MAT2410 - MANDATORY ASSIGNMENT #2, FALL 2010; FASIT

REMINDER: The assignment must be handed in before 14:30 on Thursday October 28 at the Department of Mathematics, in the 7th floor of Niels Henrik Abels hus, Blindern. Be careful to give reasons for your answers. To have a passing grade you must have correct answers to at least 50% of the questions.

Exercise 1.

a. Consider the function

$$f(z) = (x^3 + 3xy^2 - 3x) + i(y^3 + 3x^2y - 3y).$$

Determine the points z = x + iy at which f(z) is differentiable.

Answer. Set
$$u(x, y) = x^3 + 3xy^2 - 3x$$
 and $v(x, y) = y^3 + 3x^2y - 3y$. We compute
 $\frac{\partial}{\partial x}u = 3x^2 + 3y^2 - 3 = \frac{\partial}{\partial y}v$,

but

$$\frac{\partial}{\partial y}u = 6xy = \frac{\partial}{\partial x}v,$$

and thus $\frac{\partial}{\partial y}u = -\frac{\partial}{\partial x}v$ if and only if x = 0 or y = 0, i.e., by the Cauchy-Riemann equations f(z) = u(x, y) + iv(x, y) is differentiable at the coordinate axes.

b. Let f(z) = u(x, y) + iv(x, y) be a function that is analytic in a domain $D \subset \mathbb{C}$, and suppose the real part of f, $\operatorname{Re}(f)$, is constant in D. Show that then f must be constant in D.

Answer. The function f(z) = u(x, y) + i v(x, y) is differentiable at a point z implies that the Cauchy-Riemann equations hold at that point:

$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}, \qquad \frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}$$

By assumption, $\frac{\partial}{\partial x}u = 0$ and $\frac{\partial}{\partial y}u = 0$; thus $\frac{\partial}{\partial x}v = 0$ (and $\frac{\partial}{\partial y}v = 0$). Consequently,

$$f'(z) = \frac{\partial u}{\partial x} + i \frac{\partial v}{\partial x} = 0 \quad \forall z \in D,$$

and by Theorem 6 (p. 76) this implies f = constant in D.

Date: November 4, 2010.

c. Let f(z) be a function such that both f(z) and $\overline{f(z)}$ are analytic in a domain $D \subset \mathbb{C}$. Show that then f must be constant in D.

Answer. $\operatorname{Re}(f) = \frac{f+\overline{f}}{2}$ is (real-valued) analytic if and only if f and \overline{f} are analytic. If f = u + iv, then $\overline{f} = u - iv$. These functions are differentiable at a point z if the Cauchy-Riemann equations hold:

$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}, \qquad \frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x} \quad (\text{for } f);$$
$$\frac{\partial u}{\partial x} = -\frac{\partial v}{\partial y}, \qquad \frac{\partial u}{\partial y} = \frac{\partial v}{\partial x} \quad (\text{for } \overline{f}).$$

Adding these equations yields

$$\frac{\partial u}{\partial x} = \frac{\partial u}{\partial y} = 0$$

i.e., the real part of f is constant. The result follows form b).

d. Determine the poles of the function

$$\frac{z^4 + 2z^3}{z^5 + (2+2i)z^4 + 4iz^3}.$$

Answer. First, write the polynomial in the denominator $z^5 + (2+2i)z^4 + 4iz^3$ in factored form. Real roots z = -2 and z = 0 (multiplicity 3). Complex root z = -2i. Factored form is $z^3(z+2)(z+2i)$. Next, write $z^4 + 2z^3 = z^3(z+2)$. Hence

$$\frac{z^4 + 2z^3}{z^5 + (2+2i)z^4 + 4iz^3} = \frac{z^3(z+2)}{z^3(z+2)(z+2i)} = \frac{1}{z+2i}$$

i.e, the (single) pole is z = -2i.

Exercise 2.

a. Consider the function $f(z) = \cos^2(z) + \sin^2(z)$. Prove that this function is entire and f'(z) = 0 for all z. Use this to conclude that $\sin^2(z) + \cos^2(z) = 1$ for each z.

Answer. The functions $\sin(z)$ and $\cos(z)$ are entire, and the chain rule implies that $\cos^2(z)$ and $\sin^2(z)$ are entire functions. Moreover, $f'(z) = -2\cos(z)\sin(z) + 2\sin(z)\cos(z) = 0$. Hence, f(z) = C for some constant C. We determine C by $f(0) = \cos^2(0) + \sin^2(0) = 1 + 0 = 1$, so C = 1.

b. Determine the domain D on which f(z) = Log(4+i-z) is analytic. Draw a picture of D in the complex plane. Compute f'(z). What is the domain of analyticity of $\mathcal{L}_{\frac{\pi}{2}}(z)$, where $\mathcal{L}_{\frac{\pi}{2}}$ refers to the branch of log z based on the cut along the positive imaginary axis (draw a picture of the domain). Compute $\frac{d}{dz}\mathcal{L}_0(z)$.

Answer. Domain of analyticity of Log(4 + i - z) is

$$\mathbb{C} \setminus \{z = x + iy : x \ge 4, y = 1\},\$$

and $\frac{d}{dz} \text{Log}(4+i-z) = \frac{-1}{4+i-z}$. Domain of analyticity of $\mathcal{L}_{\frac{\pi}{2}}(z)$ is

$$\mathbb{C} \setminus \{z = x + iy : x = 0, y \ge 0\},\$$

and $\frac{d}{dz}\mathcal{L}_0(z) = \frac{1}{z}$.

FIGURE 1. Left. Domain of analyticity of Log(4 + i - z). Right. Domain of analyticity of $\mathcal{L}_{\frac{\pi}{2}}(z)$.

c. Consider the set (annulus) $D = \{z \in \mathbb{C} : 2 < |z - 1| < 4\}$. Prove that there does not exist a function f(z) that is analytic on D such that $f'(z) = \frac{1}{z}$ for all $z \in D$. [Hint: Assume that such a function exists and then show that this leads to a contradiction.]

Answer. If such a function exists, set

$$h(z) = f(z) - \operatorname{Log}(z)$$

Then h'(z) = 0 for all $z \in D \setminus [-3, -1]$. Consequently, h is constant in $D \setminus [-3, -1]$ and therefore f(z) = Log(z) + C for some constant C, in $D \setminus [-3, -1]$. This contradicts the assumption that f analytic in D.

d. Consider the function $\sec(z) = \frac{1}{\cos(z)}$. Derive the expression

$$\sec^{-1}(z) = -i \log\left(\frac{1}{z} + \left(\frac{1}{z^2} - 1\right)^{\frac{1}{2}}\right)$$

for the inverse of $\sec(z)$. Compute the principal value $\sec^{-1}(-1)$.

Answer. Set $w = \sec^{-1}(z)$. Then $z = \sec(w) = \frac{2}{e^{iw} + e^{-iw}}$ or $ze^{iw} + ze^{-iw} = 2$ or $ze^{i2w} + z - 2e^{iw} = 0$.

Setting $W = e^{iw}$, we obtain the quadratic equation

$$zW^2 - 2W + z = 0 \Longrightarrow W = \frac{1}{z} + \left(\frac{1}{z^2} - 1\right)^{\frac{1}{2}}$$

In other words,

$$e^{iw} = \frac{1}{z} + \left(\frac{1}{z^2} - 1\right)^{\frac{1}{2}}$$

and so

$$iw = \log\left(\frac{1}{z} + \left(\frac{1}{z^2} - 1\right)^{\frac{1}{2}}\right),$$

which, after multiplying both sides by i, yields

$$\sec^{-1}(z) = -i \log\left(\frac{1}{z} + \left(\frac{1}{z^2} - 1\right)^{\frac{1}{2}}\right).$$

Next, we compute the principal value $\operatorname{Sec}^{-1}(-1)$:

$$\operatorname{Sec}^{-1}(-1) = -i\operatorname{Log}(-1) = -i(\operatorname{Log}|-1| + i\operatorname{Arg}(-1)) = \operatorname{Arg}(-1) = \pi.$$

Exercise 3.

a. Determine an admissible parametrization z(t), $t \in [0,3]$, of the contour Γ shown in Figure 2, which has initial point 0 and terminal point 1.

FIGURE 2. Contour Γ for Exercise 3.

Answer. A parameterization of Γ reads

$$z(t) = \begin{cases} t, & t \in [0, 1], \\ 2 + e^{i\pi t}, & t \in [1, 3]. \end{cases}$$

b. Compute the length of the contour shown in Figure 2, using the parameterization from a) and formula (1) on page 159 in the book.

Answer. The length $\ell(\Gamma) = \int_0^1 |z'(t)| dt + \int_1^3 |z'(t)| dt$ is $1 + 2\pi$, since $\int_0^1 \left| \frac{d}{dt} t \right| dt = 1$

and

$$\int_{1}^{3} \left| \frac{d}{dt} \left(2 + e^{i\pi t} \right) \right| \, dt = 2\pi.$$

c. Compute the integral $\int_{\Gamma} \frac{1}{z+1} dz$, where Γ is the contour shown in Figure 2.

Answer. The contour Γ consists of two parts (γ_1, γ_2) , where $z_1(t) = t, t \in [0, 1]$, and $z_2(t) = 2 + e^{i\pi t}, t \in [1, 3]$. Hence

$$\int_{\Gamma} \frac{1}{z+1} \, dz = \int_{\gamma_1} \frac{1}{z+1} \, dz + \int_{\gamma_2} \frac{1}{z+1} \, dz.$$

First, $\frac{1}{z+1}$ has an antiderivative, namely the principal value of $\log(z+1)$:

$$\operatorname{Log}(z+1) = \operatorname{Log}|z+1| + i\operatorname{Arg}(z+1)$$

Since γ_2 is a closed contour, it thus follows that (consult Corollary 2, page 175 in the book)

$$\int_{\gamma_2} \frac{1}{z+1} \, dz = 0.$$

Finally,

$$\begin{split} \int_{\gamma_1} \frac{1}{z+1} \, dz &= \Big[\operatorname{Log}(z+1) \Big]_0^1 = \operatorname{Log}(2) - \operatorname{Log}(1) \\ &= (\operatorname{Log}|2| + i\operatorname{Arg}(2)) - (\operatorname{Log}|1| + i\operatorname{Arg}(1)) \\ &= (0.301 + i\,0) - (0 + i\,0) = 0.301. \end{split}$$

Therefore,

$$\int_{\Gamma} \frac{1}{z+1} \, dz = 0.301.$$