d2-metric.

c) We are in the same setting as i part b), but this time we have a function
g : Y → X. Show that if g is continuous when we use the d1-metric on
X, it is also continuous when we use the d2-metric.

d Assume that d1, d2 and d3 are three metrics on X. Show that if d1
and d2 are equivalent, and d2 and d3 are equivalent, then d1 and d3 are
equivalent.

e) Show that

d1(x,y) = |x1 − y1|+ |x2 − y2|+ . . .+ |xn − yn|

d2(x,y) = max{|x1 − y1|, |x2 − y2|, . . . , |xn − yn[}

d3(x,y) =
√
|x1 − y1|2 + |x2 − y2|2 + . . .+ |xn − yn|2

are equivalent metrics on Rn.

3.3 Open and closed sets

In this and the following sections, we shall study some of the most important
classes of subsets of metric spaces. We begin by recalling and extending the
definition of balls in a metric space:
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Definition 3.3.1 Let a be a point in a metric space (X, d), and assume that
r is a positive, real number. The (open) ball centered at a with radius r is
the set

B(a; r) = {x ∈ X : d(x, a) < r}

The closed ball centered at a with radius r is the set

B(a; r) = {x ∈ X : d(x, a) ≤ r}

In many ways, balls in metric spaces behave just the way we are used to, but
geometrically they may look quite different from ordinary balls. A ball in the
Manhattan metric (Example 3 in Section 3.1) looks like an ace of diamonds,
while a ball in the discrete metric (Example 6 i Section 3.1) consists either
of only one point or the entire space X.

If A is a subset of X and x is a point in X, there are three possibilities:

(i) There is a ball B(x; r) around x which is contained in A. In this case
x is called an interior point of A.

(ii) There is a ball B(x; r) around x which is contained in the complement
Ac. In this case x is called an exterior point of A.

(iii) All balls B(x; r) around x contain points in A as well as points in the
complement Ac. In this case x is a boundary point of A.

Note that an interior point always belongs to A, while an exterior point
never belongs to A. A boundary point will some times belong to A, and
some times to Ac.

We now define the important concepts of open and closed sets:

Definition 3.3.2 A subset A of a metric space is open if it does not contain
any of its boundary points, and it is closed if it contains all its boundary
points.

Most sets contain some, but not all of their boundary points, and are
hence neither open nor closed. The empty set ∅ and the entire space X are
both open and closed as they do not have any boundary points. Here is an
obvious, but useful reformulation of the definition of an open set.

Proposition 3.3.3 A subset A of a metric space X is open if and only if
it only consists of interior points, i.e. for all a ∈ A, there is a ball B(a; r)
around a which is contained in A.

Observe that a set A and its complement Ac have exactly the same
boundary points. This leads to the following useful result.

Proposition 3.3.4 A subset A of a metric space X is open if and only if
its complement Ac is closed.
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Proof: If A is open, it does not contain any of the (common) boundary
points. Hence they all belong to Ac, and Ac must be closed.

Conversely, if Ac is closed, it contains all boundary points, and hence A
can not have any. This means that A is open. 2

The following observation may seem obvious, but needs to be proved:

Lemma 3.3.5 All open balls B(a; r) are open sets, while all closed balls
B(a; r) are closed sets.

Proof: We prove the statement about open balls and leave the other as an
exercise. Assume that x ∈ B(a; r); we must show that there is a ball B(x; ε)
around x which is contained in B(a; r). If we choose ε = r − d(x, a), we see
that if y ∈ B(x; ε) then by the triangle inequality

d(y, a) ≤ d(y, x) + d(x, a) < ε+ d(x, a) = (r − d(x, a)) + d(x, a) = r

Thus d(y, a) < r, and hence B(x; ε) ⊆ B(a; r) 2

The next result shows that closed sets are indeed closed as far as se-
quences are concerned:

Proposition 3.3.6 Assume that F is a subset of a metric space X. The
following are equivalent:

(i) F is closed.

(ii) If {xn} is a convergent sequence of elements in F , then the limit a =
limn→∞ xn always belongs to F .

Proof: Assume that F is closed and that a does not belong to F . We
must show that a sequence from F cannot converge to a. Since F is closed
and contains all its boundary points, a has to be an exterior point, and
hence there is a ball B(a; ε) around a which only contains points from the
complement of F . But then a sequence from F can never get inside B(a, ε),
and hence cannot converge to a.

Assume now that that F is not closed. We shall construct a sequence
from F that converges to a point outside F . Since F is not closed, there is a
boundary point a that does not belong to F . For each n ∈ N, we can find a
point xn from F in B(a; 1

n). Then {xn} is a sequence from F that converges
to a point a which is not in F . 2

An open set containing x is called a neighborhood of x1. The next result
is rather silly, but also quite useful.

1In some books, a neighborhood of x is not necessarily open, but does contain a ball
centered at x. What we have defined, is the then referred to as an open neighborhood
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Lemma 3.3.7 Let U be a subset of the metric space X, and assume that
each x0 ∈ U has a neighborhood Ux0 ⊆ U . Then U is open.

Proof: We must show that any x0 ∈ U is an interior point. Since Ux0 is
open, there is an r > 0 such that B(x0, r) ⊆ Ux0 . But then B(x0, r) ⊆ U ,
which shows that x0 is an interior point of U . 2

In Proposition 3.2.5 we gave a characterization of continuity in terms of
sequences. We shall now prove three characterizations in terms of open and
closed sets. The first one characterizes continuity at a point.

Proposition 3.3.8 Let f : X → Y be a function between metric spaces,
and let x0 be a point in X. Then the following are equivalent:

(i) f is continuous at x0.

(ii) For all neighborhoods V of f(x0), there is a neighborhood U of x0 such
that f(U) ⊆ V .

Proof: (i) =⇒ (ii): Assume that f is continuous at x0. If V is a neighbor-
hood of f(x0), there is a ball BY (f(x0), ε) centered at f(x0) and contained in
V . Since f is continuous at x0, there is a δ > 0 such that dY (f(x), f(x0)) < ε
whenever dX(x, x0) < δ. But this means that f(BX(x0, δ)) ⊆ BY (f(x0), ε) ⊆
V . Hence (ii) is satisfied if we choose U = B(x0, δ).

(ii) =⇒ (i) We must show that for any given ε > 0, there is a δ > 0 such
that dY (f(x), f(x0)) < ε whenever dX(x, x0) < δ. Since V = BY (f(x0), ε)
is a neighbohood of f(x0), there must be a neighborhood U of x0 such that
f(U) ⊆ V . Since U is open, there is a ball B(x0, δ) centered at x0 and
contained in U . Assume that dX(x, x0) < δ. Then x ∈ BX(x0, δ) ⊆ U ,
and hence f(x) ∈ V = BY (f(x0), ε), which means that dY (f(x), f(x0)) < ε.
Hence we have found a δ > 0 such that dY (f(x), f(x0)) < ε whenever
dX(x, x0) < δ, and thus f is continuous at x0. 2

We can also use open sets to characterize global continuity of functions:

Proposition 3.3.9 The following are equivalent for a function f : X → Y
between two metric spaces:

(i) f is continuous.

(ii) Whenever V is an open subset of Y , the inverse image f−1(V ) is an
open set in X.

Proof: (i) =⇒ (ii): Assume that f is continuous and that V ⊆ Y is open.
We shall prove that f−1(V ) is open. For any x0 ∈ f−1(V ), f(x0) ∈ V , and
we know from the previous theorem that there is a neighborhood Ux0 of
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x0 such that f(Ux0) ⊆ V . But then Ux0 ⊆ f−1(V ), and by Lemma 3.3.7,
f−1(V ) is open.

(ii) =⇒ (i) Assume that the inverse images of open sets are open. To
prove that f is continuous at an arbitrary point x0, Proposition 3.3.8 tells
us that it suffices to show that for any neighborhood V of f(x0), there is
a neighborhood U of x0 such that f(U) ⊆ V . But this is easy: Since the
inverse image of an open set is open, we can simply choose U = f−1(V ). 2

The description above is useful in many situations. Using that inverse im-
ages commute with complements (recall Proposition 1.4.4), and that closed
sets are the complements of open, we can translate it into a statement about
closed sets:

Proposition 3.3.10 The following are equivalent for a function f : X → Y
between two metric spaces:

(i) f is continuous.

(ii) Whenever F is a closed subset of Y , the inverse image f−1(F ) is a
closed set in X.

Proof: (i) =⇒ (ii): Assume that f is continuous and that F ⊆ Y is closed.
Then F c is open, and by the previous proposition, f−1(F c) is open. Since
inverse images commute with complements, (f−1(F ))c = f−1(F c). This
means that f−1(F ) has an open complement and hence is closed.

(ii) =⇒ (i) Assume that the inverse images of closed sets are closed.
According to the previous proposition, it suffices to show that the inverse
image of any open set V ⊆ Y is open. But if V is open, the complement V c

is closed, and hence by assumption f−1(V c) is closed. Since inverse images
commute with complements, (f−1(V ))c = f−1(V c). This means that the
complement of f−1(V ) is closed, and hence f−1(V ) is open. 2

Mathematicians usually sum up the last two theorems by saying that
openness and closedness are preserved under inverse, continuous images. Be
aware that these properties are not preserved under continuous, direct im-
ages; even if f is continuous, the image f(U) of an open set U need not be
open, and the image f(F ) of a closed F need not be closed:

Example 1: Let f, g : R→ R be the continuous functions defined by

f(x) = x2 and g(x) = arctanx

The set R is both open and closed, but f(R) equals [0,∞) which is not open,
and g(R) equals (−π

2 ,
π
2 ) which is not closed. Hence the continuous image

of an open set need not be open, and the continuous image of a closed set
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need not be closed. ♣

We end this section with two simple but useful observations on open and
closed sets.

Proposition 3.3.11 Let (X, d) be a metric space.

a) If G is a (finite or infinite) collection of open sets, then the union⋃
G∈G G is open.

b) If G1, G2, . . . , Gn is a finite collection of open sets, then the intersec-
tion G1 ∩G2 ∩ . . . ∩Gn is open.

Proof: Left to the reader (see Exercise 12, where you are also asked to show
that the intersection of infinitely many open sets is not necessarily open). 2

Proposition 3.3.12 Let (X, d) be a metric space.

a) If F is a (finite or infinite) collection of closed sets, then the intersec-
tion

⋂
F∈F F is closed.

b) If F1, F2, . . . , Fn is a finite collection of closed sets, then the union
F1 ∪ F2 ∪ . . . ∪ Fn is closed.

Proof: Left to the reader (see Exercise 13, where you are also asked to show
that the union of infinitely many closed sets is not necessarily closed). 2

Propositions 3.3.11 and 3.3.12 are the starting points for topology, an
even more abstract theory of nearness.

Exercises to Section 3.3

1. Assume that (X, d) is a discrete metric space.

a) Show that an open ball in X is either a set with only one element (a
singleton) or all of X.

b) Show that all subsets of X are both open and closed.

c) Assume that (Y, dY ) is another metric space. Show that all functions
f : X → Y are continuous.

2. Give a geometric description of the ball B(a; r) in the Manhattan metric (see
Example 3 in Section 3.1). Make a drawing of a typical ball. Show that the
Manhattan metric and the usual metric in R2 have exactly the same open
sets.

3. Assume that F is a non-empty, closed and bounded subset of R (with the
usual metric d(x, y) = |y − x|). Show that supF ∈ F and inf F ∈ F . Give
an example of a bounded, but not closed set F such that supF ∈ F and
inf F ∈ F .
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4. Prove the second part of Lemma 3.3.5, i.e. prove that a closed ball B(a; r) is
always a closed set.

5. Assume that f : X → Y and g : Y → Z are continuous functions. Use
Proposition 3.3.9 to show that the composition g ◦ f : X → Z is continuous.

6. Assume that A is a subset of a metric space (X, d). Show that the interior
points of A are the exterior points of Ac, and that the exterior points of A
are the interior points of Ac. Check that the boundary points of A are the
boundary points of Ac.

7. Assume that A is a subset of a metric space X. The interior A◦ of A is the
set consisting of all interior points of A. Show that A◦ is open.

8. Assume that A is a subset of a metric space X. The closure A of A is the
set consisting of all interior points plus all boundary points of A.

a) Show that A is closed.
b) Let {an} be a sequence from A converging to a point a. Show that

a ∈ A.

9. Let (X, d) be a metric space, and let A be a subset of X. We shall consider
A with the subset metric dA.

a) Assume that G ⊆ A is open in (X, d). Show that G is open in (A, dA).
b) Find an example which shows that although G ⊆ A is open in (A, dA)

it need not be open in (X, dX).
c) Show that if A is an open set in (X, dX), then a subset G of A is open

in (A, dA) if and only if it is open in (X, dX)

10. Let (X, d) be a metric space, and let A be a subset of X. We shall consider
A with the subset metric dA.

a) Assume that F ⊆ A is closed in (X, d). Show that F is closed in (A, dA).
b) Find an example which shows that although F ⊆ A is closed in (A, dA)

it need not be closed in (X, dX).
c) Show that if A is a closed set in (X, dX), then a subset F of A is closed

in (A, dA) if and only if it is closed in (X, dX)

11. Let (X, d) be a metric space and give R the usual metric. Assume that
f : X → R is continuous.

a) Show that the set
{x ∈ X | f(x) < a}

is open for all a ∈ R.
a) Show that the set

{x ∈ X | f(x) ≤ a}
is closed for all a ∈ R.

12. Prove Proposition 3.3.11. Find an example of an infinite collection of open
sets G1, G2, . . . whose intersection is not open.

13. Prove Proposition 3.3.12. Find an example of an infinite collection of closed
sets F1, F2, . . . whose union is not closed.
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3.4 Complete spaces

One of the reasons why calculus in Rn is so successful, is that Rn is a
complete space. We shall now generalize this notion to metric spaces. The
key concept is that of a Cauchy sequence:

Definition 3.4.1 A sequence {xn} in a metric space (X, d) is a Cauchy
sequence if for each ε > 0 there is an N ∈ N such that d(xn, xm) < ε
whenever n,m ≥ N .

We begin by a simple observation:

Proposition 3.4.2 Every convergent sequence is a Cauchy sequence.

Proof: If a is the limit of the sequence, there is for any ε > 0 a number
N ∈ N such that d(xn, a) < ε

2 whenever n ≥ N . If n,m ≥ N , the triangle
inequality tells us that

d(xn, xm) ≤ d(xn, a) + d(a, xm) <
ε

2
+
ε

2
= ε

and consequently {xn} is a Cauchy sequence. 2

The converse of the proposition above does not hold in all metric spaces,
and we make the following definition:

Definition 3.4.3 A metric space is called complete if all Cauchy sequences
converge.

We know from Section 2.2 that Rn is complete, but that Q is not when we
use the usual metric d(x, y) = |x − y|. The complete spaces are in many
ways the “nice” metric spaces, and we shall spend much time studying their
properties. We shall also spend some time showing how we can make non-
complete spaces complete. Example 5 in Section 3.1 (where X is the space
of all continuous f : [a, b] → R) shows some interesting cases; X with the
metric d1 is complete, but not X with the metrics d2 and d3. By introducing
a stronger notion of integral (the Lebesgue integral, see Chapter 7) we can
extend d2 and d3 to complete metrics by making them act on richer spaces
of functions. In Section 3.7, we shall study an abstract method for making
incomplete spaces complete by adding new points.

The following proposition is quite useful. Remember that if A is a subset
of X, then dA is the subspace metric obtained by restricting d to A (see
Example 7 in Section 3.1).

Proposition 3.4.4 Assume that (X, d) is a complete metric space. If A is
a subset of X, (A, dA) is complete if and only if A is closed.
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Proof: Assume first that A is closed. If {an} is a Cauchy sequence in A, {an}
is also a Cauchy sequence in X, and since X is complete, {an} converges to
a point a ∈ X. Since A is closed, Proposition 3.3.6 tells us that a ∈ A. But
then {an} converges to a in (A, dA), and hence (A, dA) is complete.

If A is not closed, there is a boundary point a that does not belong to A.
Each ball B(a, 1

n) must contain an element an from A. In X, the sequence
{an} converges to a, and must be a Cauchy sequence. However, since a /∈ A,
the sequence {an} does not converge to a point in A. Hence we have found
a Cauchy sequence in (A, dA) that does not converge to a point in A, and
hence (A, dA) is incomplete. 2

The nice thing about complete spaces is that we can prove that sequences
converge to a limit without actually constructing or specifying the limit —
all we need is to prove that the sequence is a Cauchy sequence. To prove
that a sequence has the Cauchy property, we only need to work with the
given terms of the sequence and not the unknown limit, and this often makes
the arguments easier. As an example of this technique, we shall now prove
an important theorem that will be useful later in the book, but first we need
some definitions.

A function f : X → X is called a contraction if there is a positive number
s < 1 such that

d(f(x), f(y)) ≤ s d(x, y) for all x, y ∈ X

We call s a contraction factor for f . All contractions are continuous (prove
this!), and by induction it is easy to see that

d(f◦n(x), f◦n(y)) ≤ snd(x, y)

where f◦n(x) = f(f(f(. . . f(x) . . .))) is the result of iterating f exactly n
times. If f(a) = a, we say that a is a fixed point for f .

Theorem 3.4.5 (Banach’s Fixed Point Theorem) Assume that (X, d)
is a complete metric space and that f : X → X is a contraction. Then f
has a unique fixed point a, and no matter which starting point x0 ∈ X we
choose, the sequence

x0, x1 = f(x0), x2 = f◦2(x0), . . . , xn = f◦n(x0), . . .

converges to a.

Proof: Let us first show that f can not have more than one fixed point. If
a and b are two fixed points, and s is a contraction factor for f , we have

d(a, b) = d(f(a), f(b)) ≤ s d(a, b)
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Since 0 < s < 1, this is only possible if d(a, b) = 0, i.e. if a = b.
To show that f has a fixed point, choose a starting point x0 in X and

consider the sequence

x0, x1 = f(x0), x2 = f◦2(x0), . . . , xn = f◦n(x0), . . .

Assume, for the moment, that we can prove that this is a Cauchy sequence.
Since (X, d) is complete, the sequence must converge to a point a. To prove
that a is a fixed point, observe that we have xn+1 = f(xn) for all n, and
taking the limit as n → ∞, we get a = f(a). Hence a is a fixed point of f ,
and the theorem must hold. Thus it suffices to prove our assumption that
{xn} is a Cauchy sequence.

Choose two elements xn and xn+k of the sequence. By repeated use of
the triangle inequality (see Exercise 3.1.7 if you need help), we get

d(xn, xn+k) ≤ d(xn, xn+1) + d(xn+1, xn+2) + . . .+ d(xn+k−1, xn+k) =

= d(f◦n(x0), f◦n(x1)) + d(f◦(n+1)(x0), f◦(n+1)(x1)) + . . .

. . .+ d(f◦(n+k−1)(x0), f◦(n+k−1)(x1)) ≤

≤ snd(x0, x1) + sn+1d(x0, x1) + . . .+ sn+k−1d(x0, x1) =

=
sn(1− sk)

1− s
d(x0, x1) ≤ sn

1− s
d(x0, x1)

where we have summed a geometric series to get to the last line. Since
s < 1, we can get the last expression as small as we want by choosing n
large enough. Given an ε > 0, we can in particular find an N such that
sN

1−s d(x0, x1) < ε. For n,m = n+ k larger than or equal to N , we thus have

d(xn, xm) ≤ sn

1− s
d(x0, x1) < ε

and hence {xn} is a Cauchy sequence. 2

In Section 4.7 we shall use Banach’s Fixed Point Theorem to prove the
existence of solutions to quite general differential equations.

Exercises to Section 3.4

1. Show that the discrete metric is always complete.

2. Assume that (X, dX) and (Y, dY ) are complete spaces, and give X × Y the
metric d defined by

d((x1, y1), (x2, y2)) = dX(x1, x2) + dY (y1, y2)

Show that (X × Y, d) is complete.
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3. If A is a subset of a metric space (X, d), the diameter diam(A) of A is defined
by

diam(A) = sup{d(x, y) | x, y ∈ A}

Let {An} be a collection of subsets ofX such thatAn+1 ⊆ An and diam(An)→
0, and assume that {an} is a sequence such that an ∈ An for each n ∈ N.
Show that if X is complete, the sequence {an} converges.

4. Assume that d1 and d2 are two metrics on the same space X. We say that
d1 and d2 are equivalent if there are constants K and M such that d1(x, y) ≤
Kd2(x, y) and d2(x, y) ≤ Md1(x, y) for all x, y ∈ X. Show that if d1 and d2
are equivalent, and one of the spaces (X, d1), (X, d2) is complete, then so is
the other.

5. Assume that f : [0, 1] → [0, 1] is a differentiable function and that there is
a number s < 1 such that |f ′(x)| < s for all x ∈ (0, 1). Show that there is
exactly one point a ∈ [0, 1] such that f(a) = a.

6. You are standing with a map in your hand inside the area depicted on the
map. Explain that there is exactly one point on the map that is vertically
above the point it depicts.

7. Assume that (X, d) is a complete metric space, and that f : X → X is a
function such that f◦n is a contraction for some n ∈ N. Show that f has a
unique fixed point.

8. A subset D of a metric space X is dense if for all x ∈ X and all ε ∈ R+ there
is an element y ∈ D such that d(x, y) < ε. Show that if all Cauchy sequence
{yn} from a dense set D converge in X, then X is complete.

3.5 Compact sets

We now turn to the study of compact sets. These sets are related both to
closed sets and to the notion of completeness, and they are extremely useful
in many applications.

Assume that {xn} is a sequence in a metric space X. If we have a strictly
increasing sequence of natural numbers

n1 < n2 < n3 < . . . < nk < . . .

we call the sequence {yk} = {xnk} a subsequence of {xn}. A subsequence
contains infinitely many of the terms in the original sequence, but usually
not all.

I leave the first result as an exercise:

Proposition 3.5.1 If the sequence {xn} converges to a, so does all subse-
quences.

We are now ready to define compact sets:
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Definition 3.5.2 A subset K of a metric space (X, d) is called compact if
every sequence in K has a subsequence converging to a point in K. The
space (X, d) is compact if X a compact set, i.e. if all sequences in X have
a convergent subsequence.

Compactness is a rather complex notion that it takes a while to get used to.
We shall start by relating it to other concepts we have already introduced.
First a definition:

Definition 3.5.3 A subset A of a metric space (X, d) is bounded if there
is a number M ∈ R such that d(a, b) ≤M for all a, b ∈ A.

An equivalent definition is to say that there is a point c ∈ X and a
constant K ∈ R such that d(a, c) ≤ K for all a ∈ A (it does not matter
which point c ∈ X we use in this definition). See Exercise 4.

Here is our first result on compact sets:

Proposition 3.5.4 Every compact set K in a metric space (X, d) is closed
and bounded.

Proof: We argue contrapositively. First we show that if a setK is not closed,
then it can not be compact, and then we show that if K is not bounded, it
can not be compact.

Assume that K is not closed. Then there is a boundary point a that does
not belong to K. For each n ∈ N, there is an xn ∈ K such that d(xn, a) < 1

n .
The sequence {xn} converges to a /∈ K, and so does all its subsequences,
and hence no subsequence can converge to a point in K.

Assume now that K is not bounded and pick a point b ∈ K. For every
n ∈ N there is an element xn ∈ K such that d(xn, b) > n. If {yk} is a
subsequence of xn, clearly limk→∞ d(yk, b) =∞. It is easy to see that {yk}
can not converge to any element y ∈ X: According to the triangle inequality

d(yk, b) ≤ d(yk, y) + d(y, b)

and since d(yk, b) → ∞, we must have d(yk, y) → ∞. Hence {xn} has no
convergent subsequences, and K can not be compact. 2

In Rn the converse of the result above holds:

Corollary 3.5.5 A subset of Rn is compact if and only if it is closed and
bounded.

Proof: We have to prove that a closed and bounded subset A of Rn is com-
pact. This is just a slight extension of the Bolzano-Weierstrass Theorem
2.3.2: A sequence {xn} in A is bounded since A is bounded, and by the
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Bolzano-Weierstrass Theorem it has a subsequence converging to a point
a ∈ Rn. Since A is closed, a ∈ A. 2

Unfortunately, the corollary doesn’t hold for metric spaces in general.

Example 1: Consider the metric space (N, d) where d is the discrete met-
ric. Then N is complete, closed and bounded, but the sequence {n} does
not have a convergent subsequence.

We shall later see how we can strengthen the boundedness condition (to
something called total boundedness) to get a characterization of compactness
that holds in all metric spaces.

We next want to take a look at the relationship between completeness
and compactness. Not all complete spaces are compact (R is complete but
not compact), but it turns out that all compact spaces are complete. To
prove this, we need a lemma on subsequences of Cauchy sequences that is
useful also in other contexts.

Lemma 3.5.6 Assume that {xn} is a Cauchy sequence in a (not necessarily
complete) metric space (X, d). If there is a subsequence {xnk} converging to
a point a, then the original sequence {xn} also converges to a

Proof: We must show that for any given ε > 0, there is an N ∈ N such that
d(xn, a) < ε for all n ≥ N . Since {xn} is a Cauchy sequence, there is an
N ∈ N such that d(xn, xm) < ε

2 for all n,m ≥ N . Since {xnk} converges to
a, there is a K such that nK ≥ N and d(xnK , a) ≤ ε

2 . For all n ≥ N we then
have

d(xn, a) ≤ d(xn, xnK ) + d(xnK , a) <
ε

2
+
ε

2
= ε

by the triangle inequality. 2

Proposition 3.5.7 Every compact metric space is complete.

Proof: Let {xn} be a Cauchy sequence. Since X is compact, there is a
subsequence {xnk} converging to a point a. By the lemma above, {xn} also
converges to a. Hence all Cauchy sequences converge, and X must be com-
plete. 2

Here is another useful result:

Proposition 3.5.8 A closed subset F of a compact set K is compact.

Proof: Assume that {xn} is a sequence in F — we must show that {xn} has
a subsequence converging to a point in F . Since {xn} is also a sequence in
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K, and K is compact, there is a subsequence {xnk} converging to a point
a ∈ K. Since F is closed, a ∈ F , and hence {xn} has a subsequence con-
verging to a point in F . 2

We have previously seen that if f is a continuous function, the inverse
images of open and closed sets are open and closed, respectively. The in-
verse image of a compact set need not be compact, but it turns out that
the (direct) image of a compact set under a continuous function is always
compact.

Proposition 3.5.9 Assume that f : X → Y is a continuous function be-
tween two metric spaces. If K ⊆ X is compact, then f(K) is a compact
subset of Y .

Proof: Let {yn} be a sequence in f(K); we shall show that {yn} has sub-
sequence converging to a point in f(K). Since yn ∈ f(K), we can for each
n find an element xn ∈ K such that f(xn) = yn. Since K is compact, the
sequence {xn} has a subsequence {xnk} converging to a point x ∈ K. But
then by Proposition 3.2.5, {ynk} = {f(xnk)} is a subsequence of {yn} con-
verging to y = f(x) ∈ f(K). 2

So far we have only proved technical results about the nature of compact
sets. The next result gives the first indication why these sets are useful.

Theorem 3.5.10 (The Extreme Value Theorem) Assume that K is a
non-empty, compact subset of a metric space (X, d) and that f : K → R is
a continuous function. Then f has maximum and minimum points in K,
i.e. there are points c, d ∈ K such that

f(d) ≤ f(x) ≤ f(c)

for all x ∈ K.

Proof: There is a quick way of proving this theorem by using the previous
proposition (see the remark below), but I choose a slightly longer proof as
I think it gives a better feeling for what is going on and how compactness
arguments are used in practice. I only prove the maximum part and leave
the minimum as an exercise.

Let
M = sup{f(x) | x ∈ K}

(if F is unbounded, we put M =∞) and choose a sequence {xn} in K such
that limn→∞ f(xn) = M . SinceK is compact, {xn} has a subsequence {xnk}
converging to a point c ∈ K. Then on the one hand limk→∞ f(xnk) = M ,
and on the other limk→∞ f(xnk) = f(c) according to Proposition 3.2.9.
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Hence f(c) = M , and since M = sup{f(x) | x ∈ K}, we see that c is a
maximum point for f on K. 2.

Remark: As already mentioned, it is possible to give a shorter proof of the
Extreme Value Theorem by using Proposition 3.5.8. According to it, the set
f(K) is compact and thus closed and bounded. This means that sup f(K)
and inf f(K) belong to f(K), and hence there are points c, d ∈ K such that
f(c) = sup f(K) and f(d) = inf f(K). Clearly, c is a maximum and d a
minimum point for f .

Let us finally turn to the description of compactness in terms of total
boundedness.

Definition 3.5.11 A subset A of a metric space X is called totally bounded
if for each ε > 0 there is a finite number B(a1, ε),B(a2, ε), . . . ,B(an, ε) of
balls with centers in A and radius ε that cover A (i.e. A ⊆ B(a1, ε) ∪
B(a2, ε) ∪ . . . ∪ B(an, ε)).

We first observe that a compact set is always totally bounded.

Proposition 3.5.12 Let K be a compact subset of a metric space X. Then
K is totally bounded.

Proof: We argue contrapositively: Assume that A is not totally bounded.
Then there is an ε > 0 such that no finite collection of ε-balls cover A.
We shall construct a sequence {xn} in A that does not have a convergent
subsequence. We begin by choosing an arbitrary element x1 ∈ A. Since
B(x1, ε) does not cover A, we can choose x2 ∈ A \ B(x1, ε). Since B(x1, ε)
and B(x2, ε) do not cover A, we can choose x3 ∈ A \

(
B(x1, ε) ∪ B(x2, ε)

)
.

Continuing in this way, we get a sequence {xn} such that

xn ∈ A \
(
B(x1, ε) ∪ B(x2, ε) ∪ . . . ∪ (B(xn−1, ε)

)
This means that d(xn, xm) ≥ ε for all n,m ∈ N, n > m, and hence {xn} has
no convergent subsequence. 2

We are now ready for the final theorem. Note that we have now added
the assumption that X is complete — without this condition, the statement
is false.

Theorem 3.5.13 A subset A of a complete metric space X is compact if
and only if it is closed and totally bounded.

Proof: As we already know that a compact set is closed and totally bounded,
it suffices to prove that a closed and totally bounded set A is compact. Let
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{xn} be a sequence in A. Our aim is to construct a convergent subsequence
{xnk}. Choose balls B1

1 , B
1
2 , . . . , B

1
k1

of radius one that cover A. At least one
of these balls must contain infinitely many terms from the sequence. Call
this ball S1 (if there are more than one such ball, just choose one). We now
choose balls B2

1 , B
2
2 , . . . , B

2
k2

of radius 1
2 that cover A. At least one of these

ball must contain infinitely many of the terms from the sequence that lies in
S1. If we call this ball S2, S1 ∩ S2 contains infinitely many terms from the
sequence. Continuing in this way, we find a sequence of balls Sk of radius 1

k
such that

S1 ∩ S2 ∩ . . . ∩ Sk

always contains infinitely many terms from the sequence.
We can now construct a convergent subsequence of {xn}. Choose n1

to be the first number such that xn1 belongs to S1. Choose n2 to be first
number larger that n1 such that xn2 belongs to S1 ∩ S2, then choose n3 to
be the first number larger than n2 such that xn3 belongs to S1 ∩ S2 ∩ S3.
Continuing in this way, we get a subsequence {xnk} such that

xnk ∈ S1 ∩ S2 ∩ . . . ∩ Sk

for all k. Since the Sk’s are shrinking, {xnk} is a Cauchy sequence, and
since X is complete, {xnk} converges to a point a. Since A is closed, a ∈ A.
Hence we have proved that any sequence in A has a subsequence converging
to a point in A, and thus A is compact. 2

Problems to Section 3.5

1. Show that a space (X, d) with the discrete metric is compact if and only if
X is a finite set.

2. Prove Proposition 3.5.1.

3. Prove the minimum part of Theorem 3.5.10.

4. Let A be a subset of a metric space X.

a) Show that if A is bounded, then for every point c ∈ X there is a constant
Mc such that d(a, c) ≤Mc for all a ∈ A.

b) Assume that there is a point c ∈ X and a number M ∈ R such that
d(a, c) ≤M for all a ∈ A. Show that A is bounded.

5. Assume that (X, d) is a metric space and that f : X → [0,∞) is a continuous
function. Assume that for each ε > 0, there is a compact set Kε ⊆ X such
that f(x) < ε when x /∈ Kε. Show that f has a maximum point.

6. Let (X, d) be a compact metric space, and assume that f : X → R is contin-
uous when we give R the usual metric. Show that if f(x) > 0 for all x ∈ X,
then there is a positive, real number a such that f(x) > a for all x ∈ X.
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7. Assume that f : X → Y is a continuous function between metric spaces,
and let K be a compact subset of Y . Show that f−1(K) is closed. Find an
example which shows that f−1(K) need not be compact.

8. Show that a totally bounded subset of a metric space is always bounded. Find
an example of a bounded set in a metric space that is not totally bounded.

9. The Bolzano-Weierstrass Theorem 2.3.3 says that any bounded sequence in
Rn has a convergent subsequence. Use it to prove that a subset of Rn is
compact if and only if it is closed and bounded.

10. Let (X, d) be a metric space.

a) Assume that K1,K2, . . . ,Kn is a finite collection of compact subsets of
X. Show that the union K1 ∪K2 ∪ . . . ∪Kn is compact.

b) Assume that K is a collection of compact subset of X. Show that the
intersection

⋂
K∈KK is compact.

11. Let (X, d) be a metric space. Assume that {Kn} is a sequence of non-empty,
compact subsets of X such that K1 ⊇ K2 ⊇ . . . ⊇ Kn ⊇ . . .. Prove that⋂
n∈NKn is non-empty.

12. Let (X, dX) and (Y, dY ) be two metric spaces. Assume that (X, dX) is com-
pact, and that f : X → Y is bijective and continuous. Show that the inverse
function f−1 : Y → X is continuous.

13. Assume that C and K are disjoint, compact subsets of a metric space (X, d),
and define

a = inf{d(x, y) | x ∈ C, y ∈ K}

Show that a is strictly positive and that there are points x0 ∈ C, y0 ∈ K
such that d(x0, y0) = a. Show by an example that the result does not hold if
we only assume that one of the sets C and K is compact and the other one
closed.

14. Assume that (X, d) is compact and that f : X → X is continuous.

a) Show that the function g(x) = d(x, f(x)) is continuous and has a min-
imum point.

b) Assume in addition that d(f(x), f(y)) < d(x, y) for all x, y ∈ X, x 6= y.
Show that f has a unique fixed point. (Hint: Use the minimum from
a))

3.6 An alternative description of compactness

The descriptions of compactness that we studied in the previous section,
suffice for most purposes in this book, but for some of the more advanced
proofs there is another description that is more convenient. This alternative
description is also the right one to use if one wants to extend the concept
of compactness to even more general spaces, so-called topological spaces. In
such spaces, sequences are not always an efficient tool, and it is better to
have a description of compactness in terms of coverings by open sets.
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To see what this means, assume that K is a subset of a metric space X.
An open covering of K is simply a (finite or infinite) collection O of open
sets whose union contains K, i.e.

K ⊆
⋃
{O : O ∈ O}

The purpose of this section is to show that in metric spaces, the following
property is equivalent to compactness.

Definition 3.6.1 (Open Covering Property) Let K be a subset of a
metric space X. Assume that for each open covering O of K, there is a
finite number of elements O1, O2, . . . , On in O such that

K ⊆ O1 ∪O2 ∪ . . . ∪On

(we say that each open covering of K has a finite subcovering). Then the
set K is said to have the open covering property.

The open covering property is quite abstract and may take some time
to get used to, but it turns out to be a very efficient tool. Note that the
term “open covering property” is not standard terminology, and that it will
disappear once we have proved that it is equivalent to compactness.

Let us first prove that a set with the open covering property is necessarily
compact. Before we begin, we need a simple observation: Assume that x is
a point in our metric space X, and that no subsequence of a sequence {xn}
converges to x. Then there must be an open ball B(x; r) around x which
only contains finitely many terms from {xn} (because if all balls around x
contained infinitely many terms, we could use these terms to construct a
subsequence converging to x).

Proposition 3.6.2 If a subset K of a metric space X has the open covering
property, then it is compact.

Proof: We argue contrapositively, i.e., we assume that K is not compact
and prove that it does not have the open covering property. Since K is not
compact, there is a sequence {xn} which does not have any subsequence con-
verging to points in K. By the observation above, this means that for each
element x ∈ K, there is an open ball B(x; rx) around x which only contains
finitely many terms of the sequence. The family {B(x, rx) : x ∈ K} is an
open covering of K, but it cannot have a finite subcovering since any such
subcovering B(x1, rx1),B(x2, rx2), . . . ,B(xm, rxm) can only contain finitely
many of the infinitely many terms in the sequence. 2

To prove the opposite implication, we shall use an elegant trick based on
the Extreme Value Theorem, but first we need a lemma (the strange cut-off
at 1 in the definition of f(x) below is just to make sure that the function is
finite):
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Lemma 3.6.3 Let O be an open covering of a subset A of a metric spece
X. Define a function f : A→ R by

f(x) = sup{r ∈ R | r < 1 and B(x; r) ⊆ O for some O ∈ O}

Then f is continuous and strictly positive (i.e. f(x) > 0 for all x ∈ A).

Proof: The strict positivity is easy: Since O is a covering of A, there is a
set O ∈ O such that x ∈ O, and since O is open, there is an r, 0 < r < 1,
such that B(x; r) ⊆ O. Hence f(x) ≥ r > 0.

To prove the continuity, it suffices to show that |f(x) − f(y)| ≤ d(x, y)
as we can then choose δ = ε in the definition of continuity. Observe first
that if f(x), f(y) ≤ d(x, y), there is nothing to prove. Assume therefore
that at least one of these values is larger than d(x, y). Without out loss of
generality, we may assume that f(x) is the larger of the two. There must
then be an r > d(x, y) and an O ∈ O such that B(x, r) ⊆ O. For any
such r, B(y, r − d(x, y)) ⊆ O since B(y, r − d(x, y)) ⊂ B(x, r). This means
that f(y) ≥ f(x) − d(x, y). Since by assumption f(x) ≥ f(y), we have
|f(x)− f(y)| ≤ d(x, y) which is what we set out to prove. 2

We are now ready for the main theorem:

Theorem 3.6.4 A subset K of a metric space is compact if and only if it
has the open covering property.

Proof: It remains to prove that if K is compact and O is an open covering
of K, then O has a finite subcovering. By the Extremal Value Theorem,
the function f in the lemma attains a minimal value r on K, and since f
is strictly positive, r > 0. This means that for all x ∈ K, the ball B(x, r2)
is contained in a set O ∈ B. Since K is compact, it is totally bounded,
and hence there is a finite collection of balls B(x1,

r
2), B(x2,

r
2), . . . , B(xn,

r
2)

that covers K. Each ball B(xi,
r
2) is contained in a set Oi ∈ O, and hence

O1, O2, . . . , On is a finite subcovering of O. 2

As usual, there is a reformulation of the theorem above in terms of
closed sets. Let us first agree to say that a collection F of sets has the finite
intersection property over K if

K ∩ F1 ∩ F2 ∩ . . . ∩ Fn 6= ∅

for all finite collections F1, F2, . . . , Fn of sets from F .

Corollary 3.6.5 Assume that K is a subset of a metric space X. Then the
following are equivalent:

(i) K is compact.
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(ii) If a collection F of closed sets has the finite intersection property over
K, then

K ∩

( ⋂
F∈F

F

)
6= ∅

Proof: Left to the reader (see Exercise 7). 2

Problems to Section 3.6

1. Assume that I is a collection of open intervals in R whose union contains
[0, 1]. Show that there exists a finite collection I1, I2, . . . , In of sets from I
such that

[0, 1] ⊆ I1 ∪ I1 ∪ . . . ∪ In

2. Let {Kn} be a decrasing sequence (i.e., Kn+1 ⊆ Kn for all n ∈ N) of
nonempty, compact sets. Show that

⋂
n∈NKn 6= ∅. (This exactly the same

problem as 3.5.11, but this time you should do it with the methods in this
section).

3. Assume that f : X → Y is a continuous function between two metric spaces.
Use the open covering property to show that if K is a compact subset of X,
then f(K) is a compact subset of Y .

4. Assume that K1,K2, . . . ,Kn are compact subsets of a metric space X. Use
the open covering property to show that K1 ∪K2 ∪ . . . ∪Kn is compact.

5. Use the open covering property to show that a closed subset of a compact
set is compact.

6. Assume that f : X → Y is a continuous function between two metric spaces,
and assume that K is a compact subset of X. We shall prove that f is
uniformly continuous on K, i.e. that for each ε > 0, there exists a δ > 0
such that whenever x, y ∈ K and dX(x, y) < δ, then dY (f(x), f(y)) < ε (this
looks very much like ordinary continuity, but the point is that we can use the
same δ at all points x, y ∈ K).

a) Given ε > 0, explain that for each x ∈ K there is a δ(x) > 0 such that
dY (f(x), f(y)) < ε

2 for all y with d(x, y) < δ(x).

b) Explain that {B(x, δ(x)2 )}x∈K is an open covering of K, and that it has
a finite subcovering B(x1,

δ(x1)
2 ), B(x2,

δ(x2)
2 ), . . . , B(xn,

δ(xn)
2 ).

c) Put δ = min{ δ(x1)
2 , δ(x2)

2 , . . . , δ(xn)2 }, and show that if x, y ∈ K with
dX(x, y) < δ, then dY (f(x), f(y)) < ε.

7. Prove Corollary 3.6.5. (Hint: Observe that K ∩
(⋂

F∈F F
)
6= ∅ if and only if

{F c}F∈F is an open covering of K.)
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3.7 The completion of a metric space

Completeness is probably the most important notion in this book as most of
the deep and important theorems about metric spaces only hold when the
space is complete. In this section we shall see that it is always possible to
make an incomplete space complete by adding new elements, but before we
turn to this, we need to take a look at a concept that will be important in
many different contexts throughout the book.

Definition 3.7.1 Let (X, d) be a metric space and assume that D is a subset
of X. We say that D is dense in X if for each x ∈ X there is a sequence
{yn} from D converging to x.

We know that Q is dense in R — we may, e.g., approximate a real number
by longer and longer parts of its decimal expansion. For x =

√
2 this would

mean the approximating sequence

y1 = 1.4 =
14

10
, y2 = 1.41 =

141

100
, y3 = 1.414 =

1414

1000
, y4 = 1.4142 =

14142

10000
, . . .

There is an alternative description of dense that we shall also need.

Proposition 3.7.2 A subset D of a metric space X is dense if and only if
for each x ∈ X and each δ > 0, there is a y ∈ D such that d(x, y) ≤ δ.

Proof: Left as an exercise. 2

We can now return to our initial problem: How do we extend an incom-
plete metric space to a complete one? The following definition describes
what we are looking for.

Definition 3.7.3 If (X, dX) is a metric space, a completion of (X, dX) is
a metric space (X̄, dX̄) such that:

(i) (X, dX) is a subspace of (X̄, dX̄); i.e. X ⊆ X̄ and dX̄(x, y)) = dX(x, y)
for all x, y ∈ X.

(ii) X is dense (X̄, dX̄).

The canonical example of a completion is that R is the completion Q. We
also note that a complete metric space is its own (unique) completion.

An incomplete metric space will have more than one completion, but as
they are all isometric2, they are the same for all practical purposes, and we
usually talk about the completion of a metric space.

2Recall from Section 3.1 that an isometry from (X, dX) to (Y, dY ) is a bijection i :
X → Y such that dY (i(x), i(y)) = dX(x, y) for all x, y ∈ X. Two metric spaces are
often considered “the same” when they are isomorphic; i.e. when there is an isomorphism
between them.
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Proposition 3.7.4 Assume that (Y, dY ) and (Z, dZ) are completions of the
metric space (X, dX). Then (Y, dY ) and (Z, dZ) are isometric.

Proof: We shall construct an isometry i : Y → Z. Since X is dense in
Y , there is for each y ∈ Y a sequence {xn} from X converging to y. This
sequence must be a Cauchy sequence in X and hence in Z. Since Z is
complete, {xn} converges to an element z ∈ Z. The idea is to define i by
letting i(y) = z. For the definition to work properly, we have to check that
if {x̂n} is another sequence in X converging to y, then {x̂n} converges to z
in Z. This is the case since dZ(xn, x̂n) = dX(xn, x̂n) = dY (xn, x̂n) → 0 as
n→∞.

To prove that i preserves distances, assume that y, ŷ are two points in Y ,
and that {xn}, {x̂n} are sequences in X converging to y and ŷ, respectively.
Then {xn}, {x̂n} converges to i(y) and i(ŷ), respectively, in Z, and we have

dZ(i(y), i(ŷ)) = lim
n→∞

dZ(xn, x̂n) = lim
n→∞

dX(xn, x̂n) =

= lim
n→∞

dY (xn, x̂n) = dY (y, ŷ)

(we are using repeatedly that if {un} and {vn} are sequences in a metric
space converging to u and v, respectively, then d(un, vn)→ d(u, v), see Ex-
ercise 3.1.8 b). It remains to prove that i is a bijection. Injectivity follows
immediately from distance preservation: If y 6= ŷ, then dZ(i(y), i(ŷ)) =
dY (y, ŷ) 6= 0, and hence i(y) 6= i(ŷ). To show that i is surjective, consider
an arbitrary element z ∈ Z. Since X is dense in Z, there is a sequence {xn}
from X converging to z. Since Y is complete, {xn} is also converging to an
element y in Y . By construction, i(y) = z, and hence i is surjective. 2

We shall use the rest of the section to show that all metric spaces (X, d)
have a completion. As the construction is longer and more complicated than
most others in this book, I’ll give you a brief preview first. We’ll start with
the set X of all Cauchy sequences in X (this is only natural as what we want
to do is add points to X such that all Cauchy sequences have something to
converge to). Next we introduce an equivalence relation ∼ on X by defining

{xn} ∼ {yn} ⇐⇒ lim
n→∞

d(xn, yn) = 0

We let [xn] denote the equivalence class of the sequence {xn}, and we let X̄
be the set of all equivalence classes. The next step is to introduce a metric
d̄ on X̄ by defining

d̄([xn], [yn]) = lim
n→∞

d(xn, yn)

We now have our completion (X̄, d̄). To prove that it works, we first observe
that X̄ contains a copy D of the original space X: For each x ∈ X, let x̄ =
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[x, x, x . . .] be the equivalence class of the constant sequence {x, x, x, . . .},
and put

D = {x̄ |x ∈ X}

We then prove that D is dense in X and that X is complete. Finally, we
can replace each element x̄ in D by the original element x ∈ X, and we have
our completion.

So let’s begin the work. The first lemma gives us the information we
need to get started.

Lemma 3.7.5 Assume that {xn} and {yn} are two Cauchy sequences in a
metric space (X, d). Then limn→∞ d(xn, yn) exists.

Proof: As R is complete, it suffices to show that {d(xn, yn)} is a Cauchy
sequence. We have

|d(xn, yn)− d(xm, ym)| = |d(xn, yn)− d(xm, yn) + d(xm, yn)− d(xm, ym)| ≤

≤ |d(xn, yn)− d(xm, yn)|+ |d(xm, yn)− d(xm, ym)| ≤ d(xn, xm) + d(yn, ym)

where we have used the inverse triangle inequality (Proposition 3.1.4) in the
final step. Since {xn} and {yn} are Cauchy sequences, we can get d(xn, xm)
and d(yn, ym) as small as we wish by choosing n and m sufficiently large,
and hence {d(xn, yn)} is a Cauchy sequence. 2

As mentioned above, we let X be the set of all Cauchy sequences in the
metric space (X, dX), and we introduce a relation ∼ on X by

{xn} ∼ {yn} ⇐⇒ lim
n→∞

d(xn, yn) = 0

Lemma 3.7.6 ∼ is an equivalence relation.

Proof: We have to check the three properties in Definition 1.5.2:
Reflexivity: Since limn→∞ d(xn, xn) = 0, the relation is reflexive.
Symmetry: Since limn→∞ d(xn, yn) = limn→∞ d(yn, xn), the relation is

symmetric.
Transitivity: Assume that {xn} ∼ {yn} og {yn} ∼ {zn}. Then limn→∞ d(xn, yn)

= limn→∞ d(yn, zn) = 0, and consequently

0 ≤ lim
n→∞

d(xn, zn) ≤ lim
n→∞

(
d(xn, yn) + d(yn, zn)

)
=

= lim
n→∞

d(xn, yn) + lim
n→∞

d(yn, zn) = 0

which shows that {xn} = {yn}. 2

We denote the equivalence class of {xn} by [xn], and we let X̄ be the set
of all equivalence classes. The next lemma will allow us to define a natural
metric on X̄.
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Lemma 3.7.7 If {xn} ∼ {x̂n} and {yn} ∼ {ŷn}, then limn→∞ d(xn, yn) =
limn→∞ d(x̂n, ŷn).

Proof: Since d(xn, yn) ≤ d(xn, x̂n) + d(x̂n, ŷn) + d(ŷn, yn) by the triangle
inequality, and limn→∞ d(xn, x̂n) = limn→∞ d(ŷn, yn) = 0, we get

lim
n→∞

d(xn, yn) ≤ lim
n→∞

d(x̂n, ŷn)

By reversing the roles of elements with and without hats, we get the oppo-
site inequality. 2

We may now define a function d̄ : X̄ × X̄ → [0,∞) by

d̄([xn], [yn]) = lim
n→∞

d(xn, yn)

Note that by the previous lemma d̄ is well-defined ; i.e. the value of d̄([xn], [yn])
does not depend on which representatives {xn} and {yn} we choose from the
equivalence classes [xn] and [yn].

We have reached our first goal:

Lemma 3.7.8 (X̄, d̄) is a metric space.

Proof : We need to check the three conditions in the definition of a metric
space.

Positivity: Clearly d̄([xn], [yn]) = limn→∞ d(xn, yn) ≥ 0, and by defini-
tion of the equivalence relation, we have equality if and only if [xn] = [yn].

Symmetry: Since the underlying metric d is symmetric, we have

d̄([xn], [yn]) = lim
n→∞

d(xn, yn) = lim
n→∞

d(yn, xn) = d̄([yn], [xn])

Triangle inequality: For all equivalence classes [xn], [yn], [zn], we have

d̄([xn], [zn]) = lim
n→∞

d(xn, zn) ≤ lim
n→∞

d(xn, yn) + lim
n→∞

d(yn, zn) =

= d̄([xn], [yn]) + d̄([yn], [zn])

2

For each x ∈ X, let x̄ be the equivalence class of the constant sequence
{x, x, x, . . .}. Since d̄(x̄, ȳ) = limn→∞ d(x, y) = d(x, y), the mapping x → x̄
is an embedding3 of X into X̄. Hence X̄ contains a copy of X, and the next
lemma shows that this copy is dense in X̄.

Lemma 3.7.9 The set
D = {x̄ : x ∈ X}

is dense in X̄.
3Recall Definition 3.1.3
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Proof: Assume that [xn] ∈ X̄. By Proposition 3.7.2, it suffices to show that
for each ε > 0 there is an x̄ ∈ D such that d̄(x̄, [xn]) < ε. Since {xn} is a
Cauchy sequence, there is an N ∈ N such that d(xn, xN ) < ε

2 for all n ≥ N .
Put x = xN . Then d̄([xn], x̄) = limn→∞ d(xn, xN ) ≤ ε

2 < ε. 2

It still remains to prove that (X̄, d̄) is complete. The next lemma is the first
step in this direction.

Lemma 3.7.10 Any Cauchy sequences in D converges to an element in X̄.

Proof: Let {ūk} be a Cauchy sequence in D. Since d(un, um) = d̄(ūn, ūm),
{un} is a Cauchy sequence in X, and gives rise to an element [un] in X̄. To
see that {ūk} converges to [un], note that d̄(ūk, [un]) = limn→∞ d(uk, un).
Since {un} is a Cauchy sequence, this limit decreases to 0 as k goes to in-
finity. 2

The lemma above isn’t enough to prove that X̄ is complete as it may have
“new” Cauchy sequences that doesn’t come from Cauchy sequences in X.
However, since D is dense, this is not a big problem:

Lemma 3.7.11 (X̄, d̄) is complete.

Proof: Let {xn} be a Cauchy sequence in X̄. Since D is dense in X̄, there
is for each n a yn ∈ D such that d̄(xn, yn) < 1

n . It is easy to check that
since {xn} is a Cauchy sequence, so is {yn}. By the previous lemma, {yn}
converges to an element in X̄, and by construction {xn} must converge to
the same element. Hence (X̄, d̄) is complete. 2

We have reached the main theorem.

Theorem 3.7.12 Every metric space (X, d) has a completion.

Proof: We have already proved that (X̄, d̄) is a complete metric space that
contains D = {x̄ : x ∈ X} as a dense subset. In addition, we know that D
is a copy of X (more precisely, x→ x̄ is an isometry from X to D). All we
have to do, is to replace the elements x̄ in D by the original elements x in
X, and we have found a completion of X. 2

Remark: The theorem above doesn’t solve all problems with incomplete
spaces as there may be additional structure we want the completion to re-
flect. If, e.g., the original space consists of functions, we may want the
completion also to consist of functions, but there is nothing in the construc-
tion above that guarantees that this is possible. We shall return to this
question in later chapters.
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Problems to Section 3.7

1. Prove Proposition 3.7.2.

2. Let us write (X, dX) ∼ (Y, dY ) to indicate that the two spaces are isometric.
Show that

(i) (X, dX) ∼ (X, dX)

(ii) If (X, dX) ∼ (Y, dY ), then (Y, dY ) ∼ (X, dX)

(iii) If (X, dX) ∼ (Y, dY ) and (Y, dY ) ∼ (Z, dZ), then (X, dX) ∼ (Z, dZ).

3. Show that the only completion of a complete metric space is the space itself.

4. Show that R is the completion of Q (in the usual metrics).

5. Assume that i : X → Y is an isometry between two metric spaces (X, dX)
and (Y, dY ).

(i) Show that a sequence {xn} converges in X if and only if {i(xn)} con-
verges in Y .

(ii) Show that a set A ⊆ X is open/closed/compact if and only if i(A) is
open/closed/compact.



Chapter 4

Spaces of Continuous
Functions

In this chapter we shall apply the theory we developed in the previous chap-
ter to spaces where the elements are functions. We shall study completeness
and compactness of such spaces and take a look at some applications. But
before we turn to these spaces, it will be useful to take a look at different
notions of continuity and convergence and what they can be used for.

4.1 Modes of continuity

If (X, dX) and (Y, dY ) are two metric spaces, the function f : X → Y
is continuous at a point a if for each ε > 0 there is a δ > 0 such that
dY (f(x), f(a)) < ε whenever dX(x, a) < δ. If f is also continuous at another
point b, we may need a different δ to match the same ε. A question that
often comes up is when we can use the same δ for all points x in the space
X. The function is then said to be uniformly continuous in X. Here is the
precise definition:

Definition 4.1.1 Let f : X → Y be a function between two metric spaces.
We say that f is uniformly continuous if for each ε > 0 there is a δ > 0
such that dY (f(x), f(y)) < ε for all points x, y ∈ X such that dX(x, y) < δ.

A function which is continuous at all points in X, but not uniformly
continuous, is often called pointwise continuous when we want to emphasize
the distinction.

Example 1. The function f : R → R defined by f(x) = x2 is pointwise
continuous, but not uniformly continuous. The reason is that the curve be-
comes steeper and steeper as |x| goes to infinity, and that we hence need
increasingly smaller δ’s to match the same ε (make a sketch!) See Exercise

77
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1 for a more detailed discussion. ♣

If the underlying space X is compact, pointwise continuity and uniform
continuity are the same. This means, e.g., that a continuous function defined
on a closed and bounded subset of Rn is always uniformly continuous.

Proposition 4.1.2 Assume that X and Y are metric spaces. If X is com-
pact, all continuous functions f : X → Y are uniformly continuous.

Proof: We argue contrapositively: Assume that f is not uniformly continu-
ous; we shall show that f is not continuous.

Since f fails to be uniformly continuous, there is an ε > 0 we cannot
match; i.e. for each δ > 0 there are points x, y ∈ X such that dX(x, y) < δ,
but dY (f(x), f(y)) ≥ ε. Choosing δ = 1

n , there are thus points xn, yn ∈ X
such that dX(xn, yn) < 1

n and dY (f(xn), f(yn)) ≥ ε. Since X is compact,
the sequence {xn} has a subsequence {xnk} converging to a point a. Since
dX(xnk , ynk) < 1

nk
, the corresponding sequence {ynk} of y’s must also con-

verge to a. We are now ready to show that f is not continuous at a: Had it
been, the two sequences {f(xnk)} and {f(ynk)} would both have converged
to f(a) according to Proposition 3.2.5, something they clearly cannot since
dY (f(xn), f(yn)) ≥ ε for all n ∈ N. 2

There is an even more abstract form of continuity that will be impor-
tant later. This time we are not considering a single function, but a whole
collection of functions:

Definition 4.1.3 Let (X, dX) and (Y, dY ) be metric spaces, and let F be a
collection of functions f : X → Y . We say that F is equicontinuous if for
all ε > 0, there is a δ > 0 such that for all f ∈ F and all x, y ∈ X with
dX(x, y) < δ, we have dY (f(x), f(y)) < ε.

Note that in the case, the same δ should not only hold at all points
x, y ∈ X, but also for all functions f ∈ F .

Example 2 Let F be the set of all contractions f : X → X. Then F is
equicontinuous, since we can can choose δ = ε. To see this, just note that
if dX(x, y) < δ = ε, then dX(f(x), f(y)) ≤ dX(x, y) < ε for all x, y ∈ X and
all f ∈ F . ♣

Equicontinuous families will be important when we study compact sets
of continuous functions in Section 4.8.

Exercises for Section 4.1

1. Show that the function f(x) = x2 is not uniformly continuous on R. (Hint:
You may want to use the factorization f(x)−f(y) = x2−y2 = (x+y)(x−y)).
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2. Prove that the function f : (0, 1) → R given by f(x) = 1
x is not uniformly

continuous.

3. A function f : X → Y between metric spaces is said to be Lipschitz-
continuous with Lipschitz constant K if dY (f(x), f(y)) ≤ KdX(x, y) for
all x, y ∈ X. Asume that F is a collection of functions f : X → Y with
Lipschitz constant K. Show that F is equicontinuous.

4. Let f : R→ R be a differentiable function and assume that the derivative f ′
is bounded. Show that f is uniformly continuous.

4.2 Modes of convergence

In this section we shall study two ways in which a sequence {fn} of continu-
ous functions can converge to a limit function f : pointwise convergence and
uniform convergence. The distinction is rather simililar to the distinction
between pointwise and uniform continuity in the previous section — in the
pointwise case, a condition can be satisfied in different ways for different x’s;
in the uniform case, it must be satisfied in the same way for all x. We begin
with pointwise convergence:

Definition 4.2.1 Let (X, dX) and (Y, dY ) be two metric spaces, and let
{fn} be a sequence of functions fn : X → Y . We say that {fn} con-
verges pointwise to a function f : X → Y if fn(x) → f(x) for all x ∈ X.
This means that for each x and each ε > 0, there is an N ∈ N such that
dY (fn(x), f(x)) < ε when n ≥ N .

Note that the N in the last sentence of the definition depends on x —
we may need a much larger N for some x’s than for others. If we can use
the same N for all x ∈ X, we have uniform convergence. Here is the precise
definition:

Definition 4.2.2 Let (X, dX) and (Y, dY ) be two metric spaces, and let
{fn} be a sequence of functions fn : X → Y . We say that {fn} converges
uniformly to a function f : X → Y if for each ε > 0, there is an N ∈ N
such that if n ≥ N , then dY (fn(x), f(x)) < ε for all x ∈ X.

At first glance, the two definitions may seem confusingly similar, but the
difference is that in the last one, the same N should work simultaneously for
all x, while in the first we can adapt N to each individual x. Hence uniform
convergence implies pointwise convergence, but a sequence may converge
pointwise but not uniformly. Before we look at an example, it will be useful
to reformulate the definition of uniform convergence.

Proposition 4.2.3 Let (X, dX) and (Y, dY ) be two metric spaces, and let
{fn} be a sequence of functions fn : X → Y . For any function f : X → Y
the following are equivalent:
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(i) {fn} converges uniformly to f .

(ii) sup{dY (fn(x), f(x)) |x ∈ X} → 0 as n→∞.

Hence uniform convergence means that the “maximal” distance between f
and fn goes to zero.

Proof: (i) =⇒ (ii) Assume that {fn} converges uniformly to f . For any
ε > 0, we can find an N ∈ N such that dY (fn(x), f(x)) < ε for all x ∈ X and
all n ≥ N . This means that sup{dY (fn(x), f(x)) |x ∈ X} ≤ ε for all n ≥ N
(note that we may have unstrict inequality ≤ for the supremum although
we have strict inequality < for each x ∈ X), and since ε is arbitrary, this
implies that sup{dY (fn(x), f(x)) |x ∈ X} → 0.

(ii) =⇒ (i) Assume that sup{dY (fn(x), f(x)) |x ∈ X} → 0 as n → ∞.
Given an ε > 0, there is an N ∈ N such that sup{dY (fn(x), f(x)) |x ∈ X} <
ε for all n ≥ N . But then we have dY (fn(x), f(x)) < ε for all x ∈ X and all
n ≥ N , which means that {fn} converges uniformly to f . 2

Here is an example which shows clearly the distinction between point-
wise and uniform convergence:

Example 1 Let fn : [0, 1] → R be the function in Figure 1. It is constant
zero except on the interval [0, 1

n ] where it looks like a tent of height 1.
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If you insist, the function is defined by

fn(x) =


2nx if 0 ≤ x < 1

2n

−2nx+ 2 if 1
2n ≤ x <

1
n

0 if 1
n ≤ x ≤ 1

but it is much easier just to work from the picture.
The sequence {fn} converges pointwise to 0, because at every point x ∈

[0, 1] the value of fn(x) eventually becomes 0 (for x = 0, the value is always
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0, and for x > 0 the “tent” will eventually pass to the left of x.) However,
since the maximum value of all fn is 1, sup{dY (fn(x), f(x)) |x ∈ [0, 1]} = 1
for all n, and hence {fn} does not converge uniformly to 0. ♣

When we are working with convergent sequences, we would often like
the limit to inherit properties from the elements in the sequence. If, e.g.,
{fn} is a sequence of continuous functions converging to a limit f , we are
often interested in showing that f is also continuous. The next example
shows that this is not always the case when we are dealing with pointwise
convergence.

Example 2: Let fn : R→ R be the function in Figure 2.
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It is defined by

fn(x) =


−1 if x ≤ − 1

n

nx if − 1
n < x < 1

n

1 if 1
n ≤ x

The sequence {fn} converges pointwise to the function, f defined by

f(x) =


−1 if x < 0

0 if x = 0

1 if x > 0

but although all the functions {fn} are continuous, the limit function f is
not. ♣

If we strengthen the convergence from pointwise to uniform, the limit of
a sequence of continuous functions is always continuous.
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Proposition 4.2.4 Let (X, dX) and (Y, dY ) be two metric spaces, and as-
sume that {fn} is a sequence of continuous functions fn : X → Y converging
uniformly to a function f . Then f is continuous.

Proof: Let a ∈ X. Given an ε > 0, we must find a δ > 0 such that
dY (f(x), f(a)) < ε whenever dX(x, a) < δ. Since {fn} converges uniformly
to f , there is an N ∈ N such that when n ≥ N , dY (f(x), fn(x)) < ε

3
for all x ∈ X. Since fN is continuous at a, there is a δ > 0 such that
dY (fN (x), fN (a)) < ε

3 whenever dX(x, a) < δ. If dX(x, a) < δ, we then have

dY (f(x), f(a)) ≤ dY (f(x), fN (x)) + dY (fN (x), fN (a)) + dY (fN (a), f(a)) <

<
ε

3
+
ε

3
+
ε

3
= ε

and hence f is continuous at a. 2

The technique in the proof above is quite common, and arguments of
this kind are often referred to as ε

3 -arguments. It’s quite instructive to take
a closer look at the proof to see where it fails for pointwise convergence.

Exercises for Section 4.2

1. Let fn : R → R be defined by fn(x) = x
n . Show that {fn} converges point-

wise, but not uniformly to 0.

2. Let fn : (0, 1) → R be defined by fn(x) = xn. Show that {fn} converges
pointwise, but not uniformly to 0.

3. The function fn : [0,∞)→ R is defined by fn(x) = e−x
(
x
n

)ne.
a) Show that {fn} converges pointwise.
b) Find the maximum value of fn. Does {fn} converge uniformly?

4. The function fn : (0,∞)→ R is defined by

fn(x) = n(x1/n − 1)

Show that {fn} converges pointwise to f(x) = lnx. Show that the conver-
gence is uniform on each interval ( 1

k , k), k ∈ N, but not on (0,∞).

5. Let fn : R → R and assume that the sequence {fn} of continuous functions
converges uniformly to f : R→ R on all intervals [−k, k], k ∈ N. Show that
f is continuous.

6. Assume that X is a metric space and that fn, gn are functions from X to R.
Show that if {fn} and {gn} converge uniformly to f and g, respectively, then
{fn + gn} converges uniformly to f + g.

7. Assume that fn : [a, b] → R are continuous functions converging uniformly
to f . Show that ∫ b

a

fn(x) dx→
∫ b

a

f(x) dx

Find an example which shows that this is not necessarily the case if {fn}
only converges pointwise to f .
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8. Let fn : R → R be given by fn(x) = 1
n sin(nx). Show that {fn} converges

uniformly to 0, but that the sequence {f ′n} of derivates does not converge.
Sketch the graphs of fn to see what is happening.

9. Let (X, d) be a metric space and assume that the sequence {fn} of continuous
functions converges uniformly to f . Show that if {xn} is a sequence in X
converging to x, then fn(xn) → f(x). Find an example which shows that
this is not necessarily the case if {fn} only converges pointwise to f .

10. Assume that the functions fn : X → Y converges uniformly to f , and that
g : Y → Z is uniformly continuous. Show that the sequence {g ◦ fn} con-
verges uniformly. Find an example which shows that the conclusion does not
necessarily hold if g is only pointwise continuous.

11. Assume that
∑∞
n=0Mn is a convergent series of positive numbers. Assume

that fn : X → R is a sequence of continuous functions defined on a metric
space (X, d). Show that if |fn(x)| ≤ Mn for all x ∈ X and all n ∈ N , then
the partial sums sN (x) =

∑N
n=0 fn(x) converge uniformly to a continuous

function s : X → R as N →∞. (This is called Weierstrass’ M-test).

12. In this exercise we shall prove:
Dini’s Theorem. If (X, d) is a compact space and {fn} is an increasing
sequence of continuous functions fn : X → R converging pointwise to a
continuous function f , then the convergence is uniform.

a) Let gn = f − fn. Show that it suffices to prove that {gn} decreases
uniformly to 0.

Assume for contradiction that gn does not converge uniformly to 0.

b) Show that there is an ε > 0 and a sequence {xn} such that gn(xn) ≥ ε
for all n ∈ N.

c) Explain that there is a subsequence {xnk} that converges to a point
a ∈ X.

d) Show that there is an N ∈ N and an r > 0 such that gN (x) < ε for all
x ∈ B(a; r).

e) Derive the contradiction we have been aiming for.

4.3 Integrating and differentiating sequences

In this and the next section, we shall take a look at what different modes of
convergence has to say for our ability to integrate and differentiate series.
The fundamental question is simple: Assume that we have a sequence of
functions {fn} converging to a limit function f . If we integrate the functions
fn, will the integrals converge to the integral of f? And if we differentiate
the fn’s, will the derivatives converge to f ′?

We shall soon see that without any further restrictions, the answers
to both questions are no, but that it is possible to put conditions on the
sequences that turn the answers into yes.
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Let us start with integration and the following example which is a slight
variation of Example 1 in Section 4.2.

Example 1: Let fn : [0, 1]→ R be the function in the figure.
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It is given by the formula

fn(x) =


2n2x if 0 ≤ x < 1

2n

−2n2x+ 2n if 1
2n ≤ x <

1
n

0 if 1
n ≤ x ≤ 1

but it is much easier just to work from the picture. The sequence {fn} con-
verges pointwise to 0, but the integrals do not not converge to 0. In fact,∫ 1

0 fn(x) dx = 1
2 since the value of the integral equals the area under the

function graph, i.e. the area of a triangle with base 1
n and height n. ♣

The example above shows that if the functions fn converge pointwise to a
function f on an interval [a, b], the integrals

∫ b
a fn(x) dx need not converge

to
∫ b
a f(x) dx. The reason is that with pointwise convergence, the difference

between f and fn may be very large on small sets — so large that the
integrals of fn do not converge to the integral of f . If the convergence is
uniform, this can not happen:

Proposition 4.3.1 Assume that {fn} is a sequence of continuous functions
converging uniformly to f on the interval [a, b]. Then the functions

Fn(x) =

∫ x

a
fn(t) dt

converge uniformly to

F (x) =

∫ x

a
f(t) dt

on [a, b].
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Proof: We must show that for a given ε > 0, we can always find an N ∈ N
such that |F (x) − Fn(x)| < ε for all n ≥ N and all x ∈ [a, b]. Since {fn}
converges uniformly to f , there is an N ∈ N such that |f(t)− fn(t)| < ε

b−a
for all t ∈ [a, b]. For n ≥ N , we then have for all x ∈ [a, b]:

|F (x)− Fn(x)| = |
∫ x

a
(f(t)− fn(t)) dt | ≤

∫ x

a
|f(t)− fn(t)| dt ≤

≤
∫ x

a

ε

b− a
dt ≤

∫ b

a

ε

b− a
dt = ε

This shows that {Fn} converges uniformly to F on [a, b]. 2

In applications it is often useful to have the result above with a flexible
lower limit.

Corollary 4.3.2 Assume that {fn} is a sequence of continuous functions
converging uniformly to f on the interval [a, b]. For any x0 ∈ [a, b], the
functions

Fn(x) =

∫ x

x0

fn(t) dt

converge uniformly to

F (x) =

∫ x

x0

f(t) dt

on [a, b].

Proof: Recall that∫ x

a
fn(t) dt =

∫ x0

a
fn(t) dt+

∫ x

x0

fn(t) dt

regardless of the order of the numbers a, x0, x, and hence∫ x

x0

fn(t) dt =

∫ x

a
fn(t) dt−

∫ x0

a
fn(t) dt

The first integral on the right converges uniformly to
∫ x
a f(t) dt according to

the proposition, and the second integral converges (as a sequence of num-
bers) to

∫ x0
a f(t) dt. Hence

∫ x
x0
fn(t) dt converges uniformly to∫ x

a
f(t) dt−

∫ x0

a
f(t) dt =

∫ x

x0

f(t) dt

as was to be proved. 2

Let us reformulate this result in terms of series. Recall that a series of
functions

∑∞
n=0 vn(x) converges pointwise/unifomly to a function f on an

interval I if an only if the sequence {sN} of partial sum sN (x) =
∑N

n=0 vn(x)
converges pointwise/uniformly to f on I.
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Corollary 4.3.3 Assume that {vn} is a sequence of continuous functions
such that the series

∑∞
n=0 vn(x) converges uniformly on the interval [a, b].

Then for any x0 ∈ [a, b], the series
∑∞

n=0

∫ x
x0
vn(t) dt converges uniformly

and
∞∑
n=0

∫ x

x0

vn(t) dt =

∫ x

x0

∞∑
n=0

vn(t) dt

Proof: Assume that the series
∑∞

n=0 vn(x) converges uniformly to the func-
tion f . This means that the partial sums sN (x) =

∑N
n=0 vk(x) converge

uniformly to f , and hence by Corollary 4.3.2,∫ x

x0

f(t) dt = lim
N→∞

∫ x

x0

sN (t) dt = lim
N→∞

∫ x

x0

N∑
n=0

vn(t) dt

Since

lim
N→∞

∫ x

x0

N∑
n=0

vn(t) dt = lim
N→∞

N∑
n=0

∫ x

x0

vn(t) dt =

∞∑
n=0

∫ x

x0

vn(t) dt ,

the corollary follows. 2

The corollary tell us that if the series
∑∞

n=0 vn(x) converges uniformly,
we can integrate it term by term to get∫ x

x0

∞∑
n=0

vn(t) dt =
∞∑
n=0

∫ x

x0

vn(t) dt

This formula may look obvious, but it does not in general hold for series
that only converge pointwise. As we shall see later, interchanging integrals
and infinite sums is quite a tricky business.

To use the corollary efficiently, we need to be able to determine when a
series of functions converges uniformly. The following simple test is often
helpful:

Proposition 4.3.4 (Weierstrass’ M-test) Let {vn} be a sequence of func-
tions vn : A→ R defined on a set A, and assume that there is a convergent
series

∑∞
n=0Mn of positive numbers such that |vn(x)| ≤ Mn for all n ∈ N

and all x ∈ A. Then the series
∑∞

n=0 vn(x) converges uniformly on A.

Proof: Let sn(x) =
∑n

k=0 vk(x) be the partial sums of the original series.
Since the series

∑∞
n=0Mn converges, we know that its partial sums Sn =∑n

k=0Mk form a Cauchy sequence. Since for all x ∈ A and all m > n,

|sm(x)− sn(x)| = |
m∑

k=n+1

vk(x) | ≤
m∑

k=n+1

|vk(x)| ≤
m∑

k=n+1

Mk = |Sm − Sn| ,
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we see that {sn(x)} is a Cauchy sequence (in R) for each x ∈ A and hence
converges to a limit s(x). This defines a pointwise limit function s : A→ R.

To prove that {sn} converges uniformly to s, note that for every ε > 0,
there is an N ∈ N such that if S =

∑∞
k=0Mk, then

∞∑
k=n+1

Mk = S − Sn < ε

for all n ≥ N . This means that for all n ≥ N ,

|s(x)− sn(x)| = |
∞∑

k=n+1

vk(x)| ≤
∞∑

k=n+1

|vk(x)| ≤
∞∑

k=n+1

Mk < ε

for all x ∈ A, and hence {sn} converges uniformly to s on A. 2

Example 1: Consider the series
∑∞

n=1
cosnx
n2 . Since | cosnx

n2 | ≤ 1
n2 , and∑∞

n=0
1
n2 converges, the original series

∑∞
n=1

cosnx
n2 converges uniformly to a

function f on any closed and bounded interval [a, b]. Hence we may inter-
grate termwise to get∫ x

0
f(t) dt =

∞∑
n=1

∫
x

cosnt

n2
dt =

∞∑
n=1

sinnx

n3

♣

Let us now turn to differentiation of sequences. This is a much trickier
business than integration as integration often helps to smoothen functions
while differentiation tends to make them more irregular. Here is a simple
example.

Example 2: The sequence (not series!) { sinnx
n } obviously converges uni-

formly to 0, but the sequence of derivatives {cosnx} does not converge at
all. ♣

The example shows that even if a sequence {fn} of differentiable functions
converges uniformly to a differentiable function f , the derivatives f ′n need
not converge to the derivative f ′ of the limit function. If you draw the graphs
of the functions fn, you will see why — although they live in an increasingly
narrower strip around the x-axis, they all wriggle equally much, and the
derivatives do not converge.

To get a theorem that works, we have to put the conditions on the
derivatives. The following result may look ugly and unsatisfactory, but it
gives us the information we shall need.
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Proposition 4.3.5 Let {fn} be a sequence of differentiable functions on
the interval [a, b]. Assume that the derivatives f ′n are continuous and that
they converge uniformly to a function g on [a, b]. Assume also that there
is a point x0 ∈ [a, b] such that the sequence {f(x0)} converges. Then the
sequence {fn} converges uniformly on [a, b] to a differentiable function f
such that f ′ = g.

Proof: The proposition is just Corollary 4.3.2 in a convenient disguise. If
we apply that proposition to the sequence {f ′n}, we se that the integrals∫ x
x0
f ′n(t) dt converge uniformly to

∫ x
x0
g(t) dt. By the Fundamental Theorem

of Calculus, we get

fn(x)− fn(x0)→
∫ x

x0

g(t) dt uniformly on [a, b]

Since fn(x0) converges to a limit b, this means that fn(x) converges uni-
formly to the function f(x) = b+

∫ x
x0
g(t) dt. Using the Fundamental Theo-

rem of Calculus again, we see that f ′(x) = g(x). 2

Also in this case it is useful to have a reformulation in terms of series:

Corollary 4.3.6 Let
∑∞

n=0 un(x) be a series where the functions un are dif-
ferentiable with continuous derivatives on the interval [a, b]. Assume that the
series of derivatives

∑∞
n=0 u

′
n(x) converges uniformly on [a, b]. Assume also

that there is a point x0 ∈ [a, b] where we know that the series
∑∞

n=0 un(x0)
converges. Then the series

∑∞
n=0 un(x) converges uniformly on [a, b], and( ∞∑

n=0

un(x)

)′
=
∞∑
n=0

u′n(x)

The corollary tells us that under rather strong conditions, we can differ-
entiate the series

∑∞
n=0 un(x) term by term.

Example 3: Summing a geometric series, we see that

1

1− e−x
=
∞∑
n=0

e−nx for x > 0 (4.3.1)

If we can differentiate term by term on the right hand side, we shall get

e−x

(1− e−x)2
=

∞∑
n=1

ne−nx for x > 0 (4.3.2)

To check that this is correct, we must check the convergence of the dif-
ferentiated series (4.2.2). Choose an interval [a, b] where a > 0, then
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ne−nx ≤ ne−na for all x ∈ [a, b]. Using, e.g., the ratio test, it is easy to
see that the series

∑∞
n=0 ne

−na converges, and hence
∑∞

n=0 ne
−nx converges

uniformly on [a, b] by Weierstrass’ M -test. The corollary now tells us that
the sum of the sequence (4.2.2) is the derivative of the sum of the sequence
(4.2.1), i.e.

e−x

(1− e−x)2
=
∞∑
n=1

ne−nx for x ∈ [a, b]

Since [a, b] is an arbitrary subinterval of (0,∞), we have

e−x

(1− e−x)2
=
∞∑
n=1

ne−nx for all x > 0

♣

Exercises for Section 4.3

1. Show that
∑∞
n=0

cos(nx)
n2+1 converges uniformly on R.

2. Does the series
∑∞
n=0 ne

−nx in Example 3 converge uniformly on (0,∞)?

3. Let fn : [0, 1]→ R be defined by fn(x) = nx(1− x2)n. Show that fn(x)→ 0

for all x ∈ [0, 1], but that
∫ 1

0
fn(x) dx→ 1

2 .

4. Explain in detail how Corollary 4.3.6 follows from Proposition 4.3.5.

5. a) Show that series
∑∞
n=1

cos xn
n2 converges uniformly on R.

b) Show that
∑∞
n=1

sin x
n

n converges to a continuous function f , and that

f ′(x) =

∞∑
n=1

cos xn
n2

6. One can show that

x =

∞∑
n=1

2(−1)n+1

n
sin(nx) for x ∈ (−π, π)

If we differentiate term by term, we get

1 =

∞∑
n=1

2(−1)n+1 cos(nx) for x ∈ (−π, π)

Is this a correct formula?

7. a) Show that the sequence
∑∞
n=1

1
nx converges uniformly on all intervals

[a,∞) where a > 1.

b) Let f(x) =
∑∞
n=1

1
nx for x > 1. Show that f ′(x) = −

∑∞
n=1

ln x
nx .
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4.4 Applications to power series

In this section, we shall illustrate the theory in previous section by applying
it to the power series you know from calculus. If you are not familiar with
lim sup and lim inf, you should read the discussion in Section 2.2 before you
continue.

Recall that a power series is a function of the form

f(x) =
∞∑
n=0

cn(x− a)n

where a is a real number and {cn} is a sequence of real numbers. It is
defined for the x-values that make the series converge. We define the radius
of convergence of the series to be the number R such that

1

R
= lim sup

n→∞
n
√
|cn|

with the interpretation that R = 0 if the limit is infinite, and R =∞ if the
limit is 0. To justify this terminology, we need the the following result.

Proposition 4.4.1 If R is the radius of convergence of the power series∑∞
n=0 cn(x − a)n, the series converges for |x − a| < R and diverges for

|x− a| > R. If 0 < r < R, the series converges uniformly on [a− r, a+ r].

Proof: Let us first assume that |x − a| > R. This means that 1
|x−a| <

1
R ,

and since lim supn→∞
n
√
|cn| = 1

R , there must be arbitrarily large values of
n such that n

√
|cn[ > 1

|x−a| . Hence |cn(x − a)n| > 1, and consequently the
series must diverge as the terms do not decrease to zero.

To prove the (uniform) convergence, assume that r is a number between
0 and R. Since 1

r > 1
R , we can pick a positive number b < 1 such that

b
r >

1
R . Since lim supn→∞

n
√
|cn| = 1

R , there must be an N ∈ N such that
n
√
|cn| < b

r when n ≥ N . This means that |cnrn| < bn for n ≥ N , and
hence that |cn(x − a)|n < bn for all x ∈ [a − r, a + r]. Since

∑∞
n=N b

n is
a convergent, geometric series, Weierstrass’ M-test tells us that the series∑∞

n=N cn(x − a)n converges uniformly on [a − r, a + r]. Since only the tail
of a sequence counts for convergence, the full series

∑∞
n=0 cn(x − a)n also

converges uniformly on [a−r, a+r]. Since r is an arbitrary number less than
R, we see that the series must converge on the open interval (a−R, a+R),
i.e. whenever |x− a| < R. 2

Remark: When we want to find the radius of convergence, it is occasion-
ally convenient to compute a slightly different limit such as limn→∞ n+1

√
cn

or limn→∞ n−1
√
cn instead of limn→∞ n

√
cn. This corresponds to finding the
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radius of convergence of the power series we get by either multiplying or di-
viding the original one by (x− a), and gives the correct answer as multiply-
ing or dividing a series by a non-zero number doesn’t change its convergence
properties.

The proposition above does not tell us what happens at the endpoints
a±R of the interval of convergence, but we know from calculus that a series
may converge at both, one or neither endpoint. Although the convergence
is uniform on all subintervals [a − r, a + r], it is not in general uniform on
(a−R, a+R).

Corollary 4.4.2 Assume that the power series f(x) =
∑∞

n=0 cn(x−a)n has
radius of convergence R larger than 0. Then the function f is continuous
and differentiable on the open interval (a−R, a+R) with

f ′(x) =

∞∑
n=1

ncn(x−a)n−1 =

∞∑
n=0

(n+1)cn+1(x−a)n for x ∈ (a−R, a+R)

and∫ x

a
f(t) dt =

∞∑
n=0

cn
n+ 1

(x−a)n+1 =
∞∑
n=1

cn−1

n
(x−a)n for x ∈ (a−R, a+R)

Proof: Since the power series converges uniformly on each subinterval [a −
r, a+r], the sum is continuous on each such interval according to Proposition
4.2.4. Since each x in (a− R, a+ R) is contained in the interior of some of
the subintervals [a− r, a+ r], we see that f must be continuous on the full
interval (a−R, a+R). The formula for the integral follows immediately by
applying Corollary 4.3.3 on each subinterval [a− r, a+ r] in a similar way.

To get the formula for the derivative, we shall apply Corollary 4.3.6. To
use this result, we need to know that the differentiated series

∑∞
n=1(n +

1)cn+1(x− a)n has the same radius of convergence as the original series; i.e.
that

lim sup
n→∞

n+1
√
|(n+ 1)cn+1| = lim sup

n→∞
n
√
|cn| =

1

R

(recall that by the remark above, we may use the n + 1-st root on the left
hand side instead of the n-th root). Since limn→∞

n+1
√
n+ 1 = 1, this is not

hard to show (see Exercise 6). Applying Corollary 4.2.6 on each subinter-
val [a − r, a + r], we now get the formula for the derivative at each point
x ∈ (a− r, a+ r). Since each point in (a−R, a+R) belongs to the interior
of some of the subintervals, the formula for the derivative must hold at all
points x ∈ (a−R, a+R). 2

A function that is the sum of a power series, is called a real analytic
function. Such functions have derivatives of all orders.
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Corollary 4.4.3 Let f(x) =
∑∞

n=0 cn(x− a)n for x ∈ (a−R, a+R). Then
f is k times differentiable in (a−R, a+R) for any k ∈ N, and f (k)(a) = k!ck.
Hence

∑∞
n=0 cn(x− a)n is the Taylor series

f(x) =
∞∑
n=0

f (n)(a)

n!
(x− a)n

Proof: Using the previous corollary, we get by induction that f (k) exists on
(a−R, a+R) and that

f (k)(x) =
∞∑
n=k

n(n− 1) · . . . · (n− k + 1)cn(x− a)n−k

Putting x = a, we get f (k)(a) = k!ck, and the corollary follows. 2

Abel’s Theorem

We have seen that the sum f(x) =
∑∞

n=0 cn(x − a)n of a power series is
continuous in the interior (a−R, a+R) of its interval of convergence. But
what happens if the series converges at an endpoint a ± R? It turns out
that the sum is also continuous at the endpoint, but that this is surprisingly
intricate to prove.

Before we turn to the proof, we need a lemma that can be thought of as
a discrete version of integration by parts.

Lemma 4.4.4 (Abel’s Summation Formula) Let {an}∞n=0 and {bn}∞n=0

be two sequences of real numbers, and let sn =
∑n

k=0 ak. Then

N∑
n=0

anbn = sNbN +

N−1∑
n=0

sn(bn − bn+1).

If the series
∑∞

n=0 an converges, and bn → 0 as n→∞, then

∞∑
n=0

anbn =
∞∑
n=0

sn(bn − bn+1)

in the sense that either the two series both diverge or they converge to the
same limit.

Proof: Note that an = sn−sn−1 for n ≥ 1, and that this formula even holds
for n = 0 if we define s−1 = 0. Hence

N∑
n=0

anbn =

N∑
n=0

(sn − sn−1)bn =

N∑
n=0

snbn −
N∑
n=0

sn−1bn
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Changing the index of summation and using that s−1 = 0, we see that∑N
n=0 sn−1bn =

∑N−1
n=0 snbn+1. Putting this into the formula above, we get

N∑
n=0

anbn =

N∑
n=0

snbn −
N−1∑
n=0

snbn+1 = sNbN +

N−1∑
n=0

sn(bn − bn+1)

and the first part of the lemma is proved. The second follows by letting
N →∞. 2

We are now ready to prove:

Theorem 4.4.5 (Abel’s Theorem) The sum of a power series f(x) =∑∞
n=0 cn(x − a)n is continuous in its entire interval of convergence. This

means in particular that if R is the radius of convergence, and the power se-
ries converges at the right endpoint a+R, then limx↑a+R f(x) = f(a+R), and
if the power series converges at the left endpoint a−R, then limx↓a−R f(x) =
f(a−R).1

Proof: We already know that f is continuous in the open interval (a−R, a+
R), and that we only need to check the endpoints. To keep the notation
simple, we shall assume that a = 0 and concentrate on the right endpoint
R. Thus we want to prove that limx↑R f(x) = f(R).

Note that f(x) =
∑∞

n=0 cnR
n
(
x
R

)n. If we assume that |x| < R, we may
apply the second version of Abel’s summation formula with an = cnR

n and
bn =

(
x
n

)n to get

f(x) =

∞∑
n=0

fn(R)

(( x
R

)n
−
( x
R

)n+1
)

=
(

1− x

R

) ∞∑
n=0

fn(R)
( x
R

)n
where fn(R) =

∑n
k=0 ckR

k. Summing a geometric series, we see that we
also have

f(R) =
(

1− x

R

) ∞∑
n=0

f(R)
( x
R

)n
Hence

|f(x)− f(R)| =

∣∣∣∣∣(1− x

R

) ∞∑
n=0

(fn(R)− f(R))
( x
R

)n∣∣∣∣∣
Given an ε > 0, we must find a δ > 0 such that this quantity is less than ε
when R − δ < x < R. This may seem obvious due to the factor (1− x/R),
but the problem is that the infinite series may go to infinity when x → R.
Hence we need to control the tail of the sequence before we exploit the factor

1I use limx↑b and limx↓b for one-sided limits, also denoted by limx→b− and limx→b+ .
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(1 − x/R). Fortunately, this is not difficult: Since fn(R) → f(R), we first
pick an N ∈ N such that |fn(R)− f(R)| < ε

2 for n ≥ N . Then

|f(x)− f(R)| ≤
(

1− x

R

)N−1∑
n=0

|fn(R)− f(R)|
( x
R

)n
+

+
(

1− x

R

) ∞∑
n=N

|fn(R)− f(R)|
( x
R

)n
≤

≤
(

1− x

R

)N−1∑
n=0

|fn(R)− f(R)|
( x
R

)n
+
(

1− x

R

) ∞∑
n=0

ε

2

( x
R

)n
=

=
(

1− x

R

)N−1∑
n=0

|fn(R)− f(R)|
( x
R

)n
+
ε

2

where we have summed a geometric series. Now the sum is finite, and
the first term clearly converges to 0 when x ↑ R. Hence there is a δ > 0
such that this term is less than ε

2 when R − δ < x < R, and consequently
|f(x)− f(R)| < ε for such values of x. 2

Let us take a look at a famous example.

Example 1: Summing a geometric series, we clearly have

1

1 + x2
=
∞∑
n=0

(−1)nx2n for |x| < 1

Integrating, we get

arctanx =

∞∑
n=0

(−1)n
x2n+1

2n+ 1
for |x| < 1

Using the Alternating Series Test, we see that the series converges even for
x = 1. By Abel’s Theorem

π

4
= arctan 1 = lim

x↑1
arctanx = lim

x↑1

∞∑
n=0

(−1)n
x2n+1

2n+ 1
=

∞∑
n=0

(−1)n
1

2n+ 1

Hence we have proved

π

4
= 1− 1

3
+

1

5
− 1

7
+ . . .

This is often called Leibniz’ or Gregory’s formula for π, but it was actu-
ally first discovered by the Indian mathematician Madhava (ca. 1350 – ca.
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1425). ♣

This example is rather typical; the most interesting information is often
obtained at an endpoint, and we need Abel’s Theorem to secure it.

It is natural to think that Abel’s Theorem must have a converse saying
that if limx↑a+R

∑∞
n=0 cnx

n exists, then the sequence converges at the right
endpoint x = a + R. This, however, is not true as the following simple
example shows.

Example 2: Summing a geometric series, we have

1

1 + x
=

∞∑
n=0

(−x)n for |x| < 1

Obviously, limx↑1
∑∞

n=0(−x)n = limx↑1
1

1+x = 1
2 , but the series does not

converge for x = 1. ♣

It is possible to put extra conditions on the coefficients of the series to
ensure convergence at the endpoint, see Exercise 8.

Exercises for Section 4.4

1. Find power series with radius of convergence 0, 1, 2, and ∞.

2. Find power series with radius of convergence 1 that converge at both,
one and neither of the endpoints.

3. Show that for any polynomial P , limn→∞
n
√
|P (n)| = 1.

4. Use the result in Exercise 3 to find the radius of convergence:

a)
∑∞

n=0
2nxn

n3+1

b)
∑∞

n=0
2n2+n−1

3n+4 xn

c)
∑∞

n=0 nx
2n

5. a) Explain that 1
1−x2 =

∑∞
n=0 x

2n for |x| < 1,

b) Show that 2x
(1−x2)2

=
∑∞

n=0 2nx2n−1 for |x| < 1.

c) Show that 1
2 ln

∣∣∣1+x
1−x

∣∣∣ =
∑∞

n=0
x2n+1

2n+1 for |x| < 1.

6. Let
∑∞

n=0 cn(x− a)n be a power series.

a) Show that the radius of convergence is given by

1

R
= lim sup

n→∞
n+k
√
|cn|

for any integer k.
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b) Show that limn→∞
n+1
√
n+ 1 = 1 (write n+1

√
n+ 1 = (n+ 1)

1
n+1 ).

c) Prove the formula

lim sup
n→∞

n+1
√
|(n+ 1)cn+1| = lim sup

n→∞
n
√
|cn| =

1

R

in the proof of Corollary 4.4.2.

7. a) Explain why 1
1+x =

∑∞
n=0(−1)nxn for |x| < 1.

b) Show that ln(1 + x) =
∑∞

n=0(−1)n x
n+1

n+1 for |x| < 1.

c) Show that ln 2 =
∑∞

n=0(−1)n 1
n+1 .

8. In this problem we shall prove the following partial converse of Abel’s
Theorem:

Tauber’s Theorem Assume that s(x) =
∑∞

n=0 cnx
n is a power series

with radius of convergence 1. Assume that s = limx↑1
∑∞

n=0 cnx
n is

finite. If in addition limn→∞ ncn = 0, then the power series converges
for x = 1 and s = s(1).

a) Explain that if we can prove that the power series converges for
x = 1, then the rest of the theorem will follow from Abel’s The-
orem.

b) Show that limN→∞
1
N

∑N
n=0 n|cn| = 0.

c) Let sN =
∑N

n=0 cn. Explain that

s(x)− sN = −
N∑
n=0

cn(1− xn) +
∞∑

n=N+1

cnx
n

d) Show that 1− xn ≤ n(1− x) for |x| < 1.

e) Let Nx be the integer such that Nx ≤ 1
1−x < Nx + 1 Show that

Nx∑
n=0

cn(1− xn) ≤ (1− x)

Nx∑
n=0

n|cn| ≤
1

Nx

Nx∑
n=0

n|cn| → 0

as x ↑ 1.

f) Show that∣∣∣∣∣
∞∑

n=Nx+1

cnx
n

∣∣∣∣∣ ≤
∞∑

n=Nx+1

n|cn|
xn

n
≤ dx
Nx

∞∑
n=0

xn

where dx → 0 as x ↑ 1. Show that
∑∞

n=Nx+1 cnx
n → 0 as x ↑ 1.

g) Prove Tauber’s theorem.



4.5. THE SPACES B(X,Y ) OF BOUNDED FUNCTIONS 97

4.5 The spaces B(X, Y ) of bounded functions

So far we have looked at functions individually or as part of a sequence.
We shall now take a bold step and consider functions as elements in metric
spaces. As we shall see later in this chapter, this will make it possible to use
results from the theory of metric spaces to prove theorems about functions,
e.g., to use Banach’s Fixed Point Theorem to prove the existence of solutions
to differential equations. In this section, we shall consider spaces of bounded
functions while in the next section we shall look at the more important case
of continuous functions.

If (X, dX) and (Y, dY ) are metric space, a function f : X → Y is bounded
if the set of values {f(x) : x ∈ X} is a bounded set, i.e. if there is a number
M ∈ R such that dY (f(u), f(v)) ≤ M for all u, v ∈ X. An equivalent
definition is to say that for any a ∈ X, there is a constant Ma such that
dY (f(a), f(x)) ≤Ma for all x ∈ X.

Note that if f, g : X → Y are two bounded functions, then there is a
number K such that dY (f(x), g(x)) ≤ K for all u, v ∈ X. To see this, fix a
point a ∈ X, and letMa and Na be numbers such that dY (f(a), f(x)) ≤Ma

and dY (g(a), g(x)) ≤ Na for all x ∈ X. Since by the triangle inequality

dY (f(x), g(x)) ≤ dY (f(x), f(a)) + dY (f(a), g(a)) + dY (g(a), g(x))

≤Ma + dY (f(a), g(a)) +Na

we can take K = Ma + dY (f(a), g(a)) +Na.
We now let

B(X,Y ) = {f : X → Y | f is bounded}

be the collection of all bounded functions from X to Y . We shall turn
B(X,Y ) into a metric space by introducing a metric ρ. The idea is to
measure the distance between two functions by looking at how far apart the
can be at a point; i.e. by

ρ(f, g) = sup{dY (f(x), g(x)) |x ∈ X}

Note that by our argument above, ρ(f, g) < ∞. Our first task is to show
that ρ really is a metric on B(X,Y ).

Proposition 4.5.1 If (X, dX) and (Y, dY ) are metric spaces,

ρ(f, g) = sup{dY (f(x), g(x)) |x ∈ X}

defines a metric ρ on B(X,Y ).
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Proof: As we have already observed that ρ(f, g) is always finite, we only
have to prove that ρ satisfies the three properties of a metric: positivity,
symmetry, and the triangle inequality. The first two are more or less obvious,
and we concentrate on the triangle inequality: If f, g, h are three functions
in C(X,Y ); we must show that

ρ(f, g) ≤ ρ(f, h) + ρ(h, g)

For all x ∈ X,

dY (f(x), g(x)) ≤ dY (f(x), h(x)) + dY (h(x), g(x)) ≤ ρ(f, h) + ρ(h, g)

and taking supremum over all x ∈ X, we get

ρ(f, g) ≤ ρ(f, h) + ρ(h, g)

and the proposition is proved. 2

Not surprisingly, convergence in (B(X,Y ), ρ) is just the same as uniform
convergence.

Proposition 4.5.2 A sequence {fn} converges to f in (B(X,Y ), ρ) if and
only if it converges uniformly to f .

Proof: According to Proposition 4.2.3, {fn} converges uniformly to f if and
only if

sup{dY (fn(x), f(x)) |x ∈ X} → 0

This just means that ρ(fn, f)→ 0, which is to say that {fn} converges to f
in (B(X,Y ), ρ). 2

The next result introduces an important idea that we shall see many
examples of later: The space B(X,Y ) inherits completeness from Y .

Theorem 4.5.3 Let (X, dX) and (Y, dY ) be metric spaces and assume that
(Y, dY ) is complete. Then (B(X,Y ), ρ) is also complete.

Proof: Assume that {fn} is a Cauchy sequence in B(X,Y ). We must prove
that fn converges to a function f ∈ B(X,Y ).

Fix an element x ∈ X. Since dY (fn(x), fm(x)) ≤ ρ(fn, fm) and {fn} is a
Cauchy sequence in (B(X,Y ), ρ), the function values {fn(x)} form a Cauchy
sequence in Y . Since Y is complete, {fn(x)} converges to a point f(x) in
Y. This means that {fn} converges pointwise to a function f : X → Y . We
must prove that f ∈ B(X,Y ) and that {fn} converges to f in the ρ-metric.

Since {fn} is a Cauchy sequence, we can for any ε > 0 find an N ∈ N
such that ρ(fn, fm) < ε

2 when n,m ≥ N . This means that all x ∈ X and
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all n,m ≥ N , dY (fn(x), fm(x)) < ε
2 . If we let m → ∞, we see that for all

x ∈ X and all n ≥ N

dY (fn(x), f(x)) = lim
m→∞

dY (fn(x), fm(x)) ≤ ε

2

Hence ρ(fn, f) < ε which implies that f is bounded (since fn is) and that
{fn} converges uniformly to f in B(X,Y ). 2

The metric ρ is mainly used for theoretical purpose, and we don’t have to
find the exact distance between two functions very often, but in some cases
it’s possible using techniques you know from calculus. If X is an interval
[a, b] and Y is the real line (both with the usual metric), the distance ρ(f, g)
is just the supremum of the function h(t) = |f(t)− g(t)|, something you can
find by differentiation (at least if the functions f and g are reasonably nice).

Exercises to Section 4.5

1. Let f, g : [0, 1]→ R be given by f(x) = x, g(x) = x2. Find ρ(f, g).

2. Let f, g : [0, 2π]→ R be given by f(x) = sinx, g(x) = cosx. Find ρ(f, g).

3. Show that the two ways of defining a bounded function are equivalent (one
says that the set of values {f(x) : x ∈ X} is a bounded set; the other one says
that for any a ∈ X, there is a constant Ma such that dY (f(a), f(x)) ≤ Ma

for all x ∈ X).

4. Complete the proof of Proposition 4.5.1 by showing that ρ satisfies the first
two conditions of a metric (positivity and symmetry).

5. Check the claim at the end of the proof of Theorem 4.5.3: Why does ρ(fn, f) <
ε imply that f is bounded when fn is?

6. Let c0 be the set of all bounded sequences in R. If {xn}, {yn} are in c0,
define

ρ({xn}, {yn}) = sup(|xn − yn| : n ∈ N}

Show that (c0, ρ) is a complete metric space.

7. For f ∈ B(R,R) and r ∈ R, we define a function fr by fr(x) = f(x+ r).

a) Show that if f is uniformly continuous, then limr→0 ρ(fr, f) = 0.

b) Show that the function g defined by g(x) = cos(πx2) is not uniformly
continuous on R.

c) Is it true that limr→0 ρ(fr, f) = 0 for all f ∈ B(R,R)?

4.6 The spaces Cb(X, Y ) and C(X, Y ) of continuous
functions

The spaces of bounded functions that we worked with in the previous section
are too large for many purposes. It may sound strange that a space can be
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too large, but the problem is that if a space is large, it contains very little
information - just knowing that a function is bounded, gives us very little
to work with. Knowing that a function is continuous contains a lot more
information, and hence we now turn to spaces of continuous functions

As before, we assume that (X, dX) and (Y, dY ) are metric spaces. We
define

Cb(X,Y ) = {f : X → Y | f is continuous and bounded}

to be the collection of all bounded and continuous functions from X to Y .
As Cb(X,Y ) is a subset of B(X,Y ), the metric

ρ(f, g) = sup{dY (f(x), g(x)) |x ∈ X}

that we introduced on B(X,Y ) is also a metric on Cb(X,Y ). We make a
crucial observation:

Proposition 4.6.1 Cb(X,Y ) is a closed subset of B(X,Y ).

Proof: By Proposition 3.3.6, it suffices to show that if {fn} is a sequence
in Cb(X,Y ) that converges to an element f ∈ B(X,Y ), then f ∈ Cb(X,Y ).
Since by Proposition 4.5.2 {fn} converges uniformly to f , Proposition 4.2.4
tells us that f is continuous and hence in Cb(X,Y ). 2

The next result is a more useful version of Theorem 4.5.3.

Theorem 4.6.2 Let (X, dX) and (Y, dY ) be metric spaces and assume that
(Y, dY ) is complete. Then (Cb(X,Y ), ρ) is also complete.

Proof: Recall from Proposition 3.4.4 that a closed subspace of a complete
space it itself complete. Since B(X,Y ) is complete by Theorem 4.5.3, and
Cb(X,Y ) is a closed subset of B(X,Y ) by the proposition above, it follows
that Cb(X,Y ) is complete. 2

The reason why we so far have restricted ourselves to the space Cb(X,Y )
of bounded, continuous functions and not worked with the space of all con-
tinuous functions, is that the supremum

ρ(f, g) = sup{dY (f(x), g(x)) |x ∈ X}

can be infinite when f and g are just assumed to be continuous. As a metric
is not allowed to take infinite values, this creates problems for the theory,
and the simplest solution is to restrict ourselves to bounded, continuous
functions. Sometimes this is a small nuisance, and it is useful to know that
the problem doesn’t occur when X is compact:
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Proposition 4.6.3 Let (X, dX) and (Y, dY ) be metric spaces, and assume
that X is compact. Then all continuous functions from X to Y are bounded.

Proof: Assume that f : X → Y is continuous, and pick a point a ∈ X. It
suffices to prove that the function

h(x) = dY (f(x), f(a))

is bounded, and this will follow from the Extreme Value Theorem (Theo-
rem 3.5.10) if we can show that it is continiuous. By the Inverse Triangle
Inequality 3.1.4

|h(x)− h(y)| = |dY (f(x), a)− dY (f(y), a)| ≤ dY (f(x), f(y))

and since f is continuous, so is h (any δ that works for f will also work for
h). 2

If we define

C(X,Y ) = {f : X → Y | f is continuous},

the proposition above tell us that for compact X, the spaces C(X,Y ) and
Cb(X,Y ) coincide. In most of our applications, the underlying space X will
be compact (often a closed interval [a, b]), and we shall then just be working
with the space C(X,Y ). The following theorem sums up the results above
for X compact.

Theorem 4.6.4 Let Let (X, dX) and (Y, dY ) be metric spaces, and assume
that X is compact. Then

ρ(f, g) = sup{dY (f(x), g(x)) |x ∈ X}

defines a metric on C(X,Y ). If (Y, dY ) is complete, so is (C(X,Y ), ρ).

Exercises to Section 4.6

1. Let X,Y = R. Find functions f, g ∈ C(X,Y ) such that

sup{dY (f(x), g(x)) |x ∈ X} =∞

2. Assume that X ⊂ Rn is not compact. Show that there is an unbounded,
continuous function f : X → R.

3. Assume that f : R→ R is a bounded continuous function. If u ∈ C([0, 1],R),
we define L(u) : [0, 1]→ R to be the function

L(u)(t) =

∫ 1

0

1

1 + t+ s
f(u(s)) ds
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a) Show that L is a function from C([0, 1],R) to C([0, 1],R).

b) Assume that

|f(u)− f(v)| ≤ C

ln 2
|u− v| for all u, v ∈ R

for some number C < 1. Show that the equation Lu = u has a unique
solution in C([0, 1],R).

4. When X is noncompact, we have defined our metric ρ on the space Cb(X,Y )
of bounded continuous function and not on the space C(X,Y ) of all contin-
uous functions. As mentioned in the text, the reason is that for unbounded,
continuous functions,

ρ(f, g) = sup{dY (f(x), g(x)) |x ∈ X}

may be ∞, and a metric can not take infinite values. Restricting ourselves
to Cb(X,Y ) is one way of overcoming this problem. Another method is to
change the metric on Y such that it never occurs. We shall now take a look
at this alternative method.

If (Y, d) is a metric space, we define the truncated metric d̄ by:

d̄(x, y) =

 d(x, y) if d(x, y) ≤ 1

1 if d(x, y) > 1

a) Show that the truncated metric is indeed a metric.

b) Show that a set G ⊆ Y is open in (Y, d̄) if and only if it is open in
(Y, d). What about closed sets?

c) Show that a sequence {zn} in Y converges to a in the truncated metric
d̄ if and only if it converges in the original metric d.

d) Show that the truncated metric d̄ is complete if and only if the original
metric is complete.

e) Show that a set K ⊆ Y is compact in (Y, d̄) if and only if it is compact
in (Y, d).

f) Show that for a metric space (X, dX), a function f : X → Y is contin-
uous with respect to d̄ if and only if it is continuous with respect to d.
Show the same for functions g : Y → X.

g) For functions f, g ∈ C(X,Y ), define

ρ̄(f, g) = sup{d̄(f(x), g(x) |x ∈ X}

Show that ρ̄ is a metric on C(X,Y ). Show that ρ̄ is complete if d is.
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4.7 Applications to differential equations

Consider a system of differential equations

y′1(t) = f1(t, y1(t), y2(t), . . . , yn(t))

y′2(t) = f2(t, y1(t), y2(t), . . . , yn(t))

...
...

...
...

y′n(t) = fn(t, y1(t), y2(t), . . . , yn(t))

with initial conditions y1(0) = Y1, y2(0) = Y2, . . . , yn(0) = Yn. In this sec-
tion we shall use Banach’s Fixed Point Theorem 3.4.5 and the completeness
of C([0, a],Rn) to prove that under reasonable conditions such systems have
a unique solution.

We begin by introducing vector notation to make the formulas easier to
read:

y(t) =


y1(t)
y2(t)
...

yn(t)



y0 =


Y1

Y2
...
Yn


and

f(t,y(t)) =


f1(t, y1(t), y2(t), . . . , yn(t))
f2(t, y1(t), y2(t), . . . , yn(t))

...
fn(t, y1(t), y2(t), . . . , yn(t))


In this notation, the system becomes

y′(t) = f(t,y(t)), y(0) = y0 (4.7.1)

The next step is to rewrite the differential equation as an integral equa-
tion. If we integrate on both sides of (4.7.1), we get

y(t)− y(0) =

∫ t

0
f(s,y(s)) ds

i.e.

y(t) = y0 +

∫ t

0
f(s,y(s)) ds (4.7.2)
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On the other hand, if we start with a solution of (4.7.2) and differentiate,
we arrive at (4.7.1). Hence solving (4.7.1) and (4.7.2) amounts to exactly
the same thing, and for us it will be convenient to concentrate on (4.7.2).

Let us begin by putting an arbitrary, continuous function z into the right
hand side of (4.7.2). What we get out is another function u defined by

u(t) = y0 +

∫ t

0
f(s, z(s)) ds

We can think of this as a function F mapping continuous functions z to
continuous functions u = F (z). From this point of view, a solution y of
the integral equation (4.7.2) is just a fixed point for the function F — we
are looking for a y such that y = F (y). (Don’t worry if you feel a little
dizzy; that’s just normal at this stage! Note that F is a function acting on
a function z to produce a new function u = F (z) — it takes some time to
get used to such creatures!)

Our plan is to use Banach’s Fixed Point Theorem to prove that F has a
unique fixed point, but first we have to introduce a crucial condition. We say
that the function f : [a, b] × Rn → Rn is uniformly Lipschitz with Lipschitz
constant K on the interval [a, b] if K is a real number such that

||f(t,y)− f(t, z)|| ≤ K||y − z||

for all t ∈ [a, b] and all y, z ∈ Rn. Here is the key observation in our
argument.

Lemma 4.7.1 Assume that y0 ∈ Rn and that f : [0,∞) × Rn → Rn is
continuous and uniformly Lipschitz with Lipschitz constant K on [0,∞). If
a < 1

K , the map
F : C([0, a],Rn)→ C([0, a],Rn)

defined by

F (z)(t) = y0 +

∫ t

0
f(t, z(t)) dt

is a contraction.

Remark: The notation here is rather messy. Remember that F (z) is a
function from [0, a] to Rn. The expression F (z)(t) denotes the value of this
function at the point t ∈ [0, a].

Proof: Let v,w be two elements in C([0, a],Rn), and note that for any
t ∈ [0, a]

||F (v)(t)− F (w)(t)|| = ||
∫ t

0

(
f(s,v(s))− f(s,w(s))

)
ds|| ≤
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≤
∫ t

0
||f(s,v(s))− f(s,w(s))|| ds ≤

∫ t

0
K||v(s)−w(s)|| ds ≤

≤ K
∫ t

0
ρ(v,w) ds ≤ K

∫ a

0
ρ(v,w) ds = Kaρ(v,w)

Taking the supremum over all t ∈ [0, a], we get

ρ(F (v), F (w)) ≤ Kaρ(v,w).

Since Ka < 1, this means that F is a contraction. 2

We are now ready for the main theorem.

Theorem 4.7.2 Assume that y0 ∈ Rn and that f : [0,∞) × Rn → Rn is
continuous and uniformly Lipschitz on [0,∞). Then the initial value problem

y′(t) = f(t,y(t)), y(0) = y0 (4.7.3)

has a unique solution y on [0,∞).

Proof: Let K be the uniform Lipschitz constant, and choose a number
a < 1/K. According to the lemma, the function

F : C([0, a],Rn)→ C([0, a],Rn)

defined by

F (z)(t) = y0 +

∫ t

0
f(t, z(t)) dt

is a contraction. Since C([0, a],Rn) is complete by Theorem 4.6.4, Banach’s
Fixed Point Theorem tells us that F has a unique fixed point y. This means
that the integral equation

y(t) = y0 +

∫ t

0
f(s,y(s)) ds (4.7.4)

has a unique solution on the interval [0, a]. To extend the solution to a
longer interval, we just repeat the argument on the interval [a, 2a], using
y(a) as initial value. The function we then get, is a solution of the integral
equation (4.7.4) on the extended interval [0, 2a] as we for t ∈ [a, 2a] have

y(t) = y(a) +

∫ t

a
f(s,y(s)) ds =

= y0 +

∫ a

0
f(s,y(s)) ds+

∫ t

a
f(s,y(s)) ds = y0 +

∫ t

0
f(s,y(s)) ds

Continuing this procedure to new intervals [2a, 3a], [3a, 4a], we see that the
integral equation (4.7.3) has a unique solution on all of [0,∞). As we have
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already observed that equation (4.7.3) has exactly the same solutions as
equation (4.7.4), the theorem is proved. 2

In the exercises you will see that the conditions in the theorem are im-
portant. If they fail, the equation may have more than one solution, or a
solution defined only on a bounded interval.

Exercises to Section 4.7

1. Solve the initial value problem

y′ = 1 + y2, y(0) = 0

and show that the solution is only defined on the interval [0, π/2).

2. Show that the functions

y(t) =


0 if 0 ≤ t ≤ a

(t− a)
3
2 if t > a

where a ≥ 0 are all solutions of the initial value problem

y′ =
3

2
y

1
3 , y(0) = 0

Remember to check that the differential equation is satisfied at t = a.

3. In this problem we shall sketch how the theorem in this section can be used
to study higher order systems. Assume we have a second order initial value
problem

u′′(t) = g(t, u(t), u′(t)) u(0) = a, u′(0) = b (∗)

where g : [0,∞)×R2 → R is a given function. Define a function f : [0,∞)×
R2 → R2 by

f(t, u, v) =

(
v

g(t, u, v)

)
Show that if

y(t) =

(
u(t)
v(t)

)
is a solution of the initial value problem

y′(t) = f(t,y(t)), y(0) =

(
a
b

)
,

then u is a solution of the original problem (∗).
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4.8 Compact subsets of C(X,Rm)

The compact subsets of Rm are easy to describe — they are just the closed
and bounded sets. This characterization is extremely useful as it is much
easier to check that a set is closed and bounded than to check that it satisfies
the definition of compactness. In the present section, we shall prove a similar
kind of characterization of compact sets in C(X,Rm) — we shall show that
a subset of C(X,Rm) is compact if and only if it is closed, bounded and
equicontinuous. This is known as the Arzelà-Ascoli Theorem. But before
we turn to it, we have a question of independent interest to deal with. We
have already encountered the notion of a dense set in Section 3.7, but repeat
it here:

Definition 4.8.1 Let (X, d) be a metric space and assume that A is a subset
of X. We say that A is dense in X if for each x ∈ X there is a sequence
from A converging to x.

Recall (Proposition 3.7.2) that dense sets can also be described in a slightly
different way: A subset D of a metric space X is dense if and only if for
each x ∈ X and each δ > 0, there is a y ∈ D such that d(x, y) ≤ δ.

We know that Q is dense in R—we may, e.g., approximate a real number
by longer and longer parts of its decimal expansion. For x =

√
2 this would

mean the approximating sequence

a1 = 1.4 =
14

10
, a2 = 1.41 =

141

100
, a3 = 1.414 =

1414

1000
, a4 = 1.4142 =

14142

10000
, . . .

Recall that Q is countable, but that R is not. Still every element in the
uncountable set R can be approximated arbitrarily well by elements in the
much smaller set Q. This property turns out to be so useful that it deserves
a name.

Definition 4.8.2 A metric set (X, d) is called separable if it has a count-
able, dense subset A.

Our first result is a simple, but rather surprising connection between
separability and compactness.

Proposition 4.8.3 All compact metric (X, d) spaces are separable. We can
choose the countable dense set A in such a way that for any δ > 0, there is
a finite subset Aδ of A such that all elements of X are within distance less
than δ of Aδ, i.e. for all x ∈ X there is an a ∈ Aδ such that d(x, a) < δ.

Proof: We use that a compact space X is totally bounded (recall Theorem
3.5.13). This mean that for all n ∈ N, there is a finite number of balls of
radius 1

n that cover X. The centers of all these balls (for all n ∈ N) form a
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countable subset A of X (to get a listing of A, first list the centers of the
balls of radius 1, then the centers of the balls of radius 1

2 etc.). We shall
prove that A is dense in X.

Let x be an element of X. To find a sequence {an} from A converging to
x, we first pick the center a1 of (one of) the balls of radius 1 that x belongs
to, then we pick the center a2 of (one of) the balls of radius 1

2 that x belong
to, etc. Since d(x, an) < 1

n , {an} is a sequence from A converging to x.
To find the set Aδ, just choose m ∈ N so big that 1

m < δ, and let Aδ
consist of the centers of the balls of radius 1

m . 2

We are now ready to turn to C(X,Rm). First we recall the definition of
equicontinuous sets of functions from Section 4.1.

Definition 4.8.4 Let (X, dX) and (Y, dY ) be metric spaces, and let F be a
collection of functions f : X → Y . We say that F is equicontinuous if for
all ε > 0, there is a δ > 0 such that for all f ∈ F and all x, y ∈ X with
dX(x, y) < δ, we have dY (f(x), f(y)) < ε.

We begin with a lemma that shows that for equicontinuous sequences,
it suffices to check convergence on dense sets of the kind described above.

Lemma 4.8.5 Assume that (X, dX) is a compact and (Y, dY ) a complete
metric space, and let {gk} be an equicontinuous sequence in C(X,Y ). As-
sume that A ⊆ X is a dense set as described in Proposition 4.8.3 and that
{gk(a)} converges for all a ∈ A. Then {gk} converges in C(X,Y ).

Proof: Since C(X,Y ) is complete, it suffices to prove that {gk} is a Cauchy
sequence. Given an ε > 0, we must thus find an N ∈ N such that ρ(gn, gm) <
ε when n,m ≥ N . Since the sequence is equicontinuous, there exists a δ > 0
such that if dX(x, y) < δ, then dY (gk(x), gk(y)) < ε

4 for all k. Choose a
finite subset Aδ of A such that any element in X is within less than δ of an
element in Aδ. Since the sequences {gk(a)}, a ∈ Aδ, converge, they are all
Cauchy sequences, and we can find an N ∈ N such that when n,m ≥ N ,
dY (gn(a), gm(a)) < ε

4 for all a ∈ Aδ (here we are using that Aδ is finite).
For any x ∈ X, we can find an a ∈ Aδ such that dX(x, a) < δ. But then

for all n,m ≥ N ,
dY (gn(x), gm(x)) ≤

≤ dY (gn(x), gn(a)) + dY (gn(a), gm(a)) + dY (gm(a), gm(x)) <

<
ε

4
+
ε

4
+
ε

4
=

3ε

4

Since this holds for any x ∈ X, we must have ρ(gn, gm) ≤ 3ε
4 < ε for all

n,m ≥ N , and hence {gk} is a Cauchy sequence and converges in the com-
plete space C(X,Y ). 2

We are now ready to prove the hard part of the Arzelà-Ascoli Theorem.
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Proposition 4.8.6 Assume that (X, d) is a compact metric space, and let
{fn} be a bounded and equicontinuous sequence in C(X,Rm). Then {fn}
has a subsequence converging in C(X,Rm).

Proof: Since X is compact, there is a countable, dense subset

A = {a1, a2. . . . , an, . . .}

as in Proposition 4.8.3. According to the lemma, it suffices to find a subse-
quence {gk} of {fn} such that {gk(a)} converges for all a ∈ A.

We begin a little less ambitiously by showing that {fn} has a subsequence
{f (1)
n } such that {f (1)

n (a1)} converges (recall that a1 is the first element in our
listing of the countable set A). Next we show that {f (1)

n } has a subsequence
{f (2)
n } such that both {f (2)

n (a1)} and {f (2)
n (a2)} converge. Continuing taking

subsequences in this way, we shall for each j ∈ N find a sequence {f (j)
n } such

that {f (j)
n (a)} converges for a = a1, a2, . . . , aj . Finally, we shall construct

the sequence {gk} by combining all the sequences {f (j)
n } in a clever way.

Let us start by constructing {f (1)
n }. Since the sequence {fn} is bounded,

{fn(a1)} is a bounded sequence in Rm, and by the Bolzano-Weierstrass The-
orem 2.3.3, it has a convergent subsequence {fnk(a1)}. We let {f (1)

n } consist
of the functions appearing in this subsequence. If we now apply {f (1)

n } to a2,
we get a new bounded sequence {f (1)

n (a2)} in Rm with a convergent subse-
quence. We let {f (2)

n } be the functions appearing in this subsequence. Note
that {f (2)

n (a1)} still converges as {f (2)
n } is a subsequence of {f (1)

n }. Contin-
uing in this way, we see that we for each j ∈ N have a sequence {f (j)

n } such
that {f (j)

n (a)} converges for a = a1, a2, . . . , aj . In addition, each sequence
{f (j)
n } is a subsequence of the previous ones.
We are now ready to construct a sequence {gk} such that {gk(a)} con-

verges for all a ∈ A. We do it by a diagonal argument, putting g1 equal
to the first element in the first sequence {f (1)

n }, g2 equal to the second el-
ement in the second sequence {f (2)

n } etc. In general, the k-th term in the
g-sequence equals the k-th term in the k-th f -sequence {fkn}, i.e. gk = f

(k)
k .

Note that except for the first few elements, {gk} is a subsequence of any
sequence {f (j)

n }. This means that {gk(a)} converges for all a ∈ A, and the
proof is complete. 2

As a simple consequence of this result we get:

Corollary 4.8.7 If (X, d) is a compact metric space, all bounded, closed
and equicontinuous sets K in C(X,Rm) are compact.

Proof: According to the proposition, any sequence in K has a convergent
subsequence. Since K is closed, the limit must be in K, and hence K is
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compact. 2

As already mentioned, the converse of this result is also true, but before
we prove it, we need a technical lemma that is quite useful also in other
situations:

Lemma 4.8.8 Assume that (X, dX) and (Y, dY ) are metric spaces and that
{fn} is a sequence of continuous function from X to Y which converges
uniformly to f . If {xn} is a sequence in X converging to a, then {fn(xn)}
converges to f(a).

Remark: This lemma is not as obvious as it may seem — it is not true if
we replace uniform convergence by pointwise!

Proof of Lemma 4.8.8: Given ε > 0, we must show how to find an N ∈ N
such that dY (fn(xn), f(a)) < ε for all n ≥ N . Since we know from Proposi-
tion 4.2.4 that f is continuous, there is a δ > 0 such that dY (f(x), f(a)) < ε

2
when dX(x, a) < δ. Since {xn} converges to x, there is an N1 ∈ N such
that dX(xn, a) < δ when n ≥ N1. Also, since {fn} converges uniformly to
f , there is an N2 ∈ N such that if n ≥ N2, then dY (fn(x), f(x)) < ε

2 for all
x ∈ X. If we choose N = max{N1, N2}, we see that if n ≥ N ,

dY (fn(xn), f(a)) ≤ dY (fn(xn), f(xn)) + dY (f(xn), f(a)) <
ε

2
+
ε

2
= ε

and the lemma is proved. 2

We are finally ready to prove the main theorem:

Theorem 4.8.9 (Arzelà-Ascoli’s Theorem) Let (X, dX) be a compact
metric space. A subset K of C(X,Rm) is compact if and only if it is closed,
bounded and equicontinuous.

Proof: It remains to prove that a compact set K in C(X,Rm) is closed,
bounded and equicontinuous. Since compact sets are always closed and
bounded according to Proposition 3.5.4, if suffices to prove that K is equicon-
tinuous. We argue by contradiction: We assume that the compact set K is
not equicontinuous and show that this leads to a contradiction.

Since K is not equicontinuous, there must be an ε > 0 which can not
be matched by any δ; i.e. for any δ > 0, there is a function f ∈ K and
points x, y ∈ X such that dX(x, y) < δ, but dRm(f(x), f(y)) ≥ ε. If we
put δ = 1

n , we get at function fn ∈ K and points xn, yn ∈ X such that
dX(xn, yn) < 1

n , but dRm(fn(xn), fn(yn)) ≥ ε. Since K is compact, there is a
subsequence {fnk} of {fn} which converges (uniformly) to a function f ∈ K.
Since X is compact, the corresponding subsequence {xnk} of {xn}, has a
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subsequence {xnkj } converging to a point a ∈ X. Since dX(xnkj , ynkj ) <
1
nkj

,

the corresponding sequence {ynkj } of y’s also converges to a.
Since {fnkj } converges uniformly to f , and {xnkj }, {ynkj } both converge

to a, the lemma tells us that

fnkj (xnkj )→ f(a) and fnkj (ynkj )→ f(a)

But this is impossible since dRm(f(xnkj ), f(ynkj )) ≥ ε for all j. Hence we
have our contradiction, and the theorem is proved. 2

Exercises for Section 4.8

1. Show that Rn is separable for all n.

2. Show that a subset A of a metric space (X, d) is dense if and only if all open
balls B(a, r), a ∈ X, r > 0, contain elements from A.

3. Assume that (X, d) is a complete metric space, and that A is a dense subset
of X. We let A have the subset metric dA.

a) Assume that f : A→ R is uniformly continuous. Explain that if {an} is
a sequence from A converging to a point x ∈ X, then {f(an)} converges.
Show that the limit is the same for all such sequences {an} converging
to the same point x.

b) Define f̄ : X → R by putting f̄(x) = limn→∞ f(an) where {an} is a
sequence from a converging to x. We call f the continuous extension
of f to X. Show that f̄ is uniformly continuous.

c) Let f : Q→ R be defined by

f(q) =

 0 if q <
√

2

1 if q >
√

2

Show that f is continuous onQ (we are using the usual metric dQ(q, r) =
|q − r|). Is f uniformly continuous?

d) Show that f does not have a continuous extension to R.

4. Let K be a compact subset of Rn. Let {fn} be a sequence of contractions of
K. Show that {fn} has uniformly convergent subsequence.

5. A function f : [−1, 1] → R is called Lipschitz continuous with Lipschitz
constant K ∈ R if

|f(x)− f(y)| ≤ K|x˘y|

for all x, y ∈ [−1, 1]. Let K be the set of all Lipschitz continuous functions
with Lipschitz constant K such that f(0) = 0. Show that K is a compact
subset of C([−1, 1],R).
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6. Assume that (X, dX) and (Y, dY ) are two metric spaces, and let σ : [0,∞)→
[0,∞) be a nondecreasing, continuous function such that σ(0) = 0. We say
that σ is a modulus of continuity for a function f : X → Y if

dY (f(u), f(v)) ≤ σ(dX(u, v))

for all u, v ∈ X.

a) Show that a family of functions with the same modulus of continuity is
equicontinuous.

b) Assume that (X, dX) is compact, and let x0 ∈ X. Show that if σ is a
modulus of continuity, then the set

K = {f : X → Rn : f(x0) = 0 and σ is modulus of continuity for f}

is compact.

c) Show that all functions in C([a, b],Rm) has a modulus of continuity.

7. A metric space (X, d) is called locally compact if for each point a ∈ X,
there is a closed ball B(a; r) centered at a that is compact. (Recall that
B(a; r) = {x ∈ X : d(a, x) ≤ r}). Show that Rm is locally compact, but
that C([0, 1],R) is not.

4.9 Differential equations revisited

In Section 4.7, we used Banach’s Fixed Point Theorem to study initial value
problems of the form

y′(t) = f(t,y(t)), y(0) = y0 (4.9.1)

or equivalently

y(t) = y0 +

∫ t

0
f(s,y(s)) ds (4.9.2)

In this section we shall see how Arzelà-Ascoli’s Theorem can be used to prove
existence of solutions under weaker conditions than before. But in the new
approach we shall also lose something — we can only prove that the solutions
exist in small intervals, and we can no longer guarantee uniqueness.

The starting point is Euler’s method for finding approximate solutions
to differential equations. If we want to approximate the solution starting at
y0 at time t = 0, we begin by partitioning time into discrete steps of length
∆t; hence we work with the time line

T = {t0, t1, t2, t3 . . .}

where t0 = 0 and ti+1− ti = ∆t. We start the approximate solution ŷ at y0

and move in the direction of the derivative f(t0,y0), i.e. we put

ŷ(t) = y0 + f(t0,y0)(t− t0)
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for t ∈ [t0, t1]. Once we reach t1, we change directions and move in the
direction of the new derivative f(t1, ŷ(t1)) so that we have

ŷ(t) = ŷ(t1) + f(t0, ŷ(t1))(t− t1)

for t ∈ [t1, t2]. If we insert the expression for ŷ(t1), we get:

ŷ(t) = y0 + f(t0,y0)(t1 − t0) + f(t1, ŷ(t1))(t− t1)

If we continue in this way, changing directions at each point in T , we get

ŷ(t) = y0 +
k−1∑
i=0

f(ti, ŷ(ti))(ti+1 − ti) + f(tk, ŷ(tk))(t− tk)

for t ∈ [tk, tk+1]. If we observe that

f(ti, ŷ(ti))(ti+1 − ti) =

∫ ti+1

ti

f(ti, ŷ(ti) ds ,

we can rewrite this expression as

ŷ(t) = y0 +
k−1∑
i=0

∫ ti+1

ti

f(ti, ŷ(ti) ds+

∫ t

tk

f(tk, ŷ(tk) ds

If we also introduce the notation

s = the largest ti ∈ T such that ti ≤ s,

we may express this more compactly as

ŷ(t) = y0 +

∫ t

0
f(s, ŷ(s)) ds

Note that we can also write this as

ŷ(t) = y0 +

∫ t

0
f(s, ŷ(s)) ds+

∫ t

0

(
f(s, ŷ(s))− f(s, ŷ(s))

)
ds

(observe that there is one s and one s term in the last integral) where the
last term measures how much ŷ “deviates” from being a solution of equation
(4.9.2).

Intuitively, one would think that the approximate solution ŷ will con-
verge to a real solution y when the step size ∆t goes to zero. To be more
specific, if we let ŷn be the approximate solution we get when we choose
∆t = 1

n , we would expext the squence {ŷn} to converge to a solution of (2).
It turns out that in the most general case we can not quite prove this, but we
can instead use the Arzelà-Ascoli Theorem to find a subsequence converging
to a solution.
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Before we turn to the proof, it will useful to see how intergals of the form

Ik(t) =

∫ t

0
f(s, ŷk(s)) ds

behave when the functions ŷk converge uniformly to a limit y. The following
lemma is a slightly more complicated version of Proposition 4.3.1-

Lemma 4.9.1 Let f : [0,∞) × Rm → Rm be a continuous function, and
assume that {ŷk} is a sequence of continuous functions ŷk : [0, a] → Rm
converging uniformly to a function y. Then the integral functions

Ik(t) =

∫ t

0
f(s, ŷk(s)) ds

converge uniformly to

I(t) =

∫ t

0
f(s,y(s)) ds

on [0, a].

Proof: Since the sequence {ŷk} converges uniformly, it is bounded, and
hence there is a constant K such that |ŷk(t)| ≤ K for all k ∈ N and all
t ∈ [0, a] (prove this!). The continuous function f is uniformly continuous
on the compact set [0, a]× [−K,K]m, and hence for every ε > 0, there is a
δ > 0 such that if ||y− y′|| < δ, then ||f(s,y)− f(s,y′)|| < ε

a for all s ∈ [0, a].
Since {ŷk} converges uniformly to y, there is an N ∈ N such that if n ≥ N ,
|ŷn(s)− y(s)| < δ for all s ∈ [0, a]. But then

||In(t)− I(t)|| = ||
∫ t

0

(
f(s, ŷn(s))− f(s,y(s))

)
ds|| ≤

≤
∫ t

0
||f(s, ŷn(s))− f(s,y(s))|| ds <

∫ a

0

ε

a
ds = ε

for all t ∈ [0, a], and hence {Ik} converges uniformly to I. 2

We are now ready for the main result.

Theorem 4.9.2 Assume that f : [0,∞)× Rm → Rm is a continuous func-
tion and that y0 ∈ Rm. Then there exists a positive real number a and a
function y : [0, a]→ Rm such that y(0) = y0 and

y′(t) = f(t,y(t)) for all t ∈ [0, a]

Remark: Note that there is no uniqueness statement (the problem may
have more than one solution), and that the solution is only guaranteed to
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exist on a bounded intervall (it may disappear to infinity after finite time).

Proof of Theorem 4.9.2: Choose a big, compact subset C = [0, R]×[−R,R]m

of [0,∞) × Rm containing (0,y0) in its interior. By the Extreme Value
Theorem, the components of f have a maximum value on C, and hence
there exists a number M ∈ R such that |fi(t,y)| ≤M for all (t,y) ∈ C and
all i = 1, 2, . . . ,m. If the initial value has components

y0 =


Y1

Y2
...
Ym


we choose a ∈ R so small that the set

A = [0, a]×[Y1−Ma, Y1+Ma]×[Y2−Ma, Y2+Ma]×· · ·×[Ym−Ma, Ym+ma]

is contained in C. This may seem mysterious, put the point is that our
approximate solutions of the differential equation can never leave the area

[Y1 −Ma, Y1 +Ma]× [Y2 −Ma, Y2 +Ma]× · · · × [Ym −Ma, Y +ma]

while t ∈ [0, a] since all the derivatives are bounded by M .
Let ŷn be the approximate solution obtained by using Euler’s method

on the interval [0, a] with time step a
n . The sequence {ŷn} is bounded

since (t, ŷn(t)) ∈ A, and it is equicontinuous since the components of f
are bounded by M . By Proposition 4.8.6, ŷn has a subsequence {ŷnk}
converging uniformly to a function y. If we can prove that y solves the
integral equation

y(t) = y0 +

∫ t

0
f(s,y(s)) ds

for all t ∈ [0, a], we shall have proved the theorem.
From the calculations at the beginning of the section, we know that

ŷnk(t) = y0 +

∫ t

0
f(s, ŷnk(s)) ds+

∫ t

0

(
f(s, ŷnk(s))−f(s, ŷnk(s))

)
ds (4.9.3)

and according to the lemma∫ t

0
f(s, ŷnk(s)) ds→

∫ t

0
f(s,y(s)) ds uniformly for t ∈ |0, a]

If we can only prove that∫ t

0

(
f(s, ŷnk(s))− f(s, ŷnk(s))

)
ds→ 0 (4.9.4)
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we will get

y(t) = y0 +

∫ t

0
f(s,y(s)) ds

as k →∞ in (4.9.3), and the theorem will be proved
To prove (4.9.4), observe that since A is a compact set, f is uniformly

continuous on A. Given an ε > 0, we thus find a δ > 0 such that ||f(s,y)−
f(s′,y′)|| < ε

a when ||(s,y) − (s′,y)|| < δ (we are measuring the distance in
the ordinary Rm+1-metric). Since

||(s, ŷnk(s))− (s, ŷnk(s))|| ≤ ||(∆t,M∆t, . . . ,M∆t)|| =
√

1 + nM2 ∆t ,

we can clearly get ||(s, ŷnk(s))− (s, ŷnk(s))|| < δ by choosing k large enough
(and hence ∆t small enough). For such k we then have

||
∫ t

0

(
f(s, ŷnk(s))− f(s, ŷnk(s))|| <

∫ a

0

ε

a
ds = ε

and hence ∫ t

0

(
f(s, ŷnk(s))− f(s, ŷnk(s))

)
ds→ 0

as k →∞. As already observed, this completes the proof. 2

Remark: An obvious question at this stage is why didn’t we extend our
solution beyond the interval [0, a] as we did in the proof of Theorem 4.7.2?
The reason is that in the present case we do not have control over the length
of our intervals, and hence the second interval may be very small compared
to the first one, the third one even smaller, and so one. Even if we add an
infinite number of intervals, we may still only cover a finite part of the real
line. There are good reasons for this: the differential equation may only
have solutions that survive for a finite amount of time. A typical example
is the equation

y′ = (1 + y2), y(0) = 0

where the (unique) solution y(t) = tan t goes to infinity when t→ π
2
−.

The proof above is a relatively simple(!), but typical example of a wide
class of compactness arguments in the theory of differential equations. In
such arguments one usually starts with a sequence of approximate solutions
and then uses compactness to extract a subsequence converging to a solution.
Compactness methods are strong in the sense that they can often prove local
existence of solutions under very general conditions, but they are weak in the
sense that they give very little information about the nature of the solution.
But just knowing that a solution exists, is often a good starting point for
further explorations.
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Exercises for Section 4.9

1. Prove that if fn : [a, b]→ Rm are continuous functions converging uniformly
to a function f , then the sequence {fn} is bounded in the sense that there is
a constant K ∈ R such that ||fn(t)|| ≤ K for all n ∈ N and all t ∈ [a, b] (this
property is used in the proof of Lemma 4.9.1).

2. Go back to exercises 1 and 2 in Section 4.7. Show that the differential equa-
tions satisfy the conditions of Theorem 4.9.2. Comment.

3. It is occasionally useful to have a slightly more general version of Theorem
4.9.2 where the solution doesn’t just start a given point, but passes through it:

Teorem Assume that f : R × Rm → Rm is a continuous function. For any
t0 ∈ R and y0 ∈ Rm, there exists a positive real number a and a function
y : [t0 − a, t0 + a]→ Rm such that y(t0) = y0 and

y′(t) = f(t,y(t)) for all t ∈ [t0 − a, t0 + a]

Prove this theorem by modifying the proof of Theorem 4.9.2 (run Euler’s
method “backwards” on the interval [t0 − a, t0]).

4.10 Polynomials are dense in C([a, b],R)

From calculus we know that many continuous functions can be approxi-
mated by their Taylor polynomials, but to have Taylor polynomials of all
orders, a function f has to be infinitely differentiable, i.e. the higher order
derivatives f (k) have to exist for all k. Most continuous functions are not dif-
ferentiable at all, and the question is whether they still can be approximated
by polynomials. In this section we shall prove:

Theorem 4.10.1 (Weierstrass’ Theorem) The polynomials are dense in
C([a, b],R) for all a, b ∈ R, a < b. In other words, for each continuous func-
tion f : [a, b] → R, there is a sequence of polynomials {pn} converging
uniformly to f .

The proof I shall give (due to the Russian mathematician Sergei Bern-
stein (1880-1968)) is quite surprising; it uses probability theory to establish
the result for the interval [0, 1], and then a straight forward scaling argument
to extend it to all closed and bounded intervals.

The idea is simple: Assume that you are tossing a biased coin which
has probability x of coming up “heads”. If you toss it more and more times,
you expect the proportion of times it comes up “heads” to stabilize around
x. If somebody has promised you an award of f(X) dollars, where X is
the actually proportion of “heads” you have had during your (say) 1000 first
tosses, you would expect your award to be close to f(x). If the number of
tosses was increased to 10 000, you would feel even more certain.
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Let us formalize this: Let Yi be the outcome of the i-th toss in the sense
that Yi has the value 0 if the coin comes up “tails” and 1 if it comes up
“heads”. The proportion of “heads” in the first N tosses is then given by

XN =
1

N
(Y1 + Y2 + · · ·+ YN )

Each Yi is binomially distributed with mean E(Yi) = x and variance Var(Yi) =
x(1− x). We thus have

E(XN ) =
1

N
(E(Y1) + E(Y2) + · · ·E(YN )) = x

and (using that the Yi’s are independent)

Var(XN ) =
1

N2
(Var(Y1) + Var(Y2) + · · ·+ Var(YN )) =

1

N
x(1− x)

(if you don’t remember these formulas from probability theory, we shall
derive them by analytic methods in Exercise 6). As N goes to infinity,
we would expect XN to converge to x with probability 1. If the “award
function” f is continuous, we would also expect our average award E(f(XN ))
to converge to f(x).

To see what this has to do with polynomials, let us compute the average
award E(f(XN )). Since the probability of getting exactly k heads in N
tosses is

(
N
k

)
xk(1− x)n−k, we get

E(f(XN )) =
N∑
k=0

f(
k

N
)

(
N

k

)
xk(1− x)N−k

Our expectation that E(f(XN )) → f(x) as N → ∞, can therefore be
rephrased as

N∑
k=0

f(
k

N
)

(
N

k

)
xk(1− x)N−k → f(x) N →∞

If we expand the parentheses (1−x)N−k, we see that the expressions on the
right hand side are just polynomials in x, and hence we have arrived at the
hypothesis that the polynomials

pN (x) =
N∑
k=0

f(
k

N
)

(
N

k

)
xk(1− x)N−k

converge to f(x). We shall prove that this is indeed the case, and that the
convergence is uniform.
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Before we turn to the proof, we need some notation and a lemma. For
any random variable X with expectation x and any δ > 0, we shall write

1{|x−X|<δ} =


1 if |x−X| < δ

0 otherwise

and oppositely for 1{|x−X|≥δ}.

Lemma 4.10.2 (Chebyshev’s Inequality) For a bounded random vari-
able X with mean x

E(1{|x−X|≥δ}) ≤
1

δ2
Var(X)

Proof: Since δ21{|x−X|≥δ}) ≤ (x−X)2, we have

δ2E(1{|x−X|≥δ}) ≤ E((x−X)2) = Var(X)

Dividing by δ2, we get the lemma. 2

We are now ready to prove that the Bernstein polynomials converge.

Proposition 4.10.3 If f : [0, 1] → R is a continuous function, the Bern-
stein polynomials

pN (x) =
N∑
k=0

f(
k

N
)

(
N

k

)
xk(1− x)N−k

converge uniformly to f on [0, 1].

Proof: Given ε > 0, we must show how to find an N such that |f(x) −
pn(x)| < ε for all n ≥ N and all x ∈ [0, 1]. Since f is continuous on the
compact set [0, 1], it has to be uniformly continuous, and hence we can
find a δ > 0 such that |f(u) − f(v)| < ε

2 whenever |u − v| < δ. Since
pn(x) = E(f(Xn)), we have

|f(x)−pn(x)| = |f(x)−E(f(Xn))| = |E(f(x)−f(Xn))| ≤ E(|f(x)−f(Xn)|)

We split the last expectation into two parts: the cases where |x −Xn| < δ
and the rest:

E(|f(x)−f(Xn)|) = E(1{|x−Xn|<δ}|f(x)−f(Xn)|)+E(1{|x−Xn|≥δ}|f(x)−f(Xn)|)

The idea is that the first term is always small since f is continuous and that
the second part will be small when N is large because XN then is unlikely
to deviate much from x. Here are the details:
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By choice of δ, we have for the first term

E(1{|x−Xn|<δ}|f(x)− f(Xn)|) ≤ E
(
1{|x−Xn|<δ}

ε

2

)
≤ ε

2

For the second term, we first note that since f is a continuous function
on a compact interval, it must be bounded by a constant M . Hence by
Chebyshev’s inequality

E(1{|x−Xn|≥δ}|f(x)− f(Xn)|) ≤ 2ME(1{|x−Xn|≥δ}) ≤

≤ 2M

δ2
Var(Xn) =

2Mx(1− x)

δ2n
≤ M

2δ2n

where we in the last step used that 1
4 is the maximal value of x(1 − x) on

[0, 1]. If we now choose N ≥ M
δ2ε

, we see that we get

E(1{|x−Xn|≥δ}|f(x)− f(Xn)|) < ε

2

for all n ≥ N . Combining all the inequalities above, we see that if n ≥ N ,
we have for all x ∈ [0, 1]

|f(x)− pn(x)| ≤ E(|f(x)− f(Xn)|) =

= E(1{|x−Xn|<δ}|f(x)− f(Xn)|) + E(1{|x−Xn|≥δ}|f(x)− f(Xn)|) <

<
ε

2
+
ε

2
= ε

and hence the Bernstein polynomials pn converge uniformly to f . 2

To get Weierstrass’ result, we just have to move functions from arbitrary
intervals [a, b] to [0, 1] and back. The function

T (x) =
x− a
b− a

maps [a, b] bijectively to [0, 1], and the inverse function

T−1(y) = a+ (b− a)y

maps [0, 1] back to [a, b]. If f is a continuous function on [a, b], the function
f̂ = f ◦T−1 is a continuous function on [0, 1] taking exactly the same values
in the same order. If {qn} is a sequence of pynomials converging uniformly
to f̂ on [0, 1], then the functions pn = qn ◦ T converge uniformly to f on
[a, b]. Since

pn(x) = qn(
x− a
b− a

)

the pn’s are polynomials, and hence Weierstrass’ theorem is proved.
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Remark: Weierstrass’ theorem is important because many mathematical
arguments are easier to perform on polynomials than on continuous func-
tions in general. If the property we study is preserved under uniform limits
(i.e. if the if the limit function f of a uniformly convergent sequence of func-
tions {fn} always inherits the property from the fn’s), we can use Weier-
strass’ Theorem to extend the argument from polynomials to all continuous
functions. There is an extension of the result called the Stone-Weierstrass
Theorem which extends the result to much more general settings.

Exercises for Section 4.10

1. Show that there is no sequence of polynomials that converges uniformly to
the continuous function f(x) = 1

x on (0, 1).

2. Show that there is no sequence of poynomials that converges uniformly to
the function f(x) = ex on R.

3. In this problem

f(x) =

 e−1/x
2

if x 6= 0

0 if x = 0

a) Show that if x 6= 0, then the n-th derivative has the form

f (n)(x) = e−1/x
2 Pn(x)

xNn

where Pn is a polynomial and Nn ∈ N.
b) Show that f (n)(0) = 0 for all n.

c) Show that the Taylor polynomials of f at 0 do not converge to f except
in the point 0.

4. Assume that f : [a, b]→ R is a continuous function such that
∫ b
a
f(x)xn dx =

0 for all n = 0, 1, 2, 3, . . ..

a) Show that
∫ b
a
f(x)p(x) dx = 0 for all polynomials p.

b) Use Weierstrass’ theorem to show that
∫ b
a
f(x)2 dx = 0. Conclude that

f(x) = 0 for all x ∈ [a, b].

5. In this exercise we shall show that C([a, b],R) is a separable metric space,
i.e. that it has a countable, dense subset.

a) Assume that (X, d) is a metric space, and that S ⊆ T are subsets of X.
Show that if S is dense in (T, dT ) and T is dense in (X, d), then S is
dense in (X, d).

b) Show that for any polynomial p, there is a sequence {qn} of polynomials
with rational coefficients that converges uniformly to p on [a, b].

c) Show that the polynomials with rational coefficients are dense in C([a, b],R).

d) Show that C([a, b],R) is separable.
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6. In this problem we shall reformulate Bernstein’s proof in purely analytic
terms, avoiding concepts and notation from probability theory. You should
keep the Binomial Formula

(a+ b)N =

N∑
k=0

(
n

k

)
akbN−k

and the definition
(
N
k

)
= N(N−1)(N−2)·...·(N−k+1)

1·2·3·...·k in mind.

a) Show that
∑N
k=0

(
N
k

)
xk(1− x)N−k = 1.

b) Show that
∑N
k=0

k
N

(
N
k

)
xk(1 − x)N−k = x (this is the analytic version

of E(XN ) = 1
N (E(Y1) + E(Y2) + · · ·E(YN )) = x)

c) Show that
∑N
k=0

(
k
N − x

)2 (N
k

)
xk(1 − x)N−k = 1

N x(1 − x) (this is the
analytic version of Var(XN ) = 1

N x(1 − x)). Hint: Write ( kN − x)2 =
1
N2

(
k(k − 1) + (1− 2xN)k +N2x2

)
and use points b) and a) on the

second and third term in the sum.
d) Show that if pn is the n-th Bernstein polynomial, then

|f(x)− pn(x)| ≤
n∑
k=0

|f(x)− f(k/n)|
(
n

k

)
xn(1− x)n−k

e) Given ε > 0, explain why there is a δ > 0 such that |f(u)− f(v)| < ε/2
for all u, v ∈ [0, 1] such that |u− v| < δ. Explain why

|f(x)− pn(x)| ≤
∑

{k:| kn−x|<δ}

|f(x)− f(k/n)|
(
n

k

)
xn(1− x)n−k+

+
∑

{k:| kn−x|≥δ}

|f(x)− f(k/n)|
(
n

k

)
xn(1− x)n−k ≤

<
ε

2
+

∑
{k:| kn−x|≥δ}

|f(x)− f(k/n)|
(
n

k

)
xn(1− x)n−k

f) Show that there is a constant M such that |f(x)| ≤M for all x ∈ [0, 1].
Explain all the steps in the calculation:∑

{k:| kn−x|≥δ}

|f(x)− f(k/n)|
(
n

k

)
xn(1− x)n−k ≤

≤ 2M
∑

{k:| kn−x|≥δ}

(
n

k

)
xn(1− x)n−k ≤

≤ 2M

n∑
k=0

(
k
n − x
δ

)2(
n

k

)
xn(1− x)n−k ≤ 2M

nδ2
x(1− x) ≤ M

2nδ2

g) Explain why we can get |f(x)− pn(x)| < ε by chosing n large enough,
and explain why this proves Proposition 4.10.2.



Chapter 5

Normed Spaces and Linear
Operators

In this and the following chapter, we shall look at a special kind of metric
spaces called normed spaces. Normed spaces are metric spaces which are also
vector spaces, and the vector space structure gives rise to new questions. The
euclidean spaces Rd are examples of normed spaces, and so are many of the
other metric spaces that show up in applications.

In this chapter, we shall study the basic theory of normed spaces and
the linear maps between them. This is in many ways an extension of theory
you are all already familiar with from linear algebra, but the difference is
that we shall be much more interested in infinite dimensional spaces than
one usually is in linear algebra. In the next chapter, we shall see how one
can extend the theory of differentiation and linearization to normed spaces.

5.1 Normed spaces

Recall that a vector space is just a set where you can add elements and
multiply them by numbers in a reasonable way. These numbers can be real
or complex depending on the situation. More precisely:

Definition 5.1.1 Let K be either R or C, and let V be a nonempty set.
Assume that V is equipped with two operations:

• Addition which to any two elements u,v ∈ V assigns an element u +
v ∈ V .

• Scalar multiplication which to any element u ∈ V and any number
α ∈ K assigns an element αu ∈ V .

We call V a vector space over K (or a linear space over K) if the following
axioms are satisfied:

123
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(i) u + v = v + u for all u,v ∈ V .

(ii) (u + v) + w = u + (v + w) for all u,v,w ∈ V .

(iii) There is a zero vector 0 ∈ V such that u + 0 = u for all u ∈ V .

(iv) For each u ∈ V , there is an element −u ∈ V such that u + (−u) = 0.

(v) α(u + v) = αu + αv for all u,v ∈ V and all α ∈ K.

(vi) (α+ β)u = αu + βu for all u ∈ V and all α, β ∈ K:

(vii) α(βu) = (αβ)u for all u ∈ V and all α, β ∈ K:

(viii) 1u = u for all u ∈ V .

To make it easier to distinguish, we sometimes refer to elements in V as
vectors and elements in K as scalars.

I’ll assume that you are familiar with the basic consequences of these
axioms as presented in a course on linear algebra. Recall in particular that
a subset U ⊆ V is a vector space in itself (i.e., a subspace) if it closed under
addition and scalar multiplication, i.e., if whenever u,v ∈ U and α ∈ K,
then u + v, αu ∈ U .

To measure the size of an element in a vector space, we introduce norms:

Definition 5.1.2 If V is a vector space over K, a norm on V is a function
|| · || : V → R such that:

(i) ||u|| ≥ 0 with equality if and only if u = 0.

(ii) ||αu|| = |α|||u|| for all α ∈ K and all u ∈ V .

(iii) ||u + v|| ≤ ||u||+ ||v|| for all u,v ∈ V .

The pair (V, || · ||) is called a normed space.

Example 1: The classical example of a norm on a real vector space, is the
euclidean norm on Rn given by

||x|| =
√
x2

1 + x2
2 + · · ·+ x2

n

where x = (x1, x2. . . . , xn). The corresponding norm on the complex vector
space Cn is

||z|| =
√
|z1|2 + |z2|2 + · · ·+ |zn|2

where z = (z1, z2. . . . , zn). ♣
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The spaces above are the most common vector spaces and norms in lin-
ear algebra. More relevant for our purposes in this chapter are the following
spaces:

Example 2: Let (X, d) be a compact metric space, and let V = C(X,R)
be the set of all continuous, real valued functions on X. Then V is a vector
space over R and

||f || = sup{|f(x)| : x ∈ X}

is a norm on V . This norm is usually called the supremum norm. To get a
complex example, let V = C(X,C) and define the norm by the same formula
as before. ♣

We may have several norms on the same space. Here are two other norms
on the space C(X,R) when X is the interval [a, b]:

Example 3: Two commonly used norms on C([a, b],R) are

||f ||1 =

∫ b

a
|f(x)| dx

(known as the L1-norm) and

||f ||2 =

(∫ b

a
|f(x)|2 dx

) 1
2

(known as the L2-norm. The same expressions define norms on the complex
space V = C([a, b],C) if we allow f to take complex values. ♣

Which norm to use on a space often depends on the kind of problems we are
interested in, but this a complex question that we shall return to later. The
key observation for the moment is the following connection between norms
and metrics:

Proposition 5.1.3 Assume that (V, || · ||) is a (real or complex) normed
space. Then

d(u,v) = ||u− v||

is a metric on V .

Proof: We have to check the three properties of a metric:
Positivity: Since d(u,v) = ||u − v||, we see from part (i) of the definition
above that d(u,v) ≥ 0 with equality if and only if u − v = 0, i.e., if and
only if u = v.
Symmetry: Since

||u− v|| = ||(−1)(v − u)|| = |(−1)|||v − u|| = ||v − u||
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by part (ii) of the definition above, we see that d(u,v) = d(v,u).
Triangle inequality: By part (iii) of the definition above, we see that for all
u,v,w ∈ V :

d(u,v) = ||u− v|| = ||(u−w) + (w − v)|| ≤

≤ ||u−w||+ ||w − v|| = d(u,w) + d(w,v)

2

Whenever we refer to notions such as convergence, continuity, openness,
closedness, completeness, compactness etc. in a normed vector space, we
shall be referring to these notions with respect to the metric defined by the
norm. In practice, this means that we continue as before, but write ||u− v||
instead of d(u,v) for the distance between the points u and v. To take
convergence as an example, we see that the sequence {xn} converges to x if

||x− xn|| = d(x,xn)→ 0 as n→∞

Remark: The Inverse Triangle Inequality (recall Proposition 3.1.4)

|d(x, y)− d(x, z)| ≤ d(y, z) (5.1.1)

is a useful tool in metric spaces. In normed spaces, it is most conveniently
expressed as

| ||u|| − ||v|| | ≤ ||u− v|| (5.1.2)

(use formula (5.1.1) with x = 0, y = u and z = v).

Here are three useful consequences of the definitions and results above:

Proposition 5.1.4 Assume that (V, || · ||) is a normed space.

(i) If {xn} is a sequence from V converging to x, then {||xn||} converges
to ||x||.

(ii) If {xn} and {yn} are sequences from V converging to x and y, respec-
tively, then {xn + yn} converges to x + y.

(ii) If {xn} is a sequence from V converging to x, and {αn} is a sequence
from K converging to α, then {αnxn} converges to αx.

Proof: (i) That {xn} converges to x, means that limn→∞ ||x− xn|| = 0. As
|||xn|| − ||x||| ≤ ||x − xn|| by the inverse triangle inequality, it follows that
limn→∞ |||xn|| − ||x||| = 0, i.e. {||xn||} converges to ||x||.

(ii) Left to the reader (use the triangle inequality).
(iii) By the properties of a norm

||αx− αnxn|| = ||(αx− αxn) + (αxn − αnxn)||
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≤ ||αx− αxn||+ ||αxn − αnxn|| = |α|||x− xn||+ |α− αn|||xn||
The first term goes to zero since |α| is a constant and ||x−xn|| goes to zero,
and the second term goes to zero since |α−αn| goes to zero and the sequence
||xn|| is bounded (since it converges according to (i)). Hence ||αx − αnxn||
goes to zero and the statement is proved. 2

It is important to be aware that convergence depends on the norm we
are using. If we have two norms || · ||1 and || · ||2 on the same vector space V ,
a sequence {xn} may converge to x in one norm, but not in the other. Let
us return to Example 1 in Section 3.2:

Example 4: Consider the vector space V = C([0, 1],R), and let fn : [0, 1]→
R be the function in Figure 1. It is constant zero except on the interval [0, 1

n ]
where it looks like a tent of height 1.

-

6

1

1

1
n Figure 1

�
�
�
�
�
�
�
�
��E
E
E
E
E
E
E
E
EE

The function is defined by

fn(x) =


2nx if 0 ≤ x < 1

2n

−2nx+ 2 if 1
2n ≤ x <

1
n

0 if 1
n ≤ x ≤ 1

but it is much easier just to work from the picture.
Let us first look at the || · ||1-norm in Example 3, i.e.

||f ||1 =

∫ 1

0
|f(x)| dx

If f is the function that is constant 0, we see that

||fn − f || =
∫ 1

0
|fn(x)− 0| dx =

∫ 1

0
fn(x) dx =

1

2n

(the easiest way to compute the integral is to calculate the area of the
triangle on the figure). This means that the sequence {fn} converges to f
in || · ||1-norm.
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Let now || · || be the norm in Example 2, i.e

||f || = sup{|f(x)| : x ∈ [0, 1]}

Then

||fn − f || = sup{|fn(x)− f(x)| : x ∈ [0, 1]} = sup{|f(x)| : x ∈ [0, 1]} = 1

which shows that {fn} does not converge to f in || · ||-norm. ♣

It’s convenient to have a criterion for when two norms on the same
space act in the same way with respect to properties like convergence and
continuity.

Definition 5.1.5 Two norms || · ||1 and || · ||2 on the same vector space V are
equivalent if there are positive constants K1 and K2 such that for all x ∈ V ,

||x||1 ≤ K1||x||2 and ||x||2 ≤ K2||x||1

The following proposition shows that two equivalent norms have the same
properties in many respects. The proofs are left to the reader.

Proposition 5.1.6 Assume that || · ||1 and || · ||2 are two equivalent norms
on the same vector space V . Then

(i) If a sequence {xn} converges to x with respect to one of the norms, it
also converges to x with respect to the other norm.

(ii) If a set is open, closed or compact with respect to one of the norms, it
is also open, closed or compact with respect to the other norm.

(iii) If (Y, d) is a metric space, and a map f : Y → X is continuous with
respect to one of the norms, it is also continuous with respect to the
other. Likewise, if a map g : X → Y is continuous with respect to one
of the norms, it is also continuous with respect to the other norm.

The following result is quite useful. It guarantees that the problems we
encountered in Example 4 never occur in finite dimensional settings.

Theorem 5.1.7 All norms on Rn are equivalent.

Proof: It suffices to show that all norms are equivalent with the euclidean
norm || · || (check this!). Let | · | be another norm. We must show there are
constants K1 and K2 such that

|x| ≤ K1||x|| and ||x|| ≤ K2|x|
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To prove the first inequality, let {e1, e2, . . . , en} be the usual basis in Rn,
and put

B = max{|e1|, |e2|, . . . , |en|}

For x = x1e1 + x2e2 + . . .+ xnen, we have

|x| = |x1e1 + x2e2 + . . .+ xnen| ≤ |x1||e1|+ |x2||e2|+ . . .+ |xn||en|

≤ B(|x1|+ |x2|+ . . .+ |xn|) ≤ nB max
1≤i≤n

|xi|

Since
max

1≤i≤n
|xi| =

√
max

1≤i≤n
|xi|2 ≤

√
x2

1 + x2
2 + . . . x2

n = ||x||

we get |x| ≤ nB||x||, which shows that we can take K1 = nB.
To prove the other inequality, we shall use a trick. Define a function

f : Rn → [0,∞) by f(x) = |x|. Since

|f(x)− f(y)| = | |x| − |y| | ≤ |x− y| ≤ K1||x− y|| ,

f is continuous with respect to the Euclidean norm || · ||. The unit ball

B = {x ∈ Rn : ||x|| = 1}

is compact, and hence f has a minimal value a on B according to the
Extreme Value Theorem 3.5.10. This minimal value cannot be 0 (a nonzero
vector cannot have zero norm), and hence a > 0. For any x ∈ Rn, we thus
have

| x
||x||
| ≥ a

which implies V
1

a
|x| ≥ ||x||

Hence we can choose K2 = 1
a , and the theorem is proved. 2

The theorem above can be extended to all finite dimensional vector
spaces by a simple trick (see Exercise 11).

We shall end this section with a brief look at product spaces. Assume
that (V1, || · ||1), (V2, || · ||2), . . . , (Vn, || · ||n) are vector spaces over K. As usual,

V = V1 × V2 × . . .× Vn

is the set of all n-tuples x = (x1,x2, . . . ,xn), where xi ∈ Vi for i = 1, 2, . . . , n.
If we define addition and scalar multiplication by

(x1,x2, . . . ,xn) + (y1,y2, . . . ,yn) = (x1 + y1,x2 + y2, . . . ,xn + yn)
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and
α(x1,x2, . . . ,xn) = (αx1, αx2, . . . , αxn) ,

V becomes a vector space over K. It is easy to check that

||x|| = ||x1||1 + ||x2||2 + . . .+ ||xn||n

is a norm on V , and hence (V, || · ||) is a normed space, called the product of
(V1, || · ||1), (V2, || · ||2), . . . , (Vn, || · ||n).

Proposition 5.1.8 If the spaces (V1, || · ||1), (V2, || · ||2), . . . , (Vn, || · ||n) are
complete, so is their product (V, || · ||).

Proof: Left to the reader.

Exercises for Section 5.1

1. Check that the norms in Example 1 really are norms (i.e. that they satisfy
the conditions in Definition 5.1.2).

2. Check that the norms in Example 2 really are norms.

3. Check that the norm || · ||1 in Example 2 really is a norm.

4. Prove Proposition 5.1.4b).

5. Prove the inverse triangle inequality |||u|| − ||v||| ≤ ||u− v|| for all u,v ∈ V .

6. Let V 6= {0} be a vector space, and let d be the discrete metric on V . Show
that d is not generated by a norm (i.e. there is no norm on V such that
d(x,y) = ||x− y||).

7. Let V 6= {0} be a normed vector space. Show that V is complete if and only
if the unit sphere S = {x ∈ V : ||x|| = 1} is complete.

8. Prove the claim in the opening sentence of the proof of Theorem 5.1.7: that
it suffices to prove that all norms are equivalent with the euclidean norm.

9. Check that the product (V, || · ||) of normed spaces (V1, || · ||1), (V2, || · ||2), . . . ,
(Vn, || · ||n) really is a normed space (you should check that V is a linear space
as well as that || · || is a norm).

10. Prove Proposition 5.1.8.

11. Assume that V is a finite dimensional vector space with a basis {e1, e2, . . . , en}.

a) Show that the function T : Rn → V defined by

T (x1, x2, . . . , xn) = x1e1 + x2e2 + . . . xnen

is a vector space isomorphism (i.e. it is a bijective, linear map).
b) Show that if || · || is a norm on V , then

||x||1 = ||T (x)||

is a norm on Rn.
c) Show that all norms on V are equivalent.
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5.2 Infinite sums and bases

Recall from linear algebra that a finite set {v1,v2, . . . ,vn} of elements in a
vector space V is called a basis if all elements x in V can be written as a
linear combination

x = α1v1 + α2v2 + . . .+ αnvn

in a unique way. If such a (finite) set {v1,v2, . . . ,vn} exists, we say that V
is finite dimensional with dimension n (all bases have the same number of
all elements).

Many vector spaces are too big to have a basis in this sense, and we need
to extend the notion of basis from finite to infinite sets. Before we can do
so, we have to make sense of infinite sums in normed spaces. This is done
the same way we define infinite sums in R:

Definition 5.2.1 If {un}∞n=1 is a sequence of elements in a normed vector
space, we define the infinite sum

∑∞
n=1 un as the limit of the partial sums

sn =
∑n

k=1 uk provided this limit exists; i.e.

∞∑
n=1

un = lim
n→∞

n∑
k=1

uk

When the limit exists, we say that the series converges; otherwise it diverges.

Remark: The notation u =
∑∞

n=1 un is rather treacherous — it seems to
be a purely algebraic relationship, but it does, in fact, depend on which
norm we are using. If we have a two different norms || · ||1 and || · ||2 on the
same space V , we may have u =

∑∞
n=1 un with respect to || · ||1, but not with

respect to || · ||2, as ||u − sn||1 → 0 does not necesarily imply ||u − sn||2 → 0
(recall Example 4 in the previous section). This phenomenon is actually
quite common, and we shall meet it on several occasions later in the book.

We can now extend the notion of a basis.

Definition 5.2.2 Let {en}∞n=1 be a sequence of elements in a normed vector
space V . We say that {en} is a basis1 for V if for each x ∈ V there is a
unique sequence {αn}∞n=1 from K such that

x =
∞∑
n=1

αnen

1Strictly speaking, there are two notions of basis for an infinite dimensional space.
The type we are introducing here, is sometimes called a Schauder basis and only works
in normed spaces where we can give meaning to infinite sums. There ia another kind of
basis called a Hamel basis which does not require the space to be normed, but which is
less practical for applications.
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Not all normed spaces have a basis; there are, e.g., spaces so big that not
all elements can be reached from a countable set of basis elements.

Let us take a look at an infinite dimensional space with a basis.

Example 3: Let c0 be the set of all sequences x = {xn}n∈N of real numbers
such that limn→∞ xn = 0. It is not hard to check that {c0} is a vector space
and that

||x|| = sup{|xn| : n ∈ N}

is a norm on c0. Let en = (0, 0, . . . , 0, 1, 0, . . .) be the sequence that is 1
on element number n and 0 elsewhere. Then {en}n∈N is a basis for c0 with
x =

∑∞
n=1 xnen. ♣

If a normed vector space is complete, we shall call it a Banach space.
The next theorem provides an efficient method for checking that a normed
space is complete. We say that a series

∑∞
n=1 un in V converges absolutely if∑∞

n=1 ||un|| converges (note that
∑∞

n=1 ||un|| is a series of positive numbers).

Proposition 5.2.3 A normed vector space V is complete if and only if
every absolutely convergent series converges.

Proof: Assume first that V is complete and that the series
∑∞

n=0 un con-
verges absolutely. We must show that the series converges in the ordinary
sense. Let Sn =

∑n
k=0 ||uk|| and sn =

∑n
k=0 uk be the partial sums of the

two series. Since the series converges absolutely, the sequence {Sn} is a
Cauchy sequence, and given an ε > 0, there must be an N ∈ N such that
|Sn − Sm| < ε when n,m ≥ N . Without loss of generality, we may assume
that m > n. By the triangle inequality

||sm − sn|| = ||
m∑

k=n+1

uk|| ≤
m∑

k=n+1

||uk|| = |Sm − Sn| < ε

when n,m ≥ N , and hence {sn} is a Cauchy sequence. Since V is complete,
the series

∑∞
n=0 un converges.

For the converse, assume that all absolutely convergent series converge,
and let {xn} be a Cauchy sequence. We must show that {xn} converges.
Since {xn} is a Cauchy sequence, we can find an increasing sequence {ni} in
N such that ||xn − xm|| < 1

2i
for all n,m ≥ ni. In particular ||xni+1 − xni || <

1
2i
, and clearly

∑∞
i=1 ||xni+1 − xni || converges. This means that the series∑∞

i=1(xni+1 − xni) converges absolutely, and by assumption it converges in
the ordinary sense to some element s ∈ V . The partial sums of this sequence
are

sN =
N∑
i=1

(xni+1 − xni) = xnN+1 − xn1
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(the sum is “telescoping” and almost all terms cancel), and as they converge
to s, we see that xnN+1 must converge to s + xn1 . This means that a
subsequence of the Cauchy sequence {xn} converges, and thus the sequence
itself converges according to Lemma 2.5.5. 2

Exercises for Section 5.2

1. Prove that the set {en}n∈N in Example 3 really is a basis for c0.

2. Show that if a normed vector space V has a basis (as defined in Definition
5.2.2), then it is separable (i.e. it has a countable, dense subset).

3. l1 is the set of all sequences x = {xn}n∈N of real numbers such that
∑∞
n=1 |xn|

converges.

a) Show that

||x|| =
∞∑
n=1

|xn|

is a norm on l1.

b) Show that the set {en}n∈N in Example 3 is a basis for l1.

c) Show that l1 is complete.

5.3 Inner product spaces

The usual (euclidean) norm in Rn can be defined in terms of the scalar (dot)
product:

||x|| =
√
x · x

This relationship is extremely important as it connects length (defined by
the norm) and orthogonality (defined by the scalar product), and it is the
key to many generalizations of geometric arguments from R2 and R3 to Rn.
In this section we shall see how we can extend this generalization to certain
infinite dimensional spaces called inner product spaces.

The basic observation is that some norms on infinite dimensional spaces
can be defined in terms of an inner product just as the euclidean norm is
defined in terms of the scalar product. Let us begin by taking a look at such
products. As in the previous section, we assume that all vector spaces are
over K which is either R or C. As we shall be using complex spaces in our
study of Fourier series, it is important that you don’t neglect the complex
case.

Definition 5.3.1 An inner product 〈·, ·〉 on a vector space V over K is a
function 〈·, ·〉 : V × V → K such that:

(i) 〈u,v〉 = 〈v,u〉 for all u,v ∈ V (the bar denotes complex conjugation;
if the vector space is real, we just have 〈u,v〉 = 〈v,u〉).
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(ii) 〈u + v,w〉 = 〈u,w〉+ 〈v,w〉 for all u,v,w ∈ V .

(iii) 〈αu,v〉 = α〈u,v〉 for all α ∈ K, u,v ∈ V .

(iv) For all u ∈ V , 〈u,u〉 ≥ 0 with equality if and only if u = 0 (by (i),
〈u,u〉 is always a real number).2

As immediate consequences of (i)-(iv), we have

(v) 〈u,v + w〉 = 〈u,v〉+ 〈u,w〉 for all u,v,w ∈ V .

(vi) 〈u, αv〉 = α〈u,v〉 for all α ∈ K, u,v ∈ V (note the complex conju-
gate).

(vii) 〈αu, αv〉 = |α|2〈u,v〉 (combine (i) and(vi) and recall that for complex
numbers |α|2 = αα).

Example 1: The classical examples are the dot products in Rn and Cn. If
x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn) are two real vectors, we define

〈x,y〉 = x · y = x1y1 + x2y2 + . . .+ xnyn

If z = (z1, z2, . . . , zn) and w = (w1, w2, . . . , wn) are two complex vectors, we
define

〈z,w〉 = z ·w = z1w1 + z2w2 + . . .+ znwn

♣

Before we look at the next example, we need to extend integration to
complex valued functions. If a, b ∈ R, a < b, and f, g : [a, b] → R are
continuous functions, we get a complex valued function h : [a, b] → C by
letting

h(t) = f(t) + i g(t)

We define the integral of h in the natural way:∫ b

a
h(t) dt =

∫ b

a
f(t) dt+ i

∫ b

a
g(t) dt

i.e., we integrate the real and complex parts separately.

Example 2: Again we look at the real and complex case separately. For
the real case, let V be the set of all continuous functions f : [a, b]→ R, and
define the inner product by

〈f, g〉 =

∫ b

a
f(t)g(t) dt

2Strictly speaking, we are defining positive definite inner products, but they are the
only inner products we have use for.
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For the complex case, let V be the set of all continuous, complex valued
functions h : [a, b]→ C as described above, and define

〈h, k〉 =

∫ b

a
h(t)k(t) dt

Then 〈·, ·〉 is an inner product on V .
Note that these inner products may be thought of as natural extensions

of the products in Example 1; we have just replaced discrete sums by con-
tinuous products. ♣

Given an inner product 〈·, ·〉, we define || · || : V → [0,∞) by

||u|| =
√
〈u,u〉

in analogy with the norm and the dot product in Rn and Cn. For simplicity,
we shall refer to || · || as a norm, although at this stage it is not at all clear
that it is a norm in the sense of Definition 5.1.2.

On our way to proving that || · || really is a norm, we shall pick up a few
results of a geometric nature that will be useful later. We begin by defining
two vectors u,v ∈ V to be orthogonal if 〈u,v〉 = 0. Note that if this is the
case, we also have 〈v,u〉 = 0 since 〈v,u〉 = 〈u,v〉 = 0 = 0.

With these definitions, we can prove the following generalization of the
Pythagorean theorem:

Proposition 5.3.2 (Pythagorean Theorem) For all orthogonal u1, u2,
. . . , un in V ,

||u1 + u2 + . . .+ un||2 = ||u1||2 + ||u2||2 + . . .+ ||un||2

Proof: We have

||u1 + u2 + . . .+ un||2 = 〈u1 + u2 + . . .+ un,u1 + u2 + . . .+ un〉 =

=
∑

1≤i,j≤n
〈ui,uj〉 = ||u1||2 + ||u2||2 + . . .+ ||un||2

where we have used that by orthogonality, 〈ui,uj〉 = 0 whenever i 6= j. 2

Two nonzero vectors u, v are said to be parallel if there is a number
α ∈ K such that u = αv. As in Rn, the projection of u on v is the vector p
parallel with v such that u−p is orthogonal to v. Figure 1 shows the idea.
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Figure 1: The projection p of u on v

Proposition 5.3.3 Assume that u and v are two nonzero elements of V .
Then the projection p of u on v is given by:

p =
〈u,v〉
||v||2

v

The norm of the projection is ||p|| = |〈u,v〉|
||v||

Proof: Since p is parallel to v, it must be of the form p = αv. To determine
α, we note that in order for u − p to be orthogonal to v, we must have
〈u− p,v〉 = 0. Hence α is determined by the equation

0 = 〈u− αv,v〉 = 〈u,v〉 − 〈αv,v〉 = 〈u,v〉 − α||v||2

Solving for α, we get α = 〈u,v〉
||v||2 , and hence p = 〈u,v〉

||v||2 v.
To calculate the norm, note that

||p||2 = 〈p,p〉 = 〈αv, αv〉 = |α|2〈v,v〉 =
|〈u,v〉|2

||v||4
〈v,v〉 =

|〈u,v〉|2

||v||2

(recall property (vi) just after Definition 5.3.1). 2

We can now extend Cauchy-Schwarz’ inequality to general inner prod-
ucts:

Proposition 5.3.4 (Cauchy-Schwarz’ Inequality) For all u,v ∈ V ,

|〈u,v〉| ≤ ||u||||v||

with equality if and only if u and v are parallel or at least one of them is
zero.
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Proof: The proposition clearly holds with equality if one of the vectors is
zero. If they are both nonzero, we let p be the projection of u on v, and
note that by the pythagorean theorem

||u||2 = ||u− p||2 + ||p||2 ≥ ||p||2

with equality only if u = p, i.e. when u and v are parallel. Since ||p|| = |〈u,v〉|
||v||

by Proposition 4.6.3, we have

||u||2 ≥ |〈u,v〉|
2

||v||2

and the proposition follows. 2

We may now prove:

Proposition 5.3.5 (Triangle Inequality for Inner Products) For all u,
v ∈ V

||u + v|| ≤ ||u||+ ||v||

Proof: We have (recall that Re(z) refers to the real part a of a complex
number z = a+ ib):

||u + v||2 = 〈u + v,u + v〉 = 〈u,u〉+ 〈u,v〉+ 〈v,u〉+ 〈v,v〉 =

= 〈u,u〉+ 〈u,v〉+ 〈u,v〉+ 〈v,v〉 = 〈u,u〉+ 2Re(〈u,v〉) + 〈v,v〉 ≤

≤ ||u||2 + 2||u||||v||+ ||v||2 = (||u||+ ||v||)2

where we have used that according to Cauchy-Schwarz’ inequality, we have
Re(〈u,v〉) ≤ |〈u,v〉| ≤ ||u||||v||. 2

We are now ready to prove that || · || really is a norm:

Proposition 5.3.6 If 〈·, ·〉 is an inner product on a vector space V , then

||u|| =
√
〈u,u〉

defines a norm on V , i.e.

(i) ||u|| ≥ 0 with equality if and only if u = 0.

(ii) ||αu|| = |α|||u|| for all α ∈ C and all u ∈ V .

(iii) ||u + v|| ≤ ||u||+ ||v|| for all u,v ∈ V .
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Proof: (i) follows directly from the definition of inner products, and (iii)
is just the triangle inequality. We have actually proved (ii) on our way to
Cauchy-Schwarz’ inequality, but let us repeat the proof here:

||αu||2 = 〈αu, αu〉 = |α|2||u||2

where we have used property (vi) just after Definition 5.3.1. 2

The proposition above means that we can think of an inner product
space as a metric space with metric defined by

d(x,y) = ||x− y|| =
√
〈x− y,x− y〉

Example 3: Returning to Example 2, we see that the metric in the real as
well as in the complex case is given by

d(f, g) =

(∫ b

a
|f(t)− g(t)|2 dt

) 1
2

♣

The next proposition tells us that we can move limits and infinite sums
in and out of inner products.

Proposition 5.3.7 Let V be an inner product space.

(i) If {un} is a sequence in V converging to u, then the sequence {||un||}
of norms converges to ||u||.

(ii) If the series
∑∞

n=0 wn converges in V , then

||
∞∑
n=0

wn|| = lim
N→∞

||
N∑
n=0

wn||

(iii) If {un} is a sequence in V converging to u, then the sequence 〈un,v〉
of inner products converges to 〈u,v〉 for all v ∈ V . In symbols,
limn→∞〈un,v〉 = 〈limn→∞ un,v〉 for all v ∈ V .

(iv) If the series
∑∞

n=0 wn converges in V , then

〈
∞∑
n=1

wn,v〉 =

∞∑
n=1

〈wn,v〉

.
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Proof: (i) We have already proved this in Proposition 5.1.4(i).
(ii) follows immediately from (i) if we let un =

∑n
k=0 wk

(iii) Assume that un → u. To show that 〈un,v〉 → 〈u,v〉, is suffices
to prove that 〈un,v〉 − 〈u,v〉 = 〈un − u,v〉 → 0. But by Cauchy-Schwarz’
inequality

|〈un − u,v〉| ≤ ||un − u||||v|| → 0

since ||un − u|| → 0 by assumption.
(iv) We use (iii) with u =

∑∞
n=1 wn and un =

∑n
k=1 wk. Then

〈
∞∑
n=1

wn,v〉 = 〈u,v〉 = lim
n→∞

〈un,v〉 = lim
n→∞

〈
n∑
k=1

wk,v〉 =

= lim
n→∞

n∑
k=1

〈wk,v〉 =
∞∑
n=1

〈wn,v〉

2

We shall now generalize some notions from linear algebra to our new
setting. If {u1,u2, . . . ,un} is a finite set of elements in V , we define the
span

Sp{u1,u2, . . . ,un}

of {u1,u2, . . . ,un} to be the set of all linear combinations

α1u1 + α2u2 + . . .+ αnun, where α1, α2, . . . , αn ∈ K

A set A ⊆ V is said to be orthonormal if it consists of orthogonal elements
of length one, i.e. if for all a,b ∈ A, we have

〈a,b〉 =


0 if a 6= b

1 if a = b

If {e1, e2, . . . , en} is an orthonormal set and u ∈ V , we define the projection
of u on Sp{e1, e2, . . . , en} by

Pe1,e2,...,en(u) = 〈u, e1〉e1 + 〈u, e2〉e2 + · · ·+ 〈u, en〉en

This terminology is justified by the following result.

Proposition 5.3.8 Let {e1, e2, . . . , en} be an orthonormal set in V . For ev-
ery u ∈ V , the projection Pe1,e2,...,en(u) is the element in Sp{e1, e2, . . . , en}
closest to u. Moreover, u − Pe1,e2,...,en(u) is orthogonal to all elements in
Sp{e1, e2, . . . , en}.



140 CHAPTER 5. NORMED SPACES AND LINEAR OPERATORS

Proof: We first prove the orthogonality. It suffices to prove that

〈u− Pe1,e2,...,en(u), ei〉 = 0 (5.3.1)

for each i = 1, 2, . . . , n, as we then have

〈u− Pe1,e2,...,en(u), α1e1 + · · ·+ αnen〉 =

= α1〈u− Pe1,e2,...,en(u), e1〉+ . . .+ αn〈u− Pe1,e2,...,en(u), en〉 = 0

for all α1e1 + · · ·+αnen ∈ Sp{e1, e2, . . . , en}. To prove formula (5.3.1), just
observe that for each ei

〈u− Pe1,e2,...,en(u), ei〉 = 〈u, ei〉 − 〈Pe1,e2,...,en(u), ei〉

= 〈u, ei〉 −
(
〈u, ei〉〈e1, ei〉+ 〈u, e2〉〈e2, ei〉+ · · ·+ 〈u, en〉〈en, ei〉

)
=

= 〈u, ei〉 − 〈u, ei〉 = 0

To prove that the projection is the element in Sp{e1, e2, . . . , en} closest to
u, let w = α1e1 +α2e2 +· · ·+αnen be another element in Sp{e1, e2, . . . , en}.
Then Pe1,e2,...,en(u) − w is in Sp{e1, e2, . . . , en}, and hence orthogonal to
u−Pe1,e2,...,en(u) by what we have just proved. By the Pythagorean theorem

||u−w||2 = ||u−Pe1,e2,...,en(u)||2+||Pe1,e2,...,en(u)−w||2 > ||u−Pe1,e2,...,en(u)||2

2

As an immediate consequence of the proposition above, we get:

Corollary 5.3.9 (Bessel’s inequality) Let {e1, e2, . . . , en, . . .} be an ortho-
normal sequence in V . For any u ∈ V ,

∞∑
i=1

|〈u, ei〉|2 ≤ ||u||2

Proof: Since u−Pe1,e2,...,en(u) is orthogonal to Pe1,e2,...,en(u), we get by the
Pythagorean theorem that for any n

||u||2 = ||u− Pe1,e2,...,en(u)||2 + ||Pe1,e2,...,en(u)||2 ≥ ||Pe1,e2,...,en(u)||2

Using the Pythagorean Theorem again, we see that

||Pe1,e2,...,en(u)||2 = ||〈u, e1〉e1 + 〈u, e2〉e2 + · · ·+ 〈u, en〉en||2 =

= ||〈u, e1〉e1||2 + ||〈u, e2〉e2||2 + · · ·+ ||〈u, en〉en||2 =

= |〈u, e1〉|2 + |〈u, e2〉|2 + · · ·+ |〈u, en〉|2
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and hence
||u||2 ≥ |〈u, e1〉|2 + |〈u, e2〉|2 + · · ·+ |〈u, en〉|2

for all n. Letting n→∞, the corollary follows. 2

We have now reached the main result of this section. Recall from Defi-
nition 5.2.2 that {ei} is a basis for V if any element u in V can be written
as a linear combination u =

∑∞
i=1 αiei in a unique way. The theorem tells

us that if the basis is orthonormal, the coeffisients αi are easy to find; they
are simply given by αi = 〈u, ei〉.

Theorem 5.3.10 (Parseval’s Theorem) If {e1, e2, . . . , en, . . .} is an or-
thonormal basis for V , then for all u ∈ V , we have u =

∑∞
i=1〈u, ei〉ei and

||u||2 =
∑∞

i=1 |〈u, ei〉|2.

Proof: Since {e1, e2, . . . , en, . . .} is a basis, we know that there is a unique
sequence α1, α2, . . . , αn, . . . from K such that u =

∑∞
n=1 αnen. This means

that ||u−
∑N

n=1 αnen|| → 0 as N →∞. Since the projection Pe1,e2,...,eN (u) =∑N
n=1〈u, en〉en is the element in Sp{e1, e2, . . . , eN} closest to u, we have

||u−
N∑
n=1

〈u, en〉en|| ≤ ||u−
N∑
n=1

αnen|| → 0 as N →∞

and hence u =
∑∞

n=1〈u, en〉en. To prove the second part, observe that since
u =

∑∞
n=1〈u, en〉en = limN→∞

∑N
n=1〈u, en〉en, we have (recall Proposition

5.3.7(ii))

||u||2 = lim
N→∞

||
N∑
n=1

〈u, en〉en||2 = lim
N→∞

N∑
n=1

|〈u, en〉|2 =
∞∑
n=1

|〈u, en〉|2

2

The coefficients 〈u, en〉 in the arguments above are often called (abstract)
Fourier coefficients. By Parseval’s theorem, they are square summable in
the sense that

∑∞
n=1 |〈u, en〉|2 < ∞. A natural question is whether we can

reverse this procedure: Given a square summable sequence {αn} of elements
in K, does there exist an element u in V with Fourier coefficients αn, i.e.
such that 〈u, en〉 = αn for all n? The answer is affirmative provided V is
complete.

Proposition 5.3.11 Let V be a complete inner product space over K with
an orthonormal basis {e1, e2, . . . , en, . . .}. Assume that {αn}n∈N is a se-
quence from K which is square summable in the sense that

∑∞
n=1 |αn|2 con-

verges. Then the series
∑∞

n=1 αnen converges to an element u ∈ V , and
〈u, en〉 = αn for all n ∈ N.
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Proof: We must prove that the partial sums sn =
∑n

k=1 αkek form a Cauchy
sequence. If m > n, we have

||sm − sn||2 = ||
m∑

k=n+1

αnen||2 =
m∑

k=n+1

|αn|2

Since
∑∞

n=1 |αn|2 converges, we can get this expression less than any ε > 0
by choosing n,m large enough. Hence {sn} is a Cauchy sequence, and the
series

∑∞
n=1 αnen converges to some element u ∈ V . By Proposition 5.3.7,

〈u, ei〉 = 〈
∞∑
n=1

αnen, ei〉 =
∞∑
n=1

〈αnen, ei〉 = αi

2

Completeness is necessary in the proposition above — if V is not com-
plete, there will always be a square summable sequence {αn} such that∑∞

n=1 αnen does not converge (see exercise 13).

A complete inner product space is called a Hilbert space.

Exercises for Section 5.3

1. Show that the inner products in Example 1 really are inner products (i.e.
that they satisfy Definition 5.3.1).

2. Show that the inner products in Example 2 really are inner products.

3. Prove formula (v) just after Definition 5.3.1.

4. Prove formula (vi) just after Definition 5.3.1.

5. Prove formula (vii) just after Definition 5.3.1.

6. Show that if A is a symmetric (real) matrix with strictly positive eigenvalues,
then

〈u,v〉 = (Au) · v

is an inner product on Rn.

7. If h(t) = f(t) + i g(t) is a complex valued function where f and g are dif-
ferentiable, define h′(t) = f ′(t) + i g′(t). Prove that the integration by parts
formula ∫ b

a

u(t)v′(t) dt =

[
u(t)v(t)

]b
a

−
∫ b

a

u′(t)v(t) dt

holds for complex valued functions.

8. Assume that {un} and {vn} are two sequences in an inner product space
converging to u and v, respectively. Show that 〈un,vn〉 → 〈u,v〉.
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9. Show that if the norm || · || is defined from an inner product by ||u|| = 〈u,u〉 12 ,
we have the parallelogram law

||u + v||2 + ||u− v||2 = 2||u||2 + 2||v||2

for all u,v ∈ V . Show that the norms on R2 defined by ||(x, y)|| = max{|x|, |y|}
and ||(x, y)|| = |x|+ |y| do not come from inner products.

10. Let {e1, e2, . . . , en} be an orthonormal set in an inner product space V . Show
that the projection P = Pe1,e2,...,en is linear in the sense that P (αu) = αP (u)
and P (u + v) = P (u) + P (v) for all u,v ∈ V and all α ∈ K.

11. In this problem we prove the polarization identities for real and complex
inner products. These identities are useful as they express the inner product
in terms of the norm.

a) Show that if V is an inner product space over R, then

〈u,v〉 =
1

4

(
||u + v||2 − ||u− v||2

)
b) Show that if V is an inner product space over C, then

〈u,v〉 =
1

4

(
||u + v||2 − ||u− v||2 + i||u + iv||2 − i||u− iv||2

)
12. If S is a nonempty subset of an inner product space V , let

S⊥ = {u ∈ V : 〈u, s〉 = 0 for all s ∈ S}

a) Show that S⊥ is a closed subspace of V .

b) Show that if S ⊆ T , then S⊥ ⊇ T⊥.

13. Let l2 be the set of all real sequences x = {xn}n∈N such that
∑∞
n=1 x

2
n <∞.

a) Show that if x = {xn}n∈N and y = {yn}n∈N are in l2, then the series∑∞
n=1 xnyn converges. (Hint: For each N ,

N∑
n=1

xnyn ≤

(
N∑
n=1

x2n

) 1
2
(

N∑
n=1

y2n

) 1
2

by Cauchy-Schwarz’ inequality)

b) Show that l2 is a vector space.

c) Show that 〈x,y〉 =
∑∞
n=1 xnyn is an inner product on l2.

d) Show that l2 is complete.

e) Let en be the sequence where the n-th component is 1 and all the other
components are 0. Show that {en}n∈N is an orthonormal basis for l2.

f) Let V be an inner product space with an orthonormal basis {v1, v2,
. . . , vn, . . .}. Assume that for every square summable sequence {αn},
there is an element u ∈ V such that 〈u,vi〉 = αi for all i ∈ N. Show
that V is complete.
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5.4 Linear operators

In linear algebra the important functions are the linear maps. The same
holds for infinitely dimensional spaces, but here the linear maps are most
often referred to as linear operators:

Definition 5.4.1 Assume that V and W are two vector spaces over K. A
function A : V → W is called a linear operator (or a linear map) if it
satisfies:

(i) A(αu) = αA(u) for all α ∈ K and u ∈ V .

(ii) A(u + v) = A(u) +A(v) for all u,v ∈ V .

Combining (i) and (ii), we see that

A(αu + βv) = αA(u) + βA(v)

Using induction, this can be generalized to

A(α1u1 +α2u2+ · · ·+αnun) = α1A(u1)+α2A(u2)+ · · ·+αnA(un) (5.4.1)

It is also useful to observe that since A(0) = A(00) = 0A(0) = 0, we have
A(0) = 0 for all linear operators.

As K may be regarded as a vector space over itself, the definition above
covers the case where W = K. The operator is then usually referred to as a
(linear) functional.

Example 1: Let V = C([a, b],R) be the space of continuous functions from
the interval [a, b] to R. The function A : V → R defined by

A(u) =

∫ b

a
u(x) dx

is a linear functional, while the function B : V → V defined by

B(u)(x) =

∫ x

a
u(t) dt

is a linear operator. ♣

Example 2: Just as integration, differentiation is a linear operation, but
as the derivative of a differentiable function is not necessarily differentiable,
we have to be careful which spaces we work with. A function f : (a, b)→ R
is said to be infinitely differentiable if it has derivatives of all orders at all
points in (a, b), i.e. if f (n)(x) exists for all n ∈ N and all x ∈ (a, b). Let U
be the space of all infinitely differentiable functions, and define D : U → U
by Du(x) = u′(x). Then D is a linear operator. ♣

We shall mainly be interested in linear operators between normed spaces,
and then the following notion is of central importance:
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Definition 5.4.2 Assume that (V, || · ||V ) and (W, || · ||W ) are two normed
spaces. A linear operator A : V → W is bounded if there is a constant
M ∈ R such that ||A(u)||W ≤M ||u||V for all u ∈ V .

Remark: The terminology here is rather treacherous as a bounded operator
is not a bounded function in the sense of, e.g., the Extreme Value Theorem.
To see this, note that if A(u) 6= 0, we can get ||A(αu)||W = |α|||A(u)||W as
large as we want by increasing the size of α.

The best (i.e. smallest) value of the constant M in the definition above
is denoted by ||A|| and is given by

||A|| = sup

{
||A(u)||W
||u||V

: u 6= 0

}
An alternative formulation (see Exercise 4) is

||A|| = sup {||A(u)||W : ||u||V = 1} (5.4.2)

We call ||A|| the operator norm of A. The name is justified in Proposition
5.4.7 below.

It’s instructive to take a new look at the linear operators in Examples 1
and 2:

Example 3: The operators A and B in Example 1 are bounded if we use
the (usual) supremum norm on V . To see this for B, note that

|B(u)(x)| = |
∫ x

a
u(t) dt| ≤

∫ x

a
|u(t)| dt ≤

∫ x

a
||u|| du = ||u||(x−a) ≤ ||u||(b−a)

which implies that ||B(u)|| ≤ (b− a)||u|| for all u ∈ V . ♣

Example 4: If we let U have the supremum norm, the operator D in Ex-
ample 2 is not bounded. If we let un = sinnx, we have ||un|| = 1, but
||D(un)|| = ||n cosnx|| → ∞ as n → ∞. That D is an unbounded operator,
is the source of a lot of trouble, e.g. the rather unsatisfactory conditions
we had to enforce in our treatment of differentiation of series in Proposition
4.3.5. ♣

As we shall now prove, the notions of bounded, continuous, and uni-
formly continuous coincide for linear operators. One direction is easy:

Lemma 5.4.3 A bounded linear operator A is uniformly continuous.

Proof: If ||A|| = 0, A is constant zero and there is nothing to prove. If
||A|| 6= 0, we may for a given ε > 0, choose δ = ε

||A|| . For ||u − v||V < δ, we
then have

||A(u)−A(v)||W = ||A(u− v)||W ≤ ||A||||u− v||V < ||A|| · ε

||A||
= ε
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which shows that A is uniformly continuous. 2

The result in the opposite direction is perhaps more surprising:

Lemma 5.4.4 If a linear operator A is continuous at 0, it is bounded.

Proof: We argue contrapositively; i.e. we assume that A is not bounded
and prove that A is not continuous at 0. Since A is not bounded, there
must for each n ∈ N exist a un such that ||Aun||W||un||V = Mn ≥ n. If we put
vn = un

Mn||un||V , we see that vn → 0, but A(vn) does not converge to A(0) = 0

since ||A(vn)||W = ||A( un
Mn||un||V )|| = ||A(un)||W

Mn||un||V = Mn||un||V
Mn||un||V = 1. By Proposi-

tion 3.2.5, this means that A is not contiuous at 0. 2

Let us sum up the two lemmas in a theorem:

Theorem 5.4.5 For linear operators A : V → W between normed spaces,
the following are equivalent:

(i) A is bounded.

(ii) A is uniformly continuous.

(iii) A is continuous at 0.

Proof: It suffices to prove (i)=⇒(ii)=⇒(iii)=⇒(i). As (ii)=⇒(iii) is obvious,
we just have to observe that (i)=⇒(ii) by Lemma 5.4.3 and (iii)=⇒(i) by
Lemma 5.4.4. 2

It’s time to prove that the operator norm really is a norm, but first we
have a definition to make.

Definition 5.4.6 If V and W are two normed spaces, we let L(V,W ) de-
note the set of all bounded, linear maps A : V →W .

It is easy to check that L(V,W ) is a linear space when we define the algebraic
operations in the obvious way: A + B is the linear operator defined by
(A + B)(u) = A(u) + B(u), and for a scalar α, αA is the linear operator
defined by (αA)(u) = αA(u).

Proposition 5.4.7 If V and W are two normed spaces, the operator norm
is a norm on L(V,W ).

Proof: We need to show that the three properties of a norm in Definition
5.1.2 are satisfied.
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(i) We must show that ||A|| ≥ 0, with equality only if A = 0 (here 0 is the
operator that maps all vectors to 0). By definition

||A|| = sup

{
||A(u)||W
||u||V

: u 6= 0

}
which is clearly nonnegative. If A 6= 0 , there is a vector u such that
A(u) 6= 0, and hence

||A|| ≥ ||A(u)||W
||u||V

> 0

(ii) We must show that if α is a scalar, then ||αA|| = |α|||A||. This follows
immediately from the definition since

||αA|| = sup

{
||αA(u)||W
||u||V

: u 6= 0

}
= sup

{
|α|||A(u)||W
||u||V

: u 6= 0

}

= |α| sup

{
||A(u)||W
||u||V

: u 6= 0

}
= |α|||A||

(iii) We must show that if A,B ∈ L(V,W ), then ||A+B|| ≤ ||A||+||B||. From
the definition we have (make sure you understand the inequalities!);

||A+B|| = sup

{
||(A+B)(u)||W

||u||V
: u 6= 0

}

≤ sup

{
||(A(u)||+ ||B(u)||W

||u||V
: u 6= 0

}
≤ sup

{
||A(u)||W
||u||V

: u 6= 0

}
+ sup

{
||B(u)||W
||u||V

: u 6= 0

}
= ||A||+ ||B||

2

The spaces L(V,W ) will play a central rôle in the next chapter, and we need
to know that they inherit completeness from W .

Theorem 5.4.8 Assume that V and W are two normed spaces. If W is
complete, so is L(V,W ).

Proof: We must prove that any Cauchy sequence {An} in L(V,W ) converges
to an element A ∈ L(V,W ). We first observe that for any u ∈ V ,

||An(u)−Am(u)||W = ||(An −Am)(u)||W ≤ ||An −Am||||u||V



148 CHAPTER 5. NORMED SPACES AND LINEAR OPERATORS

which implies that {Anu)} is a Cauchy sequence inW . SinceW is complete,
the sequence converges to a point we shall call A(u), i.e.

A(u) = lim
n→∞

An(u) for all u ∈ V

This defines a function from A from V to W , and we need to prove that it is
a bounded, linear operator and that {An} converges to A in operator norm.

To check that A is a linear operator, we just observe that

A(αu) = lim
n→∞

An(αu) = α lim
n→∞

An(u) = αA(u)

and

A(u + v) = lim
n→∞

An(u + v) = lim
n→∞

An(u) + lim
n→∞

An(v) = A(u) +A(v)

where we have used that the An’s are linear operators.
The next step is to show that A is bounded. Note that by the inverse

triangle inequalities for norms, | ||An||−||Am|| | ≤ ||An−Am||, which shows that
{||An||} is a Cauchy sequence since {An} is. This means that the sequence
{||An||} is bounded, and hence there is a constant M such that M ≥ ||An||
for all n. Thus for all u 6= 0, we have

||An(u)||W
||u||V

≤M

and hence, by definition of A,

||A(u)||W
||u||V

≤M

which shows that A is bounded.
It remains to show that {An} converges to A in operator norm. Since

{An} is a Cauchy sequence, there is for a given ε > 0, an N ∈ N such that
||An −Am|| < ε when n,m ≥ N . This means that

||An(u)−Am(u)|| ≤ ε||u||

for all u ∈ V . If we let m go to infinity, we get (recall Proposition 5.1.4(i))

||An(u)−A(u)|| ≤ ε||u||

for all u, which means that ||An − A|| ≤ ε. This shows that {An} converges
to A, and the proof is complete. 2
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Exercises for Section 5.4

1. Prove Formula (5.4.1).

2. Check that the map A in Example 1 is a linear functional and that B is a
linear operator.

3. Check that the map D in Example 2 is a linear operator.

4. Prove formula (5.4.2).

5. Define F : C([0, 1],R) → R by F (u) = u(0). Show that F is a linear func-
tional. Is F continuous?

6. Assume that (U, || · ||U ), (V, || · ||V ) and (W, || · ||W ) are three normed vector
spaces over R. Show that if A : U → V and B : V → W are bounded,
linear operators, then C = B ◦ A is a bounded, linear operator. Show that
||C|| ≤ ||A||||B|| and find an example where we have strict inequality (it is
possible to find simple, finite dimensional examples)

7. Check that L(V,W ) is a linear space.

8. Assume that (W, || · ||W ) is a normed vector space. Show that all linear
operators A : Rd →W are bounded.

9. In this problem we shall give another characterization of boundedness for
functionals. We assume that V is a normed vector space over K and let
A : V → K be a linear functional. The kernel of A is defined by

ker(A) = {v ∈ V : A(v) = 0} = A−1({0})

a) Show that if A is bounded, ker(A) is closed. (Hint: Recall Proposition
3.3.10)

We shall use the rest of the problem to prove the converse: If kerA is closed,
then A is bounded. As this is obvious when A is identically zero, we may
assume that there is an element a in ker(A)c. Let b = a

A(a) (since A(a) is a
number, this makes sense).

b) Show that A(b) = 1 and that there is a ball B(b; r) around b contained
in kerAc.

c) Show that if u ∈ B(0; r) (where r is as in b) above), then ||A(u)||W ≤ 1.
(Hint: Assume for contradiction that u ∈ B(0, r), but ||A(u)||W > 1,
and show that A(b− u

A(u) ) = 0 although b− u
A(u) ∈ B(b; r).)

d) Use a) and c) to prove:
Teorem: Assume that (V, || · ||V ) is a normed spaces over K. A linear
functional A : V → K is bounded if and only if ker(A) is closed.

10. Let (V, 〈·, ·〉) be a complete inner product space over R with an orthonormal
basis {en}.

a) Show that for each y ∈ V , the map B(x) = 〈x,y〉 is a bounded linear
functional.
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b) Assume now that A : V → R is a bounded linear functional, and let
βn = A(en). Show that A(

∑n
i=1 βiei) =

∑n
i=1 β

2
i and conclude that(∑∞

i=1 β
2
i

) 1
2 ≤ ||A||.

c) Show that the series
∑∞
i=1 βiei converges in V .

d) Let y =
∑∞
i=1 βiei. Show that A(x) = 〈x,y〉 for all x ∈ V , and that

||A|| = ||y||V . (Note: This is a special case of the Riesz-Fréchet Repre-
sentation Theorem which says that all linear functionals A on a Hilbert
space H is of the form A(x) = 〈x,y〉 for some y ∈ H. The assumption
that V has an orthonormal basis is not needed for the theorem to be
true).

5.5 Baire’s Category Theorem

In this section, we shall return for a moment to the general theory of metric
spaces. The theorem we shall look at, could have been proved in chapters 3
or 4, but as it significance may be hard to grasp without good examples, I
have postponed it till we really need it.

Recall that a subset A of a metric space (X, d) is dense if for all x ∈ X
there is a sequence from A converging to x. An equivalent definition is that
all balls in X contain elements from A. To show that a set S is not dense,
we thus have to find an open ball that does not intersect S. Obviously, a
set can fail to be dense in parts of X, and still be dense in other parts. If G
is a nonempty, open subset of X, we say that A is dense in G if every ball
B(x; r) ⊆ G contains elements from A. The following definition catches our
intiution of a set that is not dense anywhere.

Definition 5.5.1 A subset S of a metric space (X, d) is said to be nowhere
dense if it isn’t dense in any nonempty, open set G. In other words, for
all nonempty, open sets G ⊆ X, there is a ball B(x; r) ⊆ G that does not
intersect S.

This definition simply says that no matter how much we restrict our atten-
tion, we shall never find an area in X where S is dense.

Example 1. N is nowhere dense in R. ♣

Nowhere dense sets are sparse in an obvious way. The following definition
indicates that even countable unions of nowhere dense sets are unlikely to
be very large.

Definition 5.5.2 A set is called meager if it is a countable union of nowhere
dense sets. The complement of a meager set is called comeager.3

3Most books refer to meager sets as “sets of first category” while comeager sets are
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Example 2. Q is a meager set in R as it can be written as a countable union
Q =

⋃
a∈Q{a} of the nowhere dense singletons {a}. By the same argument,

Q is also meager in Q.

The last part of the example shows that a meager set can fill up a metric
space. However, in complete spaces the meager sets are always “meager” in
the following sense:

Theorem 5.5.3 (Baire’s Category Theorem) Assume thatM is a mea-
ger subset of a complete metric space (X, d). Then M does not contain any
open balls, i.e. M c is dense in X.

Proof: Since M is meager, it can be written as a union M =
⋃
k∈NNk of

nowhere dense sets Nk. Given a ball B(a; r), our task is to find an element
x ∈ B(a; r) which does not belong to M .

We first observe that since N1 is nowhere dense, there is a ball B(a1; r1)
inside B(a; r) which does not intersectN1. By shrinking the radius r1 slightly
if necessary, we may assume that the closed ball B(a1; r1) is contained in
B(a; r), does not intersect N1, and has radius less than 1. Since N2 is
nowhere dense, there is a ball B(a2; r2) inside B(a1; r1) which does not in-
tersect N2. By shrinking the radius r2 if necessary, we may assume that
the closed ball B(a2; r2) does not intersect N2 and has radius less than 1

2 .
Continuing in this way, we get a sequence {B(ak; rk)} of closed balls, each
contained in the previous, such that B(ak; rk) has radius less than 1

k and
does not intersect Nk.

Since the balls are nested and the radii shrink to zero, the centers ak
form a Cauchy sequence. Since X is complete, the sequence converges to a
point x. Since each ball B(ak; rk) is closed, and the “tail” {an}∞n=k of the
sequence belongs to B(ak; rk), the limit x also belongs to B(ak; rk). This
means that for all k, x /∈ Nk , and hence x /∈ M . Since B(a1; r1) ⊆ B(a; r),
we see that x ∈ B(a; r), and the theorem is proved. 2

As an immediate consequence we have:

Corollary 5.5.4 A complete metric space is not a countable union of nowhere
dense sets.

Baire’s Category Theorem is a surprisingly strong tool for proving the-
orems about sets and families of functions. Before we take a look at some
examples, we shall prove the following lemma which gives a simpler descrip-
tion of closed, nowhere dense sets.

called “residual sets”. Sets that are not of first category, are said to be of “second category”.
Although this is the original terminology of René-Louis Baire (1874-1932) who introduced
the concepts, it is in my opinion so nondescriptive that it should be abandoned in favor
of more evocative terms.
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Lemma 5.5.5 A closed set F is nowhere dense if and only if it does not
contain any open balls.

Proof: If F contains an open ball, it obviously isn’t nowhere dense. We
therefore assume that F does not contain an open ball, and prove that it
is nowhere dense. Given a nonempty, open set G, we know that F cannot
contain all of G as G contains open balls and F does not. Pick an element
x in G that is not in F . Since F is closed, there is a ball B(x; r1) around x
that does not intersect F . Since G is open, there is a ball B(x; r2) around
x that is contained in G. If we choose r = min{r1, r2}, the ball B(x; r) is
contained in G and does not intersect F , and hence F is nowhere dense. 2

Remark: Without the assumption that F is closed, the lemma is false,
but it is still possible to prove a related result: A (general) set S is nowhere
dense if and only if its closure S̄ doesn’t contain any open balls. See Exercise
5.

We are now ready to take a look at our first application.

Definition 5.5.6 Let (X, d) be a metric space. A family F of functions
f : X → R is called pointwise bounded if for each x ∈ X, there is a
constant Mx ∈ R such that |f(x)| ≤Mx for all f ∈ F .

Note that the constant Mx may vary from point to point, and that there
need not be a constant M such that |f(x)| ≤M for all f and all x (a simple
example is F = {f : R → R | f(x) = kx for k ∈ [−1, 1}, where Mx = |x|).
The next result shows that although we cannot guarantee boundedness on
all of X, we can under reasonable assumptions guarantee boundedness on a
part of X.

Proposition 5.5.7 Let (X, d) be a complete metric space, and assume that
F is a pointwise bounded family of continuous functions f : X → R. Then
there exists an open, nonempty set G and a constant M ∈ R such that
|f(x)| ≤M for all f ∈ F and all x ∈ G.

Proof: For each n ∈ N and f ∈ F , the set f−1([−n, n]) is closed as it is the
inverse image of a closed set under a continuous function (recall Proposition
3.3.10). As intersections of closed sets are closed (Proposition 3.3.12)

An =
⋂
f∈F

f−1([−n, n])

is also closed. Since F is pointwise bounded, X =
⋃
n∈NAn, and Corollary

5.5.4 tells us that not all An can be nowhere dense. If An0 is not nowhere
dense, it contains an open set G by the lemma above. By definition of An0 ,
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we see that |f(x)| ≤ n0 for all f ∈ F and all x ∈ An0 (and hence all x ∈ G).
2

You may doubt the usefulness of this theorem as we only know that the
result holds for some open set G, but the point is that if we have extra
information on the the family F , the sole existence of such a set may be
exactly what we need to pull through a more complex argument. This is
what happens in the next result where we return to the setting of normed
spaces.

Theorem 5.5.8 (The Banach-Steinhaus Theorem) Let V,W be two
normed spaces where V is complete. Assume that {An} is a sequence of
bounded, linear maps from V to W such that limn→∞An(u) exists for all
u ∈ V (we say that the sequence {An} converges pointwise). Then the
function A : V →W defined by

A(u) = lim
n→∞

An(u)

is a bounded, linear map.

Proof: It is easy to check that A is a linear map (see the proof of Theorem
5.4.8 if you need help), and we concentrate on the boundedness. Define
fn : V → R by fn(u) = ||An(u)||. Since the sequence {An(u)} converges
for any u, the sequence {fn(u)} is bounded. Hence {fn} is a pointwise
bounded family in the terminology of the proposition above, and there exist
an open set G and a constant M such that fn(u) ≤ M for all u ∈ G and
all n ∈ N. In other words, ||An(u)|| ≤ M for all u ∈ G and all n ∈ N. As
A(u) = limn→∞An(u), this means that ||A(u)|| ≤M for all u ∈ G.

To show that A is bounded, pick a point a ∈ G and a radius r > 0 such
that the closed ball B(a, r) is contained in G. Since for any u ∈ V , we must
have a + u

||u||r ∈ B(a, r) ⊆ G, we see that

||A(a +
u

||u||
r)|| ≤M

and hence by linearity

||A(a) +
r

||u||
A(u)|| ≤M

Playing with the triangle inequality, we now get

|| r
||u||

A(u)|| = ||A(a) +
r

||u||
A(u)−A(a)||

≤ ||A(a) +
r

||u||
A(u)||+ ||A(a)|| ≤ 2M
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and hence
||A(u)|| ≤ 2M

r
||u||

which shows that A is bounded. 2

The Banach-Steinhaus Theorem is one of several important results about
linear operators that rely on Baire’s Category Theorem. We shall meet more
examples in the next section.

For our next application, we first observe that although Rn is not com-
pact, it can be written as a countable union of compact sets:

Rn =
⋃
k∈N

[−k, k]n

We shall show that this is not the case for C([0, 1],R) — this space can not
be written as a countable union of compact sets. We need a lemma.

Lemma 5.5.9 A compact subset K of C([0, 1],R) is nowhere dense.

Proof: Since compact sets are closed, it suffices (by Lemma 5.5.5) to show
that each ball B(f ; ε) contains elements that are not in K. By Arzelà-
Ascoli’s Theorem, we know that compact sets are equicontinuous, and hence
we need only prove that B(f ; ε) contains a family of functions that is not
equicontinuous. We shall produce such a family by perturbing f by functions
that are very steep on small intervals.

For each n ∈ N, let gn be the function

gn(x) =


nx for x ≤ ε

2n

ε
2 for x ≥ ε

2n

Then f + gn is in B(f, ε), but since {f + gn} is not equicontinuous (see
Exercise 9 for help to prove this), all these functions can not be in K, and
hence B(f ; ε) contains elements that are not in K. 2

Proposition 5.5.10 C([0, 1],R) is not a countable union of compact sets.

Proof: Since C([0, 1],R) is complete, it is not the countable union of nowhere
dense sets by Corollary 5.5.4. Since the lemma tells us that all compact sets
are nowhere dense, the theorem follows. 2

Remark: The basic idea in the proof above is that the compact sets are
nowhere dense since we can obtain arbitrarily steep functions by perturbing
a given function just a little. The same basic idea can be used to prove more
sophisticated results, e.g. that the set of nowhere differentiable functions is
comeager in C([0, 1],R).
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Exercises for Section 5.5

1. Show that N is a nowhere dense subset of R.

2. Show that the set A = {g ∈ C([0, 1],R) | g(0) = 0} is nowhere dense in
C([0, 1],R).

3. Show that a subset of a nowhere dense set is nowhere dense and that a subset
of a meager set is meager.

4. Show that a subset S of a metric space X is nowhere dense if and only if for
each open ball B(a0; r0) ⊆ X, there is a ball B(x; r) ⊆ B(a0; r0) that does
not intersect S.

5. Recall that the closure N of a set N consist of N plus all its boundary points.

a) Show that if N is nowhere dense, so is N .

b) Find an example of a meager set M such that M is not meager.

c) Show that a set is nowhere dense if and only if N does not contain any
open balls.

6. Show that a countable union of meager sets is meager.

7. Show that if N1, N2, . . . , Nk are nowhere dense, so is N1 ∪N2 ∪ . . . Nk.

8. Prove that S is nowhere dense if and only if Sc contains an open, dense
subset.

9. In this problem we shall prove that the set {f + gn} in the proof of Lemma
5.5.8 is not equicontinuous.

a) Show that the set {gn : n ∈ N} is not equicontinuous.
b) Show that if {hn} is an equicontinous family of functions hn : [0, 1]→ R

and k : [0, 1]→ R is continuous, then {hn + k} is equicontinuous.
c) Prove that the set {f + gn} in the lemma is not equicontinuous. (Hint:

Assume that the sequence is equicontinuous, and use part b) with hn =
f + gn and k = −f to get a contradiction with a)).

10. Let N have the discrete metric. Show that N is complete and that N =⋃
n∈N{n}. Why doesn’t this contradict Baire’s Category Theorem?

11. Show that in a complete space, a closed set is meager if and only if it is
nowhere dense.

12. Let (X, d) be a metric space.

a) Show that if G ⊆ X is open and dense, then Gc is nowhere dense.

b) Assume that (X, d) is complete. Show that if {Gn} is a countable
collection of open, dense subsets of X, then

⋂
n∈NGn is dense in X

13. Assume that a sequence {fn} of continuous functions fn : [0, 1] → R con-
verges pointwise to f . Show that f must be bounded on a subinterval of
[0, 1]. Find an example which shows that f need not be bounded on all of
[0, 1].
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14. In this problem we shall study sequences {fn} of functions converging point-
wise to 0.

a) Show that if the functions fn are continuous, then there exists a nonempty
subinterval (a, b) of [0, 1] and an N ∈ N such that for n ≥ N , |fn(x)| ≤ 1
for all x ∈ (a, b).

b) Find a sequence of functions {fn} converging to 0 on [0, 1] such that for
each nonempty subinterval (a, b) there is for each N ∈ N an x ∈ (a, b)
such that fN (x) > 1.

15. Let (X, d) be a metric space. A point x ∈ X is called isolated if there is an
ε > 0 such that B(x; ε) = {x}.

a) Show that if x ∈ X, the singleton {x} is nowhere dense if and only if x
is not an isolated point.

b) Show that if X is a complete metric space without isolated points, then
X is uncountable.

We shall now prove:

Theorem: The unit interval [0, 1] can not be written as a countable, disjoint
union of closed, proper subintervals In = [an, bn].

c) Assume for contradictions that [0, 1] can be written as such a union.
Show that the set of all endpoints, F = {an, bn |n ∈ N} is a closed
subset of [0, 1], and that so is F0 = F \ {0, 1}. Explain that since F0

is countable and complete in the subspace metric, F0 must have an
isolated point, and use this to force a contradiction.

5.6 A group of famous theorems

In this section, we shall use Baire’s Category Theorem 5.5.3 to prove some
deep and important theorems about linear operators. The proofs are harder
than most other proofs in this book, but the results themselves are not
difficult to understand.

We begin by recalling that a function f : X → Y between metric spaces
is continuous if the inverse image f−1(O) of every open set O is open (recall
Proposition 2.3.9). There is a dual notion for forward images.

Definition 5.6.1 A function f : X → Y between two metric spaces is called
open if the image f(O) of every open set O is open.

Open functions are not as important as continuous ones, but it is often useful
to know that a function is open. Our first goal in this section is:

Theorem 5.6.2 (Open Mapping Theorem) Assume that X,Y are two
complete, normed spaces, and that A : X → Y is a surjective, bounded,
linear operator. Then A is open.
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Remark: Note the surjectivity condition – the theorem fails without it (see
Exercise 8).

We shall prove this theorem in several steps. The first one reduces the
problem to what happens to balls around the origin.

Lemma 5.6.3 Assume that A : X → Y is a linear operator from one
normed space to another. If there is a ball B(0, t) around the origin in
X whose image A(B(0, t)) contains a ball B(0, s) around the origin in Y ,
then A is open.

Proof: Assume that O ⊆ X is open, and that a ∈ O. We must show that
there is an open ball around A(a) that is contained in A(O). Since O is open,
there is an N ∈ N such that B(a, tN ) ⊆ O. The idea is that since A is linear,
we should have A(B(a, tN )) ⊇ B(A(a), sN ), and since A(O) ⊇ A(B(a, tN )),
the lemma will follow.

It remains to check that we really have A(B(a, tN )) ⊇ B(A(a), sN ). Let
y be an arbitrary element of B(A(a), sN ); then y = A(a) + 1

N v where
v ∈ B(0, s). We know there is a u ∈ B(0, t) such that A(u) = v, and
hence y = A(a) + 1

NA(u) = A(a + 1
Nu), which shows that y ∈ A(B(a, tN )).

2

The next step is the crucial one.

Lemma 5.6.4 Assume that X,Y are two complete, normed spaces, and
that A : X → Y is a surjective, linear operator. Then there is a ball B(0, r)
such that the closure A(B(0, r)) of the image A(B(0, r)) contains an open
ball B(0, s).

Proof: Since A is surjective, Y =
⋃
n∈NA(B(0, n)). By Corollary 5.5.4,

the sets A(B(0, n)) cannot all be nowhere dense. If A(B(0, n)) fails to
be nowhere dense, so does it’s closure A(B(0, n)), and by Lemma 5.5.5,
A(B(0, n)) contains an open ball B(b, s).

We have to “move” the ball B(b, s) to the origin. Note that if y ∈ B(0, s),
then both b and b + y belong to B(b, s) and hence to A(B(0, n)). Conse-
quently there are sequences {uk}, {vk} from B(0, n) such that A(uk) con-
verges to b and A(vk) converges to b + y. This means that A(vk − uk)
converges to y. Since ||vk − uk|| ≤ ||uk|| + ||vk|| < 2n, and y is an arbitrary
element in B(0, s), we get that B(0, s) ⊆ A(B(0, 2n)). Hence the lemma is
proved with r = 2n. 2

To prove the theorem, we need to get rid of the closure in A(B(0, r)). It is
important to understand what this means. That the ball B(0, s) is contained
in A(B(0, r)), means that every y ∈ B(0, s) is the image y = A(x) of an
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element x ∈ B(0, r); that B(0, s) is contained in the closure A(B(0, r)),
means that every y ∈ B(0, s) can be approximated arbitrarily well by images
y = A(x) of elements x ∈ B(0, r); i.e., for every ε > 0, there is an x ∈ B(0, r)
such that ||y −A(x)|| < ε.

The key observation to get rid of the closure, is that due to the linearity
of A, the lemma above implies that for all numbers q > 0, B(0, qs) is con-
tained in A(B(0, qr)). In particular, B(0, s

2k
) ⊆ A(B(0, r

2k
)) for all k ∈ N.

We shall use this repeatedly in the proof below.

Proof of Open Mapping Theorem: Let r and s be as in the lemma above. Ac-
cording to Lemma 5.5.3 it suffices to prove that A(B(0, 2r)) ⊇ B(0, s). This
means that given a y ∈ B(0, s), we must show that there is an x ∈ B(0, 2r)
such that y = A(x). We shall do this by an approximation argument.

By the previous lemma, we know that there is an x1 ∈ B(0, r) such that
||y−A(x1)|| < s

2 (actually we can get A(x1) as close to y as we wish, but s
2

suffices to get started). This means that y−A(x1) ∈ B(0, s2), and hence there
is an x2 ∈ B(0, r2) such that ||(y−A(x1))−A(x2)|| < s

4 , i.e. ||y−A(x1+x2)|| <
s
4 . This again means that y − (A(x1)) + A(x2)) ∈ B(0, s4), and hence there
is an x3 ∈ B(0, r4) such that ||

(
y − (A(x1) + A(x2))

)
− A(x3)|| < s

8 , i.e.
||y −A(x1 + x2 + x3)|| < s

8 .
Continuing in this way, we produce a sequence {xn} such that ||xn|| <

r
2n−1 and ||y−A(x1 +x2 + . . .xn)|| < s

2n . The sequence {x1 +x2 + . . .+xn}
is a Cauchy sequence, and since X is complete, it converges to an element
x =

∑∞
n=1 xn. Since A is continuous, A(x) = limn→∞A(x1 +x2 + . . .+xn),

and since ||y −A(x1 + x2 + . . .xn)|| < s
2n , this means that y = A(x). Since

||x|| ≤
∑∞

n=1 ||xn|| <
∑∞

n=1
r

2n−1 = 2r, we have succeeded in finding an
x ∈ B(0, 2r) such that y = A(x), and the proof is complete. 2

The Open Mapping Theorem has an immediate consequence that will
be important to in the next chapter.

Theorem 5.6.5 (Bounded Inverse Theorem) Assume that X,Y are two
complete, normed spaces, and that A : X → Y is a bijective, bounded, linear
operator. Then the inverse A−1 is also bounded.

Proof: According to the Open Mapping Theorem, A is open. Hence for any
open set O ⊆ X, we see that (A−1)−1(O) = A(O) is open. This shows that
A−1 is continuous, which is the same as bounded. 2

The next theorem needs a little introduction. Assume that A : X → Y
is a linear operator between two normed spaces. The graph of A is the set

G(A) = {(x, A(x)) | x ∈ X}
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G(A) is clearly a subset of the product space X × Y , and since A is linear,
it is easy to check that it is actually a subspace of X × Y (see Exercise 3 if
you need help).

Theorem 5.6.6 (Closed Graph Theorem) Assume that X,Y are two
complete, normed spaces, and that A : X → Y is a linear operator. Then A
is bounded if and only if G(A) is a closed subspace of X × Y .

Proof: Assume first that A is bounded, i.e., continuous. To prove that
G(A) is closed, it suffices to show that if a sequence {(xn, A(xn))} con-
verges to (x,y) in X × Y , then (x,y) belong to G(A), i.e. y = G(x).
But if {(xn, A(xn))} converges to (x,y), then {xn} converges to x in X
and {A(xn)} converges to y in Y . Since A is continuous, this means that
y = A(x) (recall Proposition 3.2.9). Hence the limit belongs to G(A), and
G(A) is closed.

The other direction is a very clever trick. If G(A) is closed, it is complete
as a closed subspace of the complete space X × Y (remember Proposition
5.1.8). Define π : G(A)→ X by π(x, A(x)) = x. It is easy to check that π is
a bounded, linear operator. By the Bounded Inverse Theorem, the inverse
operator x 7→ (x, A(x)) is continuous, and this implies that A is continuous
(why?). 2

Note that the first half of the proof above doesn’t use that A is linear –
hence all continuous functions have closed graphs.

Together with the Banach-Steinhaus Theorem 5.5.8 and the Hahn-Banach
Theorem that we don’t cover, the theorems above form the foundation for
the more advanced theory of linear operators.

Exercises for Section 5.6

1. Define f : R→ R by f(x) = x2. Show that f is not open.

2. Assume that A : X → Y is a linear operator. Show that if B(0, s) is
contained in A(B(0, r)), then B(0, qs) is contained in A(B(0, qr)) for
all q > 0 (this is the property used repeatedly in the proof of the Open
Mapping Theorem).

3. Show that G(A) is a subspace of X × Y . Remember that it suffices to
prove that G(A) is closed under addition and multiplication by scalars.

4. Justify the last statements in the proof of the Closed Graph Theorem
(that π is continuous, linear map, and that the continuity of x 7→
(x, A(x)) implies the continuity of A).
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5. Assume that | · | and || · || are two norms on the same vector space V ,
and that V is complete with respect to both of them. Assume that
there is a constant C such that |x| ≤ C||x|| for all x ∈ V . Show that
the norms | · | and || · || are equivalent. (Hint: Apply the Open Mapping
Theorem to the identity map id : X → X, the map that sends all
elements to themselves.)

6. Assume that X, Y , and Z are complete, normed spaces and that
A : X → Z and B : Y → Z are two bounded, linear maps. Assume
that for every x ∈ X, the equation A(x) = B(y) has a unique solution
y = C(x). Show that C : X → Y is a bounded, linear operator. (Hint:
Use the Closed Graph Theorem).

7. Assume that (X; ||·||X) and (Y ; ||·||Y ) are two complete, normed spaces,
and that A : X → Y is an injective, bounded, linear operator. Show
that the following are equivalent:

(i) The image A(X) is a closed subspace of Y .
(ii) A is bounded below, i.e., there is a real number a > 0 such that
||A(x)||Y ≥ a||x||X for all x ∈ X.

8. We shall look at an example which illustrates some of the perils of
the results in this section, and which also illustrates the result in the
previous problem. Let l2 be the set of all real sequences x = {xn}n∈N
such that

∑∞
n=1 x

2
n < ∞. In exercise 5.3.13 we proved that l2 is a

complete inner product space with inner product

〈x,y〉 =

∞∑
n=1

xnyn

and norm

||x|| =

( ∞∑
n=1

|xn|2
) 1

2

(if you haven’t done exercise 5.3.13, you can just take this for granted).
Define a map A : l2 → l2 by

A({x1, x2, x3, . . . , xn, . . .}) = {x1,
x2

2
,
x3

3
, . . . ,

xn
n
, . . .}

a) Show that A is a bounded, linear map.
b) A linear operator A is bounded below if there is a real number

a > 0 such that ||A(x)|| ≥ a||x|| for all x ∈ X. Show that A is
injective, but not bounded below.

c) Let Y be the image of A, i.e., Y = A(l2). Explain that Y is a
subspace of l2, but that Y is not closed in l2 (you may, e.g., use
the result of Exercise 7).
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d) We can think of A as a bijection A : l2 → Y . Show that the
inverse A−1 : Y → l2 of A is not bounded. Why doesn’t this
contradict the Bounded Inverse Theorem?

e) Show that A isn’t open. Why doesn’t this contradict the Open
Mapping Theorem?

f) Show that the graph of A−1 is a closed subset of l2×Y (Hint: It
is essentially the same as the graph of A), yet we know that A−1

isn’t bounded. Why doesn’t this contradict the Closed Graph
Theorem?
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Chapter 6

Differential Calculus in
Normed Spaces

There are many ways to look at derivatives – we can think of them as rates
of change, as slopes, as instantaneous speed, as new functions derived from
old ones according to certain rules etc. If we think of functions of several
variables, there is even more variety – we have directional derivatives, partial
derivatives, gradients, Jacobi matrices, total derivatives etc. In this chapter
we shall extend the notion even further, to normed spaces, and we need a
unifying idea to hold on to.

Perhaps somewhat surprisingly, this idea will be linear approximation:
Our derivatives will always be linear approximations to functional differences
of the kind f(a+r)−f(a) for small r. Recall that if f : R→ R is a function
of one variable, f(a+ r)− f(a) ≈ f ′(a)r for small r; if f : Rn → R is scalar
function of several variables, f(a + r)− f(a) ≈ ∇f(a) · r for small r; and if
F : Rn → Rm is a vector valued function, F(a+r)−F(a) ≈ F′(a)r for small
r, where F′(a) is the Jacobi matrix. The point of these approximations is
that for a given a, the right hand side is always a linear function in r, and
hence easier to compute and control than the nonlinear function on the left
hand side.

At first glance, the idea of linear approximation may seem rather weak,
but, as you probably know from your calculus courses, it is actually ex-
tremely powerful. It is important to understand what it means. That f ′(a)r
is a better and better approximation of f(a+r)−f(a) for smaller and smaller
values of r, doesn’t just mean that the quantities get closer and closer – that
is a triviality as they both approach 0. The real point is that they get smaller
and smaller even compared to the size of r, i.e., the fraction

f(a+ r)− f(a)− f ′(a)r

r

goes to 0 as r goes to zero.

163
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As you know from calculus, there is a geometric way of looking at this. If
we put x = a+r, the expression f(a+r)−f(a) ≈ f ′(a)r can be reformulated
as f(x) ≈ f(a) + f ′(a)(x− a) which just says that the tangent at a is a very
good approximation to the graph of f in the area around a. This means
that if you look at the graph and the tangent in a microscope, they will
become indistinguishable as you zoom in on a. If you compare the graph of
f to any other line through (a, f(a)), they will cross at an angle and remain
separate as you zoom in.

The same holds in higher dimensions. If we put x = a+r, the expression
f(a + r) − f(a) ≈ ∇f(a) · r becomes f(x) ≈ f(a) +∇f(a) · (x − a) which
says that the tangent plane at a is a good approximation to the graph of f
in the area around a – in fact, so good that if you zoom in on a, they will
after a while become impossible to tell apart. If you compare the graph of f
to any other plane through (a, f(a)), they will remain separate as you zoom
in.

6.1 The derivative

In this section, X and Y will be normed spaces over K, where as usual K is
either R or C. I shall use the symbol || · || to denote the norms in both spaces
– it should always be clear from the context which one is meant. Our first
task will be to define derivatives of functions F : X → Y . The following
definition should not be surprising after the discussion above.

Definition 6.1.1 Assume that X and Y are two normed spaces. Let O be
an open subset of X and consider a function F : O → Y . If a is a point in
O, a bounded, linear map A : X → Y is called a derivative of F at a if

σ(r) = F(a + r)− F(a)−A(r)

goes to 0 faster than r, i.e., if

lim
r→0

||σ(r)||
||r||

= 0

The first thing to check is that a function cannot have more than one deriva-
tive.

Lemma 6.1.2 Assume that the situation is as in the definition above. The
function F can not have more than one derivative at the point a.

Proof: If A and B are derivatives of F at a, we have that both

σA(r) = F(a + r)− F(a)−A(r)
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and
σB(r) = F(a + r)− F(a)−B(r)

go to zero faster than r. We shall use this to show that A(x) = B(x) for
any x in X, and hence that A = B.

Note that if t > 0 is so small that a + tx ∈ O, we can use the formulas
above with r = tx to get:

σA(tx) = F(a + tx)− F(a)− tA(x)

and
σB(tx) = F(a + tx)− F(a)− tB(x)

Subtracting and reorganizing, we see that

tA(x)− tB(x) = σB(tx)− σA(tx)

If we divide by t, take norms, and use the triangle inequality, we get

||A(x)−B(x)|| = ||σB(tx)− σA(tx)||
|t|

≤
(
||σB(tx)||
||tx||

+
||σA(tx)||
||tx||

)
||x||

If we let t→ 0, the expression on the right goes to 0, and hence ||A(x)−B(x)||
must be 0, which means that A(x) = B(x). 2

We can now extend the notation and terminology we are familiar with
to functions between normed spaces.

Definition 6.1.3 Assume that X and Y are two normed spaces. Let O
be an open subset of X and consider a function F : O → Y . If F has a
derivative at a point a ∈ O, we say that F is differentiable at a and we
denote the derivative by F′(a). If F is differentiable at all points a ∈ O, we
say that F is differentiable in O.

Although the notation and the terminology is familiar, there are some
traps here. First note that for each a, the derivative F′(a) is a bounded linear
map from X to Y . Hence F′(a) is a function such that F′(a)(αx + βy) =
αF′(a)(x) + βF′(a)(y) for all α, β ∈ K and all x,y ∈ X. Also, since F′(a)
is bounded (recall the definition of a derivative), there is a constant ||F′(a)||
– the operator norm of F′(a) – such that ||F′(a)(x)|| ≤ ||F′(a)||||x|| for all
x ∈ X. As you will see in the arguments below, the assumption that F′(a)
is bounded turns out to be essential.

It may at first feel strange to think of the derivative as a linear map, but
the definition above is actually a rather straight forward generalization of
what you are used to. If F is a function from Rn to Rm, the Jacobi matrix
is just the matrix of F′(a) with respect to the standard bases in Rn and Rm.
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Let us look at the definition above from a more practical perspective. As-
sume that we have a linear map F′(a) that we think might be the derivative
of F at a. To check that it actually is, we define

σ(r) = F(a + r)− F(a)− F′(a)(r) (6.1.1)

and check that σ(r) goes to 0 faster than r, i.e., that

lim
r→0

||σ(r)||
||r||

= 0 (6.1.2)

This is the basic technique we shall use to prove results about derivatives.
We begin by a simple observation:

Proposition 6.1.4 Assume that X and Y are two normed spaces, and let
O be an open subset of X. If a function F : O → Y is differentiable at a
point a ∈ O, then it is continuous at a.

Proof: If r is so small that a + r ∈ O, we have

F(a + r) = F(a) + F′(a)(r) + σ(r)

We know that σ(r) goes to zero when r goes to zero, and since F′(a) is
bounded, the same holds for F′(a)(r). Thus

lim
r→0

F(a + r) = F(a)

which shows that F is continuous at a. 2

Let us next see what happens when we differentiate a linear map.

Proposition 6.1.5 Assume that X and Y are two normed spaces, and that
F : X → Y is a bounded, linear map. Then F is differentiable at all points
a ∈ X, and

F′(a) = F

Proof: Following the strategy above, we define

σ(r) = F(a + r)− F(a)− F(r)

Since F is linear, F(a + r) = F(a) + F(r), and hence σ(r) = 0. This means
that condition ( 6.1.2) is trivially satisfied, and the proposition follows. 2

The proposition above may seem confusing at first glance: Shouldn’t the
derivative of a linear function be a constant? But that’s exactly what the
proposition says – the derivative is the same linear map F at all points a.
Also recall that if F is a linear map from Rn to Rm, then the Jacobi matrix
of F is just the matrix of F (with respect to the standard bases in Rn and
Rm).

The next result should look familiar. The proof is left to the readers.
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Proposition 6.1.6 Assume that X and Y are two normed spaces, and that
F : X → Y is constant. The F is differentiable at all points a ∈ X, and

F′(a) = 0

(here 0 is the linear map that sends all elements x ∈ X to 0 ∈ Y ).

The next result should also look familiar:

Proposition 6.1.7 Assume that X and Y are two normed spaces. Let O
be an open subset of X and assume that the functions F,G : O → Y are
differentiable at a ∈ O. Then F + G is differentiable at a and

(F + G)′(a) = F′(a) + G′(a)

Proof: If we define

σ(r) =
(
F(a + r) + G(a + r)

)
−
(
F(a) + G(a)

)
−
(
F′(a)(r) + G′(a)(r)

)
it suffices to prove that σ goes to 0 faster than r. Since F and G are
differentiable at a, we know that this is the case for

σ1(r) = F(a + r)− F(a)− F′(a)(r)

and
σ2(r) = G(a + r)−G(a)−G′(a)(r)

If we subtract the last two equations from the first, we see that

σ(r) = σ1(r) + σ2(r)

and the result follows. 2

As we need not have a notion of multiplication in our target space Y ,
there is no canonical generalization of the product rule1, but we shall now
take a look at one that holds for multiplication by a scalar valued function.
In Exercise 8 you are asked to prove one that holds for the inner product
when Y is an inner product space.

Proposition 6.1.8 Assume that X and Y are two normed spaces. Let O
be an open subset of X and assume that the functions α : O → K and F :
O → Y are differentiable at a ∈ O. Then the function αF is differentiable
at a and

(αF)′(a) = α′(a)F(a) + α(a)F′(a)

(in the sense that (αF)′(a)(r) = α′(a)(r)F(a) + α(a)F′(a)(r)). If α ∈ K is
a constant

(αF)′(a) = αF′(a)

1Strictly speaking, this is not quite true. There is a notion of bilinear maps that can
be used to formulate an extremely general version of the product rule, but we postpone
this discussion till Proposition 6.8.5.
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Proof: Since the derivative of a constant is zero, the second statement follows
from the first. To prove the first formula, first note that since α and F are
differentiable at a, we have

α(a + r) = α(a) + α′(a)(r) + σ1(r)

and
F(a + r) = F(a) + F′(a)(r) + σ2(r)

where σ1(r) and σ2(r) go to zero faster than r.
If we now write G(a) for the function α(a)F(a) and G′(a) for the can-

didate derivative α′(a)F(a) + α(a)F′(a) (you should check that this really
is a linear map!), we see that

σ(r) = G(a + r)−G(a)−G′(a)(r)

= α(a + r)F(a + r)− α(a)F(a)− α′(a)(r)F(a)− α(a)F′(a)(r)

=
(
α(a) + α′(a)(r) + σ1(r)

)(
F(a) + F′(a)(r) + σ2(r)

)
−α(a)F(a)− α′(a)(r)F(a)− α(a)F′(a)(r)

= α(a)σ2(r) + α′(a)(r)F′(a)(r) + α′(a)(r)σ2(r) + σ1(r)F(a)

+σ1(r)F′(a)(r) + σ1(r)σ2(r)

Since σ1(r) and σ2(r) go to zero faster than r, it’s not hard to check that
so do all the five terms of this expression. We show this for the second
term and leave the rest to the reader: Since α′(a) and F′(a) are bounded
linear maps, ||α′(a)(r)|| ≤ ||α′(a)||||r|| and ||F′(a)(r)|| ≤ ||F′(a)||||r||, and hence
||α′(a)(r)F′(a)(r)|| ≤ ||α′(a)||||F′(a)||||r||2 clearly goes to zero faster than r. 2

Before we prove the Chain Rule, it’s useful to agree on notation. If
A,B,C are three sets, and g : A→ B and f : B → C are two functions, the
composite function f ◦ g : A→ C is defined in the usual way by

(f ◦ g)(a) = f(g(a)) for all a ∈ A

If g and f are linear maps, it is easy to check that f ◦ g is also a linear map.

Theorem 6.1.9 (Chain Rule) Let X, Y and Z be three normed spaces.
Assume that O1 and O2 are open subsets of X and Y , respectively, and
that G : O1 → O2 and F : O2 → Z are two functions such that G is
differentiable at a ∈ O1 and F is differentiable at b = G(a) ∈ O2. Then
F ◦G is differentiable at a, and

(F ◦G)′(a) = F′(b) ◦G′(a)
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Remark: Before we prove the chain rule, we should understand what it
means. Remember that all derivatives are now linear maps, and hence the
chain rule means that for all r ∈ X,

(F ◦G)′(a)(r) = F′(b)(G′(a)(r))

From this perspective, the chain rule is quite natural – if G′(a) is the best
linear approximation to G around a, and F′(b) is the best linear approxi-
mation to F around b = G(a), it is hardly surprising that F′(b) ◦G′(a) is
the best linear approximation to F ◦G around a.

Proof of the Chain Rule: Since G is differentiable at a and F is differentiable
at b, we know that

σ1(r) = G(a + r)−G(a)−G′(a)(r) (6.1.3)

and
σ2(s) = F(b + s)− F(b)− F′(b)(s) (6.1.4)

go to zero faster than r and s, respectively.
If we write H for our function F◦G and H′(a) for our candidate deriva-

tive F′(b) ◦G′(a), we must prove that

σ(r) = H(a + r)−H(a)−H′(a)(r)

= F(G(a + r))− F(G(a))− F′(G(a))(G′(a)(r))

goes to zero faster than r.
Given an r, we define

s = G(a + r)−G(a)

Note that s is really a function of r, and since G is continuous at a (recall
Proposition 6.1.4), we see that s goes to zero when r goes to zero. Note also
that by ( 6.1.3),

s = G′(a)(r) + σ1(r)

Using (6.1.4) with b = G(a) and s as above, we see that

σ(r) = F(b + s)− F(b)− F′(b)(G′(a)(r))

= F′(b)(s) + σ2(s)− F′(b)(G′(a)(r))

= F′(b)(G′(a)(r) + σ1(r)) + σ2(s)− F′(b)(G′(a)(r))

Since F′(b) is linear

F′(b)(G′(a)(r) + σ1(r)) = F′(b)(G′(a)(r)) + F′(b)(σ1(r))
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and hence
σ(r) = F′(b)(σ1(r)) + σ2(s)

To prove that σ(r) goes to zero faster than r, we have to check the two
terms in the expression above. For the first one, observe that

||F′(b)(σ1(r))||
||r||

≤ ||F′(b)|| ||σ1(r)||
||r||

which clearly goes to zero.
For the second term, note that if s = 0, then σ2(s) = 0, and hence we

can concentrate on the case s 6= 0. Dividing and multiplying by ||s||, we get

||σ2(s)||
||r||

≤ ||σ2(s)||
||s||

· ||s||
||r||

We have already observed that s goes to zero when r goes to zero, and hence
we can get the first factor as small as we wish by choosing r sufficiently small.
It remains to prove that the second factor is bounded as r goes to zero. We
have

||s||
||r||

=
||G′(a)(r) + σ1(r)||

||r||
≤ ||G

′(a)(r)||
||r||

+
||σ1(r)||
||r||

Since the first term is bounded by the operator norm ||G′(a)|| and the second
one goes to zero with r, the factor ||s||||r|| is bounded as r goes to zero, and the
proof is complete. 2

Before we end this section, let us take a look at directional derivatives.

Definition 6.1.10 Assume that X and Y are two normed spaces. Let O
be an open subset of X and consider a function F : O → Y . If a ∈ O and
r ∈ X, we define the directional derivative of F at a and in the direction r
to be

F′(a; r) = lim
t→0

F(a + tr)− F(a)

t

provided the limit exists.

The notation may seem confusingly close to the one we are using for the
derivative, but the next result shows that this is a convenience rather than
a nuisance:

Proposition 6.1.11 Assume that X is a normed space. Let O be an open
subset of X, and assume that the function F : O → Y is differentiable at
a ∈ O. Then the directional derivative F′(a; r) exists for all r ∈ X and

F′(a; r) = F′(a)(r)
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Proof: If t is so small that tr ∈ O, we know that

F(a + tr)− F(a) = F′(a)(tr) + σ(tr)

Dividing by t and using the linearity of F′(a), we get

F(a + tr)− F(a)

t
= F′(a)(r) +

σ(tr)

t

Since ||σ(tr)
t || = ||σ(tr)||

||tr|| ||r|| and F is differentiable at a, the last term goes to
zero as t goes to zero, and the proposition follows. 2

Remark: In the literature, the terms Fréchet differentiability and Gâteaux
differentiability are often used to distinguish between two different notions of
differentiability, especially when the spaces are infinite dimensional. “Fréchet
differentiable” is the same as we have called “differentiable”, while “Gâteaux
differentiable” means that all directional derivatives exist. We have just
proved that Fréchet differentiability implies Gâteaux differentiability, but
the opposite implication does not hold as you may know from calculus (see
Exercise 11).

The proposition above gives us a way of thinking of the derivative as
an instrument for measuring rate of change. If people ask you how fast the
function F is changing at a, you would have to ask them which direction
they are interested in. If they specify the direction r, your answer would
be F′(a; r) = F′(a)(r). Hence you may think of the derivative F′(a) as a
“machine” which can produce all the rates of change (i.e. all the directional
derivatives) you need. For this reason, some books refer to the derivative as
the “total derivative”.

This way of looking at the derivative is nice and intuitive, except in one
case where it may be a little confusing. When the function F is defined on
R (or on C in the complex case), there is only one dimension to move in,
and it seems a little strange to have to specify it. If we were to define the
derivative for this case only, we would probably have attempted something
like

F′(a) = lim
t→0

F(a+ t)− F(a)

t
(6.1.5)

As

F′(a)(1) = lim
t→0

F(a+ t · 1)− F(a)

t
= lim

t→0

F(a+ t)− F(a)

t

the expression in (6.1.5) equals F′(a)(1). When we are dealing with a func-
tion of one variable, we shall therefore write F′(a) instead of F(a)′(1) and
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think of it in terms of formula (6.1.5). In this notation, the chain ruke
becomes

H′(a) = F′(G(a))(G′(a))

It may be useful to end this section with an example:

Example 1: Let X = Y = C([0, 1],R) with the usual supremum norm,
||y|| = sup{|y(s)| : s ∈ [0, 1]}. We first consider the map F : X → Y given
by

F(y)(x) =

∫ x

0
y(s) ds

It is easy to check that F is a bounded, linear map, and by Proposition
6.1.5, F′(y)(r) = F(r), i.e.

F′(y)(r)(x) = F(r)(x) =

∫ x

0
r(s) ds

To get a nonlinear example, we may instead consider

G(y)(x) =

∫ x

0
y(s)2 ds

In this case, it is not quite obvious what G′ is, and it is then often a good
idea to find the directional derivatives first as they are given by simple limits.
We get

G′(y; r)(x) = lim
t→0

G(y + tr)(x)−G(y)(x)

t

= lim
t→0

∫ x
0 (y(s) + tr(s))2 ds−

∫ x
0 y(s)2 ds

t

= lim
t→0

∫ x

0

[
2y(s)r(s) + tr(s)2

]
ds =

∫ x

0
2y(s)r(s) ds

This isn’t quite enough, though, as the existence of directional derivatives
doesn’t guarantee differentiability. We need to check that

σ(r) = G(y + r)−G(y)−G′(y; r)

goes to zero faster than r. A straightforward computations shows that

σ(r)(x) =

∫ x

0
r(s)2 ds ≤

∫ 1

0
||r|| ds = ||r||2

which means that ||σ|| ≤ ||r||2, and hence σ goes to zero faster than r. Thus

G′(y)(r)(x) =

∫ x

0
2y(s)r(s) ds

♣
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Exercises for Section 6.1

1. Prove Proposition 6.1.6.

2. Assume that X and Y are two normed spaces. A function F : X → Y is
called affine if there is a linear map A : X → Y and an element c ∈ Y
such that F(x) = A(x) + c for all x ∈ X. Show that if A is bounded, then
F′(a) = A for all a ∈ X.

3. Assume that F,G : X → Y are differentiable at a ∈ X. Show that for
all constants α, β ∈ K, the function defined by H(x) = αF(x) + βG(x) is
differentiable at a and H′(a) = αF′(a) + βG′(a).

4. Assume that X,Y, Z are linear spaces and that B : X → Y and A : Y → Z
are linear maps. Show that C = A ◦B is a linear map from X → Z.

5. Let X,Y, Z, V be normed spaces and assume that H : X → Y , G : Y → Z,
F : Z → V are functions such that H is differentiable at a, G is differentiable
at b = H(a) og F is differentiable at c = G(b). Show that the function
K = F ◦G ◦H is differentiable at a, and that K′(a) = F′(c) ◦G′(b) ◦H′(a).
Generalize to more than three maps.

6. Towards the end of the section, we agreed on writing F′(a) for F′(a)(1) when
F is a function of a real variable. This means that the expression F′(a)
stands for two things in this situation – both a linear map from R to Y and
an element in Y (as defined in (6.1.5)). In this problem, we shall show that
this shouldn’t lead to confusion as elements in Y and linear maps from R to
Y are two sides of the same coin.

a) Show that if y is an element in Y , then A(x) = xy defines a linear map
from R to Y .

b) Assume that A : R→ Y is a linear map. Show that there is an element
y ∈ Y such that A(x) = xy for all x ∈ R. Show also that ||A|| = ||y||.
Hence there is a natural, norm-preserving one-to-one correspondence
between elements in Y and linear maps from R to Y .

7. Assume that F is a differentiable function from Rn to Rm, and let J(a) is
the Jacobi matrix of F at a. Show that

F′(a)(r) = J(a)r

where the expression on the right is the product the matrix J(a) and the
column vector r.

8. Assume that X,Y are normed spaces over R and that the norm in Y is
generated by an inner product 〈·, ·〉. Assume that the functions F,G : X → Y
are differentiable at a ∈ X. Show that the function h : X → R given by
h(x) = 〈F(x),G(x)〉 is differentiable at a, and that

h′(a) = 〈F′(a),G(a)〉+ 〈F(a),G′(a)〉

9. Let X be a normed space over R and assume that the function f : X → R is
differentiable at all points x ∈ X.
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a) Assume that r : R → X is differentiable at a point a ∈ R. Show that
the function h(t) = f(r(t)) is differentiable at a and that (using the
notation of formula ( 6.1.5))

h′(a) = f ′(r(a))(r′(a))

b) If a,b are two points in X, and r is the parametrized line

r(s) = a + s(b− a), s ∈ R

through a and b, show that

h′(s) = f ′(r(s))(b− a)

c) Show that there is a c ∈ (0, 1) such that

f(b)− f(a) = f ′(r(c))(b− a)

This is a mean value theorem for functions defined on normed spaces.
We shall take a look at more general mean value theorems in the next
section.

10. Let X be a normed space and assume that the function F : X → R has
its maximal value at a point a ∈ X where F is differentiable. Show that
F ′(a) = 0.

11. In this problem, f : R2 → R is the function given by

f(x, y) =


x2y
x4+y2 for (x, y) 6= 0

0 for (x, y) = 0

Show that all directional derivatives of f at 0 exists, but that f is neither
differentiable nor continuous at 0. (Hint: To show that that continuity fails,
consider what happens along the curve y = x2.)

6.2 The Mean Value Theorem

The Mean Value Theorem 2.3.7 is an essential tool in single variable calculus,
and we shall now prove a theorem that plays a similar rôle for calculus in
normed spaces. The similarity between the two theorems may not be obvious
at first glance, but will become clearer as we proceed.

Theorem 6.2.1 (Mean Value Theorem) Let a, b be two real numbers,
a < b. Assume that Y is a normed space and that F : [a, b] → Y and
g : [a, b] → R are two continuous functions which are differentiable at all
points t ∈ (a, b) with ||F′(t)|| ≤ g′(t). Then

||F(b)− F(a)|| ≤ g(b)− g(a)
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Proof: We shall prove that if ε > 0, then

||F(t)− F(a)|| ≤ g(t)− g(a) + ε+ ε(t− a) (6.2.1)

for all t ∈ [a, b]. In particular, we will then have

||F(b)− F(a)|| ≤ g(b)− g(a) + ε+ ε(b− a)

for all ε > 0, and the result follows.
The set where condition (6.2.1) fails is

C = {t ∈ [a, b] : ||F(t)− F(a)|| > g(t)− g(a) + ε+ ε(t− a)}

Assume for contradiction that it is not empty, and let c = inf C. The left
endpoint a is clearly not in C, and since both sides of the inequality defining
C are continuous, this means that there is an interval [a, a + δ] that is not
in C. Hence c 6= a. Similarly, we see that c 6= b: If b ∈ C, so are all points
sufficiently close to b, and hence b 6= c. This means that c ∈ (a, b), and using
continuity again, we see that

||F(c)− F(a)|| = g(c)− g(a) + ε+ ε(c− a)

There must be a δ > 0 such that

||F′(c)|| ≥
∣∣∣∣∣∣∣∣F(t)− F(c)

t− c

∣∣∣∣∣∣∣∣− ε

2

and

g′(c) ≤ g(t)− g(c)

t− c
+
ε

2

when c ≤ t ≤ c+ δ. This means that

||F(t)−F(c)|| ≤ ||F′(c)||(t−c)+ ε

2
(t−c) ≤ g′(c)(t−c)+ ε

2
(t−c) ≤ g(t)−g(c)+ε(t−c)

for all t ∈ [c, c+ δ). Hence

||F(t)− F(a)|| ≤ ||F(c)− F(a)||+ ||F(t)− F(c)||

≤ g(c)− g(a) + ε+ ε(c−a) + g(t)− g(c) + ε(t− c) = g(t)− g(a) + ε+ ε(t−a)

which shows that all t ∈ [c, c+ δ) satisfy ( 6.2.1), and hence does not belong
to C. This is the contradiction we have been looking for. 2

Remark: It is worth noting how ε is used in the proof above – it gives
us the extra space we need to get the argument to work, yet vanishes into
thin air once its work is done. Note also that we don’t really need the full
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differentiability of F and g in the proof; it suffices that the functions are
right differentiable in the sense that

g′+(t) = lim
s→t+

g(s)− g(t)

s− t
and

F′+(t) = lim
s→t+

F(s)− F(t)

s− t
exist for all t ∈ (a, b), and that ||F′+(t)|| ≤ g′+(t) for all such t.

Let us look at some applications that makes the similarity to the ordinary
Mean Value Theorem easier to see.

Corollary 6.2.2 Assume that Y is a normed space and that F : [a, b] →
Y is a continuous map which is differentiable at all points t ∈ (a, b) with
||F′(t)|| ≤ k. Then

||F(b)− F(a)|| ≤ k(b− a)

Proof: Use the Mean Value Theorem with g(t) = kt. 2

Recall that a set C ⊆ X is convex if whenever two points a,b belong to
C, then the entire line segment

r(t) = a + t(b− a), t ∈ [0, 1]

connecting a and b also belongs to C, i.e., r(t) ∈ C for all t ∈ [0, 1].

Corollary 6.2.3 Assume that X,Y are normed spaces and that F : O → Y
is a function defined on a subset O of X. Assume that C is a convex subset
of O and that F is differentiable at all points in x ∈ C with ||F′(x)|| ≤ K.
Then

||F(b)− F(a)|| ≤ K||b− a||
for all a,b ∈ C.

Proof: Pick two points a,b in C. Since C is convex, the line segment
r(t) = a + t(b − a), t ∈ [0, 1] belongs to C, and hence H(t) = F(r(t)) is a
well-defined and continuous function from [0, 1] to Y . By the Chain Rule,
H is differentiable in (0, 1) with

H′(t) = F′(r(t))(b− a)

and hence
||H′(t)|| ≤ ||F′(r(t))||||b− a|| ≤ K||b− a||

Applying the previous corollary to H with k = K||b− a||, we get

||F(b)− F(a)|| = ||H(1)−H(0)|| ≤ K||b− a||(1− 0) = K||b− a||

2
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Exercises for Section 6.2

1. In this problem X and Y are two normed spaces and O is an open, convex
subset of X.

a) Assume that F : O → Y is differentiable with F′(x) = 0 for all x ∈ O.
Show that F is constant.

b) Assume that G,H : O → Y are differentiable with G′(x) = H′(x) for
all x ∈ O. Show that there is an C ∈ Y such that H(x) = G(x) + C
for all x ∈ O.

c) Assume that F : O → Y is differentiable and that F′ is constant on
O. Show that there exist a bounded, linear map G : X → Y and a
constant C ∈ Y such that F = G+ C on O

2. Show the following strengthening of the Mean Value Theorem:
Theorem: Let a, b be two real numbers, a < b. Assume that Y is a normed
space and that F : [a, b]→ Y and g : [a, b]→ R are two continuous functions.
Assume further that except for finitely many points t1 < t2 < . . . < tn, F and
g are differentiable in (a, b) with ||F′(t)|| ≤ g′(t). Then

||F(b)− F(a)|| ≤ g(b)− g(a)

(Hint: Apply the Mean Value Theorem to each interval [ti, ti+1].)

3. We shall prove the following theorem (which you might want to compare to
Proposition 4.3.5):
Theorem: Assume that X is a normed spaces, Y is a complete, normed
space, and O is an open, bounded, convex subset of X. Let {Fn} be a sequence
of differentiable functions Fn : O → Y such that:

(i) The sequence of derivatives {F′n} converges uniformly to a function G
on O (just as the functions F′n, the limit G is a function from O to the
set L(X,Y ) of bounded, linear maps from X to Y ).

(ii) There is a point a ∈ O such that the sequence {Fn(a)} converges in Y .

Then the sequence {Fn} converges uniformly on O to a function F and F′ =
G on O.

a) Show that for all n,m ∈ N and x,x′ ∈ O,

||Fm(x)− Fm(x′)− (Fn(x)− Fn(x′))|| ≤ ||F′m − F′n||∞||x− x′||

where ||F′m−F′n||∞ = supy∈O{||F′m(y)−F′n(y)||} is the supremum norm.

b) Show that {Fn} converges uniformly to a function F on O.

c) Explain that in order to prove that F is differentiable with derivative
G, it suffices to show that for any given x ∈ O,

||F(x + r)− F(x)−G(x)(r)||

goes to zero faster than r.
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d) Show that for n ∈ N

||F(x + r)− F(x)−G(x)(r)|| ≤ ||F(x + r)− F(x)− (Fn(x + r)− Fn(x))||
+ ||Fn(x + r)− Fn(x)− F′n(x)(r)||
+ ||F′n(x)(r)−G(x)(r)||

e) Given an ε > 0, show that there is a N1 ∈ N such that when n ≥ N1.

||F(x + r)− F(x)− (Fn(x + r)− Fn(x))|| ≤ ε

3
||r||

holds for all r. (Hint: First replace F by Fm and use a) to prove the
inequality in this case, then let m→∞.)

f) Show that there is an N2 ∈ N such that

||F′n(x)(r)−G(x)(r)|| ≤ ε

3
||r||

when n ≥ N2.

g) Let n ≥ max{N1, N2} and explain why there is a δ > 0 such that if
||r|| < δ, then

||Fn(x + r)− Fn(x)− F′n(x)(r)|| ≤ ε

3
r

h) Complete the proof that F′ = G.

6.3 Partial derivatives

From calculus you remember the notion of a partial derivative: If f is a
function of n variables x1, x2, . . . , xn, the partial derivative ∂f

∂xi
is what you

get if you differentiate with respect to the variable xi while holding all the
other variables constant.

Partial derivatives are natural because Rn has an obvious product struc-
ture

Rn = R× R× . . .× R

Product structures also come up in other situations, and we now want to
generalize the notion of a partial derivative. We assume that the underlying
space X is a product

X = X1 ×X2 × . . .×Xn

of normed spaces X1, X2, . . . , Xn, and that the norm on X is the product
norm ||(x1,x2, . . . ,xn)|| = ||x1|| + ||x2|| + · · · + ||xn|| (see Section 5.1). A
function F : X → Y from X into a normed space Y , will be expressed as

F(x) = F(x1,x2, . . . ,xn)
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If a = (a1,a2, . . . ,an) is a point in X, we can define functions Fia : Xi → Y
by

Fia(xi) = F(a1, . . . ,ai−1,xi,ai+1, . . . ,an)

The notation is a little complicated, but the idea is simple: We fix all other
variables at x1 = a1, x2 = a2 etc., but let xi vary.

Since Fia is a function from Xi to Y , it’s derivative at ai (if it exists) is
a linear map from Xi to Y . It is this map that will be the partial derivative
of F in the i-th direction.

Definition 6.3.1 If Fia is differentiable at ai, we call its derivative the i-th
partial derivative of F at a, and denote it by

∂F

∂xi
(a) or F′xi(a)

Note that since ∂F
∂xi

(a) is a linear map from Xi to Y , expressions of the form
∂F
∂xi

(a)(ri) are natural – they are what we get when we apply ∂F
∂xi

(a) to an
element ri ∈ Xi.

Our first result tells us that the relationship between the (total) deriva-
tive and the partial derivatives is what one would hope for.

Proposition 6.3.2 Assume that U is an open subset of X1×X2× . . .×Xn

and that F : U → Y is differentiable at a = (a1,a2, . . . ,an) ∈ U . Then the
maps Fia are differentiable at ai with derivatives

∂F

∂xi
(a)(ri) = F′(a)(r̂i)

where r̂i = (0, . . . ,0, ri,0, . . . ,0). Moreover, for all r = (r1, r2, . . . , rn) ∈ X,

F′(a)(r) =
∂F

∂x1
(a)(r1) +

∂F

∂x2
(a)(r2) + . . .+

∂F

∂xn
(a)(rn)

Proof: To show that Fia is differentiable at a with

∂F

∂xi
(a)(ri) = F′(a)(r̂i) ,

we need to check that

σi(ri) = Fia(ai + ri)− Fia(ai)− F′(a)(r̂i)

goes to zero faster than ri. But this quantity equals

σ(r̂i) = F(a + r̂i)− F(a)− F′(a)(r̂i)

which we know goes to zero faster than ri since F is differentiable at a.
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It remains to prove the formula for F′(a)(r). Note that for any element
r = (r1, r2, . . . , rn) in X, we have r = r̂1 + r̂2 + . . .+ r̂n, and since F′(a)(·)
is linear

F′(a)(r) = F′(a)(r̂1) + F′(a)(r̂2) + . . .+ F′(a)(r̂n)

=
∂F

∂x1
(a)(r1) +

∂F

∂x2
(a)(r2) + . . .+

∂F

∂xn
(a)(rn)

by what we have already shown. 2

The converse of the theorem above is false – the example in Exercise
6.1.11 shows that the existence of partial derivatives doesn’t even imply the
continuity of the function. But if we assume that the partial derivatives are
continuous, the picture changes.

Theorem 6.3.3 Assume that U is an open subset of X1 × X2 × . . . × Xn

and that F : U → Y is continuous at a = (a1,a2, . . . ,an). Assume also that
the partial derivatives ∂F

∂xi
of F exist in U and are continuous at a. Then F

is differentiable at a and

F′(a)(r) =
∂F

∂x1
(a)(r1) +

∂F

∂x2
(a)(r2) + . . .+

∂F

∂xn
(a)(rn)

for all r = (r1, r2, . . . , rn) ∈ X.

Proof: We have to prove that

σ(r) = F(a + r)− F(a)− ∂F

∂x1
(a)(r1)− ∂F

∂x2
(a)(r2)− . . .− ∂F

∂xn
(a)(rn)

goes to zero faster than r. To simplify notation, let us write y = (y1, . . . ,yn)
for a+ r. Observe that we can write F(y1,y2, . . . ,yn)−F(a1,a2, . . . ,an) as
a telescoping sum:

F(y1,y2, . . . ,yn)− F(a1,a2, . . . ,an)

= F(y1,a2, . . . ,an)− F(a1,a2, . . . ,an)

+ F(y1,y2, . . . ,an)− F(y1,a2, . . . ,an)

...
...

...
...

...
+ F(y1,y2, . . . ,yn)− F(y1,y2, . . . ,an)

Hence

σ(r) = F(y1,a2, . . . ,an)− F(a1,a2, . . . ,an)− ∂F

∂x1
(a)(y1 − a1)

+ F(y1,y2, . . . ,an)− F(y1,a2, . . . ,an)− ∂F

∂x2
(a)(y2 − a2)

...
...

...
...

...
...

...
...

+ F(y1,y2, . . . ,yn)− F(y1,y2, . . . ,an)− ∂F

∂xn
(a)(yn − an)
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It suffices to prove that the i-th line of this expression goes to zero faster
that r = y − a. To keep the notation simple, I’ll demonstrate the method
on the last line.

If F had been an ordinary function of n real variables, it would have been
clear how to proceed: We would have used the ordinary Mean Value Theo-
rem of calculus to replace the difference F(y1,y2, . . . ,yn)−F(y1,y2, . . . ,an)
by ∂F

∂xn
(y1,y2, . . . , cn)(yn − an) for some cn between an and yn, and then

used the continuity of the partial derivative. In the present, more com-
plicated setting, we have to use the Mean Value Theorem of the previous
section instead (or, more precisely, its corollary 6.2.3). To do so, we first
introduce a function G defined by

G(zn) = F(y1,y2, . . . , zn)− ∂F

∂xn
(a)(zn − an)

for all zn ∈ Xn that are close enough to an for the expression to be defined.
Note that

G(yn)−G(an) = F(y1,y2, . . . ,yn)− F(y1,y2, . . . ,an)− ∂F

∂xn
(a)(yn − an)

which is the quantity we need to prove goes to zero faster than y − a.
The derivative of G is

G′(zn) =
∂F

∂xn
(y1,y2, . . . , zn)− ∂F

∂xn
(a)

and hence by Corollary 6.2.3,

||G(yn)−G(an)|| ≤ K||yn − an||

where K is the supremum of G′(zn) over the line segment from an to yn.
Since ∂F

∂xn
is continuous at a, we can get K as small as we wish by choosing

y sufficiently close to a. More precisely, given an ε > 0, we can find a δ > 0
such that if ||y − a|| < δ, then K < ε, and hence

||G(yn)−G(an)|| ≤ ε||yn − an||

This proves that

G(yn)−G(an) = F(y1,y2, . . . ,yn)− F(y1,y2, . . . ,an)− ∂F

∂xn
(a)(yn − an)

goes to zero faster than y − a, and the theorem follows. 2

We shall also take a brief look at the dual situation where F : X →
Y1 × Y2 × . . . × Ym is a function into a product space. Clearly, F has
components F1,F2, . . . ,Fm such that

F(x) = (F1(x),F2(x), . . . ,Fm(x))
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Proposition 6.3.4 Assume that X,Y1, Y2, . . . , Ym are normed spaces and
that U is an open subset of X. A function F : U → Y1 × Y2 × . . . × Ym is
differentiable at a ∈ U if and only if all component maps Fi are differentiable
at a, and if so

F′(a) = (F′1(a),F′2(a), . . . ,F′m(a))

(where this equation means that F′(a)(r) = (F′1(a)(r),F′2(a)(r), . . . ,F′m(a)(r)).)

Proof: Clearly,
σ(r) = (σ1(r), . . . , σm(r))

= (F1(a + r)− F1(a)− F′1(a)(r), . . . ,Fm(a + r)− Fm(a)− F′m(a)(r))

and we see that σ(r) goes to zero faster than r if and only if each σi(r) goes
to zero faster than r. 2

If we combine the proposition above with Theorem 6.3.3, we get

Proposition 6.3.5 Assume that U is an open subset of X1×X2× . . .×Xn

and that F : U → Y1 × Y2 × . . . × Ym is continuous at a = (a1,a2, . . . ,an).
Assume also that all the partial derivatives ∂Fi

∂xj
exist in U and are continuous

at a. Then F is differentiable at a and

F′(a)(r) =

(
∂F1

∂x1
(a)(r1) +

∂F1

∂x2
(a)(r2) + . . .+

∂F1

∂xn
(a)(rn),

∂F2

∂x1
(a)(r1) +

∂F2

∂x2
(a)(r2) + . . .+

∂F2

∂xn
(a)(rn), . . . ,

∂Fm
∂x1

(a)(r1) +
∂Fm
∂x2

(a)(r2) + . . .+
∂Fm
∂xn

(a)(rn)

)
for all r = (r1, r2, . . . , rn) ∈ X.

Exercises for Section 6.3

1. Assume that f : R2 → R is a function of two variables x and y. Compare
the definition of the partial derivatives ∂f

∂x and ∂f
∂y given above with the one

you are used to from calculus.

2. Let X be a normed space and consider to differentiable functions F,G : X →
R. Define the Lagrange function H : X × R by

H(x, λ) = F (x) + λG(x)

a) Show that
∂H

∂x
(x, λ) = F ′(x) + λG′(x)

∂H

∂λ
(x, λ) = G(x)
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b) Show that if H has a maximum at a point a that lies in the set

B = {x ∈ X : G(x) = 0},

then there is a λ0 such that F ′(a) + λ0G
′(a) = 0.

3. Let X be a real inner product space and define F : X×X → R by F (x,y) =
〈x,y〉. Show that ∂F

∂x (x,y)(r) = 〈r,y〉. What is ∂F
∂y (x,y)(s)?

4. Let G : Rn ×Rm → R be differentiable at the point (a,b) ∈ Rn ×Rm. Show
that

∂G

∂x
(a,b)(r) =

(
∂G

∂x1
(a,b),

∂G

∂x2
(a,b), . . . ,

∂G

∂xn
(a,b)

)
· r

where x = (x1, x2, . . . , xn). What is ∂G
∂y (a,b)(s)?

5. Think of A = [0, 1] × C([0, 1],R) as a subset of R × C([0, 1],R) and de-
fine F : A → R by F (t, f) =

∫ t
0
f(s) ds. Show that the partial derivates

∂F
∂t (t, f) and ∂F

∂f (t, f) exist and that ∂F
∂t (t, f) = f(t), ∂F

∂f (t, f) = it, where
it : C([0, 1],R)→ R is the map defined by it(g) =

∫ t
0
g(s) ds.

6. Think of A = [0, 1] × C([0, 1],R) as a subset of R × C([0, 1],R) and define
F : A → R by F (t, f) = f(t). Show that if f is differentiable at t, then
the partial derivates ∂F

∂t (t, f) and ∂F
∂f (t, f) exist and that ∂F

∂t (t, f) = f ′(t),
∂F
∂f (t, f) = et, where et : C([0, 1],R) → R is the evaluation function et(g) =

g(t).

6.4 The Riemann Integral

With differentiation comes integration. There are several sophisticated ways
to define integrals of functions taking values in normed spaces, but we shall
only develop what we need, and that is the Riemann integral

∫ b
a F(x) dx of

continuous functions F : [a, b] → X, where [a, b] is an interval on the real
line, and X is a complete, normed space. The first notions we shall look at
should be familiar from calculus.

A partition of the interval [a, b] is a finite set of points Π = {x0, x1, . . . , xn}
from [a, b] such that

x = x0 < x1 < x2 < . . . < xn = b

The mesh |Π| of the partition is the length of the longest of the intervals
[xi−1, xi], i.e.,

|Π| = max{|xi − xi−1| : 1 ≤ i ≤ n}

Given a partition Π, a selection is a set of points S = {c1, c2, . . . , cn} such
that xi−1 ≤ ci ≤ xi, i.e., a collection consisting of one point from each
interval [xi−1, xi].
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If F is a function from [a, b] into a normed space X, we define the Rie-
mann sum R(F,Π, S) of the partition Π and the selection S by

R(F,Π, S) =
n∑
i=1

F(ci)(xi+1 − xi)

The basic idea is the same as in calculus – when the mesh of the partition Π
goes to zero, the Riemann sums R(F,Π, S) should converge to the integral∫ b
a F(x) dx.

To establish a result of this sort, we need to know a little bit about the
relationship between different Riemann sums. Recall that if Π and Π̂ are
two partitions of [a, b], we say that Π̂ is finer than Π if Π ⊆ Π̂, i.e., if Π̂
contains all the points in Π, plus possibly some more. The first lemma may
look ugly, but it contains the key information we need.

Lemma 6.4.1 Let F : [a, b] → X be a continuous function from a real
interval to a normed space. Assume that Π = {x0, x1, . . . , xn} is a partition
of the interval [a, b] and that M is a real number such that if c and d belong
to the same interval [xi−1, xi] in the partition, then ||F(c)−F(d)|| ≤M . For
any partition Π̂ finer than Π and any two Riemann sums R(F,Π, S) and
R(F, Π̂, Ŝ), we then have

|R(F,Π, S)−R(F, Π̂, Ŝ)| ≤M(b− a)

Proof: Let [xi−1, xi] be an interval in the original partition Π. Since the new
partition Π̂ is finer than Π, it subdivides [xi−1, xi] into finer intervals

xi−1 = yj < yj+1 < · · · < ym = xi

The selection S picks a point ci in the interval [xi−1, xi] and the selection
Ŝ picks point dj+1 ∈ [yj , yj+1], dj+2 ∈ [yj+1, yj+2], . . . , dm ∈ [ym−1, ym]. The
contributions to the two Riemann sums are

F(ci)(xi−xi−1) = F(ci)(yj+1−yj)+F(ci)(yj+2−yj+1)+· · ·+F(ci)(ym−ym−1)

and

F(dj)(yj+1 − yj) + F(dj+1)(yj+2 − yj+1) + · · ·+ F(dm)(ym − ym−1)

By the triangle inequality, the difference between these two expressions are
less than

||F(ci)− F(dj)||(yj+1 − yj) + ||F(ci)− F(dj+1)||(yj+2 − yj+1)+

· · ·+ ||F(ci)− F(dm)||(ym − ym−1)

≤M(yj+1 − yj) +M(yj+2 − yj+1) + · · ·+M(ym − ym−1)
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= M(xi − xi−1)

Summing over all i, we get

|R(F,Π, S)−R(F, Π̂, Ŝ)| ≤
n∑
i=1

M(xi − xi−1) = M(b− a)

and the proof is complete. 2

The next lemma brings us closer to the point.

Lemma 6.4.2 Let F : [a, b] → X be a continuous function from a real
interval to a normed space. For any ε > 0 there is a δ > 0 such that
if two partitions Π1 and Π2 have mesh less than δ, then |R(F,Π1, S1) −
R(F,Π2, S2)| < ε for all Riemann sums R(F,Π1, S1) and R(F,Π2, S2).

Proof: Since F is a continuous function defined on a compact set, it is uni-
formly continuous by Proposition 4.1.2. Hence given an ε > 0, there is a
δ > 0 such that if |c − d| < δ, then ||F(c) − F(d)|| < ε

2(b−a) . Let Π1 and

Π2 be two partitions with mesh less than δ, and let Π̂ = Π1 ∪ Π2 be their
common refinement. Pick an arbitrary selection Ŝ for Π̂. To prove that
|R(F,Π1, S1) − R(F,Π2, S2)| < ε, it suffices to prove that |R(F,Π1, S1) −
R(F, Π̂, Ŝ)| < ε

2 and |R(F,Π2, S2) − R(F, Π̂, Ŝ)| < ε
2 , and this follows di-

rectly from the previous lemma when we put M = ε
2(b−a) . 2

We now consider a sequence {Πn}n∈N of partitions where the meshes |Πn|
go to zero, and pick a selection {Sn} for each n. According to the lemma
above, the Riemann sums R(F,Πn, Sn) form a Cauchy sequence. If X is
complete, the sequence must converge to an element I in X. If we pick an-
other sequence {Π′n}, {S′n} of the same kind, the Riemann sumsR(F,Π′n, S

′
n)

must by the same argument converge to an element I′ ∈ X. Again by the
lemma above, the Riemann sums R(F,Πn, Sn) and R(F,Π′n, S

′
n) get closer

and closer as n increases, and hence we must have I = I′. We are now ready
to define the Riemann integral.

Definition 6.4.3 Let F : [a, b] → X be a continuous function from a real
interval to a complete, normed space. The Riemann integral

∫ b
a F(x) dx is

defined as the common limit of all sequences {R(F,Πn, Sn)} of Riemann
sums where |Πn| → 0.

Remark: We have restricted ourselves to continuous functions as this is all
we shall need. We could have been more ambitious and defined the integral
for all functions that make the Riemann sums converge to a unique limit.

The basic rules for integrals extend to the new setting.
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Proposition 6.4.4 Let F,G : [a, b] → X be continuous functions from a
real interval to a complete, normed space. Then∫ b

a

(
αF(x) + βG(x)

)
dx = α

∫ b

a
F(x) dx+ β

∫ b

a
G(x) dx

for all α, β ∈ R.

Proof: Pick sequences {Πn}, {Sn} of partitions and selections such that
|Πn| → 0. Then∫ b

a

(
αF(x) + βG(x)

)
dx = lim

n→∞
R(αF + βG,Πn, Sn)

= lim
n→∞

(αR(F,Πn, Sn) + βR(G,Πn, Sn))

= α lim
n→∞

R(F,Πn, Sn) + β lim
n→∞

R(G,Πn, Sn)

= α

∫ b

a
F(x) dx+ β

∫ b

a
G(x) dx

2

Proposition 6.4.5 Let F : [a, b]→ X be a continuous function from a real
interval to a complete, normed space. Then∫ b

a
F(x) dx =

∫ c

a
F(x) dx+

∫ b

c
F(x) dx

for all c ∈ (a, b).

Proof: Choose sequences of partitions and selections {Πn}, {Sn} and {Π′n},
{S′n} for the intervals [a, c] and [c, b], respectively, and make sure the meshes
go to zero. Let Π̂n be the partition of [a, b] obtained by combining {Πn} and
{Π′n}, and let Ŝn be the selection obtained by combining {Sn} and {S′n}.
Since

R(F, Π̂n, Ŝn) = R(F,Πn, Sn) +R(F,Π′n, S
′
n)

we get the result by letting n go to infinity. 2

The next, and final, step in this chapter is to prove the Fundamental
Theorem of Calculus for integrals with values in normed spaces. We first
prove that if we differentiate an integral function, we get the integrand back.

Theorem 6.4.6 (Fundamental Theorem of Calculus) Let F : [a, b]→
X be a continuous function from a real interval to a complete, normed space.
Define a function I : [a, b]→ X by

I(x) =

∫ x

a
F(t) dt

Then F is differentiable at all points x ∈ (a, b) and I′(x) = F(x).
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Proof: We must prove that

σ(r) = I(x+ r)− I(x)− F(x)r

goes to zero faster than r. For simplicity, I shall argue with r > 0, but it is
easy to check that we get the same final results for r < 0. From the lemma
above, we have that

I(x+ r)− I(x) =

∫ x+r

a
F(t) dt−

∫ x

a
F(t) dt =

∫ x+r

x
F(t) dt

and hence

σ(r) =

∫ x+r

x
F(t) dt− F(x)r =

∫ x+r

x

(
F(t)− F(x)

)
dt

Since F is continuous, we can get ||F(x)−F(t)|| smaller than any given ε > 0
by choosing r small enough, and hence

||σ(r)|| < εr

for all sufficiently small r. 2

We shall also need a version of the fundamental theorem that works in
the opposite direction.

Corollary 6.4.7 Let F : (a, b) → X be a continuous function from a real
interval to a complete, normed space. Assume that F is differentiable in
(a, b) and that F′ is continuous on (a, b). Then

F(d)− F(c) =

∫ d

c
F′(t) dt

for all c, d ∈ (a, b) with c < d.

Proof: Define a function G : [c, d] → X by G(x) = F(x) −
∫ x
c F′(t) dt.

According to the Fundamental Theorem, G′(x) = F′(x)− F′(x) = 0 for all
x ∈ (c, d). If we apply the Mean Value Theorem 6.2.1 to G, we can choose
g constant 0 to get

||G(d)−G(c)|| ≤ 0

Since G(c) = F(c), this means that G(d) = F(c), i.e.,

F(d)−
∫ d

c
F′(t) dt = F(c)

and the result follows. 2
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Just as for ordinary integrals, it’s convenient to have a definition of∫ b
a F(t) dt even when a > b, and we put∫ b

a
F(t) dt =

∫ a

b
F(t) dt (6.4.1)

One can show that Proposition 6.4.5 now holds for all a, b, c regardless of
how they are ordered (but they have, of course, to belong to an interval
where F is defined and continuous).

Exercises for Section 6.4

1. Show that with the definition in formula ( 6.4.1), Proposition 6.4.5 holds for
all a, b, c regardless of how they are ordered.

2. Work through the proof of Theorem 6.4.6 for r < 0 (you may want to use
the result in exercise above).

3. Let X be a complete, normed space. Assume that F : R→ X and g : R→ R
are two functions with continuous derivatives such that ||F′(t)|| ≤ g′(t) for all
t ∈ [a, b], Show that ||F(b)− F(a)|| ≤ g(b)− g(a).

4. Let X be a complete, normed space. Assume that F : R→ X is continuous
function. Show that there is a unique, continuous function G : [a, b] → X
such that G(a) = 0 and G′(t) = F(t) for all t ∈ (a, b).

5. Let X be a complete, normed space. Assume that F : R→ X and g : R→ R
are two functions with continuous derivatives. Show that for all a, b ∈ R,∫ b

a

g′(t)F′(g(t)) dt = F(g(b))− F(g(a))

(you may want to use the result in Exercise 1 for the case a > b).

6.5 Inverse Function Theorem

From single variable calculus, you know that if a function f : R → R has
a nonzero derivative f ′(x0) at point x0, then there is an inverse function g
defined in a neighborhood of y0 = f(x0) with derivative

g′(y0) =
1

f(x0)

We shall now generalize this result to functions between complete, normed
spaces, i.e. Banach spaces, but before we do so, we have to agree on the
terminology.

Assume that U is an open subset of X, that a is an element of U , and
that F : U → Y is a continuous function mapping a to b ∈ Y . We say that
F is locally invertible at a if there are open neighborhoods U0 of a and V0 of
b such that F is a bijection from U0 to V0. This means that the restriction
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of F to U0 has an inverse map G which is a bijection from V0 to U0. Such
a function G is called a local inverse of F at a.

It will take us some time to prove the main theorem of this section, but
we can at least formulate it.

Theorem 6.5.1 (Inverse Function Theorem) Assume that X and Y are
complete normed spaces, that U is an open subset of X, and that F : U → Y
is a differentiable function. If F′ is continuous at a point a ∈ U where F′(a)
is invertible, then F has a local inverse at a. This inverse G is differentiable
at b = F(a) with

G′(b) = F′(a)−1

To understand the theorem, it is important to remember that the deriva-
tive F′(a) is a linear map from X to Y . The derivative G′(b) of the inverse
is then the inverse linear map from Y to X. Note that by the Bounded In-
verse Theorem ( 5.6.5), the inverse of a bijective linear map is automatically
bounded, and hence we need not worry about the boundedness of G′(b).

The best way to think of the Inverse Function Theorem is probably in
terms of linear approximations. The theorem can then be summarized as
saying that if the best linear approximation is invertible, so is the function
(at least locally), and to find the best linear approximation of the inverse,
you just invert the best linear approximation of the original function.

The hardest part in proving the Inverse Function Theorem is to show
that the inverse function exists, i.e. that the equation

F(x) = y (6.5.1)

has a unique solution x for all y sufficiently near b. To understand the
argument, it is helpful to try to solve this equation. We begin by subtracting
F(a) = b from ( 6.5.1):

F(x)− F(a) = y − b

Next we use that F(x)− F(a) = F′(a)(x− a) + σ(x− a), to get

F′(a)(x− a) + σ(x− a) = y − b

We now apply the inverse map A = F′(a)−1 to both sides of this equation:

x− a +A(σ(x− a)) = A(y − b)

If it hadn’t been for the small term A(σ(x − a)), this would have solved
our problem. Putting x′ = x − a, z = A(y − b) and H(x′) = A(σ(x′)) to
simplify notation, we see that we need to show that an equation of the form

x′ + H(x′) = z , (6.5.2)
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where H is “small”, has a unique solution x′ for all sufficiently small z. We
shall now use Banach’s Fixed Point Theorem 3.4.5 to prove this (you may
have to ponder a little to see that the conclusion of the lemma below is just
another way of expressing what I just said!).

Lemma 6.5.2 (Perturbation Lemma) Assume that X is a Banach space
(a complete normed space). Let B(0, r) be a closed ball around the origin in
X, and assume that the function H : B(0, r) → X is such that H(0) = 0
and

||H(u)−H(v)|| ≤ 1

2
||u− v|| for all u,v ∈ B(0, r)

Then the function L : B(0, r)→ X defined by L(x) = x+H(x) is injective,
and the ball B(0, r2) is contained in the image L(B(0, r)).

Proof: To show that L is injective, we assume that L(x) = L(y) and need
to prove that x = y. By definition of L,

x + H(x) = y + H(y) ,

that is
x− y = H(y)−H(x) ,

which gives us
||x− y|| = ||H(x)−H(y)||

According to the assumptions, ||H(x) − H(y)|| ≤ 1
2 ||x − y||, and thus the

equality above is only possible if ||x− y|| = 0, i.e. if x = y.
It remains to prove that B(0, r2) is contained in the image L(B(0, r)),

i.e., we need to show that for all y ∈ B(0, r2), the equation L(x) = y has a
solution in B(0, r). This equation can be written as

x = y −H(x),

and hence it suffices to prove that the function K(x) = y − H(x) has a
fixed point in B(0, r). This will follow from Banach’s Fixed Point Theorem
(3.4.5) if we can show that K is a contraction of B(0, r). Let us first show
that K maps B(0, r) into B(0, r). This follows from

||K(x)|| = ||y −H(x)|| ≤ ||y||+ ||H(x)|| ≤ r

2
+
r

2
= r

where we have used that according to the conditions on H,

||H(x)|| = ||H(x)−H(0)|| ≤ 1

2
||x− 0|| ≤ r

2

Finally, we show that K is a contraction:

||K(u)−K(v)|| = ||H(u)−H(v)|| ≤ 1

2
||u− v||
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Hence K is a contraction and has a unique fixed point in B(0, r). 2

Our next lemma proves the Inverse Function Theorem in what may seem
a ridiculously special case; i.e., for functions L from X to X such that
L(0) = 0 and L′(0) = I, where I : X → X is the identity map I(x) = x.
However, the arguments that brought us from formula (6.5.1) to (6.2.2) will
later help us convert this very special case to the general.

Lemma 6.5.3 Let X be a Banach space. Assume that U is an open set
in X containing 0, and that L : U → X is a differentiable function whose
derivative is continuous at 0. Assume further that L(0) = 0 and L′(0) = I.
Then there is an r > 0 such that the restriction of L to B(0, r) is injective
and has an inverse function M defined on a set containing B(0, r2). This
inverse function M is differentiable at 0 with derivative M′(0) = I.

Proof: Let H(x) = L(x) − x = L(x) − I(x). We first use the Mean Value
Theorem to show that H satisfies the conditions in the previous lemma.
Note that

H′(0) = L′(0)− I ′(0) = I − I = 0

Since the derivative of L – and hence the derivative of H – is continuous at
0, there must be an r > 0 such that ||H′(x)|| ≤ 1

2 when x ∈ B(0, r). By
Corollary 6.2.3, this means that

||H(u)−H(v)|| ≤ 1

2
||u− v|| for all u,v ∈ B(0, r)

and hence the conditions of the previous lemma is satisfied. As

L(x) = x + H(x),

this means that L restricted to B(0, r) is injective and that the image con-
tains the ball B(0, r2). Consequently, L restricted to B(0, r) has an inverse
function M which is defined on a set that contains B(0, r2).

It remains to show that M is differentiable at 0 with derivative I, but
before we turn to the differentiability, we need an estimate. According to
the triangle inequality

||x|| = ||L(x)−H(x)|| ≤ ||L(x)||+ ||H(x)|| ≤ ||L(x)||+ 1

2
||x||

which yields
1

2
||x|| ≤ ||L(x)||

To show that the inverse function M of L is differentiable at 0 with
derivative I, we must show that

σM (y) = M(y)−M(0)− I(y) = M(y)− y
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goes to zero faster than y. As we are interested in the limit as y → 0, we
only have to consider y ∈ B(0, r2). For each such y, we know there is a
unique x in B(0, r) such that y = L(x) and x = M(y). If we substitute this
in the expression above, we get

σM (y) = M(y)− y = x− L
(
x) = −(L(x)− L(0)− I(x)

)
= −σL(x)

where we have used that L(0) = 0 and L′(0) = I. Since 1
2 ||x|| ≤ ||L(x)|| =

||y||, we see that x goes to zero as y goes to zero, and that ||x||||y|| ≤ 2. Hence

lim
y→0

||σM (y)||
||y||

= lim
x→0

||σL(x)||
||x||

· ||x||
||y||

= 0

since limx→0
||σL(x)||
||x|| = 0 and ||x||||y|| is bounded by 2. 2

We are now ready to prove the main theorem of this section:

Proof of the Inverse Function Theorem: The plan is to use a change of
variables to turn F into a function L satisfying the conditions in the lemma
above. This function L will then have an inverse function M which we can
change back into an inverse G for F. When we have found G, it is easy to
check that it satisfies the theorem. The operations that transform F into L
are basically those we used to turn equation (6.5.1) into (6.5.2).

We begin by defining L by

L(z) = A (F(z + a)− b)

where A = F′(a)−1. Since F is defined in a neighborhood U of a, we see
that L is defined in a neighborhood of 0. We also see that

L(0) = A (F(a)− b) = 0

since F(a) = b. By the Chain Rule,

L′(z) = A ◦ F′(z + a),

and hence
L′(0) = A ◦ F′(a) = I

since A = F′(a)−1.
This means that L satisfies the conditions in the lemma above, and

hence there is a restriction of L to a ball B(0, r) which is injective and has
an inverse function M defined on a set that includes the ball B(0, r2). To
find an inverse function for F, put x = z + a and note that if we reorganize
the equation L(z) = A (F(z + a)− b), we get

F(x) = A−1L(x− a) + b
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for alle x ∈ B(a, r). Since L is injective and A−1 is invertible, it follows that
F is injective on B(a, r). To find the inverse function, we solve the equation

y = A−1L(x− a) + b

for x and get
x = a + M(A(y − b))

Hence F restricted to B(a, r) has an inverse function G defined by

G(y) = a + M(A(y − b))

As the domain of M contains all of B(0, r2), the domain of G contains all y
such that ||A(y − b)|| ≤ r

2 . Since ||A(y − b)|| ≤ ||A||||y − b||, this includes all
elements of B(b, r

2||A||), and hence G is defined in a neighborhood of b.
The rest is bookkeeping. Since M is differentiable and G(y) = a +

M(A(y − b)), the Chain Rule tells us that G is differentiable with

G′(y) = M′(A(y − b)) ◦A

Putting y = b and using that M′(0) = I, we get

G′(b) = I ◦A = F′(a)−1

as A is F′(ā)−1 by definition. 2

Many applications of the Inverse Function Theorem are to functions
F : Rn → Rm. Since the linear map F′(a) can only be invertible when
n = m, we can only hope for a local inverse function when n = m. Here is
a simple example with n = m = 2.

Example 1. Let F : R2 → R2 be defined by F(x, y) = (2x + yey, x + y).
We shall show that F has a local inverse at (1, 0) and find the derivatives of
the inverse function.

The Jacobian matrix of F is

JF(x, y) =

(
2 (1 + y)ey

1 1

)
and hence

JF(1, 0) =

(
2 1
1 1

)
This means that

F′(1, 0)(x, y) =

(
2 1
1 1

)(
x
y

)
=

(
2x+ y
x+ y

)
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Since the matrix JF(1, 0) is invertible, so is F′(1, 0), and hence F has a
local inverse at (1, 0). The inverse function G(u, v) = (G1(u, v), G2(u, v)) is
defined in a neighborhood of F(1, 0) = (2, 1). The Jacobian matrix of G is

JG(2, 1) = JF(1, 0)−1 =

(
2 1
1 1

)−1

=

(
1 −1
−1 2

)
This means that ∂G1

∂u (2, 1) = 1, ∂G1
∂v (2, 1) = −1, ∂G2

∂u (2, 1) = −1, and
∂G2
∂v (2, 1) = 2. ♣

Exercises for Section 6.5

1. Show that the function F : R2 → R2 defined by F(x, y) = (x2+y+1, x−y−2)
has a local inverse function G defined in a neighborhood of (1,−2) such that
G(1,−2) = (0, 0). Show that F also has a local inverse function H defined
in a neighborhood of (1,−2) such that H(1,−2) = (−1,−1). Find G′(1,−2)
and H′(1,−2).

2. Let

A =

 1 0 1
2 1 1
1 0 −2


a) Find the inverse of A.

b) Find the Jacobi matrix of the function F : R3 → R3 when

F(x, y, z) =

 x+ z
x2 + 1

2y
2 + z

x+ z2


c) Show that F has an inverse function G defined in a neighborhood of

(0, 12 , 2) such that G(0, 12 , 2) = (1, 1,−1). Find G′(0, 12 , 2).

3. Recall from linear algebra (or prove!) that a linear map A : Rn → Rm can
only be invertible if n = m. Show that a differentiable function F : Rn → Rm
can only have a differentiable, local inverse if n = m.

4. Let X,Y be two complete normed spaces and assume that O ⊆ X is open.
Show that if F : O → Y is a differentiable function such that F′(x) is
invertible at all x ∈ O, then F(O) is an open set.

5. LetMn be the space of all real n× n matrices with the operator norm (i.e.
with the norm ||A|| = sup{||Ax|| : x ∈ Rn, ||x|| = 1}).

a) For each n ∈ N, we define a function Pn :Mn →Mn by Pn(A) = An.
Show that Pn is differentiable. What is the derivative?

b) Show that the sum
∑∞
n=0

An

n! exists for all A ∈Mn.

c) Define exp : Mn → Mn by exp(A) =
∑∞
n=0

An

n! . Show that exp is
differentiable and find the derivative.
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d) Show that exp has a local inversion function log defined in a neighbor-
hood of eIn (where In is the identity matrix). What is the derivative
of log at eIn?

6. Let X,Y be two complete normed spaces, and let L(X,Y ) be the space of
all continuous, linear maps A : X → Y . Equip L(X,Y ) with the operator
norm, and recall that L(X,Y ) is complete by Theorem 5.4.8.
If A ∈ L(X,Y ), we write A2 for the composition A◦A. Define F : L(X,Y )→
L(X,Y ) by F(A) = A2.

a) Show that F is differentiable, and find F′.

b) Show that F has a local inverse in a neighborhood of the identity map
I (i.e. we have a square root function defined for operators close to I).

7. Define f : R→ R by

f(x) =

 x+ x2 cos 1
x for x 6= 0

0 for x = 0

a) Show that f is differentiable at all points and that f ′ is discontinuous
at 0.

b) Show that although f ′(0) 6= 0, f does not have a local inverse at 0.
Why doesn’t this contradict the Inverse Function Theorem?

6.6 Implicit Function Theorem

When we are given an equation F(x,y) = 0 in two variables, we would often
like to solve for one of them, say y, to obtain a function y = G(x). This
function will then fit in the equation in the sense that

F(x,G(x)) = 0 (6.6.1)

Even when we cannot solve the equation explicitly, it would be helpful to
know that there exists a function G satisfying equation ( 6. 6.1) – especially
if we also got to know a few of its properties. The Inverse Function Theorem
may be seen as a solution to a special case of this problem (when the equation
above is of the form x−F(y) = 0), and we shall now see how it can be used
to solve the full problem. But let us first state the result we are aiming for.

Theorem 6.6.1 (Implicit Function Theorem) Assume that X,Y, Z are
three complete normed spaces, and let U be an open subset of X×Y . Assume
that F : U → Z has continuous partial derivatives in U , and that ∂F

∂y (x,y)
is a bijection from Y to Z for all (x,y) ∈ U . Assume further that there
is a point (a,b) in U such that F(a,b) = 0. Then there exists an open
neighborhood V of a and a function G : V → Y such that G(a) = b and

F(x,G(x)) = 0
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for all x ∈ V . Moreover, G is differentiable in V with

G′(x) = −
(
∂F

∂y
(x,G(x))

)−1

◦ ∂F
∂x

(x,G(x)) (6.6.2)

for all x ∈ V .

Proof: Define a function H : U → X × Z by

H(x,y) = (x,F(x,y))

The plan is to apply the Inverse Function Theorem to H and then extract
G from the inverse of H. To use the Inverse Function Theorem, we first
have to check that H′(a) is a bijection. According to Proposition 6.3.5, the
derivative of H is given by

H′(a,b)(r1, r2) =

(
r1,

∂F

∂x
(a,b)(r1) +

∂F

∂y
(a,b)(r2)

)
Since ∂F

∂y (a,b) is a bijection from Y to Z by assumption, it follows that
H′(a,b) is a bijection from X × Y to X × Z (see Exercise 5). Hence H
satisfies the conditions of the Inverse Function Theorem, and has a (unique)
local inverse function K. Note that since F(a,b) = 0, the domain of K is
a neighborhood of (a,0). Note also that since H has the form H(x,y) =
(x,F(x,y)), the inverse K must be of the form K(x, z) = (x,L(x, z)).

Since H and K are inverses, we have for all (x, z) in the domain of K:

(x, z) = H ◦K(x, z) = H(x,L(x, z)) = (x,F(x,L(x, z)))

and hence z = F(x,L(x, z)). If we now define G by G(x) = L(x,0), we see
that 0 = F(x,G(x)), and it only remains to show that G has the properties
in the theorem. We leave it to the reader to check that G(a) = b (this
will also follow immediately from the corollary below), and concentrate on
the differentiability. Since L is defined in a neighborhood of (a,0), we see
that G is defined in a neighborhood W of a, and since L is differentiable
at (a,0) by the Inverse Function Theorem, G is clearly differentiable at a.
To find the derivative of G at a, we apply the Chain Rule to the identity
F(x,G(x)) = 0 to get

∂F

∂x
(a,b) +

∂F

∂y
(a,b) ◦G′(a) = 0

Since ∂F
∂y (a,b) is invertible, we can now solve for G(a) to get

G′(a) = −
(
∂F

∂y
(a,b)

)−1

◦ ∂F
∂x

(a,b)



6.6. IMPLICIT FUNCTION THEOREM 197

There is still a detail to attend to: We have only proved the differen-
tiability of G at the point a, although the theorem claims it for all x in a
neighborhood V of a. This is easily fixed: The conditions of the theorem
clearly holds for all points (x,G(x)) sufficiently close to (a,b), and we can
just rework the arguments above with (a,b) replaced by (x,G(x)). 2

The point G(x) in the implicit function theorem is “locally unique” in
the following sense.

Corollary 6.6.2 Let the setting be as in the Implicit Function Theorem.
Then there is an open neighborhood O of (a,b) in X×Y such that for each
x, the equation F(x,y) = 0 has at most one solution y such that (x,y) ∈ O.

Proof: We need to take a closer look at the proof of the Implicit Function
Theorem. Let O ⊂ X × Y be an open neighborhood of (a,b) where the
function H is injective. Since K is the inverse function of H, we have

(x,y) = K(H(x,y)) = K(x,F(x,y)) = (x,L(F(x,y)))

for all (x,y) ∈ O. Hence if (x,y1) and (x,y2) are two solutions of the
equation F(x,y) = 0 in O, we have

(x,y1) = (x,L(F(x,y1))) = (x,L(0)) = (x,L(F(x,y2))) = (x,y2)

and thus y1 = y2. 2

Remark: We cannot expect more than local existence and local uniqueness
for implicit functions. If we consider the function f(x, y) = x − sin y at a
point (sin b, b) where sin b is very close to 1 or -1, any implicit function has
a very restricted domain on one side of the point. On the other hand, the
equation f(x, y) = 0 will have infinitely many (global) solutions for all x
sufficintly near sin b. ♣

Exercises for Section 6.6

1. Work through the example in the remark above.

2. Let f : R3 → R be the function f(x, y, z) = xy2ez + z. Show that there is a
function g(x, y) defined in a neighborhood of (−1, 2) such that g(−1, 2) = 0
og f(x, y, g(x, y)) = −4. Find ∂g

∂x (−1, 2) and ∂g
∂y (−1, 2).

3. Show that through every point (x0, y0) on the curve x3 + y3 + y = 1 there is
a function y = f(x) that satisfies the equation. Find f ′(x0, y0).

4. When solving differential equations, one often arrives at an expression of the
form φ(x, y(x)) = C where C is a constant. Show that y′(x) = −

∂φ
∂x (x,y(x))
∂φ
∂y (x,y(x))

provided the partial derivatives exist and ∂φ
∂y (x, y(x)) 6= 0.
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5. Show that H′(a,b) in the proof of Theorem 6.6.1 is a bijection from X × Y
to X × Z.

6. In calculus problems about related rates, we often find ourselves in the fol-
lowing position. We know how fast one quantity y is changing (i.e. we know
y′(t)) and we want to compute how fast another quantity x is changing (i.e.
we want to find x′(t)). The two quantities are connected by an equation
φ(x(t), y(t)) = 0.

a) Show that x′(t) = −
∂φ
∂y (x(t),y(t))
∂φ
∂x (x(t),y(t))

y′(t). What assumptions have you
made?

b) In some problems we know two rates y′(t) and z′(t), and we an equation
φ(x(t), y(t), z(t)) = 0. Find an expression for x′(t) in this case.

7. Assume that φ(x, y, z) is a differentiable function and that there are differ-
entiable functions X(y, z), Y (x, z), and Z(x, y) such that

φ(X(y, z), y, z) = 0 φ(x, Y (x, z), z) = 0 and φ(x, y, Z(x, y)) = 0

Show that under suitable conditions

∂X

∂y
· ∂Y
∂z
· ∂Z
∂x

= −1

This relationship is often written with lower case letters:

∂x

∂y
· ∂y
∂z
· ∂z
∂x

= −1

and may then serve as a warning to those who like to cancel differentials ∂x,
∂y and ∂z.

8. Deduce the Inverse Function Theorem from the Implicit Function Theorem
by applying the latter to the function H(x,y) = x− F(y).

9. (Lagrange multipliers) Let X,Y, Z be complete normed spaces and assume
that f : X × Y → R and F : X × Y → Z are two differentiable function. We
want to find the maximum of f(x,y) under the constraint F(x,y) = 0, i.e.
we want to find the maximum value of f(x,y) on the set

A = {(x,y) |F(x,y) = 0}

We assume that f(x,y) has a local maximun (or minimum) on A in a point
(x0,y0) where ∂F

∂y is invertible.

a) Explain that there is a differentiable function G defined on a neigh-
borhood of x0 such that F(x,G(x)) = 0, G(x0) = y0, and G′(x0) =

−
(
∂F
∂y (x0,y0)

)−1
◦ ∂F∂x (x0,y0).

b) Define h(x) = f(x,G(x)) and explain why h′(x0) = 0.

c) Show that ∂f
∂x (x0,y0) + ∂f

∂y (x0,y0)(G′(x0)) = 0.
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d) Explain that

λ =
∂f

∂y
(x0,y0) ◦

(
∂F

∂y
(x0,y0)

)−1
is a linear map from Z to R, and show that

∂f

∂x
(x0,y0) = λ ◦ ∂F

∂x
(x0,y0)

e) Show also that
∂f

∂y
(x0,y0) = λ ◦ ∂F

∂y
(x0,y0)

and conclude that f ′(x0,y0) = λ ◦ F′(x0,y0).

f) Put Y = Z = R and show that the expression in e) reduces to the
ordinary condition for Lagrange multipliers with one constraint. Put
Y = Z = Rn and show that the expression in e) reduces to the ordinary
condition for Lagrange multipliers with n constraints.

6.7 Differential equations yet again

In Sections 4.7 and 4.9 we proved existence of solutions of differential equa-
tions by two different methods – first by using Banach’s Fixed Point Theo-
rem and then by using a compactnesss argument in the space C([0, a],Rm)
of continuous functions. In this section, we shall exploit a third approach
based on the Implicit Function Theorem. The results we obtain by the
three methods are slightly different, and one of the advantages of the new
approach is that it automatically gives us information on how the solution
depends on the initial condition.

We need some preparations before we turn to differential equations.
When we have been working with continuous functions so far, we have
mainly been using the space C([a, b], X) of all continuous functions F :
[a, b]→ X with the norm

||F||0 = sup{||F(t)|| : t ∈ [a, b]}

(the reason why we suddenly denote the norm by || · ||0 will become clear in
a moment). This norm does not take the derivative of F into account, and
when we are working with differential equations, derivatives are obviously
important. We shall now introduce a new space and a new norm that will
help us control derivatives.

Let F : [a, b]→ X where X is a normed space. If t ∈ (a, b) is an interior
point of [a, b], we have already introduced the notation

F′(t) = lim
r→0

F(t+ r)− F(t)

r
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and we now extend it to the end points by using one-sided derivatives:

F′(a) = lim
r→0+

F(a+ r)− F(a)

r

F′(b) = lim
r→0−

F(b+ r)− F(b)

r

We are now ready to define the new spaces we shall be working with in
this section.

Definition 6.7.1 A function F : [a, b] → X from an interval to a normed
space is continuously differentiable if the function F′ is defined and contin-
uous on all of [a, b]. The set of all continuously differentiable functions is
denoted by C1([a, b], X), and the norm on this space is defined by

||F||1 = ||F||0 + ||F′||0

= sup{||F(x)|| : x ∈ [a, b]}+ sup{||F′(x)|| : x ∈ [a, b]}

Remark: A word on notation may be useful. The spaces C([a, b], X) and
C1([a, b], X) are just two examples of a whole system of spaces. The next
space in this system is the space C2([a, b], X) of all functions with a contin-
uous second derivative F′′. The corresponding norm is

||F||2 = ||F||0 + ||F′||0 + ||F′′||0 ,

and from this you should be able to guess what is meant by Ck([a, b], X)
and || · ||k for higher values of k.2 As a function F in C1([a, b], X) is also
an element of C([a, b], X), the expressions ||F||1 and ||F||0 both make sense,
and it is important to know which one is intended. Our convention that all
norms are denoted by the same symbol || · || therefore has to be modified in
this section: The norms of functions will be denoted by || · ||0 and || · ||1 as
appropriate, but all other norms (such as the norms in the underlying spaces
X and Y and the norms of linear operators) will still be denoted simply by
|| · ||.

Before we continue, we should check that ||·||1 really is a norm on C1([a, b], X),
but I am going to leave that to you (Exercise 1). The following simple ex-
ample should give you a clearer idea about the difference between the spaces
C([a, b], X) and C1([a, b], X).

Example 1: Let fn : [0, 2π] → R be defined by fn(x) = sin(nx)
n . Then

f ′n(x) = cos(nx), and hence fn is an element of both C([0, 2π],R) and
2The system become even clearer if one writes C0([a, b], X) for C([a, b], X), as is often

done
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C1([0, 2π],R). We see that ||fn||0 = 1
n while ||fn||1 ≥ ||f ′n||0 = 1. Hence

the sequence {fn} converges to 0 in C([0, 2π],R) but not in C1([0, 2π],R).
The reason is that although fn gets closer and closer to the constant func-
tion 0, the derivative f ′n does not approach the derivative of 0. The point is
that in order to converge in C1([0, 2π],R), not only the functions, but also
their derivatives have to converge uniformly. 2

To use C1([a, b], X) in practice, we need to know that it is complete.

Theorem 6.7.2 If (X, || · ||) is complete, so is (C1([a, b], X), || · ||1).

Proof: Let {Fn} be a Cauchy sequence in C1([a, b], X). Then {F′n} is a
Cauchy sequence in our old space C([a, b], X) of continuous functions, and
hence it converges uniformly to a continuous function G : [a, b]→ X. Sim-
ilarly, the functions {Fn} form a Cauchy sequence in C([a, b], X), which in
particular means that {Fn(a)} is a Cauchy sequence in X and hence con-
verges to an element y ∈ X. We shall prove that our Cauchy sequence {Fn}
converges to the function F defined by

F(x) = y +

∫ x

a
G(t) dt (6.7.1)

Note that by the Fundamental Theorem of Calculus in Section 6.4, F′ = G,
and hence F ∈ C1([a, b], X).

To prove that {Fn} converges to F in C1([a, b], X), we need to show
that ||F − Fn||0 and ||F′ − F′n||0 both go to zero. The latter part follows by
construction since F′n converges uniformly to G = F′. To prove the former,
note that by Corollary 6.4.7,

Fn(x) = Fn(a) +

∫ x

a
F′n(t) dt

If we subtract this from formula (6.7.1) above, we get

||F(x)− Fn(x)|| = ||y − Fn(a) +

∫ x

a

(
G(t)− F′n(t)

)
dt||

≤ ||y − Fn(a)||+ ||
∫ x

a

(
G(t)− F′n(t)

)
dt||

≤ ||y − Fn(a)||+
∫ x

a
||G− F′n||0 dt

≤ ||y − Fn(a)||+ ||G− F′n||0(b− a)

Since Fn(a) converges to y, we can get the first term as small as we want,
and since F′n converges uniformly to G, we can also get the second as small
as we want. Given an ε > 0, this means that we can get ||F(x) − Fn(x)||
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smaller that ε for all x ∈ [a, b], and hence {Fn} converges uniformly to F. 2

Remark: Note how we built the proof above on the sequence {F′n} of
derivatives and not on the sequence {Fn} of (original) functions. This is
because it is much easier to keep control when we integrate F′n than when
we differentiate Fn.

One of the advantages of introducing C1([a, b], X) is that we can now
think of differentiation as a bounded, linear operator from C1([a, b], X) to
C([a, b], X), and hence make use of everything we know about such opera-
tors. The next lemma will give us the information we need, but before we
look at it, we have to introduce some notation and terminology.

An isomorphism between to normed spaces U and V is a bounded, bi-
jective, linear map T : U → V whose inverse is also bounded. In this
terminology, the conditions of the Implicit Function Theorem requires that
∂F
∂y (x,y) is an isomorphism.

If c ∈ [a, b], the space

C1
c ([a, b], X) = {F ∈ C1([a, b], X) : F(c) = 0}

consists of those functions in C1([a, b], X) that have value zero at c. As
C1
c ([a, b], X) is a closed subset of the complete space C1([a, b], X), it is itself

a complete space.

Proposition 6.7.3 Let X be a complete, normed space, and define D :
C1
c ([a, b], X)→ C([a, b], X) by D(F) = F′. Then D is an isomorphism.

Proof: D is obviously linear, and since

||D(F)||0 = ||F′||0 ≤ ||F||0 + ||F′||0 = ||F||1 ,

we see that D is bounded.
To show that D is surjective, pick an arbitrary G ∈ C([a, b], X) and put

F(x) =

∫ x

c
G(t) dt

Then F ∈ C1
c ([a, b], X) and – by the Fundamental Theorem of Calculus –

DF = F′ = G.
To show that D is injective, assume that DF1 = DF2, i.e., F′1 = F′2. By

Corollary 6.5.7, we get (remember that F1(c) = F2(c) = 0)

F1(x) =

∫ x

c
F′1(t) dt =

∫ x

c
F′2(t) dt = F2(x)

and hence F1 = F2.
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As C1
c ([a, b], X) and C([a, b], X) are complete, it now follows from the

Bounded Inverse Theorem 5.6.5 that D−1 is bounded, and hence D is an
isometry. 2

The next lemma is a technical tool we shall need to get our results. The
underlying problem is this: By definition, the remainder term

σ(r) = F(x + r)− F(x)− F′(x)(r)

goes to zero faster than r if F is differentiable at x, but is the convergence
uniform in x? More precisely, if we write

σ(r,x) = F(x + r)− F(x)− F′(x)(r)

to emphasize the dependence on x, do we then have limr→0
σ(r,x)
||r|| = 0 uni-

formly in x? This is not necessarily the case, but the next lemma gives us
the positive information we shall need.

Lemma 6.7.4 Let X,Y be two normed spaces and let F : X → Y be a con-
tinuously differentiable function. Assume that G : [a, b] → X is continuous
and consider two sequences {rn}, {tn} such that {rn} converges to 0 in X,
and {tn} converges to t0 in [a, b]. If

σF(r, t) = F(G(t) + r)− F(G(t))− F′(G(t))(r)

then
lim
n→∞

||σF(rn, tn)||
||rn||

= 0

Proof: We shall apply the Mean Value Theorem (or, more precisely, its
Corollary 6.2.2) to the function

H(s) = F(G(tn) + srn)− F(G(tn))− sF′(G(tn))(rn)

where s ∈ [0, 1] (note that σF(rn, tn) = H(1) = H(1)−H(0)). Differentiat-
ing, we get

H′(s) = F′(G(tn) + srn)(rn)− F′(G(tn))(rn)

and hence
||H′(s)|| ≤ ||F′(G(tn) + srn)− F′(G(tn))||||rn||

When n gets large, G(tn) + srn and G(tn) both get close to G(t0), and
since F′ is continuous, this means we can get ||F′(G(tn) + srn)−F′(G(tn))||
smaller than any given ε by choosing n sufficiently large. Hence

H′(s) ≤ ε||rn||



204 CHAPTER 6. DIFFERENTIAL CALCULUS IN NORMED SPACES

for all such n. Applying Corollary 6.2.2, we now get

||σF(rn, tn)|| = ||H(1)−H(0)|| ≤ ε||rn||

and the lemma is proved. 2

The next result is important, but needs a brief introduction. Assume
that we have two function spaces C([a, b], X) and C([a, b], Y ). What might
a function from C([a, b], X) to C([a, b], Y ) look like? There are many pos-
sibilities, but a quite common construction is to start from a continuous
function F : X → Y between the underlying spaces. If we now have a con-
tinuous function G : [a, b] → X, we can change it to a continuous function
K : [a, b]→ Y by putting

K(t) = F(G(t)) = F ◦G(t)

What is going on here? We have used F to convert a functionG ∈ C([a, b], X)
into a function K ∈ C([a, b], Y ); i.e. we have constructed a function

ΩF : C([a, b], X)→ C([a, b], Y )

(the strange notation ΩF is traditional). Clearly, ΩF is given by

ΩF(G) = K = F ◦G

In many situations one needs to find the derivative of ΩF, and it is natural
to ask if it can be expressed in terms of the derivative of F. (Warning: At
first glance this may look very much like the chain rule, but the situation is
different. In the chain rule we want to differentiate the composite function
F ◦G(x) with respect to x; here we want to differentiate it with respect to
G.)

Proposition 6.7.5 (Omega Rule) Let X,Y be two normed spaces and
let U be an open subset of X. Assume that F : U → Y is a continuously
differentiable function (i.e. F′ is defined and continuous in all of U). Define
a function ΩF : C([a, b], U)→ C([a, b], Y ) by

ΩF(G) = F ◦G

Then ΩF is differentiable and Ω′F is given by

Ω′F(G)(H)(t) = F′(G(t))(H(t))

Remark: Before we prove the Omega Rule, it may be useful to check
that it makes sense – what does Ω′F(G)(H)(t) really mean? Since Ω′F is a
function from C([a, b], U) to C([a, b], Y ), we can evaluate it at a point G ∈
C([a, b], U). Now Ω′F(G) is a linear map from C([a, b], U) to C([a, b], Y ), and
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we can evaluate it at a pointH ∈ C([a, b], U) to get Ω′F(G)(H) ∈ C([a, b], Y ).
This means that Ω′F(G)(H) is a function from [a, b] to Y , and hence we can
evaluate it at a point t ∈ [a, b] to get Ω′F(G)(H)(t). The right hand side is
easier to interpret: F′(G(t))(H(t)) is the derivative of F at the point G(t)
and in the direction H(t) (note that G(t) and H(t) are both elements of X).

Proof of the Omega Rule: We have to show that

σΩ(H) = F ◦ (G + H)− F ◦G− Ω′F(G)(H)

goes to zero faster than ||H||0. Since

σΩ(H)(t) = F(G(t) + H(t))− F(G(t))− F′(G(t))(H(t))

this means that we have to show that

lim
H→0

||σΩ(H)||0
||H||0

= lim
H→0

supt∈[a,b] ||σΩ(H(t))||
||H||0

= 0

Since F is differentiable, we know that for each t ∈ [a, b],

σF(r, t) = F(G(t) + r)− F(G(t))− F′(G(t))(r) (6.7.2)

goes to zero faster than ||r||. Comparing expressions, we see that σΩ(H)(t) =
σF(H(t), t), and hence we need to show that

lim
H→0

supt∈[a,b] ||σF(H(t), t)||
||H||0

= 0 (6.7.3)

Assume not, then there must be an ε > 0 and sequences {Hn}, {tn} such
that Hn → 0 and

||σF(Hn(tn), tn)||
||Hn||0

> ε

for all n. As ||Hn(t)|| ≤ ||Hn||0 for all t, this implies that

||σF(Hn(tn), tn)||
||Hn(tn)||

> ε

Since [a, b] is compact, there is a subsequence {tnk} that converges to a point
t0 ∈ [a, b], and hence by the lemma

lim
k→∞

||σF(Hnk(tnk), tnk)||
||Hnk(tnk)||

= 0

This contradicts the assumption above, and the theorem is proved. 2

The Omega Rule still holds when we replace C([a, b], U) by C1([a, b], U):
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Corollary 6.7.6 Let X,Y be two normed spaces and let U be an open subset
of X. Assume that F : U → Y is a continuously differentiable function.
Define a function ΩF : C1([a, b], U)→ C([a, b], Y ) by

ΩF(G) = F ◦G

Then ΩF is differentiable and Ω′F is given by

Ω′F(G)(H)(t) = F′(G(t))(H(t))

Proof: This follows from the Omega Rule since || · ||1 is a finer norm than
|| · ||0, i.e., ||H||1 ≥ ||H||0. Here are the details:

By the Omega Rule we know that

σΩ(H) = F ◦ (G + H)− F ◦G− Ω′F(G)(H)

goes to zero faster than H in C([a, b], U); i.e.

lim
||H||0→0

σΩ(H)

||H||0
= 0

We need to prove the corresponding statement for C1([a, b], U); i.e.,

lim
||H||1→0

σΩ(H)

||H||1
= 0

Since ||H||1 ≥ ||H||0, we see that ||H||0 goes to zero if ||H||1 goes to zero, and
hence

lim
||H||1→0

σΩ(H)

||H||0
= 0 since lim

||H||0→0

σΩ(H)

||H||0
= 0

As ||H||1 ≥ ||H||0, this implies that

lim
||H||1→0

σΩ(H)

||H||1
= 0

and the corollary is proved. 2

We are finally ready to take a look at differential equations. If X is
a Banach space, O is an open subset of X, and H : R × O → X is a
continuously differentiable function, we shall consider equations of the form

y′(t) = H(t,y(t)) where y(0) = x ∈ O (6.7.4)

Our primary goal is to prove the existence of local solutions defined on a
small intervall [−a, a], but we shall also be interested in studying how the
solution depends on the initial condition x (strictly speaking, x is not an
initial condition as we require the solution to be defined on both sides of 0,
but we shall stick to this term nevertheless).
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The basic idea is easy to explain. Define a function F : O×C1
0 ([−1, 1], O)→

C([−1, 1], X) by
F(x, z)(t) = z′(t)−H(t,x + z(t))

and note that if a function z ∈ C1
0 ([−1, 1], O) satisfies the equation

F(x, z) = 0 (6.7.5)

then y(t) = x + z(t) is a solution to equation ( 6.7.4) (note that since
z ∈ C1

0 ([−1, 1], O), z(0) = 0 ). The idea is to use the Implicit Function
Theorem to prove that for all x ∈ O and all sufficiently small t, equation (
6.7.5) has a unique solution z.

The problem is that in order to use the Implicit Function Theorem in
this way, we need to have at least one point that satisfies the equation. In
our case, this means that we need to know that there is a function z0 ∈
C1

0 ([−1, 1], O) and an initial point x0 ∈ O such that F(x0, z0) = 0, and this
is far from obvious – actually, it requires us to solve the differential equation
for the initial condition x0. We shall avoid this problem by a clever rescaling
trick.

Consider the equation

u′(t) = aH(at,u(t)), u(0) = x ∈ O (6.7.6)

where a ∈ R, and assume for the time being that a 6= 0. Note that if y is
a solution of (6.7.4), then u(t) = y(at) is a solution of (6.7.6), and if u is a
solution of (6.7.6), then y(t) = u( ta) is a solution of (6.7.4). Hence to solve
(6.7.4) locally, it suffices to solve (6.7.6) for some a 6= 0. The point is that
the “uninteresting” point a = 0 will give us the point we need in order to
apply the Implicit Function Theorem! Here are the details of the modified
approach.

We start by defining a modified F-function

F : R× U × C1
0 ([−1, 1], O)→ C([−1, 1], X)

by
F(a,x, z)(t) = z′(t)− aH(at,x + z(t))

We now take the partial derivative ∂F
∂z of F. By Proposistion 6.7.3, the

function D(z) = z′ is a linear isomorphism and hence ∂D
∂z (z) = D by Propo-

sition 6.1.5. Differentiating the second term by the Omega Rule (or rather
its corollary 6.7.6), we get

∂

∂z
(aH(at,x + z(t))) = a

∂H

∂y
(a,x + z(t))

(The notation is getting quite confusing here: The expression on the right
hand side means that we take the partial derivative ∂H

∂y of the function
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H(t,y) and evaluate it at the point (a,x + z(t))). Hence

∂

∂z
F(a,x, z) = D − a∂H

∂y
(a,x + z(t))

Let us take a look at what happens at a point (0,x0,0) where x0 ∈ O and
0 is the function that is constant 0. We get

F(0,x0,0)(t) = 0′ − 0H(0t,x0 + 0(t)) = 0

and
∂

∂z
F(0,x0,0) = D − 0

∂H

∂y
(0,x0 + 0(t)) = D

Since D is an isomorphism by Proposition 6.7.3, the conditions of the Im-
plicit Function Theorem are satisfied at the point (0,x0,0). This means
that there is a neighborhood U of (0,x0) and a unique function G : U →
C1

0 ([−1, 1], O) such that

F(a,x,G(a,x)) = 0 for all (a,x) ∈ U (6.7.7)

i.e.
G′(a,x)(t) = aH(at,x + G(a,x)(t)) (6.7.8)

Choose a and r so close to 0 that U contains all points (a,x) where x ∈
B(x0, r). For each x ∈ B(x0, r), we define a function yx : [−a, a]→ O by

yx(t) = x + G(a,x)(t/a)

Differentiating and using ( 6.7.8), we get

y′x(t) = G′(a,x)(t/a) · 1

a
= aH(a(t/a),x + G(a,x)(t/a)) · 1

a
= H(t,yx(t))

Hence yx is a solution of ( 6.7.4) on the interval [−a, a].
It’s time to stop and sum up the situation:

Theorem 6.7.7 Let X be a complete normed space and O an open subset
of X. Assume that H : R×O → X is a continuously differentiable function.
Then for each point x in O the initial value problem

y′ = H(t,y(t)), y(0) = x

has a unique solution yx. The solution depends differentiably on x in the
following sense: For each x0 ∈ O there is a ball B(x0, r) ⊆ O and an interval
[−a, a] such that for each x ∈ B(x0, r), the solution yx is defined on (at least)
[−a, a] and the function x 7→ yx is a differentiable function from B(x0, r) to
C1([−a, a], X).
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Proof: If we choose an initial value x0, the argument above not only gives us
a solution for this initial value, but for all initial values x in a ball B(x0, r)
around x0. Since these solutions are given by

yx(t) = x + G(a,x)(t/a) ,

and G is differentiable according to the Implicit Function Theorem, yx de-
pends differentiably on x.

To prove uniqueness, assume that y1 and y2 are two solutions of the
differential equation with the same inital value x0. Choose a number a > 0
close to zero such that y1 and y2 are both defined on [−a, a], and define
z1, z2 : [−1, 1] → U by z1(t) = y1(at) − x0 and z2(t) = y2(at) − x0. Then
z1, z2 ∈ C1

0 ([−1, 1], U) and

z′1(t) = ay′1(at) = aH(t,y1(at)) = aH(t,x0 + z1(t))

and
z′2(t) = ay′2(at) = aH(t,y2(at)) = aH(t,x0 + z2(t))

Consequently, F(a,x0, z1) = 0 and F(a,x0, z2) = 0, contradicting the
uniqueness part of the Implicit Function Theorem, Corollary 6.6.2.

This proves uniqueness for a short interval [−a, a], but could the two so-
lutions split later? Assume that they do and put t0 = inf{t > a : y1(y) 6=
y2(t)}. By continuity, y1(t0) = y2(t), and if this point is in O, we can
now repeat the argument above with 0 replaced by t0 and x0 replaced by
y0 = y1(t0) = y2(t) to get uniqueness on an interval [t0, t0+b], contradicting
the definition of t0. The same argument works for negative “splitting points”
t0. 2

Compared to the results on differential equations in Chapter 4, the great-
est advantage of the theorem above is the information it gives us on the
dependence on the initial condition x. As observed in Section 4.9, we can
in general only expect solutions that are defined on a small interval [−a, a],
and we must also expect the length of this interval to depend on the initial
value x.

Exercises for Section 6.7

1. Show that || · ||1 is a norm on C1([a, b], X).

2. Assume that X is complete and c ∈ [a, b]. Show that C1
c ([a, b], X) is a closed

subspace of C1([a, b], X) and explain why this means that C1
c ([a, b], X) is

complete.

3. Check the claim in the text that if y is a solution of ( 6.7.4), then u(t) = y(at)
is a solution of ( 6.7.6), and that if u is a solution of ( 6.7.6) for a 6= 0, then
y(t) = u(t/a) is a solution of ( 6.7.4).



210 CHAPTER 6. DIFFERENTIAL CALCULUS IN NORMED SPACES

4. Define H : C([0, 1],R) → C([0, 1],R) by H(x)(t) = x(t)2. Use the Ω-rule
to find the derivative of H. Check your answer by computing H(x)(r)(t)
directly from the definition of derivative.

5. Show that

I(f)(t) =

∫ t

0

f(t) dt

defines a bounded linear map I : C([0, 1],R)→ C1([0, 1],R). What is ||I||?

6. In the setting of Theorem 6.7.7, show that x 7→ y(t, x) is a differentiable map
for all t ∈ [0, a)] (note that the evaluation map et(y) = y(t) is a linear – and
hence differentiable – map from C([0, a], X) to X).

7. Solve the differential equation

y′(t) = y(t), y(0) = x

and write the solution as yx(t) to emphasize the dependence on x. Compute
the derivative of the function x 7→ yx.

8. Assume that f, g : R→ R are continuous functions.

a) Show that the unique solution y(t, x) to the problem

y′(t) + f(t)y(t) = g(t), y(0) = x

is

yx(t) = e−F (t)

(∫ t

0

eF (t)g(t) dt+ x

)
where F (t) =

∫ t
0
f(s) ds.

b) Compute the derivative of the function x 7→ yx.

9. In this problem we shall be working with the ordinary differential equation

y′(t) = |y(t)| y(0) = x

on the interval [0, 1]

a) Use Theorem 4.7.2 to show that the problem has a unique solution.
b) Find the solution y(t, x) as a function of t and the initial value x
c) Show that y(1, y0) depends continuously, but not differentiably on x.

6.8 Multilinear maps

So far we have only considered first derivatives, but we know from calculus
that higher order derivatives are also important. In our present setting,
higher order derivatives are easy to define, but harder to understand, and
the best way to think of them is as multilinear maps. Before we turn to
higher derivatives, we shall therefore take a look at the basic properties of
such maps.

Intuitively speaking, a multilinear map is a multivariable function which
is linear in each variable. More precisely, we have:
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Definition 6.8.1 Assume that X1, X2, . . . , Xn, Y are linear spaces. A func-
tion A : X1 ×X2 × . . . Xn → Y is multilinear if it is linear in each variable
in the following sense: For all indices i ∈ {1, 2, . . . , n} and all elements
r1 ∈ X1, . . . , ri ∈ Xi, . . . , rn ∈ Xn, we have

(i) A(r1, . . . , αri, . . . , rn) = αA(r1, . . . , ri, . . . , rn) for all α ∈ K.

(ii) A(r1, . . . , ri + si, . . . , rn) = A(r1, . . . , ri, . . . , rn) +A(r1, . . . , si, . . . , rn)
for all si ∈ Xi.

A multilinear map A : X1 × X2 → Y with two variables, is usually called
bilinear.

Example 1: Here are some multilinear maps you are already familiar with:

(i) Multiplication of real numbers is a bilinear map. More precisely, the
map from R2 to R given by (x, y) 7→ xy is bilinear.

(ii) Inner products on real vector spaces are bilinear maps. More precisely,
if H is a linear space over R and 〈·, ·〉 is an inner product on H, then
the map from H2 to R given by (u,v) 7→ 〈u,v〉 is a bilinear map.
Complex inner products are not bilinear maps as they are not linear
in the second variable.

(iii) Determinants are multilinear maps. More precisely, let a1 = (a11, a12,
. . . , a1n), a2 = (a21, a22, . . . , a2n), . . . , an = (an1, an2, . . . , ann) be n
vectors in Rn, and let A be the matrix having a1,a2, . . . ,an as rows.
The function from Rn to R defined by (a1,a2, . . . ,an) 7→ det(A) is a
multilinear map.

The first thing we observe about multilinear maps, is that if one variable
is 0, then the value of the map is 0, i.e. A(r1, . . . ,0, . . . , rn) = 0. This is
because by rule (i) of Definition 6.8.1,

A(r1, . . . ,0, . . . , rn) = A(r1, . . . , 00, . . . , rn)

= 0A(r1, . . . ,0, . . . , rn) = 0

Our next observation is that

A(α1x1, α2x2, . . . , αnxn) = α1α2 . . . αnA(x1,x2, . . . ,xn)

This follows directly from part (i) of the definition as we can pull out one α
at the time.

Assume now that the spaces X1, X2, . . .Xn are normed spaces. If we
have nonzero vectors x1 ∈ X1, x2 ∈ X2, . . . , xn ∈ Xn, we may rescale them
to unit vectors u1 = x1

||x1|| , u2 = x2
||x2|| , . . . , un = xn

||xn|| , and hence

A(x1,x2, . . . ,xn) = A(||x1||u1, ||x2||u2, . . . , ||xn||un)
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= ||x1||||x2|| . . . ||xn||A(u1,u2, . . . ,un)

which shows that the size of A(x1,x2, . . . ,xn) grows like the product of the
norms ||x1||, ||x2||, . . . , ||xn||. This suggests the following definition:

Definition 6.8.2 Assume that X1, X2, . . . , Xn, Y are normed spaces. A
multilinear map A : X1×X2× . . . Xn → Y is bounded if there is a constant
K ∈ R such that

||A(x1,x2, . . . ,xn)|| ≤ K||x1||||x2|| . . . ||xn||

for all x1 ∈ X1, x2 ∈ X2,. . . , xn ∈ Xn.

Just as for linear maps (Theorem 5.4.5), there is a close connection
between continuity and boundedness (continuity here means with respect to
the usual “product norm” ||x1||+ ||x2||+ · · ·+ ||xn|| on X1 ×X2 × . . . Xn).

Proposition 6.8.3 For a multilinear map A : X1 × X2 × . . . Xn → Y be-
tween normed spaces, the following are equivalent:

(i) A is bounded.

(ii) A is continuous.

(iii) A is continuous at 0.

Proof: We shall prove (i) =⇒(ii) =⇒(iii) =⇒(i). As (ii) obviously implies
(iii), it suffices to prove that (i) =⇒ (ii) and (iii) =⇒ (i).

(i) =⇒(ii): Assume that there is a constant K such that

||A(x1,x2, . . . ,xn)|| ≤ K||x1||||x2|| . . . ||xn||

for all x1 ∈ X1, x2 ∈ X2,. . . , xn ∈ Xn, and let a = (a1,a2, . . . ,an) be an
element in X = X1 ×X2 × . . . Xn. To prove that A is continuous at a, note
that if x = (x1,x2, . . . ,xn) is another point in X, then

A(x)−A(a) =A(x1,x2, . . . ,xn)−A(a1,x2, . . . ,xn)

+A(a1,x2, . . . ,xn)−A(a1,a2, . . . ,xn)

...
...

...
...

...
...

+A(a1,a2, . . . ,xn)−A(a1,a2, . . . ,an)

=A(x1 − a1,x2, . . . ,xn)

+A(a1,x2 − a2, . . . ,xn)

...
...

...
...

+A(a1,a2, . . . ,xn − an)
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by multilinearity, and hence

||A(x)−A(a)|| ≤||A(x1 − a1,x2, . . . ,xn)||
+ ||A(a1,x2 − a2, . . . ,xn)||

...
...

...
...

+ ||A(a1,a2, . . . ,xn − an)||
≤K||x1 − a1||||x2|| . . . ||xn||

+K||a1||||x2 − a2|| . . . ||xn||
...

...
...

...
+K||a1||||a2|| . . . ||xn − a2||

If we assume that ||x− a|| ≤ 1, then ||xi||, ||ai|| ≤ ||a||+ 1 for all i, and hence

||A(x)−A(a)|| ≤K(||a||+ 1)n−1(||x1 − a1||+ ||x2 − a2||+ · · · ||xn − an||)
≤K(||a||+ 1)n−1||x− a||

As we can get this expression as close to 0 as we want by choosing x suffi-
ciently close to a, we see that A is continuous at a.

(iii) =⇒ (i): Choose ε = 1. Since A is continuous at 0, there is a
δ > 0 such that if ||u|| < δ, then ||A(u)|| = ||A(u) − A(0)|| < 1. If
x = (x1,x2, . . . ,xn) is an arbitrary element in X with nonzero components,
define

u =

(
δx1

2n||x1||
,
δx2

2n||x2||
, . . . ,

δxn
2n||xn||

)
and note that since

||u|| = ||u1||+ ||u2||+ · · · ||un|| ≤ n ·
δ

2n
=
δ

2
< δ

we have ||A(u)|| < 1. Hence

||A(x)|| = ||A
(

2n||x1||
δ

u1,
2n||x2||
δ

u2, . . . ,
2n||xn||
δ

un

)
||

=

(
2n

δ

)n
||x1||||x2|| . . . ||xn||A(u1,u2, . . . ,un)

≤
(

2n

δ

)n
||x1||||x2|| . . . ||xn||

which shows that A is bounded with K =
(

2n
δ

)n. 2

Let us see how we can differentiate multilinear maps. This is not difficult,
but the notation may be a little confusing: If A : X1 × . . . × Xn → Z is
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a multilinear map, we are looking for derivatives A′(a1, . . . ,an)(r1, . . . rn)
at a point (a1, . . .an) ∈ X1 × . . . × Xn and in the direction of a vector
(r1, . . . , rn) ∈ X1 × . . .×Xn.

Proposition 6.8.4 Assume that X1, . . . , Xn, Z are normed vector spaces,
and that A : X1 × . . . ×Xn → Z is a continuous multilinear map. Then A
is differentiable and

A′(a1, . . . ,an)(r1, . . . , rn)

= A(a1, . . . ,an−1, rn) +A(a1, . . . , rn−1,an) + . . .+A(r1,a2, . . . ,an)

Proof: To keep the notation simple, I shall only prove the result for bilinear
maps, i.e, for the case n = 2 and leave the general case to the reader. We
need to check that

σ(r1, r2) = A(a1 + r1,a2 + r2)−A(a1,a2)− (A(a1, r2) +A(r1,a2))

goes to zero faster than ||r1||+ ||r2||. Since by bilinearity

A(a1 + r1,a2 + r2)−A(a1,a2) = A(a1,a2 + r2) +A(r1,a2 + r2)−A(a1,a2)

= A(a1,a2) +A(a1, r2) +A(r1,a2) +A(r1, r2)−A(a1,a2)

= A(a1, r2) +A(r1,a2) +A(r1, r2),

we see that σ(r1, r2) = A(r1, r2). Since A is continuous, there is a constant
K such that ||A(r1, r2)|| ≤ K||r1||||r2||, and hence

||σ(r1, r2)|| = ||A(r1, r2)|| ≤ K||r1||||r2|| ≤
1

2
K(||r1||+ ||r2||)2

which clearly goes to zero faster than ||r1||+ ||r2||. 2

Multilinear maps may be thought of as generalized products, and they
give rise to a generalized product rule for derivatives.

Proposition 6.8.5 Assume that X,Y1, . . . , Yn, U are normed spaces and
that O is an open subset of X. Assume further that F1 : O → Y2, F2 :
O → Y2, . . . , Fn : O → Yn are differentiable at a point a ∈ O. If A :
Y1 × Y2 × . . . × Yn → U is a multilinear map, then the composed function
H(x) = A(F1(x),F2(x), . . . ,Fn(x)) is differentiable at a with

H′(a)(r) = A(F1(a), . . .Fn−1(a),F′n(a)(r))

+A(F1(a), . . . ,F′n−1(a)(r),Fn−1(a)) + . . .+A(F′1(a)(r),F2(a), . . . ,Fn(a))
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Proof: Let K : X → Y1 × Y2 × . . .× Yn be defined by

K(x) = (F1(x),F2(x)), . . . ,Fn(x))

Then H(x) = A(K(x)), and by the Chain Rule and the proposition above

H′(a)(r) = A′(K(a))(K′(a)(r))

= A(F1(a), . . .Fn−1(a),F′n(a)(r)) +A(F1(a), . . . ,F′n−1(a)(r),Fn−1(a))

+ . . .+A(F′1(a)(r),F2(a), . . . ,Fn(a))

2

Remark: If you haven’t already done so, you should notice the similarity
between the result above and the ordinary product rule for derivatives: We
differentiate in one “factor” at the time and sum the results.

Exercises for Section 6.8

1. Show that the maps in Example 1 really are multilinear.

2. Prove the general case of Proposition 6.8.4.

3. Let X be a normed space and Y an inner product space. Assume that
F,G : X → Y are differentiable functions. Find the derivative of

H(x) = 〈F(x),G(x)〉

expressed in terms of F,G,F′,G′.

4. Let X,Y be vector spaces. A multilinear map A : Xn → Y is called alter-
nating if A(. . . ,ai, . . . ,aj , . . .) = −A(. . . ,aj , . . . ,ai, . . .) when i 6= j, i.e. the
function changes sign whenever we interchange two variables.

a) Show that determinants can be thought of as alternating multilinear
maps from Rn to R.

In the rest of the problem, A : Xn → Y is an alternating, multilinear map.

b) Show that if two different variables have the same value, then the value
of the map is 0, i.e. A(. . . ,ai, . . . ,ai, . . .) = 0.

c) Show the converse of b): If B : Xn → Y is a multilinear map such
that the value of B is 0 whenever two different variables have the same
value, then B is alternating.

d) Show that if i 6= j,

A(. . . ,ai + saj , . . . ,aj , . . .) = A(. . . ,ai, . . . ,aj , . . .)

for all s.
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e) Show that if a1,a2, . . . ,an are linearly dependent, then

A(a1,a2, . . . ,an) = 0

f) Assume now thatX is an n-dimensional vector space and that v1,v2,. . . ,
vn is a basis for X. Let B be another alternating, multilinear map such
that

A(v1,v2, . . . ,vn) = B(v1,v2, . . . ,vn)

Show that B = A. (Hint: Show first that if i1, i2, . . . , in ∈ {1, 2, . . . , n},
then A(vi1 ,vi2 , . . . ,vin) = B(vi1 ,vi2 , . . . ,vin).)

g) Show that the determinant is the only alternating, multilinear map
det : Rn → R such that det(e1, e2, . . . , en) = 1 (here e1, e2, . . . , en is
the standard basis in Rn.)

6.9 Higher order derivatives

We are now ready to look at higher order derivatives. Just as in one-variable
calculus, we obtain these by differentiating over and over again, but the
difference is that in our present setting, the higher order derivatives become
increasingly complicated objects, and it is important to look at them from
the right perspective. But let us begin from the beginning.

If X,Y are two normed spaces, O is an open subset of X, and F : O → Y
is a differentiable function, we know that the derivative F′(a) at a point
a ∈ O is a linear map from X to Y . If we let L(X,Y ) denote the set of
all bounded linear maps from X to Y , this mean that we can think of the
derivative as a function F′ : O → L(X,Y ) which to each point a ∈ O,
gives us a linear map F′(a) in L(X,Y ). Equipped with the operator norm,
L(X,Y ) is a normed space, and hence it makes sense to ask if the derivative
of F′ exists.

Definition 6.9.1 Assume that X,Y are two normed spaces, O is an open
subset of X, and F : O → Y is a differentiable function. If the derivative
F′ : O → L(X,Y ) is differentiable at a point a ∈ O, we define the double
derivative F′′(a) of F at a to be the derivative of F′ at a, i.e.

F′′(a) = (F′)′(a)

If this is the case, we say that F is twice differentiable at a. If F is twice dif-
ferentiable at all points in a set O′ ⊆ O, we say that F is twice differentiable
in O′.

We can now continue in the same manner: If the derivative of F′′ exists,
we define it to be the third derivative of F etc. In this way, we can define
derivatives F(n) of all orders. The crucial point of this definition is that
since a derivative (of any order) is a map from an open set O into a normed
space, we can always apply Definition 6.1.3 to it to get the next derivative.
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On the strictly logical level, it is not difficult to see that the definition
above works, but what are these derivates and how should we think of them?
Since the first derivate takes values in L(X,Y ), the second derivative at a
is a linear map from X to L(X,Y ), i.e. an element of L(X,L(X,Y )). This
is already quite mind-boggling, and it is only going to get worse; the third
derivative is an element of L(X,L(X,L(X,Y ))), and the fourth derivative
is an element of L(X,L(X,L(X,L(X,Y ))))! We clearly need more intuitive
ways to think about higher order derivatives.

Let us begin with the second derivative: How should we think of F′′(a)?
Since F′′(a) is an element of L(X,L(X,Y )), it is a linear map from X to
L(X,Y ), and hence we can apply F′′(a) to an element r1 ∈ X and get an
element F′′(a)(r1) in L(X,Y ). This means that F′′(a)(r1) is a linear map
from X to Y , and hence we can apply it to an element r2 in X and obtain
an element F′′(a)(r1)(r2) in Y . Hence given two elements r1, r2 ∈ X, the
double derivative will produce an element F′′(a)(r1)(r2) in Y . From this
point of view, it is natural to think of the double derivative as a function of
two variables sending (r1, r2) to F′′(a)(r1)(r2). The same argument applies
to derivatives of higher order; it is natural to think of the n-th derivative
F(n)(a) as a function of n variables mapping n-tuples (r1, r2, . . . , rn) in Xn

to elements F(n)(a)(r1)(r2) . . . (rn) in Y .
What kind of functions are these? If we go back to the second derivative,

we note that F′′(a) is a linear map from X to L(X,Y ). Similarly, F′′(a)(r1)
is a linear map from X to Y . This means that if we keep one variable fixed,
the function (r1, r2) 7→ F(2)(a)(r1, r2) will be linear in the other variable –
i.e., F′′ acts like a bilinear map. The same holds for higher order derivatives;
the map (r1, r2, . . . , rn) 7→ F(n)(a)(r1)(r2) . . . (rn) is linear in one variable
at the time, and hence F(n) acts like a multilinear map.

Let us formalize this argument.

Proposition 6.9.2 Assume that X,Y are two normed spaces, that O is an
open subset of X, and that F : O → Y is an n times differentiable function.
Then for each a ∈ O, the function defined by

(r1, r2, . . . , rn) 7→ F(n)(a)(r1)(r2) . . . (rn)

is a bounded, multilinear map from Xn to Y .

Proof: We have already shown that F(n) is a multilinear map, and it remains
to show that it is bounded. To keep the notation simple, I shall show this
for n = 3, but the argument clearly extends to the general case. Recall that
by definition, F′′′(a) is a bounded, linear map from X to L(X,L(X,Y )).
This means that for any r1

||F′′′(a)(r1)|| ≤ ||F′′′(a)||||r1||
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Now, F′′′(a)(r1) is a linear map from X → L(X,Y ) and

||F′′′(a)(r1)(r2)|| ≤ ||F′′′(a)(r1)||||r2|| ≤ ||F
′′′

(a)||||r1||||r2||

Finally, F′′′(a)(r1)(r2) is a bounded, linear map from X to Y , and

||F′′′(a)(r1)(r2)(r3)|| ≤ ||F′′′(a)(r1)(r2)||||r3|| ≤ ||F
′′′

(a)||||r1||||r2||||r3||

which shows that F′′′(a) is bounded. It should now be clear how to proceed
in the general case. 2

Remark: We now have two ways to think of higher order derivates. One is
to think of them as linear maps

F(n)(a) : X → L(X → L(X, . . . ,L(X,Y ) . . .)]

the other is to think of them as multilinear maps

F(n)(a) : Xn → Y

Formally, these representations are different, but as it is easy to go from
one to the other, we shall use them interchangeably. When we think of
higher order derivatives as multilinear maps, it is natural to denote them by
F(n)(a)(r1, r2, . . . , rn) instead of F(n)(a)(r1)(r2) . . . (rn) and we shall do so
whenever convenient from now on.

Example 1: It’s instructive to see what higher order derivatives look like
for functions f : Rn → R, i.e., the functions we are usually working with
in multivariable calculus. We already know that the first order derivative is
given by

f ′(a)(r) = ∇f(a) · r =
n∑
i=1

∂f

∂xi
(a)ri

where ri are the components of r, i.e., r = (r1, r2, . . . , rn).
If we differentiate this, we see that the second order derivative is given

by

f ′′(a)(r)(s) =
n∑
i=1

n∑
j=1

∂2f

∂xj∂xi
(a)risj

where r = (r1, r2, . . . , rn) and s = (s1, s2, . . . , sn), and that the third order
derivative is

f ′′′(a)(r)(s)(t) =

n∑
i=1

n∑
j=1

n∑
k=1

∂3f

∂xk∂xj∂xi
(a)risjtk

where r = (r1, r2, . . . , rn), s = (s1, s2, . . . , sn), and t = (t1, t2, . . . , tn). The
pattern should now be clear. ♣
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An important theorem in multivariable calculus says that under quite
general conditions, the mixed partial derivatives ∂2f

∂xi∂xj
and ∂2f

∂xj∂xi
are equal.

The corresponding theorem in the present setting says that F′′(a)(r, s) =
F′′(a)(s, r). Let us try to understand what this means: F′(a)(r) is the change
in F in the r-direction, and hence F′′(a)(r)(s) measures how fast the change
in the r-direction is changing in the s-direction. Similarly, F′′(a)(s)(r) mea-
sures how fast the change in the s-direction is changing in the r-direction.
It is not obvious that these two expressions are equal, but if F is twice
differentiable, they are.

Theorem 6.9.3 Let X and Y be two normed spaces, and let O be an open
subset of X. Assume that F : O → Y is twice differentiable at a point a ∈ O.
Then F′′(a) is a symmetric bilinear map, i.e.

F′′(a)(r, s) = F′′(a)(s, r)

for all r, s ∈ X.

Proof: Fix two arbitrary elements r, s ∈ X and define

Λ(h) = F(a + hr + hs)− F(a + hr)− F(a + hs) + F(a)

Let us first take an informal look at what Λ has to do with the problem.
When h is small, we have

Λ(h) =
[
F(a + hr + hs)− F(a + hr)

]
−
[
F(a + hs)− F(a)

]
≈ F′(a + hr)(hs)− F′(a)(hs) ≈ F′′(a)(hr)(hs) = h2F(a)(r)(s)

However, if we arrange the terms differently, we get

Λ(h) =
[
F(a + hr + hs)− F(a + hs)

]
−
[
F(a + hr)− F(a)

]
≈ F′(a + hs)(hr)− F′(a)(hr) ≈ F′′(a)(hs)(hr) = h2F(a)(s)(r)

This indicates that for small h, Λ(h)
h2

is close to both F′′(a)(r)(s) and F′′(a)(s)(r),
and hence these two must be equal.

We shall formalize this argument by proving that

lim
h→0

Λ(h)

h2
= F′′(a)(r)(s)

By symmetry, we will then also have limh→0
Λ(h)
h2

= F′′(a)(s)(r), and the
theorem will be proved.

We begin by observing that since F is twice differentiable at a,

σ(u) = F′(a + u)− F′(a)− F′′(a)(u) (6.9.1)
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goes to zero faster than u: Given an ε > 0, there is a δ > 0 such that if
||u|| < δ, then ||σ(u)|| ≤ ε||u||. Through the rest of the argument we shall
assume that h is so small that |h|(||r||+ ||s||) < δ.

We shall first use formula (6.9.1) with u = hs. Since all the terms in
formula (6.9.1) are linear maps from X to Y , we can apply them to hr to
get

F′′(a)(hs)(hr) = F′(a + hs)(hr)− F′(a)(hr)− σ(hs)(hr)

Reordering terms, this means that

Λ(h)− F′′(a)(hs)(hr) =

=
[
F(a + hr + hs)− F(a + hr)− F′(a + hs)(hr) + F′(a)(hr)

]
−
[
F(a + hs)− F(a)

]
+ σ(hs)(hr)

= G(h)−G(0) + σ(hs)(hr)

where

G(t) = F(a + tr + hs)− F(a + tr)− F′(a + hs)(tr) + F′(a)(tr)

= F(a + tr + hs)− F(a + tr)− tF′(a + hs)(r) + tF′(a)(r)

Hence

||Λ(h)− F′′(a)(hs)(hr)|| ≤ ||G(h)−G(0)||+ ||σ(hs)||||hr|| (6.9.2)

≤ ||G(h)−G(0)||+ h2ε||r||||s||

as ||hs|| < δ.
To estimate ||G(h) − G(0)||, we first observe that by the Mean Value

Theorem (or, more precisely, its corollary 6.2.2), we have

||G(h)−G(0)|| ≤ |h| sup{||G′(t)|| : t lies between 0 and h} (6.9.3)

Differentiating G, we get

G′(t) = F′(a + tr + hs)(r)− F′(a + tr)(r)− F′(a + hs)(r) + F′(a)(r)

To simplify this expression, we use the following instances of ( 6.9.1):

F′(a + tr + hs) = F′(a) + F′′(a)(tr + hs) + σ(tr + hs)

F′(a + tr) = F′(a) + F′′(a)(tr) + σ(tr)

F′(a + hs) = F′(a) + F′′(a)(hs) + σ(hs)

If we substitute these expressions into the formula for G′(t) and use the
linearity of F′′(a), we get

G′(t) = σ(tr + hs)(r)− σ(tr)(r)− σ(s)(r)
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and hence

||G′(t)|| ≤ ||r|| (||σ(tr + hs)||+ ||σ(tr)||+ ||σ(hs)||)

≤ ε||r|| (||tr + hs||+ ||tr||+ ||hs||)

≤ 2|h|ε||r||(||r||+ ||s||)

since ||tr + hs||, ||tr|| and ||hs|| are less than δ, and |h| is less than |t|. By
(6.9.3), this means that

||G(h)−G(0)|| ≤ 2h2ε||r||(||r||+ ||s||)

and hence by (6.9.2)

||Λ(h)− F′′(a)(hs)(hr)|| ≤ 2h2ε||r||(||r||+ ||s||) + h2ε||r||||s||

= h2ε
(
2||r||2 + 3||r||||s||

)
Dividing by h2, we get

||Λ(h)

h2
− F′′(a)(s)(r)|| ≤ ε

(
2||r||2 + 3||r||||s||

)
Since ε > 0 was arbitrary, this shows that we can get Λ(h)

h2
as close to

F′′(a)(s)(r) as we want by choosing h small enough, and hence limh→0
Λ(h)
h2

=
F′′(a)(r)(s). As we have already observed, this is sufficient to prove the the-
orem. 2

The theorem generalizes to higher order derivatives.

Theorem 6.9.4 Let X and Y be two normed spaces, and let O be an open
subset of X. Assume that F : O → Y is n times differentiable at a point
a ∈ O (and hence n − 1 times differentiable in some neighborhood of a).
Then F(n)(a) is a symmetric multilinear map, i.e. if r1, r2, . . . , rn and
s1, s2, . . . , sn are the same elements of X but in different order, then

F(n)(a)(r1, r2, . . . , rn) = F(n)(a)(s1, s2, . . . , sn)

Proof: According to the previous result, we can always interchange two
neighbor elements:

F(n)(a)(r1, . . . , ri, ri+1, . . . , rn) = F(n)(a)(r1, . . . , ri+1, ri, . . . , rn)

and the result follows by observing that we can obtain any permutation
of r1, r2, . . . , rn by systematically interchanging neighbors. I illustrate the
procedure on an example, and leave the general argument to the reader.
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Let us see how we can prove that

F(4)(a)(r,u, s, s) = F(4)(a)(s,u, s, r)

We start with F(4)(a)(r,u, s, s) and try to transform it into F(4)(a)(s,u, s, r)
by interchanging neighbors. We first note that we can get an s in first
position by two interchanges:

F(4)(a)(r,u, s, s) = F(4)(a)(r, s,u, s) = F(4)(a)(s, r,u, s)

We next concentrate on getting a u in the second position:

F(4)(a)(s, r,u, s) = F(4)(a)(s,u, r, s)

We now have the two first positions right, and a final interchange gives us
what we want:

F(4)(a)(s,u, r, s) = F(4)(a)(s,u, s, r)

It should be clear that this method of concentrating on one variable at
the time, always works to give us what we want, although it may not always
be the fastest method. 2

Remark: For functions F : R→ Y (or F : C→ Y ) we have been using the
simplified notation F′(a) for what is really F′(a)(1). We extend this to higher
order derivatives by writing F(n)(a) for what is formally F(n)(a)(1)(1) . . . (1).
Note that this is in agreement with the intuitive idea that

F(n)(a) = lim
t→0

F(n−1)(a+ t)− F(n−1)(a)

t

The derivatives F(n)(a) will figure prominently in the next section.

Exercises for Section 6.9

1. Assume that f : R2 → R is twice differentiable and let e1, e2, . . . , en be the
standard basis in Rn. Show that

f ′′(a)(ei, ej) =
∂f2

∂xj∂xi
(a)

where the partial derivatives on the right are the partial derivatives of calcu-
lus.

2. Assume that F is five times differentiable at a. Show that

F(5)(a)(r,u, s, s,v) = F(5)(a)(s,u,v, s, r)

by systematically interchanging neighbor variables.

3. Prove the formulas in Example 1.
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4. Prove the formula

F(n)(a) = lim
t→0

F(n−1)(a+ t)− F(n−1)(a)

t

in the Remark above.

5. Assume that f : Rn → R is twice differentiable and let Hf(a) be the Hesse
matrix at a:

Hf(a) =



∂f2

∂x2
1
(a) ∂f2

∂x1∂x2
(a) . . . ∂f2

∂x1∂xn
(a)

∂f2

∂x2∂x1
(a) ∂f2

∂x2
2
(a) . . . ∂f2

∂x2∂xn
(a)

...
... . . .

...

∂f2

∂xn∂x1
(a) ∂f2

∂xn∂x2
(a) . . . ∂f2

∂x2
n

(a)


Show that f(a)(r, s) = 〈Hf(a)r, s〉, where 〈·, ·〉 is the inner product in Rn.

6. In this problem we shall take a look at a function f : R2 → R such that
∂2f
∂x∂y (0, 0) 6= ∂2f

∂y∂x (0, 0). The function is defined by

f(x, y) =


x3y−xy3
x2+y2 when (x, y) 6= (0, 0)

0 when (x, y) = (0, 0)

a) Show that f(x, 0) = 0 for all x and that f(0, y) = 0 for all y. Use this
to show that ∂f

∂x (0, 0) = 0 and ∂f
∂y (0, 0) = 0.

b) Show that for (x, y) 6= (0, 0), we have

∂f

∂x
(x, y) =

y(x4 + 4x2y2 − y4)

(x2 + y2)2

∂f

∂y
(x, y) = −x(y4 + 4x2y2 − x4)

(x2 + y2)2

c) Show that ∂2f
∂y∂x (0, 0) = −1 by using that

∂2f

∂y∂x
(0, 0) = lim

h→0

∂f
∂x (0, h)− ∂f

∂x (0, 0)

h

Show in a similar way that ∂2f
∂x∂y (0, 0) = 1.

6.10 Taylor’s Formula

We shall end this chapter by taking a look at Taylor’s formula. In single
variable calculus, this formula says that

f(x) =

n∑
k=0

f (k)(a)

k!
+Rnf(x; a)
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where Rnf(x; a) is a remainder term (or error term) that can be expressed in
several different ways. The point is that for “nice” functions, the remainder
term goes to 0 as n goes to infinity, and hence the Tayloyr polynomials∑n

k=0
f (k)(a)
k! become better and better approximations to f .

We shall now generalize Taylor’s formula to the setting we have been
working with in this chapter. First we shall look at functions F : R → Y
defined on the real line, but taking values in a normed space Y , and then
we shall generalize one step further to functions F : X → Y between two
normed spaces.

We start by a simple observation (note that we are writing F(n)(a) for
F(n)(a)(1)(1) . . . (1) as explained at the end of the previous section):

Lemma 6.10.1 Let Y be a normed space, and assume that F : [0, 1] → Y
is n+ 1 times continuously differentiable in [0, 1]. Then

d

dt

(
n∑
k=0

1

k!
(1− t)kF(k)(t)

)
=

1

n!
(1− t)nF(n+1)(t)

for all t ∈ [0, 1].

Proof: If we use the product rule on each term of the sum, we get (the first
term has to be treated separately)

d

dt

(
n∑
k=0

1

k!
(1− t)kF(k)(t)

)

= F′(t) +

n∑
k=1

(
− 1

(k − 1)!
(1− t)k−1F(k)(t) +

1

k!
(1− t)kF(k+1)(t)

)
If you write out the sum line by line, you will see that the first term in the
line

− 1

(k − 1)!
(1− t)k−1F(k)(t) +

1

k!
(1− t)kF(k+1)(t)

cancels with one from the previous line, and that the second term cancels
with one from the next line (telescoping sum). All you are left with, is the
very last term

1

n!
(1− t)nF(n+1)(t)

2

We have now have our first version of Taylor’s formula:

Proposition 6.10.2 Let Y be a normed space, and assume that F : [0, 1]→
Y is n+ 1 times continuously differentiable in [0, 1]. Then

F(1) =
n∑
k=0

1

k!
F(k)(0) +

∫ 1

0

1

n!
(1− t)nF(n+1)(t) dt
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Proof: Let G(t) =
∑n

k=0
1
k!(1− t)

kF(k)(t). Then

G′(t) =
d

dt

(
n∑
k=0

1

k!
(1− t)kF(k)(t)

)
=

1

n!
(1− t)nF(n+1)(t)

by the lemma. If we use the Fundamental Theorem of Calculus (or rather
its corollary 6.4.7) to integrate both sides of this formula, we get

G(1)−G(0) =

∫ 1

0

1

n!
(1− t)nF(n+1)(t) dt

Since G(1) = F(1) and G(0) =
∑n

k=0
1
k!F

(k)(0), the proposition follows. 2

In practice, the following corollary is usually more handy than the propo-
sition above.

Lemma 6.10.3 Let Y be a normed space, and assume that F : [0, 1] → Y
is n+ 1 times continuously differentiable in [0, 1] with ||F(n+1)(t)|| ≤ M for
all t ∈ [0, 1]. Then

||F(1)−
n∑
k=0

1

k!
F(k)(0)|| ≤ M

(n+ 1)!

Proof: Since

F(1)−
n∑
k=0

1

k!
F(k)(0) =

∫ 1

0

1

n!
(1− t)nF(n+1)(t) dt

it suffices to show that

||
∫ 1

0

1

n!
(1− t)nF(n+1)(t) dt|| ≤ M

(n+ 1)!

Let

H(t) =

∫ t

0

1

n!
(1− t)nF(n+1)(t) dt

and note that

||H′(t)|| = || 1
n!

(1− t)nF(n+1)(t)|| ≤ M

n!
(1− t)n

By the Mean Value Theorem (6.2.1), we get

||H(1)|| = ||H(1)−H(0)|| ≤
∫ 1

0

M

n!
(1− t)n dt =

M

(n+ 1)!

2

We are now ready to extend Taylor’s formula to functions defined on a
normed space X, and to keep the expressions short, we need the following
notation. If h ∈ X, we write hn for the element (h,h, . . . ,h) ∈ Xn which
has all components equal to h.
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Theorem 6.10.4 (Taylor’s Formula) Let X,Y be normed spaces, and
assume that F : O → Y is an n+1 times continuously differentiable function
defined on an open, convex subset O of X. If a,a + h ∈ O, then

F(a + h) =
n∑
k=0

1

k!
F(k)(a)(hk) +

∫ 1

0

(1− t)n

n!
F(n+1)(a + th)(hn+1) dt

Proof: Define a function G : [0, 1]→ Y by

G(t) = F(a + th)

and note that by the chain rule,G(k)(t) = F(k)(a+th)(hk) for k = 1, 2, . . . , n+
1. Applying Proposition 6.10.2 to G, we get

F(a + h) = G(1) =
n∑
k=0

1

k!
G(k)(0) +

∫ 1

0

1

n!
(1− t)nG(n+1)(t) dt

=
n∑
k=0

1

k!
F(k)(a)(hk) +

∫ 1

0

(1− t)n

n!
Fn+1(t)(hn+1) dt

2

Remark: As in the one-dimensional case, we refer to

n∑
k=0

1

k!
F(k)(a)(hk)

as the Taylor polynomial of f of degree n at a.

Again we have a corollary that is often easier to apply in practice.

Corollary 6.10.5 Let X,Y be normed spaces, and assume that F : O → Y
is an n + 1 times continuously differentiable function defined on an open,
convex subset O of X. Assume that a,a+h ∈ O, and that ||F(n+1)(a+th)|| ≤
M for all t ∈ [0, 1]. Then

||F(a + h)−
n∑
k=0

1

k!
F(k)(a)(hk)|| ≤ M ||h||n+1

(n+ 1)!

Proof: This result follows from Corollary 6.10.3 the same way the previous
result followed from Proposition 6.10.2, using that ||F(n+1)(a + th)(hn)|| ≤
||F(n+1)(a + th)||||h||n+1. The details are left to the reader. 2

In some ways the version of Taylor’s formula we have presented above
is deceptively simple as the higher order derivatives F(k) are actually quite
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complicated objects. If we look at a multivariable function f : Rn → R, we
know from Example 1 in section 6.9 that

f ′(a)(r) =
n∑
i=1

∂f

∂xi
(a)ri

f ′′(a)(r)(s) =
n∑
i=1

n∑
j=1

∂2f

∂xj∂xi
(a)risj

f ′′′(a)(r)(s)(t) =
n∑
i=1

n∑
j=1

n∑
k=1

∂3f

∂xk∂xj∂xi
(a)risjtk

In general

f (k)(a)(r1)(r2) . . . (rk) =

n∑
i1=1

n∑
i2=1

. . .

n∑
ik=1

∂kf

∂xik . . . ∂xi2∂xi1
(a)r

(ik)
k · · · r(i2)

2 r
(i1)
1

where ri = (r
(1)
i , r

(2)
i , . . . , r

(k)
i ). The Taylor polynomials can now be written

n∑
k=0

1

k!
f (k)(a)(hk) =

n∑
k=0

1

k!

n∑
i1=1

n∑
i2=1

. . .
n∑

ik=1

∂kf

∂xik . . . ∂xi2∂xi1
hik · . . . · hi2hi1

where h = (h1, h2, . . . , hk). This is the version we normally use for functions
of several real variables (but see Exercise 5 below for a more efficient way of
organizing the terms).

In the results above, we have assumed that F is n+1 times differentiable
although we are only interested in the Taylor polynomial of order n. This
has the advantage of giving us good estimates for the error in terms of the
(n+1)-st derivative, but for theoretical purposes it is interesting to see what
can be obtained if we only have n derivatives.

Theorem 6.10.6 Let X,Y be normed spaces and let O be an open subset
of X. Assume that F : O → Y is n times differentiable at a point a ∈ O.
Then

||F(a + h)−
n∑
k=0

1

k!
F(k)(a)(hk)||

goes to zero faster than ||h||n as h goes to zero, i.e.

lim
h→0

||F(a + h)−
∑n

k=0
1
k!F

(k)(a)(hk)||
||h||n

= 0

I’ll leave the proof to the reader (see Exercises 7 and 8 for help). For n = 1,
the statement is just the definition of differentiability, and the proof proceeds
by (a somewhat intricate) induction on n.
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Exercises for Section 6.10

1. Write out the Taylor polynomials of order 1, 2, and 3 of a function f : R2 → R
in terms of its partial derivatives.

2. Find the Taylor polynomial of degree 2 at a = 0 of the function f(x, y) =
sin(xy). Use Corollary 6.10.5 to estimate the error term.

3. Find the Taylor polynomial of degree 2 at a = 0 of the function f(x, y, z) =

xeyz
2

. Use Corollary 6.10.5 to estimate the error term.

4. Consider functions f : R2 → R.

a) Use Taylor polynomials to explain why

f(x+ h, y) + f(x− h, y)− 2f(x, y)

h2

is often a good approximation to ∂2f
∂x2 for small h.

b) Explain that for small h,

f(x+ h, y) + f(x− h, y) + f(x, y + h) + f(x, y − h)− 4f(x, y)

h2

is often a good approximation to the Laplace operator ∆f(x, y) = ∂2f
∂x2 +

∂2f
∂y2 (x, y) of f at (x, y).

5. The formula
n∑
k=0

1

k!

n∑
i1=1

n∑
i2=1

. . .

n∑
ik=1

∂kf

∂xik . . . ∂xi2∂xi1
hik · . . . · hi2hi1 (6.10.1)

for the Taylor polynomials of a function f : Rn → R is rather inefficient
as the same derivative shows up many times, only with the differentiations
performed in different order. Multiindices give us a better way of keeping
track of partial derivatives. A multiindex α of order n is just an n-tuple
α = (α1, α2, . . . , αn) where all the entries α1, α2, . . . , αn are nonnegative
integers. We let |α| = α1 + α2 + · · ·+ αn and introduce the notation

Dαf(a) =
∂|α|f

∂xα1
1 ∂xα2

2 . . . ∂xαnn
(a)

(note that since αi may be 0, we don’t necessarily differentiate with respect
to all variables).

a) If α = (α1, α2, . . . , αn) is a multiindex, we define

α! = α1!α2! · . . . · αn!

(recall tha1 0! = 1). Show that if you have α1 indistinguishable objects
of type 1, α2 indistinguishable objects of type 2 etc., then you can order
the objects in

|α|
α1!α2! · . . . · αn!

distinguishable ways.
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b) Show that the Taylor polynomial in formula (6.10.1) above can now be
written ∑

|α|≤N

1

α!
Dαf(a)hα

where hα = hα1
1 hα2

2 · . . . · hαnn .

c) Use the formula in b) to write out the Taylor polynomial of order 3 of
a function f : R3 → R.

6. Let X be a normed space and assume that f : X → R is three times con-
tinuously differentiable at a ∈ X. Assume that f ′(a) = 0 and that f ′′(a) is
strictly positive definite in the following sense: There exists an ε > 0 such
that

f ′′(a)(r, r) ≥ ε||r||2

for all r ∈ X. Show that f has a local minimum at a.

7. In this problem we shall prove Theorem 6.10.6 for functions f : R → R.
You will be asked to prove the full theorem in the next exercise, but it an
advantage to look at one-dimensional case first as the main idea is much
easier to spot there. To be precise, we shall prove:

Theorem: Let O be an open subset of R and assume that f : O → Y is n
times differentiable at a point a ∈ O. Then

f(a+ h)−
n∑
k=0

1

k!
f (k)(a)hk

goes to zero faster than |h|n as h goes to zero, i.e.

lim
h→0

f(a+ h)−
∑n
k=0

1
k!f

(k)(a)hk

hn
= 0

a) Check that for n = 1 the statement follows immediately from the defi-
nition of differentiability.

b) Assume that the theorem holds for n− 1, and define a function σ by

σ(h) = f(a+ h)− f(a)− f ′(a)(h)− . . .− 1

n!
f (n)(a)hn

Differentiate this expression to get

σ′(h) = f ′(a+ h)− f ′(a)− . . .− 1

(n− 1)!
f (n)(a)(hn−1

Apply the n− 1 version of the theorem to f ′ to see that σ′(h) goes to
zero faster than hn−1, i.e. for every ε > 0, there is a δ > 0 such that

|σ′(h)| ≤ ε|h|n−1

when |h| ≤ δ.
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c) Show that |σ(h) ≤ ε|h|n when |h| ≤ δ. Conclude that Theorem 6.10.6
holds for f and complete the induction argument.

8. In this problem we shall prove Theorem 6.10.6. If you haven’t done so already,
it may be a good idea to do Exercise 7 first as it will show you the basic idea
in a less cluttered context.

a) Check that for n = 1 the statement follows immediately from the defi-
nition of differentiability.

The rest of the proof is by induction on n, but we need some preliminary
information on differentiation of functions of the form h 7→ Fk(a)(h(k)).

b) Assume that A : Xk → Y is a bounded multilinear map, and define
G(h) = A(h,h, . . . ,h). Show that

G′(h)(r) = A(r,h, . . . ,h) +A(h, r, . . . ,h) + . . .+A(h,h, . . . , r)

(recall Proposition 6.8.4).

c) Show that if F : X → Y is as in the theorem and k ≤ n, then the
derivative of the function

Gk(h) = Fk(a)(h(k))

is
G′k(h)(r) = kFk(a)(r,h, . . . ,h)

d) Define a function σ by

σ(h) = F(a + h)− F(a)− F′(a)(h)− . . .− 1

n!
F(n)(a)(hn)

and show that

σ′(h)(r) = F′(a + h)(r)− F′(a)(r)− 1

2
F′′(a)(r,h)− . . .

. . .− 1

(n− 1)!
F(n)(a)(r,h, . . . ,h)

e) Assume that the theorem holds for all n − 1 times differentiable func-
tions. Apply it to F′ (as a function from X to L(X,Y )), and explain
that ||σ′(h)|| goes to zero faster than ||h||n−1; i.e. that for every ε > 0,
there is a δ > 0 such that

||σ′(h)|| ≤ ε||h||n−1

when ||h|| ≤ δ.
f) Show that ||σ(h)|| ≤ ε||h||n when ||h|| ≤ δ. Conclude that Theorem 6.10.6

holds for F and complete the induction argument.



Chapter 7

Fourier Series

In the middle of the 18th century, mathematicians and physicists started to
study the motion of a vibrating string (think of the strings of a violin or a
guitar). If you pull the string out and then let it go, how will it vibrate?
To make a mathematical model, assume that at rest the string is stretched
along the x-axis from 0 to 1 and fastened at both ends.

0 1
1

1
2

1
3

1
4

1
5

1
6

1
7

The figure above shows some possibilities. If we start with a simple sine
curve f1(x) = C1 sin(πx), the string will oscillate up an down between the
two curves shown in the top line of the picture (we are neglecting air resis-
tance and other frictional forces). The frequency of the oscillation is called
the fundamental harmonic of the string. If we start from a position where
the string is pinched at the midpoint as on the second line of the figure
(i.e. we use a starting position of the form f2(x) = C2 sin(2πx)), the string
will oscillate with a node in the middle. The frequency will be twice the
fundamental harmonic. This is the first overtone of the string. Pinching
the string at more and more ponts (i.e. using starting positions of the form

231
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fn(x) = Cn sin(nπx) for larger and larger integers n), we introduce more
and more nodes and more and more overtones (the frequency of fn will be
n times the fundamental harmonic). If the string is vibrating in air, the
frequencies (the fundamental harmonic and its overtones) can be heard as
tones of different pitches.

Imagine now that we start with a mixture

f(x) =
∞∑
n=1

Cn sin(nπx) (7.0.1)

of the starting positions above. The motion of the string will now be a
superposition of the motions created by each individual function fn(x) =
Cn sin(nπx). The sound produced will be a mixture of the fundamental
harmonic and the different overtones, and the size of the constant Cn will
determine how much overtone number n contributes to the sound.

This is a nice description, but the problem is that a function is usually
not of the form (7.0.1). Or – perhaps it is? Perhaps any reasonable starting
position for the string can be written in the form (7.0.1)? But if so, how do
we prove it, and how do we find the coefficients Cn? There was a heated
discussion on these questions around 1750, but nobody at the time was able
to come up with a satisfactory solution.

The solution came with a memoir published by Joseph Fourier in 1807.
To understand Fourier’s solution, we need to generalize the situation a little.
Since the string is fastened at both ends of the interval, a starting position
for the string must always satisfy f(0) = f(1) = 0. Fourier realized that if
he were to include general functions that did not satisfy these boundary con-
ditions in his theory, he needed to allow constant terms and cosine functions
in his series. Hence he looked for representations of the form

f(x) = A+
∞∑
n=1

(
Cn sin(nπx) +Dn cos(nπx)

)
(7.0.2)

with A,Cn, Dn ∈ R. The big breakthrough was that Fourier managed to
find simple formulas to compute the coefficients A,Cn, Dn of this series.
This turned trigonometric series into a useful tool in applications (Fourier
himself was mainly interested in heat propagation).

When we now begin to develop the theory, we shall change the setting
slightly. We shall replace the interval [0, 1] by [−π, π] (it is easy to go from
one interval to another by scaling the functions, and [−π, π] has certain
notational advantages), and we shall replace sinnx and cosnx by complex
exponentials einx. Not only does this reduce the types of functions we have
to work with from two to one, but it also makes many of our arguments easier
and more transparent. We begin by taking a closer look at the relationship
between complex exponentials and trigonometric functions.
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7.1 Complex exponential functions

You may remember the name Fourier from the section 5.3 on inner product
spaces, and we shall now see how the abstract Fourier analysis presented
there, can be turned into concrete Fourier analysis of functions on the real
line. Before we do so, it will be convenient to take a brief look at the
functions that will serve as elements of our orthonormal basis. Recall that
for a complex number z = x+ iy, the exponential ez is defined by

ez = ex(cos y + i sin y)

We shall mainly be interested in purely imaginary exponents:

eiy = cos y + i sin y (7.1.1)

Since we also have

e−iy = cos(−y) + i sin(−y) = cos y − i sin y

we may add and subtract to get

cos y =
eiy + e−iy

2
(7.1.2)

sin y =
eiy − e−iy

2i
(7.1.3)

Formulas (7.1.1)-(7.1.3) give us important connections between complex ex-
ponetials and trigonometric functions that we shall exploit in the next sec-
tions.

We need some information about functions f : R→ C of the form

f(x) = e(a+ib)x = eax cos bx+ ieax sin bx, where a ∈ R

If we differentiate f by differentiating the real and complex parts separately,
we get

f ′(x) = aeax cos bx− beax sin bx+ iaeax sin bx+ ibeax cos bx =

= aeax (cos bx+ i sin bx) + ibeax (cos bx+ i sin bx) = (a+ ib)e(a+ib)x

and hence we have the formula(
e(a+ib)x

)′
= (a+ ib)e(a+ib)x (7.1.4)

that we would expect from the real case. Antidifferentiating, we see that∫
e(a+ib)x dx =

e(a+ib)x

a+ ib
+ C (7.1.5)
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where C = C1 + iC2 is an arbitrary, complex constant.
Note that if we multiply by the conjugate a − ib in the numerator and

the denominator, we get

e(a+ib)x

a+ ib
=
e(a+ib)x(a− ib)
(a+ ib)(a− ib)

=
eax

a2 + b2
(cos bx+ i sin bx)(a− ib) =

=
eax

a2 + b2
(
a cos bx+ b sin bx+ i(a sin bx− b cos bx)

)
Hence (7.1.5) may also be written∫ (

eax cos bx + ieax sin bx
)
dx =

=
eax

a2 + b2
(
a cos bx+ b sin bx+ i(a sin bx− b cos bx)

)
Separating the real and the imaginary parts, we get∫

eax cos bx dx =
eax

a2 + b2
(
a cos bx+ b sin bx

)
(7.1.6)

and ∫
eax sin bx dx =

eax

a2 + b2
(
a sin bx− b cos bx

)
(7.1.7)

In calculus, these formulas are usually proved by two times integration by
parts, but in our complex setting they follow more or less immediately from
the basic integration formula (7.1.5).

We shall be particularly interested in the functions

en(x) = einx = cosnx+ i sinnx where n ∈ Z

Observe first that these functions are 2π-periodic in the sense that

en(x+ 2π) = ein(x+2π) = einxe2nπi = einx · 1 = en(x)

This means in particular that en(−π) = en(π) (they are both equal to (−1)n

as is easily checked). Integrating, we see that for n 6= 0, we have∫ π

−π
en(x) dx =

[
einx

in

]π
−π

=
en(π)− en(−π)

in
= 0

while we for n = 0 have∫ π

−π
e0(x) dx =

∫ π

−π
1 dx = 2π

This leads to the following orthogonality relation.
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Proposition 7.1.1 For all n,m ∈ Z we have

∫ π

−π
en(x)em(x) dx =


0 if n 6= m

2π if n = m

Proof: Since
en(x)em(x) = einxe−imx = ei(n−m)x

the lemma follows from the formulas above. 2

The proposition shows that the family {en}n∈Z is almost orthonormal
with respect to the inner product

〈f, g〉 =

∫ π

−π
f(x)g(x) dx.

The only problem is that 〈en, en〉 is 2π and not 1. We could fix this by
replacing en by en√

2π
, but instead we shall choose to change the inner product

to
〈f, g〉 =

1

2π

∫ π

−π
f(x)g(x) dx.

Abusing terminology slightly, we shall refer to this at the L2-inner product
on [−π, π]. The norm it induces will be called the L2-norm || · ||2. It is
defined by

||f ||2 = 〈f, f〉
1
2 =

(
1

2π

∫ π

−π
|f(x)|2 dx

) 1
2

The Fourier coefficients of a function f with respect to {en}n∈Z are
defined by

〈f, en〉 =
1

2π

∫ π

−π
f(x)en(x) dx =

1

2π

∫ π

−π
f(x)e−inx dx

From Section 5.3 we know that f =
∑∞

n=−∞〈f, en〉en (where the series con-
verges in L2-norm) provided f belongs to a space where {en}n∈Z is a basis.
We shall study this question in detail in the next sections. For the time
being, we look at an example of how to compute Fourier coefficients.

Example 1: We shall compute the Fourier coefficients αn of the function
f(x) = x. By definition

αn = 〈f, en〉 =
1

2π

∫ π

−π
xe−inx dx

It is easy to check that α0 =
∫ π
−π x dx = 0. For n 6= 0, we use integration

by parts (see Exercise 8) with u = x and v′ = e−inx. We get u′ = 1 and
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v = e−inx

−in , and:

αn = − 1

2π

[
x
e−inx

in

]π
−π

+
1

2π

∫ π

−π

e−inx

in
dx =

=
(−1)n+1

in
− 1

2π

[
e−inx

n2

]π
−π

=
(−1)n+1

in

The Fourier series becomes

∞∑
n=−∞

αnen =

−1∑
n=−∞

(−1)n+1

in
einx +

∞∑
n=1

(−1)n+1

in
einx =

=

∞∑
n=1

2(−1)n+1

n
sin(nx)

We would like to conclude that x =
∑∞

n=1
2(−1)n+1

n sin(nx) for x ∈ (−π, π),
but we don’t have the theory to take that step yet.

Exercises for Section 7.1

1. Show that 〈f, g〉 = 1
2π

∫ π
−π f(x)g(x) dx is an inner product on C([−π, π],C).

2. Deduce the formulas for sin(x + y) and cos(x + y) from the rule ei(x+y) =
eixeiy.

3. In this problem we shall use complex exponentials to prove some trigonomet-
ric identities.

a) Use the complex expressions for sin and cos to show that

sin(u) sin(v) =
1

2
cos(u− v)− 1

2
cos(u+ v)

b) Integrate
∫

sin 4x sinx dx.

c) Find a similar expression for cosu cos v and use it to compute the inte-
gral

∫
cos 3x cos 2x dx.

d) Find an expression for sinu cos v and use it to integrate
∫

sinx cos 4x dx.

4. Find the Fourier series of f(x) = ex.

5. Find the Fourier series of f(x) = x2.

6. Find the Fourier sries of f(x) = sin x
2 .

7. a) Let sn = a0 + a0r + a0r
2 + · · ·+ a0r

n be a geometric series of complex
numbers. Show that if r 6= 1, then

sn =
a0(1− rn+1)

1− r

(Hint: Subtract rsn from sn.)
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b) Explain that
∑n
k=0 e

ikx = 1−ei(n+1)x

1−eix when x is not a multiplum of 2π.

c) Show that
∑n
k=0 e

ikx = ei
nx
2

sin(n+1
2 x)

sin( x2 )
when x is not a multiplum of 2π.

d) Use the result in c) to find formulas for
∑n
k=0 cos(kx) and

∑n
k=0 sin(kx).

8. Show that the integration by parts formula∫
f(x)g′(x) dx = f(x)g(x)−

∫
f ′(x)g(x) dx

holds for complex valued functions f, g.

7.2 Fourier series

Recall from the previous section that the functions

en(x) = einx, n ∈ Z

form an orthonormal set with respect to the L2-inner product

〈f, g〉 =
1

2π

∫ π

−π
f(x)g(x) dx

The Fourier coefficients of a continuous function f : [−π, π]→ C with respect
to this set are given by

αn = 〈f, en〉 =
1

2π

∫ π

−π
f(x)en(x) dx

From Parseval’s theorem 5.3.10, we know that if {en} is a basis (for whatever
space we are working with), then

f(x) =

∞∑
n=−∞

αnen(x)

where the series converges in the L2-norm, i.e.

lim
N→∞

||f −
N∑

n=−N
αnen||2 = 0

At this stage, life becomes complicated in two ways. First, we don’t
know yet that {en}n∈Z is a basis for C([−π, π],C), and second, we don’t
really know what L2-convergence means. It turns out that L2-convergence
is quite weak, and that a sequence may converge in L2-norm without actually
converging at any point! This means that we would also like to investigate
other forms for convergence (pointwise, uniform etc.).

Let us begin by observing that since en(−π) = en(π) for all n ∈ Z, any
function that is the pointwise limit of a series

∑∞
n=−∞ αnen must also satisfy

this periodicity assumption. Hence it is natural to introduce the following
class of functions:
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Definition 7.2.1 Let CP be the set of all continuous functions f : [−π, π]→
C such that f(−π) = f(π). A function in CP is called a trigonometric poly-
nomial if it is of the form

∑N
n=−N αnen where N ∈ N and each αn ∈ C.

To distinguish it from the L2-norm, we shall denote the supremum norm
on C([−π, π],C) by || · ||∞, i.e.

||f ||∞ = sup{|f(x)| : x ∈ [−π.π]}

Note that the metric generated by || · ||∞ is the metric ρ that we studied in
Chapter 4. Hence convergence with respect to || · ||∞ is the same as uniform
convergence.

Theorem 7.2.2 The trigonometric polynomials are dense in CP in the || ·
||∞-norm. Hence for any f ∈ CP there is a sequence {pn} of trigonometric
polynomials which converges uniformly to f .

It is possible to prove this result from Weierstrass’ Approximation The-
orem 3.10.1, but the proof is technical and not very informative. In the next
section, we shall get a more informative proof from ideas we have to develop
anyhow, and we postpone the proof till then. In the meantime we look at
some consequences.

Corollary 7.2.3 For all f ∈ CP , the Fourier series
∑∞

n=−∞〈f, en〉en con-
verges to f in L2-norm, i.e. limN→∞ ||f −

∑N
n=−N 〈f, en〉en||2 = 0.

Proof: Given ε > 0, we must show that there is an N ∈ N such that
||f −

∑M
n=−M 〈f, en〉en||2 < ε when M ≥ N . According to the theorem

above, there is a trigonometric polynomial p(x) =
∑N

n=−N αnen such that
||f − p||∞ < ε. Hence

||f − p||2 =

(
1

2π

∫ π

−π
|f(x)− p(x)|2 dx

) 1
2

<

(
1

2π

∫ π

−π
ε2 dx

) 1
2

= ε

According to Proposition 5.3.8, ||f −
∑M

n=−M 〈f, en〉en||2 ≤ ||f − p||2 for all
M ≥ N , and the corollary follows. 2

The corollary above is rather unsatisfactory. It is particularly incon-
venient that it only applies to periodic functions such that f(−π) = f(π)
(although we can not have pointwise convergence to functions violating this
condition, we may well have L2-convergence as we soon shall see). To get a
better result, we introduce a bigger space D of piecewise continuous func-
tions.
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Definition 7.2.4 A function f : [−π, π] → C is said to be piecewise con-
tinuous with one sided limits if there exists a finite set of points

−π = a0 < a1 < a2 < . . . < an−1 < an = π

such that:

(i) f is continuous on each interval (ai, ai+1).

(ii) f have one sided limits at each point ai, i.e. f(a−i ) = limx↑ai f(x) and
f(a+

i ) = limx↓ai f(x) both exist, but need not be equal (at the endpoints
a0 = −π and an = π we do, of course, only require limits from the
appropriate side).

(iii) The value of f at each jump point ai is the average of the one-sided
limits, i.e. f(ai) = 1

2(f(a−i ) + f(a+
i )). At the endpoints, this is inter-

preted as f(a0) = f(an) = 1
2(f(a−n ) + f(a+

0 ))

The collection of all such functions will be denoted by D.

Remark: Part (iii) is only included for technical reasons (we must spec-
ify the values at the jump points to make D an inner product space), but
it reflects how Fourier series behave — at jump points they always choose
the average value. The treatment of the end points may seem particularly
strange; why should we enforce the average rule even here? The reason is
that since the trigonometric polynomials are 2π-periodic, they regard 0 and
2π as the “same” point, and hence it is natural to compare the right limit at
0 to the left limit at 2π.

Note that the functions in D are bounded and integrable, that the sum
and product of two functions in D are also in D, and that D is an inner
product space over C with the L2-inner product. The next lemma will allow
us to extend the corollary above to D.

Lemma 7.2.5 CP is dense in D in the L2-norm, i.e. for each f ∈ D and
each ε > 0, there is a g ∈ CP such that ||f − g||2 < ε.

Proof: I only sketch the main idea of the proof, leaving the details to the
reader. Assume that f ∈ D and ε > 0 are given. To construct g, choose a
very small δ > 0 (it is your task to figure out how small) and construct g as
follows: Outside the (nonoverlapping) intervals (ai−δ, ai+δ), we let g agree
with f , but in each of these intervals, g follows the straight line connecting
the points (ai− δ, f(ai− δ)) and (ai + δ, f(ai + δ)) on f ’s graph. Check that
if we choose δ small enough, ||f − g||2 < ε (In making your choice, you have
to take M = sup{|f(x)| : x ∈ [−π, π]} into account, and you also have to
figure ut what to do at the endpoints −π, π of the interval). 2

We can now extend the corollary above from CP to D.
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Theorem 7.2.6 For all f ∈ D, the Fourier series
∑∞

n=−∞〈f, en〉en con-
verges to f in L2-norm, i.e. limN→∞ ||f −

∑N
n=−N 〈f, en〉en||2 = 0.

Proof: Assume that f ∈ D and ε > 0 are given. By the lemma, we know
that there is a g ∈ CP such that ||f − g||2 < ε

2 , and by Corollary 7.2.3 there
is a trigonometric polynomial p =

∑N
n=−N αnen such that ||g−p||2 < ε

2 . The
triangle inequality now tells us that

||f − p||2 ≤ ||f − g||2 + ||g − p||2 <
ε

2
+
ε

2
= ε

Invoking Proposition 5.3.8 again, we see that for M ≥ N , we have

||f −
M∑

n=−M
〈f, en〉en||2 ≤ ||f − p||2 < ε

and the theorem is proved. 2

The theorem above is satisfactory in the sense that we know that the
Fourier series of f converges to f for a reasonably wide class of functions.
However, we still have things to attend to: We haven’t proved Theorem 7.2.2
yet, and we would really like to prove that Fourier series converge pointwise
(or even uniformly) for a reasonable class of functions. We shall take a closer
look at these questions in the next sections.

Exercises for Section 7.2

1. Show that CP is a closed subset of C([−π, π],C)

2. In this problem we shall prove some properties of the space D.

a) Show that if f, g ∈ D, then f + g ∈ D. Show also that if f ∈ D and
g ∈ Cp, then fg ∈ D. Explain that there are functions f, g ∈ D such
that fg /∈ D.

b) Show that D is a vector space.

c) Show that all functions in D are bounded.

d) Show that all functions in D are integrable on [−π, π].

e) Show that 〈f, g〉 = 1
2π

∫ π
−π f(x)g(x) dx is an inner product on D.

3. In this problem we shall show that if f : [−π, π]→ R is a realvalued function,
then the Fourier series

∑∞
n=−∞ αnen can be turned into a sine/cosine-series

of the form (7.2.2).

a) Show that if αn = an + ibn are Fourier coefficients of f , then α−n =
αn = an − ibn.

b) Show that an = 1
2π

∫ π
−π f(x) cos(nx) dx and bn = − 1

2π

∫ π
−π f(x) sin(nx) dx.
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c) Show that the Fourier series can be written

α0 +

∞∑
n=1

(
2an cos(nx)− 2bn sin(nx)

)
4. Complete the proof of Lemma 7.2.5.

7.3 The Dirichlet kernel

Our arguments so far have been entirely abstract — we have not really used
any properties of the functions en(x) = einx except that they are orthonor-
mal. To get better results, we need to take a closer look at these functions.
In some of our arguments, we shall need to change variables in integrals,
and such changes may take us outside our basic interval [−π, π], and hence
outside the region where our functions are defined. To avoid these problems,
we extend our functions f ∈ D periodically outside the basic interval such
that f(x+ 2π) = f(x) for all x ∈ R. The figure shows the extension graph-
ically; in part a) we have the original function, and in part b) (a part of )
the periodic extension. As there is no danger of confusion, we shall denote
the original function and the extension by the same symbol f .

a)

-

6

−π π
q q

-

b) 6

−π π
q q

−3π
q

3π
q q

Figure 1

To see the point of this extension more clearly, assume that we have a
function f : [−π, π] → R. Consider the integral

∫ π
−π f(x) dx, and assume

that we for some reason want to change variable from x to u = x + a. We
get ∫ π

−π
f(x) dx =

∫ π+a

−π+a
f(u− a) du

This is fine, except that we are now longer over our preferred interval [−π, π].
If f has been extended periodically, we see that∫ π+a

π
f(u− a) du =

∫ π+a

−π
f(u− a) du
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Hence∫ π

−π
f(x) dx =

∫ π+a

−π+a
f(u− a) du =

∫ π

−π+a
f(u− a) du+

∫ π+a

π
f(u− a) du

=

∫ π

−π+a
f(u− a) du+

∫ −π+a

−π
f(u− a) du =

∫ π

−π
f(u− a) du

and we have changed variable without leaving the interval [−π, π]. Variable
changes of this sort will be made without further comment in what follows.

Remark: Here is a way of thinking that is often useful: Assume that we
take our interval [−π, π] and bend it into a circle such that the points −π
and π become the same. If we think of our trigonometric polynomials p
as being defined on the circle instead of on the interval [−π, π], it becomes
quite logical that p(−π) = p(π). When we are extending functions f ∈ D
the way we did above, we can imagine that we are wrapping the entire real
line up around the circle such that the the points x and x+ 2π on the real
line always become the same point on the circle. Mathematicians often say
they are “doing Fourier analysis on the unit circle”.

Let us begin by looking at the partial sums

sN (x) =
N∑

n=−N
〈f, en〉en(x)

of the Fourier series. Since

αn = 〈f, en〉 =
1

2π

∫ π

−π
f(t)e−int dt

we have

sN (x) =
1

2π

N∑
n=−N

(∫ π

−π
f(t)e−int dt

)
einx =

1

2π

∫ π

−π
f(t)

N∑
n=−N

ein(x−t) dt =

=
1

2π

∫ π

−π
f(x− u)

N∑
n=−N

einu du

where we in the last step has substituted u = x−t and used the periodicity of
the functions to remain in the interval [−π, π]. If we introduce the Dirichlet
kernel

DN (u) =

N∑
n=−N

einu
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we may write this as

sN (x) =
1

2π

∫ π

−π
f(x− u)DN (u) du

Note that the sum
∑N

n=−N e
inu =

∑N
n=−N (eiu)n is a geomtric series. For

u = 0, all the terms are 1 and the sum is 2N + 1. For u 6= 0, we use the
summation formula for a finite geometric series to get:

DN (u) =
e−iNu − ei(N+1)u

1− eiu
=
e−i(N+ 1

2
)u − ei(N+ 1

2
)u

e−i
u
2 − ei

u
2

=
sin((N + 1

2)u)

sin u
2

where we have used the formula sinx = eix−e−ix
2i twice in the last step. This

formula gives us a nice, compact expression for DN (u). If we substitute it
into the formula above, we get

sN (x) =
1

2π

∫ π

−π
f(x− u)

sin((N + 1
2)u)

sin u
2

du

If we want to prove that partial sums sN (x) converge to f(x) (i.e. that the
Fourier series converges pointwise to f), the obvious strategy is to prove that
the integral above converges to f . In 1829, Dirichlet used this approach to
prove:

Theorem 7.3.1 (Dirichlet’s Theorem) If f ∈ D has only a finite num-
ber of local minima and maxima, then the Fourier series of f converges
pointwise to f .

Dirichlet’s result must have come as something of a surprise; it probably
seemed unlikely that a theorem should hold for functions with jumps, but not
for continuous functions with an infinite number of extreme points. Through
the years that followed, a number of mathematicians tried — and failed —
to prove that the Fourier series of a periodic, continuous function always
converges pointwise to the function. In 1873, the German mathematician
Paul Du Bois-Reymond explained why they failed by constructing a periodic,
continuous function whose Fourier series diverges at a dense set of points.
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It turns out that the theory for pointwise convergence of Fourier series
is quite complicated, and we shall not prove Dirichlet’s theorem here. In-
stead we shall prove a result known as Dini’s test which allows us to show
convergence for many of the functions that appear in practice. But before
we do that, we shall take a look at a different notion of convergence which
is easier to handle, and which will also give us some tools that are useful
in the proof of Dini’s test. This alternative notion of convergence is called
Cesaro convergence or convergence in Cesaro mean. However, first of all we
shall collect some properties of the Dirichlet kernels that will be useful later.

Let us first see what they look like. The figure above shows Dirichlet’s
kernel Dn for n = 5, 10, 15, 20. Note the changing scale on the y-axis; as we
have already observed, the maximum value of Dn is 2n + 1. As n grows,
the graph becomes more and more dominated by a sharp peak at the origin.
The smaller peaks and valleys shrink in size relative to the big peak, but
the problem with the Dirichlet kernel is that they do not shrink in absolute
terms — as n goes to infinity, the area between the curve and the x-axis
(measured in absolute value) goes to infinity. This makes the Dirichlet
kernel quite difficult to work with. When we turn to Cesaro convergence in
the next section, we get another set of kernels — the Fejér kernels — and
they turn out not to have this problem. This is the main reason why Cesaro
convergence works much better than ordinary convergence for Fourier series.

The following lemma sums up some of the most important properties of
the Dirichlet kernel. Recall that a function g is even if g(t) = g(−t) for all
t in the domain:
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Lemma 7.3.2 The Dirichlet kernel Dn(t) is an even, realvalued function
such that |Dn(t)| ≤ Dn(0) = 2n+ 1 for all t. For all n,

1

2π

∫ π

−π
Dn(t) dt = 1

but
lim
n→∞

∫ π

−π
|Dn(t)| dt→∞

Proof: ThatDn is realvalued and even, follows immediately from the formula
Dn(t) =

sin((n+ 1
2

)t)

sin t
2

To prove that |Dn(t)| ≤ Dn(0) = 2n+1 , we just observe
that

Dn(t) = |
n∑

k=−n
eikt| ≤

n∑
k=−n

|eikt| = 2n+ 1 = Dn(0)

Similarly for the integral

1

2π

∫ π

−π
Dn(t) dt =

n∑
k=−n

1

2π

∫ π

−π
eikt dt = 1

as all integrals except the one for k = 0 is zero. To prove the last part of
the lemma, we observe that since | sinu| ≤ |u| for all u, we have

|Dn(t)| =
| sin((n+ 1

2)t)|
| sin t

2 |
≥

2| sin((n+ 1
2)t)|

|t|

Using the symmetry and the substitution z = (n+ 1
2)t, we see that∫ π

−π
|Dn(t)| dt =

∫ π

0
2|Dn(t)| dt ≥

∫ π

0

4| sin((n+ 1
2)t)|

|t|
dt =

=

∫ (n+ 1
2

)π

0

4| sin z|
z

dz ≥
n∑
k=1

∫ kπ

(k−1)π

4| sin z|
kπ

dz =
8

π

n∑
k=1

1

k

The expression on the right goes to infinity since the series diverges. 2

Exercises for Section 7.3

1. Let f : [−π, π] → C be the function f(x) = x. Draw the periodic extension
of f . Do the same with the function g(x) = x2.

2. Check that Dn(0) = 2n+ 1 by computing limt→0
sin((n+ 1

2 )t)

sin t
2

.

3. Work out the details of the substitution u = x − t in the derivation of the
formula sN (x) = 1

2π

∫ π
−π f(x− u)

∑N
n=−N e

inu du.

4. Explain the details in the last part of the proof of Lemma 7.3.2 (the part
that proves that limn→∞

∫ π
−π |Dn(t)| dt =∞).
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7.4 The Fejér kernel

Before studying the Fejér kernel, we shall take a look at a generalized notion
of convergence for sequences. Certain sequences such at

0, 1, 0, 1, 0, 1, 0, 1, . . .

do not converge in the ordinary sense, but they do converge “in average” in
the sense that the average of the first n elements approaches a limit as n
goes to infinity. In this sense, the sequence above obviously converges to 1

2 .
Let us make this notion precise:

Definition 7.4.1 Let {ak}∞k=0 be a sequence of complex numbers, and let
Sn = 1

n

∑n−1
k=0 ak. We say that the sequence converges to a ∈ C in Cesaro

mean if

a = lim
n→∞

Sn = lim
n→∞

a0 + a1 + · · ·+ an−1

n

We shall write a = C- limn→∞ an.

The sequence at the beginning of the section converges to 1
2 in Cesaro

mean, but diverges in the ordinary sense. Let us prove that the opposite
can not happen:

Lemma 7.4.2 If limn→∞ an = a, then C-limn→∞ an = a.

Proof: Given an ε > 0, we must find an N such that

|Sn − a| < ε

when n ≥ N . Since {an} converges to a, there is a K ∈ N such that
|an − a| < ε

2 when n ≥ K. If we let M = max{|ak − a| : k = 0, 1, 2, . . .}, we
have for any n ≥ K:

|Sn − a| =
∣∣∣∣(a0 − a) + (a1 − a) + · · ·+ (aK−1 − a) + (aK − a) + · · · (an−1 − a)

n

∣∣∣∣ ≤
≤
∣∣∣∣(a0 − a) + (a1 − a) + · · ·+ (aK−1 − a)

n

∣∣∣∣+∣∣∣∣(aK − a) + · · · (an−1 − a)

n

∣∣∣∣ ≤ MK

n
+
ε

2

Choosing n large enough, we get MK
n < ε

2 , and the lemma follows. 2

The idea behind the Fejér kernel is to show that the partial sums sn(x)
converge to f(x) in Cesaro mean; i.e. that the sums

Sn(x) =
s0(x) + s1(x) + · · ·+ sn−1(x)

n
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converge to f(x). Since

sk(x) =
1

2π

∫ π

−π
f(x− u)Dk(u) du

where Dk is the Dirichlet kernel, we get

Sn(x) =
1

2π

∫ π

−π
f(x− u)

(
1

n

n−1∑
k=0

Dk(u)

)
du =

1

2π

∫ π

−π
f(x− u)Fn(u) du

where Fn(u) = 1
n

∑n−1
k=0 Dk(u) is the Fejér kernel.

We can find a closed expression for the Fejér kernel as we did for the
Dirichlet kernel, but the arguments are a little longer:

Lemma 7.4.3 The Fejér kernel is given by

Fn(u) =
sin2(nu2 )

n sin2(u2 )

for u 6= 0, and Fn(0) = n.

Proof: Since

Fn(u) =
1

n

n−1∑
k=0

Dk(u) =
1

n sin(u2 )

n−1∑
k=0

sin((k +
1

2
)u)

we have to find

n−1∑
k=0

sin((k +
1

2
)u) =

1

2i

(
n−1∑
k=0

ei(k+ 1
2

)u −
n−1∑
k=0

e−i(k+ 1
2

)u

)

The series are geometric and can easily be summed:

n−1∑
k=0

ei(k+ 1
2

)u = ei
u
2

n−1∑
k=0

eiku = ei
u
2

1− einu

1− eiu
=

1− einu

e−i
u
2 − ei

u
2

and

n−1∑
k=0

e−i(k+ 1
2

)u = e−i
u
2

n−1∑
k=0

e−iku = e−i
u
2

1− e−inu

1− e−iu
=

1− e−inu

ei
u
2 − e−i

u
2

Hence

n−1∑
k=0

sin((k +
1

2
)u) =

1

2i

(
1− einu + 1− e−inu

e−i
u
2 − ei

u
2

)
=

1

2i

(
einu − 2 + e−inu

ei
u
2 − e−i

u
2

)
=
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=
1

2i
· (ei

nu
2 − e−

nu
2 )2

ei
u
2 − e−i

u
2

=

(
ei
nu
2 −e−

nu
2 )

2i

)2

ei
u
2 −e−i

u
2

2i

=
sin2(nu2 )

sin u
2

and thus

Fn(u) =
1

n sin(u2 )

n−1∑
k=0

sin((k +
1

2
)u) =

sin2(nu2 )

n sin2 u
2

To prove that Fn(0) = n, we just have to sum an arithmetic series

Fn(0) =
1

n

n−1∑
k=0

Dk(0) =
1

n

n−1∑
k=0

(2k + 1) = n

2

The figure below shows the Fejer kernels Fn for n = 5, 10, 15, 20. At
first glance they look very much like the Dirichlet kernels in the previous
section. The peak in the middle is growing slower than before in absolute
terms (the maximum value is n compared to 2n+1 for the Dirichlet kernel),
but relative to the smaller peaks and values, it is much more dominant. The
functions are now positive, and the area between their graphs and the x-axis
is always equal to one. As n gets big, almost all this area belongs to the
dominant peak in the middle. The positivity and the concentration of all
the area in the center peak make the Fejér kernels much easier to handle
than their Dirichlet counterparts.

Let us now prove some of the properties of the Fejér kernels.
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Proposition 7.4.4 For all n, the Fejér kernel Fn is an even, positive func-
tion such that

1

2π

∫ π

−π
Fn(x) dx = 1

For all nonzero x ∈ [−π, π]

0 ≤ Fn(x) ≤ π2

nx2

Proof: That Fn is even and positive follows directly from the formula in the
lemma. By Proposition 7.3.2, we have

1

2π

∫ π

−π
Fn(x) dx =

1

2π

∫ π

−π

1

n

n−1∑
k=0

Dk dx =
1

n

n−1∑
k=0

1

2π

∫ π

−π
Dk dx =

1

n

n−1∑
k=0

1 = 1

For the last formula, observe that for u ∈ [−π
2 ,

π
2 ], we have 2

π |u| ≤ | sinu|
(make a drawing). Thus

Fn(x) =
sin2(nx2 )

n sin2 x
2

≤ 1

n( 2
π
x
2 )2
≤ π2

nx2

2

We shall now show that if f ∈ D, then Sn(x) converges to f(x), i.e. that
the Fourier series converges to f in Cesaro mean. We have already observed
that

Sn(x) =
1

2π

∫ π

−π
f(x− u)Fn(u) du

If we introduce a new variable t = −u and use that Fn is even, we get

Sn(x) =
1

2π

∫ −π
π

f(x+ t)Fn(−t) (−dt) =

=
1

2π

∫ π

−π
f(x+ t)Fn(t) dt =

1

2π

∫ π

−π
f(x+ u)Fn(u) du

If we combine the two expressions we now have for Sn(x), we get

Sn(x) =
1

4π

∫ π

−π
(f(x+ u) + f(x− u))Fn(u) du

Since 1
2π

∫ π
−π Fn(u) du = 1, we also have

f(x) =
1

2π

∫ π

−π
f(x)Fn(u) du
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Hence

Sn(x)− f(x) =
1

4π

∫ π

−π

(
f(x+ u) + f(x− u)− 2f(x)

)
Fn(u) du

To prove that Sn(x) converges to f(x), we only need to prove that the
integral goes to 0 as n goes to infinity. The intuitive reason for this is that for
large n, the kernel Fn(u) is extremely small except when u is close to 0, but
when u is close to 0, the other factor in the integral, f(x+u)+f(x−u)−2f(x),
is very small. Here are the technical details.

Theorem 7.4.5 If f ∈ D, then Sn converges to f on [−π, π], i.e. the
Fourier series converges in Cesaro mean. The convergence is uniform on
each subinterval [a, b] ⊆ [−π, π] where f is continuous.

Proof: Given ε > 0, we must find an N ∈ N such that |Sn(x) − f(x)| < ε
when n ≥ N . Since f is in D, there is a δ > 0 such that

|f(x+ u) + f(x− u)− 2f(x)| < ε

when |u| < δ (keep in mind that since f ∈ D, f(x) = 1
2 limu↑0(f(x + u) −

f(x− u))). We have

|Sn(x)− f(x)| ≤ 1

4π

∫ π

−π
|f(x+ u) + f(x− u)− 2f(x)|Fn(u) du =

=
1

4π

∫ δ

−δ
|f(x+ u) + f(x− u)− 2f(x)|Fn(u) du+

+
1

4π

∫ −δ
−π
|f(x+ u) + f(x− u)− 2f(x)|Fn(u) du+

+
1

4π

∫ π

δ
|f(x+ u) + f(x− u)− 2f(x)|Fn(u) du

For the first integral we have

1

4π

∫ δ

−δ
|f(x+ u) + f(x− u)− 2f(x)|Fn(u) du ≤

≤ 1

4π

∫ δ

−δ
εFn(u) du ≤ 1

4π

∫ π

−π
εFn(u) du =

ε

2

For the second integral we get

1

4π

∫ −δ
−π
|f(x+ u) + f(x− u)− 2f(x)|Fn(u) du ≤

≤ 1

4π

∫ −δ
−π

4||f ||∞
π2

nδ2
du =

π2||f ||∞
nδ2
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Exactly the same estimate holds for the third integral, and by choosing
N > 4π2||f ||∞

εδ2
, we get the sum of the last two integrals less than ε

2 . But then
|Sn(x)− f(x)| < ε and the convergence is proved.

So what about the uniform convergence? We need to check that we can
choose the same N for all x ∈ [a, b]. Note that N only depends on x through
the choice of δ, and hence it suffices to show that we can use the same δ for all
x ∈ [a, b]. One might think that this follows immediately from the fact that
a continuous function on a compact interval [a, b] is uniformly continuous,
but we need to be a little careful as x+u or x−u may be outside the inter-
val [a, b] even if x is inside. The quickest way to fix this, is to observe that
since f is in D, it must be continuous — and hence uniformly continuous —
on a slightly larger interval [a − η, b + η]. This means that we can use the
same δ < η for all x and x±u in [a−η, b+η], and this clinches the argument.2

We have now finally proved Theorem 7.2.2 which we restate here:

Corollary 7.4.6 The trigonometric polynomials are dense in Cp in || · ||∞-
norm, i.e. for any f ∈ CP there is a sequence of trigonometric polynomials
converging uniformly to f .

Proof: According to the theorem, the sums SN (x) = 1
N

∑N−1
n=0 sn(x) converge

uniformly to f . Since each sn is a trigonometric polynomial, so are the SN ’s.
2

Exercises to Section 7.4

1. Let {an} be the sequence 1, 0, 1, 0, 1, 0, 1, 0, . . .. Prove that C-limn→∞ an = 1
2 .

2. Assume that {an} and {bn} converge in Cesaro mean. Show that

C− lim
n→∞

(an + bn) = C− lim
n→∞

an + C− lim
n→∞

bn

3. Check that Fn(0) = n by computing limu→0
sin2(nu2 )

n sin2 u
2
.

4. Show that SN (x) =
∑N−1
n=−(N−1) αn(1 − |n|N )en(x), where αn = 〈f, en〉 is the

Fourier coefficient.

5. Assume that f ∈ CP . Work through the details of the proof of Theorem
7.4.5 and check that Sn converges uniformly to f .

7.5 The Riemann-Lebesgue lemma

The Riemann-Lebesgue lemma is a seemingly simple observation about the
size of the Fourier coefficients, but it turns out to be a very efficient tool in
the study of pointwise convergence.
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Theorem 7.5.1 (Riemann-Lebesgue Lemma) If f ∈ D and

αn =
1

2π

∫ π

−π
f(x)e−inx dx, n ∈ Z,

are the Fourier coefficients of f , then lim|n|→∞ αn → 0.

Proof: According to Bessel’s inequality 5.3.9,
∑∞

n=−∞ |αn|2 ≤ ||f ||22 < ∞,
and hence αn → 0 as |n| → ∞. 2

Remark: We are cheating a little here as we only prove the Riemann-
Lebesgue lemma for function which are in D and hence square integrable.
The lemma holds for integrable functions in general, but even in that case
the proof is quite easy.

The Riemann-Lebesgue lemma is quite deceptive. It seems to be a result
about the coefficients of certain series, and it is proved by very general and
abstract methods, but it is really a theorem about oscillating integrals as
the following corollary makes clear.

Corollary 7.5.2 If f ∈ D and [a, b] ⊆ [−π, π], then

lim
|n|→∞

∫ b

a
f(x)e−inx dx = 0

Also

lim
|n|→∞

∫ b

a
f(x) cos(nx) dx = lim

|n|→∞

∫ b

a
f(x) sin(nx) dx = 0

Proof: Let g be the function (this looks more horrible than it is!)

g(x) =



0 if x /∈ [a, b]

f(x) if x ∈ (a, b)

1
2 limx↓a f(x) if x = a

1
2 limx↑b f(x) if x = b

then g is in D, and∫ b

a
f(x)e−inx dx =

∫ π

−π
g(x)e−inx dx = 2παn

where αn is the Fourier coefficient of g. By the Riemann-Lebesgue lemma,
αn → 0. The last two parts follows from what we have just proved and the
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identities sin(nx) = einx−e−inx
2i and cos(nx) = einx+e−inx

2 2

Let us pause for a moment to discuss why these results hold. The reason
is simply that for large values of n, the functions sinnx, cosnx, and einx

(if we consider the real and imaginary parts separately) oscillate between
positive and negative values. If the function f is relatively smooth, the
positive and negative contributions cancel more and more as n increases,
and in the limit there is nothing left. This argument also indicates why
rapidly oscillating, continuous functions are a bigger challenge for Fourier
analysis than jump discontinuities — functions with jumps average out on
each side of the jump, while for wildly oscillating functions “the averaging”
procedure may not work.

Since the Dirichlet kernel contains the factor sin((n+ 1
2)x), the following

result will be useful in the next section:

Corollary 7.5.3 If f ∈ D and [a, b] ⊆ [−π, π], then

lim
|n|→∞

∫ b

a
f(x) sin

(
(n+

1

2
)x
)
dx = 0

Proof: Follows from the corollary above and the identity

sin
(
(n+

1

2
)x
)

= sin(nx) cos
x

2
+ cos(nx) sin

x

2

2

Exercises to Section 7.5

1. Work out the details of the sin(nx)- and cos(nx)-part of Corollary 7.5.2.

2. Work out the details of the proof of Corollary 7.5.3.

3. a) Show that if p is a trigonometric polynomial, then the Fourier coeffi-
cients βn = 〈p, en〉 are zero when |n| is sufficiently large.

b) Let f be an integrable function, and assume that for each ε > 0 there is
a trigonometric polynomial such that 1

2π

∫ π
−π |f(t)− p(t)| dt < ε. Show

that if αn = 1
2π

∫ π
−π f(t)e−int dt are the Fourier coefficients of f , then

lim|n|→∞ αn = 0.

7.6 Dini’s test

We shall finally take a serious look at pointwise convergence of Fourier series.
As aready indicated, this is a rather tricky business, and there is no ultimate
theorem, just a collection of scattered results useful in different settings. We
shall concentrate on a criterion called Dini’s test which is relatively easy to
prove and sufficiently general to cover a lot of different situations.
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Recall from Section 7.3 that if

sN (x) =
N∑

n=−N
〈f, en〉en(x)

is the partial sum of a Fourier series, then

sN (x) =
1

2π

∫ π

−π
f(x− u)DN (u) du

If we change variable in the intergral and use the symmetry of DN , we see
that we also get

sN (x) =
1

2π

∫ π

−π
f(x+ u)DN (u) du

Combining these two expressions, we get

sN (x) =
1

4π

∫ π

−π

(
f(x+ u) + f(x− u)

)
DN (u) du

Since 1
2π

∫ π
−πDN (u) du = 1, we also have

f(x) =
1

2π

∫ π

−π
f(x)DN (u) du

and hence

sN (x)− f(x) =
1

4π

∫ π

−π

(
f(x+ u) + f(x− u)− 2f(x)

)
DN (u) du

(note that the we are now doing exactly the same to the Dirichlet kernel as
we did to the Fejér kernel in Section 7.4). To prove that the Fourier series
converges pointwise to f , we just have to prove that the integral converges
to 0.

The next lemma simplifies the problem by telling us that we can con-
centrate on what happens close to the origin:

Lemma 7.6.1 Let f ∈ D and assume that there is a η > 0 such that

lim
N→∞

1

4π

∫ η

−η

(
f(x+ u) + f(x− u)− 2f(x)

)
DN (u) du = 0

Then the Fourier series {sN (x)} converges to f(x).

Proof: Note that since 1
sin x

2
is a bounded function on [η, π], Corollary 7.5.3

tells us that

lim
N→∞

1

4π

∫ π

η

(
f(x+ u) + f(x− u)− 2f(x)

)
DN (u) du =
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= lim
N→∞

1

4π

∫ π

η

[(
f(x+ u) + f(x− u)− 2f(x)

) 1

sin u
2

]
sin
(
(N +

1

2
)u
)
du = 0

The same obviously holds for the integral from −π to −η, and hence

sN (x)− f(x) =
1

4π

∫ π

−π

(
f(x+ u) + f(x− u)− 2f(x)

)
DN (u) du =

=
1

4π

∫ η

−π

(
f(x+ u) + f(x− u)− 2f(x)

)
DN (u) du+

+
1

4π

∫ η

−η

(
f(x+ u) + f(x− u)− 2f(x)

)
DN (u) du+

+
1

4π

∫ π

η

(
f(x+ u) + f(x− u)− 2f(x)

)
DN (u) du

→ 0 + 0 + 0 = 0

2

Theorem 7.6.2 (Dini’s test) Let x ∈ [−π, π], and assume that there is a
δ > 0 such that ∫ δ

−δ

∣∣∣∣f(x+ u) + f(x− u)− 2f(x)

u

∣∣∣∣ du <∞
Then the Fourier series converges to the function f at the point x, i.e.
sN (x)→ f(x).

Proof: According to the lemma, it suffices to prove that

lim
N→∞

1

4π

∫ δ

−δ
(f(x+ u) + f(x− u)− 2f(x))DN (u) du = 0

Given an ε > 0, we have to show that if N ∈ N is large enough, then

1

4π

∫ δ

−δ

(
f(x+ u) + f(x− u)− 2f(x)

)
DN (u) du < ε

Since the integral in the theorem converges, there is an η > 0 such that∫ η

−η

∣∣∣∣f(x+ u) + f(x− u)− 2f(x)

u

∣∣∣∣ du < ε

Since | sin v| ≥ 2|v|
π for v ∈ [−π

2 ,
π
2 ] (make a drawing), we have |DN (u)| =

| sin((N+ 1
2

)u)

sin u
2
| ≤ π

|u| for u ∈ [−π, π]. Hence

| 1

4π

∫ η

−η

(
f(x+ u) + f(x− u)− 2f(x)

)
DN (u) du| ≤
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≤ 1

4π

∫ η

−η
|f(x+ u) + f(x− u)− 2f(x)| π

|u|
du <

ε

4

By Corollary 7.5.3 we can get

1

4π

∫ δ

η

(
f(x+ u) + f(x− u)− 2f(x)

)
DN (u) du

as small as we want by choosingN large enough and similarly for the integral
from −δ to −η. In particular, we can get

1

4π

∫ δ

−δ

(
f(x+ u) + f(x− u)− 2f(x)

)
DN (u) du =

=
1

4π

∫ −η
−δ

(
f(x+ u) + f(x− u)− 2f(x)

)
DN (u) du+

+
1

4π

∫ η

−η

(
f(x+ u) + f(x− u)− 2f(x)

)
DN (u) du+

+
1

4π

∫ δ

η

(
f(x+ u) + f(x− u)− 2f(x)

)
DN (u) du

less than ε, and hence the theorem is proved. 2

Dini’s test has some immediate consequences that we leave to the reader
to prove.

Corollary 7.6.3 If f ∈ D is differentiable at a point x, then the Fourier
series converges to f(x) at this point.

We may even extend this result to one-sided derivatives:

Corollary 7.6.4 Assume f ∈ D and that the limits

lim
u↓0

f(x+ u)− f(x+)

u

and

lim
u↑0

f(x+ u)− f(x−)

u

exist at a point x. Then the Fourier series sN (x) converges to f(x) at this
point.
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Exercises to Section 7.6

1. Show that the Fourier series
∑∞
n=1

2(−1)n+1

n sin(nx) in Example 7.1.1 con-
verges to f(x) = x for x ∈ (−π, π). What happens in the endpoints?

2. Prove Corollary 7.6.3

3. Prove Corollary 7.6.4

4. Let the function f be defined on [−π, π] by

f(x) =


sin x
x for x 6= 0

1 for x = 0

and extend f periodically to all of R.

a) Show that

f(x) =
∞∑
−∞

cne
inx

where

cn =
1

2π

∫ (n+1)π

(n−1)π

sinx

x
dx

(Hint: Write sinx = eix−e−ix
2i and use the changes of variable z =

(n+ 1)x and z = (n− 1)x.)

b) Use this to compute the integral∫ ∞
−∞

sinx

x
dx

5. Let 0 < r < 1 and consider the series

∞∑
−∞

r|n|einx

a) Show that the series converges uniformly on R, and that the sum equals

Pr(x) =
1− r2

1− 2r cosx+ r2

b) Show that Pr(x) ≥ 0 for all x ∈ R.
c) Show that for every δ ∈ (0, π), Pr(x) converges uniformly to 0 on the

intervals [−π,−δ] and [δ, π] as r ↑ 1.

d) Show that
∫ π
−π Pr(x) dx = 2π.

e) Let f be a continuous function with period 2π. Show that

lim
r↑1

1

2π

∫ π

−π
f(x− y)Pr(y) dy = f(x)
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f) Assume that f has Fourier series
∑∞
−∞ cne

inx. Show that

1

2π

∫ π

−π
f(x− y)Pr(y) dy =

∞∑
−∞

cnr
|n|einx

and that the series converges absolutely and uniformly. (Hint: Show
that the function on the left is differentiable in x.)

g) Show that

lim
r↑1

∞∑
n=−∞

cnr
|n|einx = f(x)

7.7 Termwise operations

In Section 4.3 we saw that power series can be integrated and differentiated
term by term, and we now want to take a quick look at the corresponding
questions for Fourier series. Let us begin by integration which is by far the
easiest operation to deal with.

The first thing we should observe, is that when we integrate a Fourier
series

∑∞
−∞ αne

inx term by term, we do not get a new Fourier series since
the constant term α0 integrates to α0x, which is not a term in a Fourier
series when α0 6= 0. However, we may, of course, still integrate term by
term to get the series

α0x+
∑

n∈Z,n6=0

(
− iαn

n

)
einx

The question is if this series converges to the integral of f .

Proposition 7.7.1 Let f ∈ D, and define g(x) =
∫ x

0 f(t) dt. If sn is the
partial sums of the Fourier series of f , then the functions tn(x) =

∫ x
0 sn(t) dt

converge uniformly to g on [−π, π]. Hence

g(x) =

∫ x

0
f(t) dt = α0x+

∑
n∈Z,n 6=0

− iαn
n

(
einx − 1

)
where the convergence of the series is uniform.

Proof: By Cauchy-Schwarz’s inequality we have

|g(x)− tn(x)| = |
∫ π

0
(f(t)− sn(t)) dt| ≤

∫ π

−π
|f(t)− sn(t)| dt ≤

≤ 2π

(
1

2π

∫ π

−π
|f(s)− sn(s)| · 1 ds

)
= 2π〈|f − sn|, 1〉 ≤

≤ 2π||f − sn||2||1||2 = 2π||f − sn||2
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By Theorem 7.2.6, we see that ||f − sn||2 → 0, and hence tn converges uni-
formly to g(x). 2

If we move the term α0x to the other side in the formula above, we get

g(x)− α0x =
∑

n∈Z,n 6=0

iαn
n
−

∑
n∈Z,n6=0

iαn
n
einx

where the series on the right is the Fourier series of g(x)−α0x (the first sum
is just the constant term of the series).

As always, termwise differentiation is a much trickier subject. In Exam-
ple 1 of Section 7.1, we showed that the Fourier series of x is

∞∑
n=1

2(−1)n+1

n
sin(nx),

and by what we now know, it is clear that the series converges pointwise to x
on (−π, π). However, if we differentiate term by term, we get the hopelessly
divergent series

∞∑
n=1

2(−1)n+1 cos(nx)

Fortunately, there is more hope when f ∈ Cp, i.e. when f is continuous
and f(−π) = f(π):

Proposition 7.7.2 Assume that f ∈ CP and that f ′ is continuous on
[−π, π]. If

∑∞
n=−∞ αne

inx is the Fourier series of f , then the differenti-
ated series

∑∞
n=−∞ inαne

inx is the Fourier series of f ′, and it converges
pointwise to f ′ at any point x where f ′′(x) exists.

Proof: Let βn be the Fourier coefficient of f ′. By integration by parts

βn =
1

2π

∫ π

−π
f ′(t)e−int dt =

1

2π

[
f(t)e−int

]π
−π −

1

2π

∫ π

−π
f(t)(−ine−int) dt =

= 0 + in
1

2π

∫ π

−π
f(t)e−int dt = inαn

which shows that
∑∞

n=−∞ inαne
inx is the Fourier series of f ′. The conver-

gence follows from Corollary 7.6.3. 2

Final remark: In this chapter we have developed Fourier analysis over the
interval [−π, π]. If we want to study Fourier series over another interval
[a − r, a + r], all we have to do is to move and rescale the functions: The
basis now consists of the functions

en(x) = e
inπ
r

(x−a),
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the inner product is defined by

〈f, g〉 =
1

2r

∫ a+r

a−r
f(x)g(x) dx

and the Fourier series becomes

∞∑
n=−∞

αne
inπ
r

(x−a)

Note that when the length r of the interval increases, the frequencies inπ
r of

the basis functions e
inπ
r

(x−a) get closer and closer. In the limit, one might
imagine that the sum

∑∞
n=−∞ αne

inπ
r

(x−a) turns into an integral (think of
the case a = 0): ∫ ∞

−∞
α(t)eixt dt

This leads to the theory of Fourier integrals and Fourier transforms, but we
shall not look into these topics here.

Exercises for Section 7.7

1. Use integration by parts to check that
∑
n∈Z,n6=0

iαn
n −

∑
n∈Z,n6=0

iαn
n einx is

the Fourier series of g(x)−α0x (see the passage after the proof of Proposition
7.7.1).

2. Show that
∑n
k=1 cos((2k − 1)x) = sin 2nx

2 sin x .

3. In this problem we shall study a feature of Fourier series known as Gibbs’
phenomenon. Let f : [−π, π]→ R be given by

f(x) =


−1 for x < 0

0 for x = 0

1 for x > 1



7.7. TERMWISE OPERATIONS 261

The figure above shows the partial sums sn(x) of order n = 5, 11, 17, 23. We
see that although the approximation in general seems to get better and better,
the maximal distance between f and sn remains more or less constant — it
seems that the partial sums have “bumps” of more or less constant height near
the jump in function values. We shall take a closer look at this phenomenon.
Along the way you will need the solution of problem 3.

a) Show that the partial sums can be expressed as

s2n−1(x) =
4

π

n∑
k=1

sin((2k − 1)x)

2k − 1

b) Use problem 2 to find a short expression for s′2n−1(x).

c) Show that the local minimum and maxima of s2n−1 closest to 0 are
x− = − π

2n and x+ = π
2n .

d) Show that

s2n−1(± π

2n
) = ± 4

π

n∑
k=1

sin (2k−1)π
2n

2k − 1

e) Show that s2n−1(± π
2n )→ ± 2

π

∫ π
0

sin x
x dx by recognizing the sum above

as a Riemann sum.

f) Use a calculator or a computer or whatever you want to show that
2
π

∫ π
0

sin x
x dx ≈ 1.18

These calculations show that the size of the “bumps” is 9% of the size of the
jump in the function value. Gibbs showed that this number holds in general
for functions in D.


