MAT2410 - MANDATORY ASSIGNMENT \#2, FALL 2010; FASIT

REMINDER: The assignment must be handed in before 14:30 on Thursday October 28 at the Department of Mathematics, in the 7th floor of Niels Henrik Abels hus, Blindern. Be careful to give reasons for your answers. To have a passing grade you must have correct answers to at least 50% of the questions.

Exercise 1.

a. Consider the function

$$
f(z)=\left(x^{3}+3 x y^{2}-3 x\right)+i\left(y^{3}+3 x^{2} y-3 y\right)
$$

Determine the points $z=x+i y$ at which $f(z)$ is differentiable.
Answer. Set $u(x, y)=x^{3}+3 x y^{2}-3 x$ and $v(x, y)=y^{3}+3 x^{2} y-3 y$. We compute

$$
\frac{\partial}{\partial x} u=3 x^{2}+3 y^{2}-3=\frac{\partial}{\partial y} v
$$

but

$$
\frac{\partial}{\partial y} u=6 x y=\frac{\partial}{\partial x} v
$$

and thus $\frac{\partial}{\partial y} u=-\frac{\partial}{\partial x} v$ if and only if $x=0$ or $y=0$, i.e., by the Cauchy-Riemann equations $f(z)=u(x, y)+i v(x, y)$ is differentiable at the coordinate axes.
b. Let $f(z)=u(x, y)+i v(x, y)$ be a function that is analytic in a domain $D \subset \mathbb{C}$, and suppose the real part of $f, \operatorname{Re}(f)$, is constant in D. Show that then f must be constant in D.

Answer. The function $f(z)=u(x, y)+i v(x, y)$ is differentiable at a point z implies that the Cauchy-Riemann equations hold at that point:

$$
\frac{\partial u}{\partial x}=\frac{\partial v}{\partial y}, \quad \frac{\partial u}{\partial y}=-\frac{\partial v}{\partial x}
$$

By assumption, $\frac{\partial}{\partial x} u=0$ and $\frac{\partial}{\partial y} u=0$; thus $\frac{\partial}{\partial x} v=0$ (and $\frac{\partial}{\partial y} v=0$). Consequently,

$$
f^{\prime}(z)=\frac{\partial u}{\partial x}+i \frac{\partial v}{\partial x}=0 \quad \forall z \in D
$$

and by Theorem 6 (p. 76) this imples $f=$ constant in D.
c. Let $f(z)$ be a function such that both $f(z)$ and $\overline{f(z)}$ are analytic in a domain $D \subset \mathbb{C}$. Show that then f must be constant in D.

Answer. $\operatorname{Re}(f)=\frac{f+\bar{f}}{2}$ is (real-valued) analytic if and only if f and \bar{f} are analytic. If $f=u+i v$, then $\bar{f}=u-i v$. These functions are differentiable at a point z if the Cauchy-Riemann equations hold:

$$
\begin{array}{lll}
\frac{\partial u}{\partial x}=\frac{\partial v}{\partial y}, & \frac{\partial u}{\partial y}=-\frac{\partial v}{\partial x} & (\text { for } f) \\
\frac{\partial u}{\partial x}=-\frac{\partial v}{\partial y}, & \frac{\partial u}{\partial y}=\frac{\partial v}{\partial x} & (\text { for } \bar{f})
\end{array}
$$

Adding these equations yields

$$
\frac{\partial u}{\partial x}=\frac{\partial u}{\partial y}=0
$$

i.e., the real part of f is constant. The result follows form b).
d. Determine the poles of the function

$$
\frac{z^{4}+2 z^{3}}{z^{5}+(2+2 i) z^{4}+4 i z^{3}} .
$$

Answer. First, write the polynomial in the denominator $z^{5}+(2+2 i) z^{4}+4 i z^{3}$ in factored form. Real roots $z=-2$ and $z=0$ (multiplicity 3). Complex root $z=-2 i$. Factored form is $z^{3}(z+2)(z+2 i)$. Next, write $z^{4}+2 z^{3}=z^{3}(z+2)$. Hence

$$
\frac{z^{4}+2 z^{3}}{z^{5}+(2+2 i) z^{4}+4 i z^{3}}=\frac{z^{3}(z+2)}{z^{3}(z+2)(z+2 i)}=\frac{1}{z+2 i} .
$$

i.e, the (single) pole is $z=-2 i$.

Exercise 2.

a. Consider the function $f(z)=\cos ^{2}(z)+\sin ^{2}(z)$. Prove that this function is entire and $f^{\prime}(z)=0$ for all z. Use this to conclude that $\sin ^{2}(z)+\cos ^{2}(z)=1$ for each z.

Answer. The functions $\sin (z)$ and $\cos (z)$ are entire, and the chain rule implies that $\cos ^{2}(z)$ and $\sin ^{2}(z)$ are entire functions. Moreover, $f^{\prime}(z)=-2 \cos (z) \sin (z)+$ $2 \sin (z) \cos (z)=0$. Hence, $f(z)=C$ for some constant C. We determine C by $f(0)=\cos ^{2}(0)+\sin ^{2}(0)=1+0=1$, so $C=1$.
b. Determine the domain D on which $f(z)=\log (4+i-z)$ is analytic. Draw a picture of D in the complex plane. Compute $f^{\prime}(z)$. What is the domain of analyticity of $\mathcal{L}_{\frac{\pi}{2}}(z)$, where $\mathcal{L}_{\frac{\pi}{2}}$ refers to the branch of $\log z$ based on the cut along the positive imaginary axis (draw a picture of the domain). Compute $\frac{d}{d z} \mathcal{L}_{0}(z)$.
Answer. Domain of analyticity of $\log (4+i-z)$ is

$$
\mathbb{C} \backslash\{z=x+i y: x \geq 4, y=1\},
$$

and $\frac{d}{d z} \log (4+i-z)=\frac{-1}{4+i-z}$.
Domain of analyticity of $\mathcal{L}_{\frac{\pi}{2}}(z)$ is

$$
\mathbb{C} \backslash\{z=x+i y: x=0, y \geq 0\}
$$

and $\frac{d}{d z} \mathcal{L}_{0}(z)=\frac{1}{z}$.

Figure 1. Left. Domain of analyticity of $\log (4+i-z)$. Right. Domain of analyticity of $\mathcal{L}_{\frac{\pi}{2}}(z)$.
c. Consider the set (annulus) $D=\{z \in \mathbb{C}: 2<|z-1|<4\}$. Prove that there does not exist a function $f(z)$ that is analytic on D such that $f^{\prime}(z)=\frac{1}{z}$ for all $z \in D$. [Hint: Assume that such a function exists and then show that this leads to a contradiction.]

Answer. If such a function exists, set

$$
h(z)=f(z)-\log (z) .
$$

Then $h^{\prime}(z)=0$ for all $z \in D \backslash[-3,-1]$. Consequently, h is constant in $D \backslash[-3,-1]$ and therefore $f(z)=\log (z)+C$ for some constant C, in $D \backslash[-3,-1]$. This contradicts the assumption that f analytic in D.
d. Consider the function $\sec (z)=\frac{1}{\cos (z)}$. Derive the expression

$$
\sec ^{-1}(z)=-i \log \left(\frac{1}{z}+\left(\frac{1}{z^{2}}-1\right)^{\frac{1}{2}}\right)
$$

for the inverse of $\sec (z)$. Compute the principal value $\operatorname{Sec}^{-1}(-1)$.
Answer. Set $w=\sec ^{-1}(z)$. Then $z=\sec (w)=\frac{2}{e^{i w}+e^{-i w}}$ or

$$
z e^{i w}+z e^{-i w}=2 \quad \text { or } \quad z e^{i 2 w}+z-2 e^{i w}=0 .
$$

Setting $W=e^{i w}$, we obtain the quadratic equation

$$
z W^{2}-2 W+z=0 \Longrightarrow W=\frac{1}{z}+\left(\frac{1}{z^{2}}-1\right)^{\frac{1}{2}}
$$

In other words,

$$
e^{i w}=\frac{1}{z}+\left(\frac{1}{z^{2}}-1\right)^{\frac{1}{2}}
$$

and so

$$
i w=\log \left(\frac{1}{z}+\left(\frac{1}{z^{2}}-1\right)^{\frac{1}{2}}\right)
$$

which, after multiplying both sides by i, yields

$$
\sec ^{-1}(z)=-i \log \left(\frac{1}{z}+\left(\frac{1}{z^{2}}-1\right)^{\frac{1}{2}}\right)
$$

Next, we compute the principal value $\operatorname{Sec}^{-1}(-1)$:

$$
\operatorname{Sec}^{-1}(-1)=-i \log (-1)=-i(\log |-1|+i \operatorname{Arg}(-1))=\operatorname{Arg}(-1)=\pi
$$

Exercise 3.

a. Determine an admissible parametrization $z(t), t \in[0,3]$, of the contour Γ shown in Figure 2, which has initial point 0 and terminal point 1.

Figure 2. Contour Γ for Exercise 3.

Answer. A parameterization of Γ reads

$$
z(t)= \begin{cases}t, & t \in[0,1] \\ 2+e^{i \pi t}, & t \in[1,3]\end{cases}
$$

b. Compute the length of the contour shown in Figure 2, using the parameterization from a) and formula (1) on page 159 in the book.

Answer. The length $\ell(\Gamma)=\int_{0}^{1}\left|z^{\prime}(t)\right| d t+\int_{1}^{3}\left|z^{\prime}(t)\right| d t$ is $1+2 \pi$, since

$$
\int_{0}^{1}\left|\frac{d}{d t} t\right| d t=1
$$

and

$$
\int_{1}^{3}\left|\frac{d}{d t}\left(2+e^{i \pi t}\right)\right| d t=2 \pi
$$

c. Compute the integral $\int_{\Gamma} \frac{1}{z+1} d z$, where Γ is the contour shown in Figure 2.

Answer. The contour Γ consists of two parts $\left(\gamma_{1}, \gamma_{2}\right)$, where $z_{1}(t)=t, t \in[0,1]$, and $z_{2}(t)=2+e^{i \pi t}, t \in[1,3]$. Hence

$$
\int_{\Gamma} \frac{1}{z+1} d z=\int_{\gamma_{1}} \frac{1}{z+1} d z+\int_{\gamma_{2}} \frac{1}{z+1} d z
$$

First, $\frac{1}{z+1}$ has an antiderivative, namely the principal value of $\log (z+1)$:

$$
\log (z+1)=\log |z+1|+i \operatorname{Arg}(z+1)
$$

Since γ_{2} is a closed contour, it thus follows that (consult Corollary 2, page 175 in the book)

$$
\int_{\gamma_{2}} \frac{1}{z+1} d z=0
$$

Finally,

$$
\begin{aligned}
\int_{\gamma_{1}} \frac{1}{z+1} d z=[\log (z+1)]_{0}^{1} & =\log (2)-\log (1) \\
& =(\log |2|+i \operatorname{Arg}(2))-(\log |1|+i \operatorname{Arg}(1)) \\
& =(0.301+i 0)-(0+i 0)=0.301
\end{aligned}
$$

Therefore,

$$
\int_{\Gamma} \frac{1}{z+1} d z=0.301
$$

